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FROM ATOMS TO CRYSTALS: A MATHEMATICAL JOURNEY

CLAUDE LE BRIS AND PIERRE-LOUIS LIONS

Abstract. We present an overview of some works on the models of computa-
tional quantum chemistry. We examine issues such as the existence of ground
states (both for the electronic structure and the configuration of nuclei), the
foundations of the models of the crystalline phase, and the macroscopic limits.
We emphasize the connections between the physical modelling, the numerical
concerns and the mathematical analysis of the problems.

1. Outline

This article presents an expository review of some collective work by a group
of researchers (X. Blanc, E. Cancès, I. Catto, M. Esteban, E. Séré) to which we
belong on the mathematical aspects of the models used for the simulation of matter
at the microscopic scale. The relation of these models to models for the continuum
description of matter at the macroscopic scale will also be examined.

The mathematical material reported on here covers almost two decades, starting
in the late 1980s with our contribution to a general endeavour (mainly initiated
by E.H. Lieb, B. Simon, W. Thirring) to put the models of quantum chemistry on
a sound mathematical basis (see Sections 3 to 5). It continues in the 1990s with
our work on the thermodynamic limit of molecular models in order to establish
and/or justify models for the crystal phase (see Section 6). The most recent step
(in fact hardly addressed here, only outlined in Section 7, and postponed until
future publications) is the definition of the energy of general infinite microscopic
sets of particles and the passage to the macroscale with the tentative definition of
the density of mechanical energy on the basis of models at the atomistic scale.

The program described above is ambitious. However, we are in a position where
on the one hand some building blocks of the whole program are indeed known
from the mathematical standpoint for most of the models used in practice, and
on the other hand where we are able to accomplish all the steps for some mod-
els, rather academic in nature but nevertheless illustrative and of some physical
relevance. Therefore, we believe that this is the proper time for such a survey arti-
cle. Enough convincing arguments are available to prove that it is indeed possible
to analyze models of microscopic matter and to determine the macroscopic limit,
on a mathematical ground, provided one restricts one’s ambition. A large body
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of mathematical literature confirms this. It is now time to give to the interested
mathematician a user’s guide to such an extensive literature.

On the other hand, we must give an unbiased view of the enterprise. Some
building blocks are missing. There remain many unresolved issues from a purely
mathematical viewpoint. We shall therefore indicate some open problems that are
of mathematical and, within the limits of our competence in the field, physical
interest. One of our hopes in writing such a survey is that it will motivate further
efforts by mathematicians so that the remaining steps could be covered within a
reasonable future.

For the sake of brevity, we have chosen to outline the main results obtained over
the years in the following fashion. We will only state the results in their more
illustrative form, omitting on purpose possible extensions and technicalities. In the
same spirit, we will only sketch very briefly the proofs in the simplest cases and give
some hints on how to extend the results. One of our main goals is to present the
mathematical tools without entering into the details and the technicalities of proofs,
and also to emphasize the articulations between the results. To put it otherwise,
we have collected here what is not in the articles : there the detailed, sometimes
tedious, proofs can be found, as well as the most general statement of the results.
The price to pay for brevity will sometimes be vagueness: we will take some liberty
with rigor and refer the reader to the bibliography herein for detailed arguments
and statements.

We will also take advantage of this survey, definitely more on a mathematical
ground, to give a flavour of the challenges from the numerical viewpoint. As tes-
tified by the Nobel Prize awarded in 1998 to Walter Kohn and John Pople (see
the Nobel Lecture [136]), computational chemistry has indeed gained full recogni-
tion in the world of chemistry, a domain traditionally more experimentally-oriented.
Therefore, we will incidentally allow ourselves some quick incursion into the numer-
ical issues. In the same spirit as for our theoretical concerns, we will also identify
some numerical bottlenecks and some approaches to overcome them (see mainly
Section 3.3).

Let us conclude this introduction by mentioning some general references. For
the general background of quantum mechanics, we refer to the treatises [148, 171]
that are both biased towards molecular quantum chemistry. On the other hand,
some basic mathematical material related to the field of mathematical physics can
be found in the monographs [31, 32, 74, 123, 185, 187, 196, 201]. In addition to
this reference list, we point out some of our own works: the treatises [82, 141] (and
in particular [48] therein) and the survey article [146], where more details are given
on the modelling and the numerical background.

The bibliography enclosed at the end of this article includes more references than
those cited in the body of the text.

2. The Schrödinger equation and the computational bottleneck

Quantum chemistry tries to understand and simulate the properties of matter
via the modelling of its behaviour at the microscopic scale. The motivation is that
many macroscopic properties originate from elementary processes which take place
at the atomic scale. Let us mention for instance the fact that the elastic constants
of a perfect crystal or the color of a chemical compound can be evaluated by atomic
scale calculations. It is thus reasonable to start from such a microscopic description.
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On the other hand, some other macroscopic phenomena proceed from bulk effects
and will not be satisfactorily captured solely by a microscopic model.

At the microscopic scale, and in a stationary picture, the mathematical descrip-
tion is provided by the Schrödinger equation

(2.1) H Ψ = E Ψ,

where H denotes the quantum Hamiltonian of the molecular system under consid-
eration (a self-adjoint operator on some Hilbert space H) and Ψ is the wavefunction
of the system (unit vector in H). The scalar E denotes the energy.

This model can be considered as a universal model (except in a few special cases,
notably those involving relativistic phenomena - models for such situations will be
briefly addressed in Section 3.1.6 below - or nuclear reactions) for it contains all
the physical information of the system, does not involve any empirical parameter
and enjoys remarkable predictive capabilities, as confirmed by comparisons with
experiment.

In addition, it is natural to focus on the determination of the solution to (2.1)
for the lowest possible energy E, which amounts to determining the ground state
(i.e. state of minimal energy) of the system under consideration. In the natural
environment indeed, chemical and physical systems are usually (not always !) found
in their most stable state. Likewise any chemical system A reacts, spontaneously or
with a compound X, to give products B, C, ... according to a chemical reaction if
it is accompanied by a variation of energy stabilizing the whole system. The above
thermodynamic consideration does not suffice however to explain all the observa-
tions: other states than the most stable one can be found and reactions that are
thermodynamically possible may happen after billions of years. But the determina-
tion of the ground state and of the ground-state energy remains the “must” of the
computational chemistry, a preliminary calculation needed before turning to other
questions.

2.1. The basic modelling. In principle, all the components of the system under
study need to be accounted for in the definition of H and H. In the present context
of chemistry, we may consider that the elementary objects the molecular system is
composed of are electrons and nuclei. There is no need to account in detail for the
substructure of the nuclei. Let us henceforth denote by M and N the total number
of nuclei and electrons in the system, respectively.

In most of the settings of chemistry, it is reasonable to consider the nuclei as
classical objects, and as point-like particles clamped at positions (x̄1, · · · , x̄M ). This
stems from the so-called Born-Oppenheimer approximation.

In view of this approximation, problem (2.1) can be rewritten in the form

(2.2) H(x̄1,··· ,x̄M )
e ψe = Eeψe,

where the electronic Hamiltonian H
(x̄1,··· ,x̄M )
e is parameterized by the positions of

the nuclei and reads

(2.3) H(x̄1,··· ,x̄M )
e = −

N∑
i=1

1
2
∆xi

−
N∑

i=1

M∑
k=1

zk

|xi − x̄k|
+
∑

1≤i<j≤N

1
|xi − xj |

.

In order to write H
(x̄1,··· ,x̄M )
e , we have chosen the atomic unit system, commonly

used in quantum chemistry, that we shall adopt throughout this article. In this
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system,

me = 1, e = 1, � = 1,
1

4πε0
= 1,

where me, e, �, ε0 respectively denote the electron mass, the elementary charge, the
reduced Planck constant, and the dielectric permittivity of a vacuum. The charge
of the k-th nucleus is denoted by zk. Beyond the simplicity of this system, which
motivates its use both in mathematics and in chemistry, one must keep in mind
the formidably tiny space and time scales that are involved. The typical size of the
electronic cloud of an isolated atom is the Angström (10−10 meter). The size of the
nucleus embedded therein is 10−15 meter. The weight of an atom is of the order
of 10−26 kg. Regarding the time scale, the typical vibration period of a molecular
bond is the femtosecond (10−15 second), and the characteristic relaxation time for
an electron is 10−18 second. Consequently, quantum chemistry calculations concern
very short time behaviors of very small and very light systems.

The above Hamiltonian (2.3) can be deduced from the one in the classical me-
chanics framework,

Hcl =
N∑

i=1

p2
xi

2
−

N∑
i=1

M∑
k=1

zk

|xi − x̄k|

+
∑

1≤i<j≤N

1
|xi − xj |

,(2.4)

by replacing the x component by the operator consisting in a multiplication by x,
and the momentum px along the x component by the operator −i∇x. The meaning
of each term in (2.3) is then clear: the first term corresponds to the kinetic energy
of the electrons; the latter two terms model the electrostatic energy between the
particles, between nuclei and electrons first, between electrons secondly.

The second term of (2.3), namely the attraction of the nuclei on the electrons,
will henceforth be denoted by

(2.5) V0(x1, ..., xN ) =
N∑

i=1

V (xi) = −
N∑

i=1

( M∑
k=1

zk

| · −x̄k|

)
(xi).

Regarding the variational space He in which the wavefunction ψe varies, we need
to make a few remarks. According to the basics of quantum mechanics, it is some
subspace of a space L2(IRd), for some dimension d related to the total number of
electrons in the system. We note that because of the Pauli principle, the electronic
wavefunction is by construction antisymmetric with respect to the exchange of the
coordinates of both space and spin of two electrons. Therefore the subspace under
consideration will consist of antisymmetric functions. We also note that the Hamil-
tonian H

(x̄1,··· ,x̄M )
e does not act on the spin variable, and we therefore omit the

spin variable in all that follows. The dimension d is therefore d = 3N . The reader
should only keep in mind that all the models we shall introduce and the arguments
we shall make can be slightly modified in order to account for the spin. This is
sometimes done at the price of some substantial tedious details but never is a con-
ceptual difficulty (basically because our main concern deals with the compactness
of all the variational problems at hand, and that the spin variable varies in a finite
thus compact set). Likewise, we remark that H

(x̄1,··· ,x̄M )
e is a real operator, and thus

it suffices to consider real-valued wavefunctions to entirely determine the ground
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state. In addition, it is also clear from the form of the Hamiltonian H
(x̄1,··· ,x̄M )
e

that, if we want to only consider states of finite energy, we need to impose the L2

integrability of the first derivative of the wavefunctions with respect to the space
variables. This is the necessary and sufficient condition to give a meaning to the
kinetic energy terms. In view of standard results in functional analysis, this also
allows one to properly define the electrostatic Coulombian interaction term. There-
fore, the variational space for (2.2) is set to the antisymmetrized tensor product:

(2.6) He =
N∧

i=1

H1(IR3).

Of course, an alternative viewpoint to the one above is to remark that (2.2) is the
Euler-Lagrange equation of the minimization problem

(2.7) U(x̄1, · · · , x̄M ) = inf
{
〈ψe, H

(x̄1,··· ,x̄M )
e ψe〉, ψe ∈ He, ‖ψe‖L2 = 1

}
.

The energy of the complete system consisting of the classical nuclei and the electrons
is then recovered by setting

(2.8) W (x̄1, · · · , x̄M ) = U(x̄1, · · · , x̄M ) +
∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
.

2.2. Direct approaches at the Schrödinger level. Even in the “simplified”
form (2.7), the minimization problem, however enjoying good mathematical prop-
erties since it consists of the minimization of a quadratic form (see [105] or [128]
for a review), is untractable from the practical viewpoint again because of the di-
mension of the variational space. Indeed, already for N of the order of 10 (which is
the case for the water molecule), the approximation of L2(IR3N ), or more precisely
that of its subspace

∧N
i=1 H1(IR3), is an overwhelming task practically, and thus the

direct attack of problem (2.7) is not possible. Such a direct attack is thus currently
restricted to systems of very small size.

For most, if not all, systems, additional approximations are thus necessary in
order to allow for computations. In one way or another, all of these simplifications
aim at reducing the dimensionality of the problem. We will introduce them in the
next section.

Remark 2.1. On bielectronic integrals.
In addition to this dimensionality problem, a second difficulty comes from the

fact that the computation of 〈ψe, H
(x̄1,··· ,x̄M )
e ψe〉 for an arbitrary ψe involves inte-

grals of the form ∫
IR3N

1
|xi − xj |

|ψe|2 dx1 ... dxN

due to the presence of the electrostatic repulsion between electrons in (2.3). The cal-
culation of these integrals (called in chemistry the bielectronic integrals integrals, for
they involve the positions of two electrons simultaneously) is a substantial practical
difficulty that is treated today by dedicated methods. Stochastic-based methods as
well as clever deterministic approaches can be employed.

Remark 2.2. On the exact wavefunction. With a view to designing efficient
discretization schemes for further approximation of (2.7), it is useful to keep track
of the mathematical properties of the exact wavefunction ψe minimizing (2.7), or



296 CLAUDE LE BRIS AND PIERRE-LOUIS LIONS

equivalently providing a solution to (2.2). It is indeed easily seen that ψe has a cusp
at each point nucleus, the shape of which is related to the charge of the nucleus,
and that the density ρ is an exponentially decreasing function at infinity. These
two properties have a great impact on the modelling because it is important to have
approximations that mimick these behaviours. Likewise, they impact on the choice
of the discretization space, as the basis functions adopted indeed should reproduce
well this behaviour at short and long distances, for the sake of efficiency. We refer to
[110, 111, 112, 127, 204, 205, 206] for works related to these issues of the regularity
of the wavefunction and of the density.

Before we turn to the approximations of (2.7), and with a view to enlarging the
practical applicability of problem (2.7), we would like to mention the stochastic
approach, that is, one possible way to treat (2.7) for a number N of electrons that
are not necessarily small.

It is already known in the chemistry literature (see e.g. [147]) that Monte-Carlo-
like methods can be the methods of choice for treating problem (2.7). The basic
observation that underlies the approach is the following. In order to compute (2.7),
the following time-dependent parabolic equation can be considered:

(2.9)
∂ψe

∂t
+ Heψe = 0.

As t goes to infinity,

(2.10)
1
t

Log
∣∣ψe(t, x)

∣∣ =
1
t

Log
∣∣e−tHe ψe(0, x)

∣∣ −→ U (defined by (2.7)).

Now, we know by the Feynmann-Kac formula that ψe(t, x) reads as the following
expectation value:

(2.11) ψe(t, x) = IE
(

ψ0
e(x + Wt) exp

(
−
∫ t

0

(V0 + V1)(x + Ws) ds
))

,

where ψ0
e is an initial datum for (2.9), V0 is defined by (2.5), V1 denotes the last

term of (2.3), and Wt denotes a 3N -dimensional Brownian motion.
Therefore, the calculation of U amounts to determining the long time limit (2.10),

and thus to evaluating by empirical means the expectation value (2.11). In practice,
the main two difficulties are the need to ensure that ψe is an antisymmetric func-
tion, and the need to generate in the stochastic simulation only points that will
significantly contribute to the expectation value (2.11). In this direction, recent
developments in other traditional fields of applications for stochastic methods such
as financial mathematics could constitute a promising mathematical approach for
chemistry (see [169] for an outline of the strategy and [57] for a related and recent
mathematical study).

2.3. Approximations. The most commonly used approximations to the mini-
mization problem (2.7) can schematically be classified into two main classes:

• wavefunction methods aim at finding an approximation of the ground-state
electronic wavefunction, i.e. of the minimizer of (2.7). The variational space
He is reduced but the “exact” form of the energy 〈ψe, H

(x̄1,··· ,x̄M )
e ψe〉 is kept.

The Hartree-Fock approximation, introduced by Hartree and improved by
Fock in the late 1920s, is the most famous example of such a method.
Wavefunction methods are used preferably by chemists who are interested
in the precise simulations of systems of small size, when computational
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time is not an issue. We refer to the treatises [126, 199] in the chemistry
literature.

• density functional methods are issued from the Density Functional Theory,
an ancestor of which is the Thomas-Fermi approximation, well known by
mathematicians. They are based on a reformulation of problem (2.7) in
such a way that the main variable is the electronic density

ρ(x) = N

∫
IR3(N−1)

|ψe(x, x2, · · · , xN )|2 dx2 · · · dxN

(i.e. a scalar field on IR3) rather than the wavefunction (i.e. a scalar field
on IR3N ) as in the original problem (2.7). This is why these methods are
widely used by those chemists who are interested in large molecular systems
(e.g. biological systems) as well as by most solid-state physicists. The fact
that various parameters or even the very form of some terms of the energy
functional need to be arbitrarily chosen or tuned for these methods makes
the method particularly efficient for some situations but is sometimes seen
as a lack of rigour by chemists.

The approximations outlined above and that we will now introduce are called ab
initio approximations. They all consist in a simplified but still quantum description
of the electronic structure around the nuclei. One may nevertheless follow an al-
ternative approach. The so-called molecular mechanics models consist of replacing
(2.8) by a fully classical energy of the type

(2.12) Uclassic(x̄1, · · · , x̄M ) +
∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
.

This allows for the practical treatment of systems of millions of nuclei.

Remark 2.3. On the use of ab initio methods. Although ab initio methods are
restricted to small systems (both in terms of space and in terms of time), it is to
be mentioned that they have a twofold interest:

• they can indeed be used to simulate very precisely small systems, which
has a great interest per se

• and they can also be used in a coupled simulation of a far larger system,
either by using them in a preliminary step to compute and fit interaction
potentials between atoms (next inserted in formulae of the type (2.12)), or
by coupling two levels of approximation, namely the ab initio one and the
empirical one.

3. Finding the electronic ground state

3.1. Hartree-Fock type models.

3.1.1. Physical modelling. The Hartree-Fock approximation, abbreviated by HF,
consists of restricting in the variational problem (2.7) the variational space He

to that of functions of the variables (x1, ..., xN ) ∈ IR3N that can be written as a
single determinant (i.e. an antisymmetrized product) of N functions defined on IR3.
Recall that, in its entire generality, an arbitrary element of He is only a converging
infinite sum of such determinants. The Hartree-Fock approximation is therefore
defined as

(3.1) UHF (x̄1, · · · , x̄M ) = inf {〈ψe, Heψe〉, ψe ∈ SN} ,
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with
(3.2)

SN =
{

ψe =
1√
N !

det(φi(xj)), φi ∈ H1(IR3),
∫

IR3
φi φj = δij , 1 ≤ i, j ≤ N

}
.

In order to make the form of the wavefunction more explicit for the reader, we
expand it as follows:

(3.3) ψe(x1, · · · , xN ) =
1√
N !

det(φi(xj)) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

φ1(x1) · · · φ1(xN )
· ·
· ·
· ·

φN (x1) · · · φN (xN )

∣∣∣∣∣∣∣∣∣∣
.

In the language of quantum chemistry, a function of the form (3.3) is called a Slater
determinant, and the φi are called molecular orbitals.

Apart from purely technical antisymmetry considerations, the Hartree-Fock
approximation heuristically consists of writing that the probability density
|ψ|2(x1, ..., xN ) of finding the N electrons at positions (x1, ..., xN ) can be written as
the product |φ1|2(x1)...|φN |2(xN ). This amounts to considering the positions of the
electrons as independent variables. This simplification causes a loss of correlation
between the positions of the electrons and is responsible for some error in the result
obtained. Indeed, restricting the minimization to some specific forms of functions
in (3.1) provides only an upper bound of the energy (2.7). On the other hand, the
fact that it is an upper bound and not only an approximation of the exact energy is
of course a substantial practical advantage of the method, in comparison to other,
non-variational approximations such as those coming from the density functional
theory (see Section 3.1.5 and below).

Let us now write the Hartree-Fock approximation in a more explicit fashion. We
denote

(3.4) τ (x, x′) =
N∑

i=1

φi(x) φi(x′)

and

ρ(x) =
N∑

i=1

|φi(x)|2.

The functions τ and ρ are respectively called the density matrix and the density
associated to the state ψe. The function τ is in fact a special occurrence for a Slater
determinant ψe of the general formula

(3.5) γ1(x, x′) =
∫

IR3(N−1)
ψe(x, x2, x3, ..., xN )ψe(x′, x2, x3, ..., xN ) dx2 · · · dxN

which defines in the entire generality the first-order reduced density matrix calcu-
lated from the state ψe (objects of this type will be manipulated in Remark 3.13
below). The density ρ is then deduced from τ by taking the trace.
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This allows us to compute

EHF (φ1, ..., φN ) = 〈ψe, Heψe〉 =
N∑

i=1

1
2

∫
IR3

|∇φi|2 +
∫

IR3
ρ V

+
1
2

∫
IR3

∫
IR3

ρ(x) ρ(x′)
|x − x′| dx dx′

−1
2

∫
IR3

∫
IR3

|τ (x, x′)|2
|x − x′| dx dx′.(3.6)

In the sequel to this section, we fix the positions (x̄1, · · · , x̄M ) of the nuclei, fix the
number N of electrons, and now denote IHF

N = UHF (x̄1, · · · , x̄M ); i.e.

IHF
N = inf

{
N∑

i=1

1
2

∫
IR3

|∇φi|2 +
∫

IR3
ρ V +

1
2

∫
IR3

∫
IR3

ρ(x) ρ(x′)
|x − x′| dx dx′

− 1
2

∫
IR3

∫
IR3

|τ (x, x′)|2
|x − x′| dx dx′,

φi ∈ H1(IR3),
∫

IR3
φi φj = δij , 1 ≤ i, j ≤ N

}
,

(3.7)

where we recall that

V (x) = −
M∑

k=1

zk

|x − x̄k|
.

The above spinless Hartree-Fock model (3.7) has been extensively studied by math-
ematicians.

Remark 3.1. In the mathematical literature, the factor 1
2 in front of the kinetic

energy is often omitted. It is of course only a matter of units and does not change
at all the analysis nor the conditions (algebraic or not) we will find for the existence
of minimizers.

3.1.2. Existence of a ground state: generalities. In view of its importance for com-
putational issues, we focus on the very first question that can be asked about a
minimization problem such as (3.7): does there exist a minimizer (i.e. a ground
state in terms of chemistry), and what can be said about it?

Very briefly, let us outline the mathematical difficulty. Problem (3.7), along with
all the minimization problems we shall encounter in the present section, belongs to
a class of problems that we formulate somewhat vaguely in the form

(3.8) IN = inf
{

E(φ),
∫

IRN

|φ|2 = N

}
,

that are set on the whole space IRN and that involve energy functionals that contain
gradient norms; the loss of compactness in a minimizing sequence may occur, neither
by oscillation nor concentration, but by escape at infinity. This phenomenon is
interpreted in terms of chemistry by ionization, or in other words by the loss of an
electron. For this reason, such problems are often called locally compact variational
problems. Indeed, the main difficulty does not come from the energy functional. In
most cases (with the notable exception of the Thomas-Fermi-Dirac-von Weizsäcker
model that we will deal with in Section 4.5), the energy functional is weakly lower
semicontinuous for the H1 topology. In the majority of these cases, the weakly
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lower semicontinuity in turn originates from some convexity of the functional. The
main difficulty rather comes from the constraint. In other words, a sequence such
that 



∫
IRN

|φn|2 = N,

lim
n−→+∞

E(φn) = IN

may converge to some φ∞ that in general has the right energy E(φ∞) = IN but

that might have an L2 norm
∫

IRN

|φ∞|2 strictly inferior to N . In order to ensure

that no such phenomenon occurs, it is natural that spectral theory should play
a role at some point, exactly as it does in the mathematical study of the simple
quadratic case

(3.9) I = inf
{
〈(−∆ + W )φ, φ〉 , φ ∈ H1(IR3),

∫
|φ|2 = 1

}
.

In the nonlinear case at hand, the Schrödinger operator −∆+W (in fact depending
on the variable φ) is the first-order derivative of the energy at a tentative minimizer.
The essential feature is to know whether the potential W is sufficiently negative
(i.e. attractive) at finite distance, and sufficiently positive at infinity (i.e. prevents
diffusion), so that a minimizer exists, a fact which is interpreted in physics by saying
that the Hamiltonian has at least a bound state below the states of diffusion, i.e. the
continuous spectrum. This property has then to be checked by careful inspection
of each case at hand.

Let us now turn more precisely to the HF case.

3.1.3. Existence of a ground state: the HF case. The main result is the following.

Theorem 3.2. [155, 166] Existence of a minimizer for the HF model

• (i) Any minimizing sequence of (3.7) is relatively compact in
(
H1(IR3)

)N
if and only if the following condition holds:

(3.10) IHF
N < IHF

N−1.

• (ii) Condition (3.10) holds as soon as the total nuclear charge satisfies

(3.11) Z =
M∑

k=1

zk > N − 1.

Some immediate comments are in order, first about the condition (3.11).
Note first that when the zk are integers, which is the physically relevant case

(recall we work with atomic units), condition (3.11) also reads Z ≥ N and thus (ii)
states the existence of a ground state for neutral and positively charged systems
(i.e. molecules and cationic ions) in the HF model.

The mathematical condition (3.11) translates the physical property that the nu-
clei should be sufficiently positively charged in order to be able to bind the N
electrons at their vicinity, which is quite a natural assumption that can be under-
stood on the basis of a simple electrostatic balance: when Z is not large enough the
N electrons are left free to repel each other and may escape. Such a phenomenon
can be formalized and illustrated by the following elementary argument on a simple
model of a molecular system consisting of classical (as opposed to quantum) but
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smeared out particles. Consider a set of M nuclei, of (integer) charge z1, ..., zM ,
located at points x̄1, ..., x̄M , respectively. Next, add to this system a set of N elec-
trons, located at the points x1, ..., xN . To avoid a collapse due to the singularity
of the Coulomb potential, it is necessary to smear out the nuclei and the electrons,
assuming that their shape is given by a smooth nonnegative function m (such that∫

m = 1) centered at the points x̄k (1 ≤ k ≤ M) and xi (1 ≤ i ≤ N) respectively.

The density of the nuclei and that of the electrons thus read ρ̄(x) =
M∑

k=1

zkm(x − x̄k)

and ρ(x) =
N∑

j=1

m(x − xj), respectively. Let us introduce the notation

(3.12) D(f, g) =
∫

IR3

∫
IR3

f(x)g(y)
|x − y| dx dy,

whenever it makes sense. Then the minimization problem (analogous to the quan-
tum problem (2.7)) to be solved in order to determine the electronic ground state
reads

Iclassic
N = inf

{
−
∑

1≤k≤M

∑
1≤j≤N

zkD
(
m(x − x̄k), m(x − xi)

)

+
1
2

∑
1≤i �=j≤N

D
(
m(x − xi), m(x − xj)

)
;

(x1, ..., xN ) ∈ IR3N

}
(3.13)

and can be reformulated as

(3.14) Iclassic
N = Jclassic

N − 1
2

D
(
ρ̄, ρ̄) − N

2
D(m, m),

where
(3.15)

Jclassic
N = inf

{
1
2

D(ρ̄ − ρ, ρ̄ − ρ); ρ(x) =
N∑

j=1

m(x − xj); (x1, ..., xN ) ∈ IR3N

}
.

Then, the analysis is straightforward and follows from the following simple obser-
vation: D(f, f) ≥ 0 for all f and vanishes if and only if f ≡ 0. When N ≤ Z (i.e.
N − 1 < Z), the infimum (3.15), thus (3.13), is attained when the xi (1 ≤ i ≤ N)
are exactly some of the x̄k (1 ≤ k ≤ M). More precisely, for a minimizer a number
of electrons equal to the charge zk is set at the location xi = x̄k, until there are no
electrons left. In particular, for N = Z, the infimum (3.15) is zero and the only
minimizer (up to a trivial renumbering) is for ρ = ρ̄. On the other hand, when
N > Z, the infimum (3.15) is still zero, but is not attained: N −Z excess electrons
are pushed to infinity, so that ρ = ρ̄ again. The necessary and sufficient condition
for a minimizer to exist is therefore again (3.11).

In the same fashion, notice that the same condition as (3.11) exists for the
N -body problem (2.8) in order to ensure the existence of an infinity of discrete
eigenvalues below the essential spectrum; see [207].



302 CLAUDE LE BRIS AND PIERRE-LOUIS LIONS

Coming back to the HF model, let us also point out that condition (3.11) is only
a sufficient condition. No necessary condition is known for the existence. The only
result that is known in this direction is a result by Solovej in [191], improving a
previous result by Lieb in [161], and stating the existence of some m such that for
N ≥ Z + m there never exists a minimizer.

Any more precise result even for a particular given pair (N, Z) (say for N small
and Z = 1, or for any arbitrary N and Z = N −1) would be particularly useful and
enlightening, but to the best of our knowledge no such result has been established.

In the same vein (and contrary to what is sometimes erroneously stated in the
chemistry literature), nothing is known on any kind of uniqueness that may hold
(up to the trivial invariance properties of the Hartree-Fock energy functional). For
instance, a natural question is the uniqueness of the minimizing electronic density
ρ. Any insight on such issues would have tremendous consequences, in particular
on the numerics.

Finally, let us mention that the compactness of all minimizing sequences is a
result slightly stronger than the existence of a minimizer, that has in particular an
impact on the behaviour of the numerical approximations of the problem.

Let us now outline the proof of the above theorem.
It is simple to see that a minimizing sequence (φn

1 , ..., φn
N ) is necessarily bounded

in H1(IR3)N , and that it therefore converges up to an extraction to some N -tuple
(φ1, ..., φN ). Studying each of its terms, one sees that the energy functional EHF is
lower semi-continuous for the H1 weak topology. On the other hand, the orthonor-
mality constraint is a priori not preserved in the limit. It can therefore be claimed
that

(3.16) EHF (φ1, ..., φN ) ≤ IHF
N and 0 ≤

[∫
IR3

φi φj

]
≤
[
δij

]
,

in the sense of symmetric matrices, and no more than that a priori. In order

to overcome the difficulty and see when
[∫

IR3
φi φj

]
= Id holds, we introduce the

following family of minimization problems:

(3.17) IN (A) = inf
{

EHF (φ1, ..., φN ), φi ∈ H1(IR3),
[∫

IR3
φi φj

]
= A

}
,

for any nonnegative symmetric matrix A. Of course, (3.7) corresponds to the case
when A is the identity matrix.

Then, the proof of Theorem 3.2 relies on two properties of monotonicity and
concavity of the infimum IN (A) defined by (3.17) with respect to the constraint
defined by A.

The property of monotonicity originates from physics. If some of the electrons are
sent to infinity, the energy can only increase. This is easily seen by the following
mathematical argument. Fix ε > 0, fix two symmetric matrices A1 ≥ A2, and

choose some (ψ1, ..., ψN ), all compactly supported, such that
[∫

IR3
ψi ψj

]
= A2 and

IN (A2) ≤ EHF (ψ1, ..., ψN ) ≤ IN (A2) + ε.

Now fix (χ1, ..., χN ), again all compactly supported, such that
[∫

IR3
χi χj

]
=A1−A2.

Consider ψn
i = ψi + n−3/2χi( ·

n ) (this is a way to eliminate excess electrons). By
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definition of the infimum,

IN

([∫
IR3

ψn
i ψn

j

])
≤ EHF (ψn

1 , ..., ψn
N ),

and it is simple to see that, as n goes to infinity, the left-hand side converges to
IN (A1), while the right-hand side converges to EHF (ψ1, ..., ψN ). This shows that

IN (A1) ≤ EHF (ψ1, ..., ψN ) ≤ IN (A2) + ε,

for all ε > 0, and proves that IN (A) is nonincreasing with respect to A. In partic-
ular, we can now deduce from (3.16) that EHF (φ1, ..., φN ) = IHF

N .
Unlike the monotonicity property that stems from physics, the concavity prop-

erty originates from the specific model at hand. We begin by noticing that we can

always diagonalize the matrix
[∫

IR3
ψi ψj

]
without changing the energy EHF (ψ1, ...,

ψN ). This is clear on the original expression of the Hartree-Fock energy: it is a
function of the determinant of (ψ1, ..., ψN ), and a determinant is invariant under
orthogonal transformations. Therefore, when the λi are the eigenvalues of the sym-
metric matrix A, we have

IN (A) =IN (λ1, ..., λN )

= inf
{

EHF (ψ1, ..., ψN ), ψi ∈ H1(IR3),
[∫

IR3
ψi ψj

]
= diag(λ1, ..., λN )

}

= inf
{ N∑

i=1

λi

(
1
2

∫
IR3

|∇ψi|2 +
∫

IR3
|ψi|2 V

)

+
1
2

∑
i �=j

λiλj

∫
IR3

∫
IR3

|ψi(x)|2|ψj(x′)|2 − ψi(x)ψj(x)ψi(x′)ψj(x′)
|x − x′| dx dx′,

ψi ∈ H1(IR3),
[∫

IR3
ψi ψj

]
= δij

}
.(3.18)

When all the λi are fixed except one, say λN , the energy one minimizes is linear
with respect to λN . As an infimum of a linear function is concave, this shows the
concavity of IN (λ1, ..., λN ) with respect to any of the λi.

On the basis of the above two properties, we now conclude the proof of The-
orem 3.2. Let us denote by 1 ≥ λ1 ≥ ... ≥ λN ≥ 0 the eigenvalues of the ma-

trix
[∫

IR3
φi φj

]
. Let us suppose that all λi are not equal to 1 and denote by i

the smallest index in {1, ..., N} such that λi < 1. We thus have IN (1, 1, ..., 1) =
IN (1, ..., 1, λi, ..., λN ). Because IN is both concave and nonincreasing, this shows
that

IN (1, ..., 1, λ, λi+1, ..., λN )
is a constant function of λ ∈ [0, 1]. Therefore, repeating the argument for all j from
i + 1 to N ,

IHF
N = IN (1, 1, ..., 1) = IN (1, ..., 1, 0, ..., 0) = IHF

N−i.

This implies IHF
N = IHF

N−1 = IHF
N−i and contradicts (3.10), thereby showing assertion

(i) of Theorem 3.2.
For assertion (ii) we proceed by induction on N . The case N = 1 reduces to

I1 < 0, which is easily seen. We next fix N , assume Z > N − 1 and IN−1 <
IN−2 < ... < I1 < 0. With the same notation as above, we then claim that
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IN ≤ IN (1, 1, ..., 1, 1) < IN−1(1, 1, ..., 1) = IN−1, which shows assertion (ii) at
rank N . For this purpose, we write

EHF (φ1, ..., φN−1, ϕ) − IN−1 =
∫

|∇ϕ|2 +
∫

|ϕ|2V

+
∫ ∫

ρN−1(x)ϕ2(x′)
|x − x′| −

∫ ∫
ρN−1(x, x′)ϕ(x)ϕ(x′)

|x − x′| ,

(3.19)

where (φ1, ..., φN−1) is a minimizer of IN−1, and ϕ an arbitrary function to be
fixed below. It remains now to show that, under the condition Z > N − 1, we may
find some N -dimensional vector space (in order to ensure orthogonality to the first
N − 1 φi) of functions ϕ such that (3.19) is a negative quantity. This is indeed
proven by considering a space of radially symmetric functions ϕ that are adequately
rescaled. The bottom line of the argument is, as announced above, some balance of
electrostatic interaction: (forgetting the last term for clarity) the right-hand side
of (3.19) involves the Schrödinger operator

−1
2

∆ + V + ρN−1 �
1
|x|

whose potential V + ρN−1 �
1
|x| roughly behaves as

−Z + (N − 1)
|x| at infinity. For

Z > N − 1, this potential is sufficiently negative at infinity so that negative eigen-
states (and in fact infinitely many) exist. This concludes the proof of the theorem.

It is worth mentioning at this stage that the same proof, even slightly simpler and
up to minor modifications, shows the following existence theorem on the Hartree
model (abbreviated by H). The Hartree model is a predecessor of the Hartree-Fock
model when the antisymmetry requirement is ignored, or in other words the test
functions are restricted to be of the form

ψe(x1, ..., xN ) =
N∏

i=1

φi(xi),

for normalized φi, in the minimization problem (2.7).

Theorem 3.3. Existence of a minimizer for the H model
Consider the Hartree model

IH
N = inf

{
EH(φ1, ..., φN ) =

N∑
i=1

1
2

∫
IR3

|∇φi|2 +
∫

IR3
ρ V

+
1
2

∑
i �=j

∫
IR3

∫
IR3

|φi(x)|2|φj(x′)|2
|x − x′| dx dx′,

φi ∈ H1(IR3),
∫

IR3
|φi|2 = 1, 1 ≤ i ≤ N

}
.(3.20)

• (i) Any minimizing sequence of (3.20) is relatively compact in
(
H1(IR3)

)N
if and only if the following condition holds:

(3.21) IH
N < IH

N−1.
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• (ii) Condition (3.21) holds as soon as the total nuclear charge satisfies

(3.22) Z =
M∑

k=1

zk > N − 1.

All of the comments we made after the statement of Theorem 3.2 on the Hartree-
Fock model hold for the Hartree model.

3.1.4. The Euler-Lagrange equations. A minimizer of the Hartree-Fock problem
satisfies the Euler-Lagrange equations associated to (3.7), namely the following
system of N coupled partial differential equations:
(3.23)


−1
2
∆φi + V φi +

( N∑
j=1

|φj |2 �
1
|x|

)
φi −

N∑
j=1

(
φiφj �

1
|x|

)
φj =

N∑
j=1

λijφj ,∫
IR3

φiφj = δij ,

where the matrix λij is the self-adjoint matrix of Lagrange multipliers associated
to the orthonormality constraints.

Next, because of the orthogonal invariance of the Hartree-Fock energy functional
mentioned above, we may diagonalize the matrix λij of Lagrange multipliers and
obtain (with a slight abuse of notation) the Hartree-Fock equations :

(3.24)




−1
2
∆φi + V φi +

( N∑
j=1

|φj |2 �
1
|x|

)
φi −

N∑
j=1

(
φiφj �

1
|x|

)
φj = λiφi,∫

IR3
φiφj = δij .

The equations (3.24) can be written in the more compact form

(3.25)




FΦφi = λi φi,∫
IR3

φiφj = δij ,

with

(3.26) FΦ = −1
2
∆ + V +

( N∑
j=1

|φj |2 �
1
|x|

)
−

N∑
j=1

(
·φj �

1
|x|

)
φj .

They then appear as a nonlinear eigenvalue problem, known in quantum chemistry
as a self-consistent field problem, abbreviated as SCF, in order to emphasize that
the electrostatic field the electrons are experiencing indeed depends on the φis. Any
minimizer to (3.7) is, up to an orthogonal transform, a solution to (3.24). Moreover,
it has been proven in [166] that if Φ is a Hartree-Fock ground state, then the λi

necessarily are negative and are the lowest N eigenvalues of the Fock operator FΦ.
Another interesting property, established in [4], is that, for any minimizer, the N -th
energy level λN is not degenerate.

Because we do not dispose of any convexity property, it is not known whether
any solution to (3.24) conversely is a minimizer to (3.7), which is a major difficulty
for the numerical approximation of the problem.
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Due to standard elliptic theory results, the φi solutions to (3.24) are necessarily
smooth functions (except at the point nuclei), that in addition decrease exponen-
tially fast at infinity. This latter property agrees with the properties of the exact
wavefunction recalled in Remark 2.2.

Let us also mention that, again, we may apply to the Hartree model the tech-
niques of the Hartree-Fock model, in a more simple way though. Then the Euler-
Lagrange equations read

(3.27)




−1
2
∆φi + V φi +

(∑
j �=i

|φj |2 �
1
|x|

)
φi = λiφi,∫

IR3
|φi|2 = 1,

where it can be shown that λi ≤ 0, and, for Z > N −1, that λi < 0. All remarks on
the equivalence with the minimization viewpoint, the regularity and the exponential
decay of the φi hold again.

3.1.5. Beyond Hartree-Fock. Many post Hartree-Fock methods exist in the chemical
literature. As the Hartree-Fock approximation is a variational approximation of
(2.7), i.e. an approximation constructed by restricting the variational space He to
a smaller one, most of its improvements consist in enlarging the variational space.

An illustrative example is provided by the multiconfiguration self-consistent field
method (abbreviated as MCSCF) that aims at recovering more generality on the
wavefunction ψe by minimizing on sums of determinants. The MCSCF problem
can be stated as follows:

EK
N = inf


〈ψe, Heψe〉, ψe =

∑
I={i1,...,iN}⊂{1,...,K}

cI
1√
N !

det (φi1 , ..., φiN
),

φi ∈ H1(IR3),
∫

IR3
φiφj = δij ,

∑
I

c2
I = 1

}
,(3.28)

where K ≥ N is some given fixed integer. The constraints on the φi and the cI

amount to enforcing ‖ψe‖L2 = 1 and Rank (Dψe
) ≤ K, where Dψe

is the density
operator built from ψe.

The Euler-Lagrange equations of this minimization problem can be derived in
the same fashion as they are in the Hartree-Fock setting, and one then obtains
the MCSCF equations, which basically are of the same form as the Hartree-Fock
equations (3.24), apart from tedious technical details.

The MCSCF model (3.28) gives rise to the same theoretical interesting questions
as the HF model does. The first mathematical results on the MCSCF model are
due to one of us in [143], in the case of two determinants. This preliminary result
has been considerably complemented in [114] to deal with the general case of many
determinants. This general case is the full MCSCF model, stated exactly in (3.28).
Alternatively, the discrete summation in (3.28) can possibly be restricted to some
convenient subsets of {1, ..., K}. This gives rise to particular variants of the MCSCF
model, that are indeed treated in practice, (3.28) being untractable for most systems
of physical interest. The proofs of [114] have recently been simplified and the results
further complemented and improved in [150], in order notably to apply to those
practical cases. This latter work puts the mathematical knowledge on the MCSCF
model on the same level as that on the HF model, which can be heuristically
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understood as a manifestation of the fact that both models come from successive
degrees of variational approximation of the sole problem (2.7).

3.1.6. A parenthesis on relativistic models. In the case when the molecular system
under study involves one or many heavy atoms, the relativistic effects are of major
importance. Such a situation requires specific models, issued from relativistic quan-
tum chemistry. Let us only mention here that, neglecting the relativistic effects for
heavy atoms and modelling them in the nonrelativistic framework we have dealt
with so far, may lead to incorrect physical conclusions. For instance, modelling
a heavy atom in a nonrelativistic setting leads to the conclusion that gold is not
yellow or that mercury is not a liquid metal.

We will briefly review in this section some elements of modelling for the rela-
tivistic situation, the mathematical side of which has been recently investigated by
a series of work by Esteban, Séré and collaborators (see [98] for a review by these
authors).

What plays the role of the Schrödinger Hamiltonian for a relativistic electron of
coordinates (x1, x2, x3) ∈ IR3 is the Dirac Hamiltonian:

(3.29) Hc = −iα1
∂

∂x1
− iα2

∂

∂x2
− iα3

∂

∂x3
+ c2β,

where c is the speed of light (c = 137 in the atomic unit system we have adopted so
far, and recall that the mass of the electron is m = 1 in this system), αk, k = 1, 2, 3,
and β are 4 × 4 matrices given by

(3.30) αk =
(

0 σk

σk 0

)
, β =

(
Id2 0
0 −Id2

)
,

where Id2 is the 2 × 2 identity matrix, and the σk are the Pauli matrices

(3.31) σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The introduction of this Hamiltonian, by Dirac, is motivated by the fact that H2
c

needs to be equal to the operator −c2∆+ c4, which is the quantum analogue of the
Hamiltonian of classical relativity p2c2 + c4 (where p is the momentum operator),
exactly as the Schrödinger operator (2.3) is the analogous operator to (2.4). Dirac
constructed Hc as a simple differential operator (as implied by relativity theory)
that has constant coefficients (in order to be invariant under the transformations
of the Lorentz group) and gives the correct square H2

c .
The Dirac Hamiltonian Hc acts on 4-spinors, i.e. wavefunctions valued in C4 (and

not C or IR as was the case in nonrelativistic quantum mechanics). Its domain is
H1(IR3, C4) and its (entirely continuous) spectrum is σ(Hc) =]−∞,−c2]∪[c2, +∞[.
The striking difference with the Laplacian operator, whose spectrum is [0, +∞[,
lies in the fact that the spectrum of the Dirac Hamiltonian is not bounded from
below. This will have devastating consequences on the mathematical analysis of the
minimization problems we shall deal with. They will therefore have a continuum
of negative directions at a critical point. So minimization will have to be replaced
by adequate saddle-point methods.

If we now place this electron in the field of a nucleus of charge Z placed at the
origin of IR3, the Hamiltonian reads

(3.32) HZ,c = Hc −
Z

|x|
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(the case of a molecule can be dealt with, replacing the potential −Z/|x| by V
defined by (2.5)). When Z < c, it can be shown that HZ,c has a unique self-adjoint
extension, still denoted by HZ,c. Its spectrum is

(3.33) σ(HZ,c) =] −∞,−c2] ∪ {λc
1, ..., λ

c
k, ...} ∪ [c2, +∞[

as the potential −Z/|x| has indeed created discrete eigenvalues in the gap ]− c2, c2[
of the spectrum of Hc. The discrete eigenvalues λc

k form an increasing sequence
that starts from the lowest eigenvalue λc

1 =
√

c4 − c2Z2 and converges to c2 as k

goes to infinity. To each of them corresponds an eigenstate ψc
k =
(

ϕc
k

χc
k

)
(with ϕc

k

and χc
k valued in C2). When c goes to infinity, one has

(3.34) λc
k − c2 −→ εk, ϕc

k −→ ϕk, χc
k −→ 0,

where (ϕk, εk) is the k-th (eigenfunction, eigenvalue) pair for the classical operator
−1

2 −∆−Z/|x|. This can be seen as a consistency result connecting the relativistic
setting with the nonrelativistic one.

As announced above, the huge technical difficulties originating from the un-
boundedness from below of the Dirac Hamiltonian have long been an obstacle to a
variational characterization of the eigenvalues of the operator HZ,c (and further to
a rigorously founded numerical approach consisting of directly attacking the search
for eigenvalues and eigenfunctions variationally).

The situation was only recently settled by the following.

Theorem 3.4. [85, 86] Minimax characterization of the eigenvalues of the
atomic Dirac Hamiltonian

Assume Z < c. Then,

(3.35) λc
k = inf

V ⊂Λ+C∞
0 (IR3, C

4)

dimV =k

sup
ψ∈V ⊕Λ− C∞

0 (IR3, C
4)∫

IR3 |ψ|2=1

〈ψ, HZ,cψ〉,

where Λ+ and Λ− respectively denote the positive and negative projectors of HZ,c.

Another very interesting (see [86]) minimax characterization for λc
k is provided

by

(3.36) λc
k = inf

W⊂C∞
0 (IR3, C

2)

dimW=k

sup
ϕ∈W

χ∈C∞
0 (IR3, C

2)

ψ=


 ϕ

χ




〈ψ, HZ,cψ〉.

This characterization is again valid for Z < c and is based upon previous formal
ideas from [200] and [77].

These kinds of minimax characterizations have given rise to new algorithmic
techniques to compute the eigenfunctions and eigenvalues of the Dirac operator in
molecules [87, 84, 88, 83]. But, as is the case in the nonrelativistic setting, it is
only possible to attack a system of N electrons modelled by the Dirac Hamiltonian
when N is dramatically small. Approximations have thus been developed, and one
of the most commonly used is the Dirac-Fock approximation, which is the relativistic
version, introduced in [197, 198], of the Hartree-Fock approximation.

There seems to be no rigorous physical ground known to date for this approxi-
mation that formally consists of building the energy functional EDF (ψ1, ..., ψN ) by
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simply replacing mutatis mutandis the kinetic energy of the HF energy, namely the
first term of (3.6):

N∑
i=1

1
2

∫
IR3

|∇φi|2 =
N∑

i=1

1
2

∫
IR3

−∆φi φi

by that obtained with the Dirac Hamiltonian
N∑

k=1

1
2

∫
IR3

〈ψk, Hcψk〉,

again for an orthonormal family:
∫

IR3
ψkψl = δkl.

The Euler-Lagrange equations of the Dirac-Fock problem are derived in the same
fashion as the Hartree-Fock equations (3.6) and are called the Dirac-Fock equations.

Theorem 3.5. [97, 99, 179] Existence of solutions to the Dirac-Fock equa-
tions

Suppose Z ≤ N , Z < 0.9 c and N < 0.9 c. Then there exists a sequence of
solutions (ψj , j ≥ 1) to the Dirac-Fock equations with 0 < λk

j < c2 for all 1 ≤ k ≤
N , 0 < EDF (ψj) < Nc2 that satisfies

EDF (ψj)
j−→+∞−→ Nc2.

Let us point out that the condition N < 0.9 c is a highly nontrivial extension by
Paturel in [179] of a stronger condition assumed earlier by Esteban and Séré. As
such, this condition ensures that the theorem holds for any N < 124, which covers
all existing atoms.

Remark 3.6. Notice that this condition is valid for molecules consisting of more than
one atom, but then it does not cover all physically relevant cases. A mathematical
argument, roughly speaking bounding the “number of electrons per atom” in the
molecule, would suffice to settle the situation mathematically. But to date, such
an argument is still missing.

The following connection between the DF model and the HF model can be
established.

Theorem 3.7. [100] Hartree-Fock obtained as a limit of Dirac-Fock
Suppose Z ≥ N and j is fixed. Then as c goes to infinity, the solutions ψj =(

ϕj

χj

)
with eigenvalues (λj

1, ..., λ
j
N ) issued from Theorem 3.5 satisfy:

(3.37) ϕj
k

c−→+∞−→ φj
k, χj

k
c−→+∞−→ 0, λj

k − c2 c−→+∞−→ εj
k < 0,

where (φj
1, ..., φ

j
N ) is a solution to the Hartree-Fock equations associated to the eigen-

values (εj
1, ..., ε

j
N ). In addition, the case j = 1 corresponds to a minimizer of the

Hartree-Fock energy.

The consistency of the Dirac-Fock model with respect to the Hartree-Fock model
stated in the above theorem (and extending to the nonlinear setting the conver-
gences (3.34)) can be seen as one of the rare fundamental justifications of the
Dirac-Fock model. In addition, the last assertion of Theorem 3.7 suggests that
ψ1 is a good candidate to be the ground state of the Dirac-Fock model, a notion
that so far was not clearly defined in the literature. In this direction, the minimax
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characterization obtained in the linear case in Theorem 3.4 was extended to the
nonlinear setting, thereby allowing for a characterization of the ground state in the
Dirac-Fock model.

Theorem 3.8. [102] Minimax characterization of the Dirac-Fock ground
state

Suppose Z ≥ N . Then, for c large enough, ψ1 given by Theorem 3.5 is a Dirac-
Fock ground state in the following sense:

EDF (ψ1) = inf


ψ = (ψ1, ..., ψN )
ψk ∈ H1/2(IR3, C4)∫

IR3
ψkψl = δkl

Λ−
ψ ψk = 0, for all 1 ≤ k ≤ N

EDF (ψ)

where Λ−
ψ denotes the negative projector of the (self-consistent) Dirac operator Hc

ψ.

We point out the crucial role played by the condition Λ−
ψ ψk = 0, for all 1 ≤ k ≤

N that prevents the minimization from collapsing to −∞. Contrary to previous
approaches of the chemistry literature, this is not imposed a priori with a fixed
operator but in a self-consistent way, which clearly improves the mathematical and
the physical contents of the definition.

This definition in turn allows for very promising numerical approaches for the
calculations of Dirac-Fock states [88, 83].

Let us conclude this section by mentioning that, as in the Hartree-Fock case, the
Dirac-Fock model may be improved by considering a sum of determinants, thereby
giving birth to the multiconfiguration Dirac-Fock model.

3.2. Thomas-Fermi-type models.

3.2.1. Physical modelling. Let us go back to the original electronic minimization
problem (2.3)-(2.7) that we reproduce here for convenience:

(3.38) U(x̄1, · · · , x̄M ) = inf {〈ψe, Heψe〉, ψe ∈ He, ‖ψe‖L2 = 1} ,

(3.39) He = −
N∑

i=1

1
2
∆xi

−
N∑

i=1

M∑
k=1

zk

|xi − x̄k|
+
∑

1≤i<j≤N

1
|xi − xj |

.

The purpose of the density functional theory, abbreviated as DFT, is to replace
the minimization problem (2.7) defined in terms of the unknown wavefunction ψe

by a minimization problem set on the unknown density ρ.
To fulfill this goal, it suffices to introduce the functional

E(ρ) = inf
{
〈ψe,

(
−

N∑
i=1

1
2
∆xi

+
∑

1≤i<j≤N

1
|xi − xj |

)
ψe〉,

ψe ∈ He, ‖ψe‖L2 = 1, ψe has density ρ

}
,(3.40)

on

(3.41) IN =
{

ρ ≥ 0,
√

ρ ∈ H1(IR3),
∫

IR3
ρ = N

}
,
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so that

(3.42) U(x̄1, · · · , x̄M ) = inf
{

E(ρ) −
∫ ( M∑

k=1

zk

| · −x̄k|

)
ρ ; ρ ∈ IN

}
.

The functional E is the density functional. That given by (3.40) is called the Levy-
Lieb density functional. Actually, other manipulations can be made on the energy
(3.38) so that other problems of the type (3.42) can be defined, for functionals E
different from (3.40) and variational spaces different from IN . All this is related
to the so-called Hohenberg and Kohn Theorem in quantum chemistry. For more
details on the theory seen from the chemistry viewpoint, we refer the reader to the
treatises [91, 178], and [173], and the review articles [160, 131, 136].

It is to be mentioned at this point that finding an explicit expression of a func-
tional of type E, such as for instance that given by (3.40), for a given ρ is of course
an open problem. In some cases, the definition of the variational space is also an
open issue.

Remark 3.9. We would like to mention an interesting mathematical approach to
the above problem. It is studied in [33, 34, 35] and other works by the same authors
and is based upon a convenient description of the set of ψe which have density ρ.
It consists of decomposing the information contained in a state ψe into one piece of
information contained in the density ρ itself and another contained in a state with
constant density. The density being fixed, one therefore optimizes only upon the
latter to evaluate E(ρ). It seems however to be unclear how to efficiently implement
the approach.

In practice, approximations of the density functional E have been developed.
These approximations rely on exact or very accurate evaluations of the density
functional for reference systems “close” to the real system under study. One of these
approximations (see Remark 3.10 for another one) consists of using as a reference
system the uniform noninteracting electron gas. This is the Thomas-Fermi theory,
which can indeed be seen as an ancestor, dating back to the 1920s, of the DFT.

For more details on this theory, we refer to the review article [159], which collects
the theoretical results known in the early 1980s. Other interesting review articles,
with more emphasis on the chemical issues are [192, 131]. In addition, we refer to
[201, volume 4].

For a uniform noninteracting electron gas, the kinetic energy may be computed
analytically:

(3.43) TTF (ρ) = CTF

∫
IR3

ρ(x)5/3 dx,

where CTF = 10
3 (3π2)2/3 denotes the Thomas-Fermi constant. It is to be noted

that the exponent 5
3 , standard in statistical mechanics, can be understood math-

ematically as the only possible exponent p when one wishes to consistently ap-

proximate the kinetic energy term
∫

|∇Φ|2 with |Φ|2 = ρ by a term of the form∫
ρp: simply change Φ into Φλ(·) = λ3/2Φ(λ ·), leaving invariant the normaliza-

tion constraint
∫

|Φλ(·)|2 = 1 for all λ, and compare
∫

|∇Φλ|2 = λ2

∫
|∇Φ|2 with
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|Φλ|2p = λ3p−3

∫
|Φ|2p. It has also been established that a term of the form

(3.43) bounds from below the kinetic energy of a system of fermions. In this re-
spect, the best possible inequality known to date is the Lieb-Thirring inequality
(see e.g. [162, 152]).

On the other hand, the interelectronic repulsion energy of such a gas may be
approximated in a reasonable way by the electrostatic self-interaction energy of a
classical charge distribution of density ρ:

(3.44) J(ρ) =
1
2

∫
IR3

∫
IR3

ρ(x) ρ(y)
|x − y| dx dy.

The Thomas-Fermi model therefore consists of adopting the two formulas (3.43)-
(3.44) as approximations for the system under study and thus in considering the
minimization of the functional

ETF (ρ) = CTF

∫
IR3

ρ5/3 +
∫

IR3
ρV +

1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy

over all admissible densities ρ, which here describe the set{
ρ ≥ 0, ρ ∈ L1 ∩ L5/3(IR3),

∫
IR3

ρ = N

}
.

Pursuing the idea of taking as a reference system the uniform noninteracting elec-
tron gas, Dirac computed the so-called exchange energy term, that is, a correction
to the excess evaluation (3.44) of the electronic repulsion

(3.45) Exc(ρ) = −CDρ4/3,

where CD = 3
4

(
3
π

)1/3 denotes the Dirac constant. Again, the exponent 4
3 is the

only possible one when approximating an interaction term of the type (3.44) by a

term
∫

ρp, and there is a proof that a term of this type bounds from below the

exchange energy; see [157, 158]. This gives the Thomas-Fermi-Dirac functional

ETFD(ρ) = CTF

∫
IR3

ρ5/3 +
∫

IR3
ρV +

1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy − CD

∫
IR3

ρ4/3.

In addition, a correction term, due to von Weizsäcker and expressed in terms of∫
IR3

|∇√
ρ|2, can be added to the kinetic energy. This term is obtained by studying

perturbations generated by small heterogeneities of the density, and respectively
leads to the Thomas-Fermi-von Weizsäcker model

ETFW (ρ) = CW

∫
IR3

|∇√
ρ|2 + CTF

∫
IR3

ρ5/3 +
∫

IR3
ρV

+
1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy,

where CW is a universal contant, and the Thomas-Fermi-Dirac-von Weizsäcker
model

ETFDW (ρ) = CW

∫
IR3

|∇√
ρ|2 + CTF

∫
IR3

ρ5/3 +
∫

IR3
ρV

+
1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy − CD

∫
IR3

ρ4/3,
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both models requiring the H1 regularity of
√

ρ. Each of the energy functionals
ETF , ETFD, ETFW , ETFDW gives birth to a minimization problem
(3.46)

ITF,TFD
N = inf

{
ETF,TFD(ρ), ρ ≥ 0, ρ ∈ L1 ∩ L5/3(IR3),

∫
IR3

ρ = N

}
or
(3.47)

ITFW,TFDW
N = inf

{
ETFW,TFDW (ρ), ρ ≥ 0,

√
ρ ∈ H1(IR3),

∫
IR3

ρ = N

}
.

From the standpoint of physics, Thomas-Fermi-like models allow one to recover
qualitatively many fundamental physical properties. This has justified a constant
interest. We send the reader to the bibliography quoted above for more information.

From the standpoint of mathematics, the Thomas-Fermi-type models, and es-
pecially those which contain the von Weizsäcker term, constitute an excellent toy
model to elaborate mathematical arguments in a simple setting. These arguments
can then be extended, in a second stage, to more commonly used models such as
the Hartree-Fock-type models.

In the numerical practice, however, the Thomas-Fermi-type models are not used
that much, for they are most often considered out-of-date. The commonly accepted
statement is that such models give a correct, however approximate, description. It
is often not sufficient for the accuracy needed in the applications of chemistry: see
e.g. [71] for a discussion, and Figure 1 for some representative results. Nevertheless,
some groups are now developing the orbital free models (see e.g. [59]), which are
updated versions of, and refinements of, Thomas-Fermi-like models: with a view to
reducing the computational cost, the electronic state is represented by one scalar
field on IR3 (the density, or often in practice its square root), as in TF-type models.
Such methods seem very promising for the computations of large scale systems, at
least when accuracy is not the primary concern, only a rough approximation of the
electronic structure being necessary.

TF TFD TFDλW KS-LDA HF Experiment
Ne -165.61 -176.3 -128.83 -128.12 -128.55 -128.94
Ar -652.72 -680.7 -529.94 -525.85 -526.82 -527.60

Figure 1. Numerical results reported in the literature for the to-
tal energy (atomic units) of two atomic systems, depending on the
models used. The TFDλW result refers to a TFDW-type model
where the coefficient CW of the definition of ETFDW (ρ), commonly
denoted by 1

8 λ, is adjusted (the result shown here is the best result
that is obtained for two different values of λ in the two systems
mentioned here). The KS-LDA result is obtained with the Kohn-
Sham model with a Local Density Approximation for the correla-
tion term (see Remark 3.10). The HF result is obtained in a very
large basis set. It is to be noted that post-Hartree-Fock methods
such as those described in Section 3.1.5 significantly improve the
HF results and almost perfectly fit to the experimental data. All
values are extracted from [178].
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Remark 3.10. Kohn-Sham models
Another option for the approximation of the density functional, and more specif-

ically that of its kinetic energy term, is the model introduced by Kohn and Sham.
Their idea to take as the reference system a system of N noninteracting electrons
made tractable the DFT approach. Under convenient assumptions, the kinetic
energy of such a system reads
(3.48)

TKS(ρ) = inf

{
1
2

N∑
i=1

∫
IR3

|∇φi|2, φi ∈ H1(IR3),
∫

IR3
φiφj = δij ,

N∑
i=1

|φi|2 = ρ

}
.

This expression is then chosen as an approximation of the kinetic energy term for
the system of interacting electrons under study, and one considers the now famous
Kohn-Sham model

IKS
N = inf

{
1
2

N∑
i=1

∫
IR3

|∇φi|2 +
∫

ρV +
1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy + Exc(ρ),

φi ∈ H1(IR3),
∫

IR3
φiφj = δij

}
,

(3.49)

where ρ is a notation for
N∑

i=1

|φi|2. Approximations of the exchange term Exc(ρ)

are then developed for different situations. A standard approximation is the local

density approximation (LDA) for which Exc(ρ) =
∫

IR3
F (ρ) for some F (ρ) (for in-

stance F (ρ) = −ρ4/3 as in the Dirac term), but other more precise expressions have
been developed. As in the Thomas-Fermi model, Kohn-Sham LDA models use the
uniform electron gas as a reference system, but then only for a small part of the
energy, so that the results are far better and the model is of much greater practical
relevance. It seems fair to say that 50% of the ab initio calculations of molecular
systems, and 90% of those of large systems, are today performed with Kohn-Sham-
type models. However, we will not devote more time on it mathematically. The
reason for this is that this approximation leads to variational problems whose math-
ematical nature is in some vague sense a mixing of that of Hartree-Fock-type models
(because of the form of the kinetic energy term) and that of Thomas-Fermi-type
models (because of the form of Exc(ρ)). The mathematical arguments needed to
treat such a model are inspired by those for either model (see [140]).

3.2.2. Existence of the ground state for simple models. We will mainly consider
here the TF and the TFW models. When accounting for the Dirac term, namely
in the TFD and TFDW model, the nature of the mathematical analysis radically
changes, because the Dirac term is a concave term that breaks the convexity of the
TF and TFW model respectively. Regarding the TFD model, some trick can be
used (see [156, 159]) so that the techniques for the TF case can be carried through
to the TFD case. On the contrary, when coming to the TFDW model, new tools
are necessary, and we will briefly come to these at the end of Section 4.

For convenience, we now recall the TF and the TFW models. For reasons that
will be clear below, we only modify the formulae (3.46)-(3.47) given in the previous
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section by considering a constraint
∫

IR3
ρ that can take any real value λ and not

only integer values N . Therefore

(3.50) ITF
λ = inf

{
ETF (ρ), ρ ≥ 0, ρ ∈ L1 ∩ L5/3(IR3),

∫
IR3

ρ = λ

}
,

where

(3.51) ETF (ρ) = CTF

∫
IR3

ρ5/3 +
∫

IR3
ρV +

1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy

and

(3.52) ITFW
λ = inf

{
ETFW (ρ), ρ ≥ 0,

√
ρ ∈ H1(IR3),

∫
IR3

ρ = λ

}
,

where

(3.53) ETFW (ρ) = CW

∫
IR3

|∇√
ρ|2 + ETF (ρ).

Precisely because of the convexity (and in fact the strict convexity) of the en-
ergy functionals with respect to

√
ρ (together with the linearity of the constraint∫

IR3
ρ = λ), the mathematical analysis proceeds from (now) standard arguments

and provides a complete understanding of the models. The main body of mathemat-
ical work on this theory is due to E. H. Lieb and collaborators in the 1970s-1980s.

The main result concerning the existence (and also nonexistence) of minimizers
is contained in the following.

Theorem 3.11. [156, 14] Existence and nonexistence of minimizers for the
TF and TFW models

For both TF and TFW, there exists some 0 < λc < +∞ such that
• when λ ≤ λc there exists a unique minimizer,
• when λ > λc no minimizer exists, and in fact the infimum (3.50) (re-

spectively (3.52)) is then uniquely attained at the minimizer ρλc
of ITF

λc

(respectively ITFW
λc

). In addition
– for the TF model, λc = Z (from [156]),
– for the TFW model, λc > Z (from [14]).

The proof of the above theorem can be outlined as follows. First, the energy
functional ETF and ETFW are strictly convex functions of ρ. The only nonstandard
terms are respectively the interaction term

D(ρ, ρ) =
∫

IR3

∫
IR3

ρ(x)ρ(y)
|x − y|

(note that we have already introduced this notation above in (3.12)), which can be
rewritten as

D(ρ, ρ) =
∫

IR3
|∇φ|2, with − ∆φ = 4π ρ,

thus its convexity, and the von Weizsäcker term W (ρ) =
∫

IR3
|∇√

ρ|2, which can

be shown to be strictly convex by various means. An elementary proof goes by
noticing that ∫

IR3
|∇√

ρ|2 =
1
4

∫
IR3

|∇ρ|2
ρ

,
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the latter being convex since (a, b) −→ a2/b is a convex function on IR × IR+.
However, what may be the most illustrative argument is to note that W (ρ) is a dif-
ferentiable positively homogeneous function; thus the convexity condition W (ρ) ≥
W (ρ̃) + (W ′(ρ̃), ρ − ρ̃) for all ρ and ρ̃ amounts to

W (ρ) ≥ (W ′(ρ), ρ̃), i.e.
∫

IR3
|∇√

ρ|2 ≥
∫

IR3
∇√

ρ.∇
(

ρ̃
√

ρ

)
,

which is simply saying that ∫
IR3

∣∣∇Log
(ρ
ρ̃

)∣∣2ρ ≥ 0.

As suggested by this latter expression, the von Weizsäcker term is intimately related
to Information Theory, since it is indeed connected to a relative entropy dissipation
term.

Once this strict convexity of the energy functional is established, the uniqueness
of a minimizer follows at once, and it remains to show its existence. For this purpose,
it suffices to first remark that, sending some mass at infinity, the same argument
as in the proof for the HF case shows that ITF

λ and ITFW
λ are nonincreasing with

respect to λ. In fact, it is easy to see that they are nonincreasing from zero, as
the lowest eigenvalue of −1

2∆+V is negative. Next, again by an argument already
used in the HF case, we obtain that ITF

λ and ITFW
λ are strictly decreasing when

λ ≤ Z, which amounts to saying that a strict inequality of type (3.10) then holds

for both models. Indeed, if the mass
∫

IR3
ρ of a weak limit of a minimizing sequence

is strictly less than Z, the operator

−1
2
∆ +

∫
IR3 ρ − Z

|x|

has at least one negative eigenvalue and a contradiction is reached.
From then on, the TF case and the TFW case differ. In the former, one shows

that for λ > Z no minimizer exists. For the latter, one shows that for λ = Z the
Lagrange multiplier associated to the unique minimizer is strictly positive, which
in turn implies that there still exists a minimizer for λ slightly larger than Z. In-
deed, the Lagrange multiplier can be recast as the first derivative of the infimum
(here ITFW

λ ) with respect to the constraint (here the parameter of mass λ). In the
language of chemistry, this justifies the name chemical potential for the Lagrange
multiplier. This interpretation is analogous to that stating, in the theory of mi-
croeconomics, that the Lagrange multiplier is equal to the price. Formally (but this
argument may be justified rigorously), we have here

d

dλ
ITFW
λ =

d

dλ
ETFW (ρλ) = −θλ

where ρλ is the minimizer and θλ the associated Lagrange multiplier. Thus the
positivity of θλ amounts to the strict monotonicity (here decreasing) of the infimum,
and thus to the compactness of the minimization problem. Finally one proves the
existence of λc above which no minimizer exists and gets λc > Z. This is interpreted
as saying that the TFW therefore allows for the existence of some negative ions,
and not too negative ions, thereby agreeing with an expected physical property.
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3.2.3. The Euler-Lagrange equations. As may easily be seen, the Euler-Lagrange
equation for the TF model reads

(3.54)
5
3
CTF ρ2/3 =

(
−V − ρ �

1
|x| − θ

)
+

,

where θ is the Lagrange multiplier. By examining the behaviour at infinity of the
right-hand side, we see that θ ≥ 0 (otherwise ρ �∈ L1(IR3)), which confirms that
ITF
λ is nonincreasing with respect to λ. In addition, it can be shown that the

critical value λc for which ITF
λ ceases to be strictly decreasing with respect to λ

corresponds to θ = 0, and is indeed λc = Z.
It is worth mentioning that a useful rewriting of the above Euler-Lagrange equa-

tion is obtained by setting

(3.55) Φ = −V − ρ �
1
|x| − θ;

thus

(3.56) − 1
4π

∆Φ +
(

3
5CTF

Φ+

)3/2

=
M∑

k=1

δ(· − x̄k).

This equation is a nonlinear elliptic equation, whose treatment is easy for the
function t −→ (t+)3/2 is nondecreasing.

Exchanging the role of u =
√

ρ and Φ, the mathematical nature of equation
(3.56) has some similarity with that of the Euler-Lagrange equation for the TFW
model, which reads

(3.57) −CW ∆u + V u +
5
3
CTF u7/3 +

(
ρ �

1
|x|

)
u = −θu,

for some θ that can be shown to be nonnegative (by the same monotonicity property
of the infimum with respect to the constraint as above). Note that (3.56) is an
equation with a right-hand side, while (3.57) is an eigenequation, though. For
λ < Z, it can also be seen that θ > 0, either by using a variational argument
analogous to that used in the Hartree-Fock case to prove (3.10), or by examining
the behaviour at infinity of the potential and using an argument from spectral
theory. Indeed, loosely speaking (but this can be made rigorous in particular by
arguing on the spherical average), the potential

(3.58) W = V +
5
3
CTF ρ2/3 + ρ �

1
|x|

behaves as
−Z + λ

|x| +
5
3
CTF ρ2/3

at infinity, and thus for λ < Z, as −a/|x| for some a > 0. Now operators of the
form −∆ − a/|x| have no eigenfunctions with zero energy.

On the other hand, when λ = Z, it can still be proven that θ > 0, but then no
simple argument of spectral theory provides a proof. The result is indeed provided
by a straightforward application of a lemma by B. Simon (see [159]): if ϕ > 0
satisfies −∆ϕ + Wϕ ≥ 0 outside a ball in IR3, where (W )+, the nonnegative part
of the radial average W of W , is in L3/2, then necessarily ϕ �∈ L2. Note that the
result is restricted to signed eigenfunctions.
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From equation (3.57) also follow a lot of qualitative properties of u =
√

ρ such
as the regularity, and the asymptotic behaviour at the point nuclei and at infinity.
All these properties reproduce those of the exact wavefunction.

Some symmetry can also be inferred from the equation, because of the uniqueness
of the solution, a property in turn due to the strict convexity of the operator in the
left-hand side: e.g., the solution is radially symmetric for an atom (i.e. in the case
there is only one nucleus at the origin).

There is a large body of literature devoted to Thomas-Fermi-like models. We
have outlined here only what we believe to be the most illustrative results, and
we refer e.g. to [15, 16, 189, 190, 142, 160, 154, 151] for some other instances of
mathematical works on this theory.

We conclude here this rapid tour of the basic results on the Thomas-Fermi
and Thomas-Fermi-von Weizsäcker models by emphasizing that Thomas-Fermi-
like models have the twofold advantage of being good test theories both from the
viewpoint of theoretical physics and from the viewpoint of mathematics. This is
especially true for the TFW model which, in addition to the fact that it gives
better numerical results, improves the TF model in many qualitative respects: see
in particular the existence of negative ions, the properties of the ground state we
mentioned above, and the existence of stable molecular systems we will prove below
(although we shall also see in Section 4 that the latter existence occurs for some
“bad” reason). Asymptotics of these models as the number of electrons grows to
infinity will also be briefly mentioned below and will confirm that these theories
are asymptotically exact, as indeed expected for theories based upon a comparison
of the molecular system with a gas of electrons.

Even from the numerical viewpoint, algorithms can be advantageously tested on
these models before being adapted to some more relevant cases.

3.3. A short description of the numerical strategies and challenges. In
order to illustrate the difficulties encountered in the numerical simulation, we shall
argue on the Hartree-Fock model, either in its energy form (3.7) or in its operator
form (Euler-Lagrange equations (3.24) or (3.25)-(3.26)). It should be remarked that
Kohn-Sham-like problems (3.49) indeed lead to the same kind of minimization pro-
cedure, and the same kind of solution procedure for the Euler-Lagrange equations,
up to differences that can be considered as minor in such an expository survey
mainly devoted to theoretical issues. The same is true for multiconfiguration meth-
ods or other more sophisticated methods. We therefore consider the Hartree-Fock
model as illustrative enough to give a flavour of the generic numerical difficulties
in computational quantum chemistry.

Regarding the numerics, the task of finding the electronic structure associated
to a given configuration of nuclei clamped at positions x̄k can be brought down to
three main issues:

• how to discretize the variational space; i.e. how to find good basis functions
χk for the expansion of the monoelectronic wavefunctions φi;

• how to compute (assemble), for a given N -tuple (φ1, ..., φN ), the self-
consistent operator (3.26) associated to the energy, or alternatively compute
the various terms of the energy (3.6);

• how to attack the minimization problem (3.7), directly or by the solution
procedure for its Euler-Lagrange equation (3.24) (or (3.25)-(3.26)).
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The first two questions are intimately related. Historically, this is a clever remark
by Boys [41] on an adequate choice of basis functions that changed the whole
landscape of computational chemistry: Gaussians functions χk are well adapted to
the problems for they allow for a rapid calculation of each of the multidimensional
integrals ∫

IR3

∫
IR3

χi(x)χj(x)χk(x′)χl(x′)
|x − x′| dx dx′

arising in the electronic interaction terms of (3.7) and (3.26). Even with this sim-
plification, it remains that the computation of the huge number of such integrals,
N4 in the whole generality, is a bottleneck for the whole computation. In fact, a
significantly lower complexity, namely N2 to N3, is typically observed at this stage
(because two nuclei in a large molecule generically are far away from one another).
In fact the complexity measured in terms of the size of the physical system and
that measured in terms of the dimension of the discretization space can differ, but
the figures given here are vague enough to be valid in either case.

Some works have appeared in the chemistry literature that try to assess the
validity of the various finite-dimensional approximations of the variational spaces,
and to evaluate the rate of convergence of the approximation with respect to the
size of the basis, see e.g. [135]. A rigorous systematic study of such questions
appeared in [172].

Once the variational space together with the strategy for the calculations of the
terms of the energy (or of its first derivative) is fixed, the minimization is attacked.
In almost all cases, this is done not by a direct minimization but rather by solving
the Euler-Lagrange equation (here the Hartree-Fock equations), and this in spite
of the fact that the two are not equivalent theoretically.

As the Hartree-Fock equations are self-consistent (the Fock operator (3.26) de-
pends on the current iterate), the point there is to understand how to iterate on
the nonlinearity, as naive fixed point strategies

FΦnφn+1
i = λn+1

i φn+1
i

of course do not work properly.
The chemistry literature abounds in articles describing convergence failures and

recipes to avoid or cure them for the standard iteration procedures [186, 182]: see
e.g. [137, 193, 194, 195]. The first attempt to understand mathematically the algo-
rithms of computational chemistry dates back to [3], but a complete understanding
of most of the algorithms commonly used appeared only recently [53, 50]. Then
follows the construction of a new class of very efficient algorithms [139], based upon
the combination of standard ideas of the chemical literature and ideas issued from
mathematical considerations [54, 49]. The most efficient algorithms to date do
not attack the minimization problem directly, but rather solve the Euler-Lagrange
equations, while keeping track, in a weak sense, of some minimization paradigm:
one approximates a minimizer and not a critical point (and this is precisely where
the approach is revealed to be more efficient than others).

The very internal step of the above iteration procedure is to understand how to
solve the linear problem: the Fock operator FΦn being fixed at iteration n, its lowest
N eigenfunctions need to be determined. This requires the complete diagonalization
of the operator. Indeed, e.g. for Gaussian basis functions, the size of the discrete
variational space is typically twice the number of electrons, so determining the
lowest N eigenfunctions is of the same order of complexity as finding all of them. A
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standard diagonalization procedure is thus used (note that one of the most famous
algorithms for this purpose is, in its earliest form, due to a chemist, Davidson).
Therefore a complexity of N3 is expected.

Globally, computing the Hartree-Fock ground state typically requires between
N3 and N4 operations. Using post-Hartree-Fock methods such as MCSCF can even
go up to N8 operations or more. It is now easy to measure why only small systems
can be attacked by so many precise ab initio methods.

Less precise models, called parameterized models, can of course be resorted to,
but on the other hand huge efforts have been devoted in the last two decades to
reducing the complexity of ab initio methods down to a linear complexity.

All the steps above need special attention. The assembling step may employ fast
multiple methods to evaluate multidimensional integrals for electrostatic interac-
tions. The nonlinear iterations speed up with the help of quadratically convergent
algorithms. Finally, the inner loop consisting in the solution for the linear problem
is approached by dedicated techniques. Such techniques are essentially based upon
the following observation: the diagonalization is not stricto sensu needed: only the
determination of the projector on the lowest N eigenfunctions is required. This
can easily be seen by restating the Hartree-Fock problem in the language of density
matrices (a language that is indeed very efficient for numerical analysis, and for
other purposes that will be seen in Section 6). Introducing

D =
N∑

i=1

(φi, ·)L2 φi,

the HF problem reads

(3.59) inf
{

Trace(hD) +
1
2

Trace(G(D) · D), D2 = D = D∗, Trace(D) = N

}

with h = −1
2
∆ + V and

(G(D) · φ)(x) =
(

ρD �
1
|y|

)
(x) φ(x) −

∫
IR3

τD(x, x′)
|x − y| φ(x′) dx′.

Such linear scaling methods, overviewed e.g. in [119, 117, 188], still need im-
provements (we do not go into details, but only mention that there are cases of
outstanding interest when most of them fail in doing better than say an N2 com-
plexity). The future of computational quantum chemistry is likely to depend on
the success of such methods and their ability to attack large systems.

3.4. Beyond the simple setting of the isolated molecule at zero temper-
ature. The above modelling issues have been exposed for the simplest possible
situation, namely that of an isolated molecular system at zero temperature. Of
course, in practice, computational chemistry consists of simulating the behaviour
of real systems in situ, or in other words the response of the systems to various
solicitations.

3.4.1. Positive temperature effects. The first issue of interest is that of temperature.
Contrary to the 0◦K setting, where the electrons are frozen in the lowest eigenstates
of the Hamiltonian, a positive temperature generates a dispersion of the various
electrons amongst all energy levels. The above picture is standard in a linear
setting, but is also valid for the nonlinear problems at hand. As an instance of such
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a setting, we now mention the Hartree-Fock model with temperature that reads
(see [164])

inf

{
1
2

∫
IR3

+∞∑
i=1

ni |∇φi|2 +
∫

IR3
(V + Vc) ρ +

1
2

∫
IR3

∫
IR3

ρ(x) ρ(x′)
|x − x′| dx dx′

− 1
2

∫
IR3

∫
IR3

|ρ(x, x′)|2
|x − x′| dx dx′ +

1
β

S(n);

0 ≤ ni ≤ 1, φi ∈ H1,

∫
IR3

φiφj = δij ,

+∞∑
i=1

ni = N

}
,

(3.60)

where we define ρ(x, x′) =
+∞∑
i=1

niφi(x)φi(x′), ρ(x) =
+∞∑
i=1

ni|φi(x)|2, and

(3.61) S(n) =
+∞∑
i=1

[
niLog (ni) + (1 − ni)Log (1 − ni)

]
.

The potential Vc is a confinement potential, say Vc(x) = |x|2 to fix the ideas. The
ni ∈ [0, 1] are called occupation numbers and translate the fact that at positive
temperatures, eigenstates can be partially occupied, contrary to the case of zero
temperature where ni ∈ {0, 1}. The constant β is the Boltzmann constant related

to the temperature T and the Planck constant k by β =
1

kT
. Regarding the term

(3.61), it models the entropy of the system.
It is proven in [164] that there exists a minimizer for this problem, and that this

minimizer satisfies, up to a permutation of the indices and up to an orthogonal
transform, the Euler-Lagrange equations

(3.62)




−1
2
∆φi +

(
V + Vc + ρ �

1
|x|
)
φi −

∫
IR3

ρ(x, x′)φi(x′)
|x − x′| dx′ + θiφi = 0,

ni =
µeβθi

1 + µeβθi
.

In the above equations, the θi form, as in the zero temperature case, the diago-
nalized matrix of Lagrange multipliers for the orthonormality constraints. On the

other hand, µ is the Lagrange multiplier of the constraint
+∞∑
i=1

ni = N .

It is interesting to look at the β −→ +∞ limit in order to see whether the zero
temperature case is recovered. It can be proven that µ behaves like e−βθ̄ for some
θ̄, and thus that either θi > θ̄ in which case ni −→ 1, or θi ≤ θ̄ in which case
ni −→ 0. The former occurs for N values of the indices i, and we therefore indeed
recover the standard Hartree-Fock case.

Apart from this result on the Hartree-Fock model with temperature, we are
aware of no other results on positive temperature models. A careful mathematical
examination of the most commonly used models could be of great interest.

Remark 3.12. Implicitly, the modelling of finite temperature effects implies the un-
derstanding of the notion of excited states in the model under consideration. On
purpose we have focused on the electronic ground state. The very definition of
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excited states for the nonlinear approximations of the Schrödinger model manipu-
lated here is unclear. We refer to [150] for a promising approach, making use of the
MCSCF model introduced above in Section 3.1.5.

3.4.2. Molecules under electromagnetic fields. Another situation of interest is that
where the molecular system is subjected to an electromagnetic field. The effect of
the electric field on the one hand, and that of the magnetic field on the other hand,
are of a quite different mathematical nature.

Electrons experiencing an electric field can escape from the attraction of the
nuclei, and therefore the presence of an electric field is a serious difficulty when
examining the variational problem. One may measure the difficulty simply by
adding a term

(3.63)
∫

IR3
E x1 ρ(x) dx

to (e.g.) the TFW energy functional (3.53). In (3.63), E denotes a constant value
of the electric field, here aligned with the x1 axis (first component of x ∈ IR3). The
electric field is then treated in a perturbation setting. It is immediately seen, by
pushing some mass to infinity in the direction x1 −→ −∞ (say E > 0 to fix the
ideas), that the corresponding minimization problem is not well posed. An analysis
is provided in [51]. It must be emphasized that, for such nonlinear variational
problems, it is not well understood how to deal with electric fields in a static setting
(the resonance theory, e.g. exposed in [185], that is the standard tool of the linear
setting is not so clearly developed here). However, time-dependent problems with
electric fields (such as those issued from laser control applications, see Remark 5.1)
can be posed on a rigorous mathematical ground.

On the other hand, the primary mathematical effect of a magnetic field is not
to create a possible loss of compactness in the minimization problem, but rather
to complicate the models themselves, through the need to reintroduce the spin
variables. Examples of mathematical works dealing with some variants of Thomas-
Fermi-type theories in the presence of a magnetic field are [18, 19, 121, 122, 144].

3.4.3. Condensed phases. There is another effect we would like to point out. Even
with the above modifications, the modelling explained so far concerns molecular
systems in the gas phase. Indeed, the fact that the system is often included in a
condensed phase has not been accounted for.

There again, the situation highly differs, depending upon whether the condensed
phase is a liquid one or a solid one.

The standard modelling of the liquid phase is based upon ideas introduced by
Onsager in the 1930s. The liquid environment of the molecular system under study
is treated as a continuum dielectric. The continuum dielectric is assumed to fill in
the whole space except for some cavity, Ω, enclosing the molecular system. The
effect of this continuum is to modify the interaction law (Coulombic in the gas
phase) between charged particles in the molecular system. Mathematically, the

1
4π|x| interaction law, which is the elementary solution (or the Green function) of
the Laplacian operator in the whole space IR3, is replaced by the solution G of

(3.64) −div
(
ε(x)∇G

)
= δ,
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where the permittivity ε is a space-dependent scalar (to simplify)
(3.65)

ε(x) =

{
ε0 =

1
4π

, constant permittivity of the vaccuum, when x ∈ Ω,

ε1 �= ε0, constant permittivity of the solvent, whenx �∈ Ω.

The terms of electrostatic interactions in the energy functional are modified corre-
spondingly. The kinetic energy term is kept unchanged. In spite of the fact that no
systematic study of such models has appeared in the literature, it is believed that a
given model (say the HF model or the TFW model) enjoys the same mathematical
properties in a vacuum and in the liquid phase modelled as above. The reason
for such an intuition is that what basically governs the mathematical properties of
these variational problems is the long range behaviour of the interaction potential:
now the behaviour of the solution G to (3.64) at infinity is (up to a multiplicative
constant) like that of the Coulomb potential. On the other hand, it should be men-
tioned that from the computational viewpoint, models for the liquid phase have
motivated a long series of works: see [56] for a survey of the numerical approach,
and Chapter 3 of [48] for the consequences on computations of real cases.

Regarding the modelling of the solid phase, a lot of questions of prominent math-
ematical interest arise. We shall devote the entire Section 6 below to this setting.
The reader will see that again, the modelling is based upon a convenient modi-
fication of the interaction law between charged particles. In the liquid case, one
representative molecular system (the solvated molecule) is embedded in a contin-
uum (the solvent), the latter being modelled at a macroscopic level. Here, the whole
infinite domain IR3 is described microscopically (there is a periodic repetition of the
same molecular structure), and consequently the microscopic variational problem
on which we focus is considerably complicated.

3.5. Back to the Schrödinger equation. Is is instructive at this stage to come
back to the electronic Schrödinger equation that we have introduced in (2.2) as
the original model and have subsequently approximated. We would like to briefly
report on the investigations along the following lines: what type of relation, on
the mathematical level, can be proven to exist between the original model and its
approximations?

As the Thomas-Fermi theory originates from the modelling of electron gases,
it is expected that the regime where it is the closest to the Schrödinger model is
that when the number of electrons is large. The relation between the Thomas-
Fermi theory and the Schrödinger problem is indeed often investigated for the case
of a heavy atom in the limit where the nuclear charge Z goes to infinity and the
number of electrons N is proportional to Z. In this limit the Thomas-Fermi theory
is asymptotically exact, in the sense that it gives the leading order for the expansion
of the ground-state energy EZ provided by the Schrödinger approximation. More
precisely, we have

(3.66) EZ = −c0Z
7/3 + c1Z

2 − 10
9

c2Z
5/3 + o(Z5/3).

The first term −c0Z
7/3 is equal to the Thomas-Fermi energy. The second and third

terms are corrections to it that were initially conjectured as being c1Z
2 − c2Z

5/3

(for precise values of c1, c2) by Scott in the 1950s. Next the constant in the third
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term was corrected with the 10
9 factor in a new conjecture by Schwinger. Fefferman

and Seco established rigorously the expansion (3.66) in [106, 107, 108].
Another way of examining the Z −→ +∞ limit would be to argue on the crys-

tal case. In that case, the nuclear charge also becomes infinite, but instead of
concentrating at a given point, as is the case for a heavy atom, it spreads in a ho-
mogeneous way all over the space. Finding to which extent the ground-state energy
I(ΛN ) (in the setting of Thomas-Fermi-like models) of a system converging to a
crystal asymptotically deviates from the same energy at the Schrödinger level could
advantageously complement the understanding of the relation between models. To
our knowledge, such a study has not been performed to date.

In the vein of the results known for the Thomas-Fermi model, V. Bach proved
in [5] that the Hartree-Fock ground-state energy is also asymptotically exact in the
limit of a heavy atom.

Remark 3.13. An alternative strategy, in order to assess the validity of both the
Hartree-Fock approximation and the Density Functional type theories, is to come
back to the Schrödinger equation and construct a hierarchy of equations, with the
density matrices at all orders. This strategy is in some sense dictated by an emerg-
ing class of methods in computational chemistry. Indeed, apart from the wavefunc-
tions and DFT-type methods, a third class of approximation methods, less utilized
though, consists of manipulating density matrices instead of wavefunctions or den-
sities. This approximation consists of noticing that, since the Hamiltonian only
contains one- and two-electron operators, the energy 〈ψe, Heψe〉 can be expressed
in terms of the two-particle density matrix

(3.67)
γ2(x1, x2, x

′
1, x

′
2)

=
∫

IR3(N−2)
ψe(x1, x2, x3, ..., xN )ψe(x′

1, x
′
2, x3, ..., xN ) dx3 · · · dxN .

Contrary to the DFT setting, the explicit expression of the energy is then known,
and the minimum of the energy as a functional of γ2 can be sought. However, this
must be done under the restriction that γ2 is derivable from an (antisymmetric)
N -electron wave function ψe. This restriction is known as an N -representability
problem and is one of the unsolved problems of theoretical chemistry. The current
state of the art of chemistry is to circumvent this difficulty by rather considering
the stationarity conditions with respect to variations of the wavefunction, namely
the Schrödinger equation, and then formulating it in terms of density matrices.
One can formally start with the Schrödinger equation

Heψe = Eeψe,

multiply it by ψe and integrate over a subset (xp+1, ..., xN ) of the variables (x1, ...,
xN ). A hierarchy of equations is obtained, that involves the reduced matrices
γp of different ranks, i.e. the matrices built in the same fashion as (3.67) with
integration over p of the xi. Recent works in the chemistry literature have shown
how to construct approximations of the γp in terms of γk for all k < p, and to
define a hierarchy of contracted Schrödinger equations that can be truncated at any
particle rank p. This is a lively topic of theoretical chemistry, very promising in
a computational perspective; see [73]. Notice that we shall see a time-dependent
version of the above approach in Section 5 below.
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4. Geometry optimization: from atoms to molecules

Section 3 has only addressed the problem of finding the electronic state of the
molecular system while considering the nuclei as parameters, i.e. placed at fixed
positions known in advance. We now turn to the problem of finding the optimal
positions (one speaks of a configuration) of the nuclei so that the energy of the
whole system, electrons and nuclei, is minimized.

Let us begin (for a change) with the Thomas-Fermi-like models and introduce the
following notation. In order to emphasize the role played by the positions x̄k and
the charges zk of the M nuclei, we denote by Iλ(z1, ..., zM ; x̄1, ..., x̄M ) the electronic
minimization problems we used to denote by ITF

λ (x̄1, ..., x̄M ), ITFW
λ (x̄1, ..., x̄M ),

ITFD
λ (x̄1, ..., x̄M ), ITFDW

λ (x̄1, ..., x̄M ) above, depending on the theory under study.
Then we set
(4.1)
I(λ; z1, ..., zM ) = inf

(x̄1,...,x̄M )∈(IR3)M
Iλ(z1, ..., zM ; x̄1, ..., x̄M ) +

∑
1≤k �=k′≤M

zkzk′

|x̄k − x̄k′ | .

Note that the last term accounting for the repulsion between the nuclei of the
molecule is added to the electronic energy so that the complete energy of the system
will be manipulated.

Definition 4.1. We will say that the problem is well-posed if any minimizing
sequence (x̄n

1 , ..., x̄n
M ) of (4.1) is relatively compact in (IR3)M up to a translation,

i.e. there exists some sequence yn ∈ IR3 such that x̄n
k + yn is relatively compact in

IR3 for all 1 ≤ k ≤ M .

Of course, the restriction of compactness up to a translation is necessary since
problem Iλ(z1, ..., zM ; x̄1, ..., x̄M ) is obviously invariant under a global translation
of the positions of the nuclei. Under the additional assumptions that enforce the
compactness of the electronic problem, the above well-posedness property implies
the relative compactness of the global minimizing sequence (positions of nuclei,
wavefunction). For instance, if λ ≤ λc in the TFW model, then we know that
any minimizing sequence (x̄n

1 , ..., x̄n
M ,

√
ρn) is compact in (IR3)M × H1(IR3), up to

a translation on each x̄k.
Unlike the translation invariance of the problem, which is in some sense an

obstruction to compactness, the second geometric invariance of the problem

Iλ(z1, ..., zM ; x̄1, ..., x̄M ),

namely the fact that we may globally rotate the set of positions (x̄1, ..., x̄M ), will
turn out to be an advantage that will help in showing the well-posedness of problem
(4.1). The reason is twofold: on the one hand, unlike the translation group, the
rotation group is compact, thus has no impact on the existence of a minimizer for
minimization problems, and on the other hand, the rotational invariance allows one
to conduct arguments in terms of spherical averages, for which most Coulomb-like
interactions can be evaluated explicitly.

4.1. Statement of the main results. The results known to date for the opti-
mization problem for TF-type models are now summarized.

Theorem 4.2. [66, 67, 68, 69] Optimization geometry for TF-type models
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• (1) The problem is well-posed if the following strict subadditivity condition,

(4.2) I(λ; z1, ..., zM ) < I(λ1; zi1 , ..., zip
) + I(λ2; zip+1 , ..., ziM

),

holds for any nontrivial partition (λ1; zi1 , ..., zip
) − (λ2; zip+1 , ..., ziM

) of
(λ, z1, ..., zM ) with λ1 + λ2 = λ, {i1, ..., iM} = {1, ..., M}. Whenever (4.2)
holds, we say that systems S1 = (λ1; zi1 , ..., zip

) and S2 = (λ2; zip+1 , ..., ziM
)

can be bound.
• (2) We assume Z ≥ λ. The problem is well-posed if and only if condition

(4.2) holds for any nontrivial partition such that Z1 = zi1 + ... + zip
≥ λ1,

Z2 = zip+1 +...+ziM
≥ λ2 (dissociation into positively charged subsystems),

and the minimizers of I(λ1; zi1 , ..., zip
) and I(λ2; zip+1 , ..., ziM

) share the
same Lagrange multiplier (same chemical potential in terms of chemistry).

• (3) We assume Z = λ. The problem is well-posed if and only if condi-
tion (4.2) holds for any nontrivial partition such that zi1 + ... + zip

= λ1,
zip+1 + ... + ziM

= λ2 (dissociation into neutral subsystems), and the mini-
mizers of I(λ1; zi1 , ..., zip

) and I(λ2; zip+1 , ..., ziM
) share the same Lagrange

multiplier.
• (4) In the TFW and TFDW cases, for Z = λ the problem is well-posed.

It is known since a work by Teller (see [159] for a complete mathematical argu-
ment) that in the TF case, two neutral systems S1 and S2 (i.e. with zi1+...+zip

= λ1

and zip+1 + ...+ziM
= λ2) can never be bound; i.e. (4.2) cannot hold. This negative

result, known as Teller’s no binding Theorem, confirms that in many respects the
TF theory is not qualitatively correct. The key mathematical ingredient of Teller’s
Theorem is a property of monotonicity of the effective potential Φ defined by (3.55)
with respect to the set of nuclei in the system. Suppose indeed that we are given
two potentials V1 and V2, such that −∆V1 ≥ −∆V2, a fact which occurs e.g. when
V2 = V1 −

zM+1

| · −x̄M+1|
(imagine an (M +1)-th nucleus, and the corresponding num-

ber of electrons, is being added to a molecule already composed of M nuclei and
M electrons). Then define Φ1 and Φ2, from V1 and V2 respectively, by (3.55) with
the same θ (which occurs when the two systems are neutral, since θ = 0 for both).
Simply by considering the set {x/Φ1(x) > Φ2(x)}, one remarks that

− 1
4π

∆(Φ1 − Φ2) =
1
4π

(∆V1 − ∆V2) −
(

3
5CTF

)3/2 ((
Φ1

)3/2

+
−
(
Φ2

)3/2

+

)
≤ 0

on this set, which shows by the maximum principle that it is empty. It follows that
Φ1 ≤ Φ2 in this situation. The potential Φ therefore increases when the molecule
grows. In turn, this property leads to Teller’s Theorem.

Remark 4.3. This property of monotonicity of Φ also plays a crucial role in the
thermodynamic limit of the TF model. The thermodynamic limit problem will be
addressed in Section 6. Schematically, the number of nuclei is increased, until an
infinite crystal of nuclei is built, and the limit of the corresponding electronic struc-
ture is examined. In the TF case, the limit of the potentials Φ is a monotone limit.
It is a somehow paradoxical feature of the TF model that the same monotonicity
property both forbids the binding of two atoms and allows the study of the bulk
limit.

A series of works [66, 67, 68, 69] by I. Catto and one of us (PLL) settled in the
1990s the other instances of TF-like models and showed that the models containing
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the von Weiszäcker term present good qualitative behaviour: neutral systems do
bind to form a stable molecular system. The above theorem is the main result along
these lines. Previous results were established in [7] and [14] in the case M = 2 and
for particular values of the charges z1 and z2. On the basis of such preliminary
results, E. Lieb conjectured in [159] that the binding of neutral systems should
occur in the TFW model.

Remark 4.4. When the model is not convex, there might be an ambiguity in the
statement of Assertions (2) and (3) as many minimizers of I(λ1; zi1 , ..., zip

) and
I(λ2; zip+1 , ..., ziM

) might exist. It turns out that it suffices to consider those that
share the same Lagrange multiplier, as they are the only ones that may be created
in dissociations.

Remark 4.5. On the uniqueness of the optimal configuration
We emphasize that no result exists to date on the uniqueness, or nonuniqueness,

of the optimal configuration of nuclei. It is known from experiment that many
optimal configurations may exist for some systems, while others have a unique
optimal configuration. No mathematical study has ever provided any insight on
this issue.

In fact, the same question can be investigated in the settings of Hartree and
Hartree-Fock models. The same mathematical tools can be applied and provide
the following result.

Theorem 4.6. [66, 67, 68, 69] Optimization geometry for H and HF models

• Parts (1), (2), (3) of Theorem 4.2 above hold true for both the Hartree and
Hartree-Fock models, with N , N1, N2 replacing λ, λ1, λ2 respectively. Note
that by this notation convention, it is meant that only integer dissociations
N1 ∈ IN, N2 ∈ IN have to be considered.

• Part (4) is true for the Hartree model.

Remark 4.7. Part (4) is an open issue for the HF model.

The problem of geometry optimization for the Hartree-Fock problem is still open
because it seems that the techniques applied to the other cases cannot accommo-
date with the orthonormality constraint. Even in the simple case of the hydrogen
molecule (M = 2, N = 2), no result exists.

The proof of Theorems 4.2 and 4.6 requires a lot of technical tools. Following
the general spirit of this survey article, we will only outline the proof and the main
arguments, moreover restricted to the Thomas-Fermi-von Weizsäcker model and
to a diatomic system (M = 2). We will eventually briefly indicate the necessary
modifications of the argument to deal with the other cases stated in the above
theorems.

We begin by giving a short formal argument that explains the main lines of the
proof. Suppose the system {λ, z1, z2} consisting of λ electrons and two nuclei of
charge z1 and z2 respectively dissociates into a subsystem {λ1, z1} and a second one
{λ2 = λ−λ1, z2} at distance ∆ from the former. Then, the balance of electrostatic
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energy Eelec reads, at order 1/∆,

Eelec

(
{λ, z1, z2}

)
− Eelec

(
{λ1, z1} ∪ {λ2, z2} at distance ∆

)
≈ −z1λ2

∆
− z2λ1

∆
+

λ1λ2

∆
+

z1z2

∆

=
(z1 − λ1)(z2 − λ2)

∆
.(4.3)

Now, for a neutral system, z1 + z2 = λ1 +λ2; thus (z1−λ1)(z2−λ2) ≤ 0. It follows
that if z1 �= λ1 and z2 �= λ2, the product, thus the balance (4.3), is negative, and
no such separation can occur. Therefore, proving stability amounts to preventing
separation into two neutral subsystems z1 = λ1 and z2 = λ2 (this is why (1) is
equivalent to (2) or (3) in Theorem 4.2). For this purpose, one needs to study more
precisely the balance. In fact, pushing forward the expansion (4.3) in powers of 1/∆
does not allow us to prove stability because all higher-order terms are null. It will
be shown, by careful examination, that the balance indeed depends exponentially
on 1/∆ and is negative, thus showing the stability.

In the diatomic case, we may assume, without loss of generality, that the first
nucleus stands at x̄1 = 0 and the second one at x̄2 = ∆e where ∆ is the interatomic
distance and e is some fixed unitary vector.

Instead of (4.1) we may write (in the TFW case we deal with here)

I(λ, z1, z2) = inf
∆

inf{ETFW
∞ (ρ) −

∫
IR3

z1

|x| ρ −
∫

IR3

z2

|x − ∆e| ρ;

√
ρ ∈ H1(IR3),

∫
IR3

ρ = λ} +
z1z2

∆
,

notation= inf
∆

Iλ(∆) +
z1z2

∆
,(4.4)

where ETFW
∞ (ρ) denotes the TFW energy functional with V = 0 (the notation

comes from the fact we have ejected all nuclei to infinity and remain with V = 0).

4.2. Sketch of proof for the TFW model in the diatomic case. The first
remark is that

• (i) pushing some mass at infinity as we did in the proof of the existence of
a Hartree-Fock ground state, we may show that, in the language of (4.2),
the subadditivity condition

(4.5) I(λ; z1, z2) ≤ I(λ1; z1) + I(λ2; z2)

always holds;
• (ii) if equality holds in (4.5), then a simple argument (based upon the

reconstruction of a minimizing sequence for I(λ; z1, z2) from minimizing
sequences of I(λ1; z1) and I(λ2; z2) respectively) shows there exists a non-
compact minimizing sequence, which shows the “only if” part of assertion
(1) of Theorem 4.2.

Next, we note that proving the existence of a minimizing ∆ for

inf
∆

Iλ(∆) +
z1z2

∆
amounts to proving that

(4.6) inf
∆

Iλ(∆) +
z1z2

∆
< lim

∆−→+∞
Iλ(∆).
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Thus proving (1) of Theorem 4.2 for a diatomic system amounts to identifying the
∆ −→ ∞ limit as

(4.7) lim
∆−→+∞

Iλ(∆) = inf
µ∈[0,λ]

(
Iµ(z1) + Iλ−µ(z2)

)
,

where on the right-hand side Iν(z) denotes the atomic problem with nuclear charge z
and ν electrons.

The proof of (4.7) falls into three steps. First it is easily shown that lim sup
∆−→+∞

Iλ(∆)

≤ r.h.s. by considering two compactly supported test functions that conveniently
approach the infima Iµ(z1) and Iλ−µ(z2) respectively and placing them at a dis-
tance ∆. An evaluation at order 1/∆ of the energy of the system obtained yields
the bound from above.

The last two steps aim at showing the key point: lim inf
∆−→+∞

Iλ(∆) ≥ r.h.s. First,

we consider some sequence ∆n −→ +∞ and the associated minimizer ρn for each n
(for simplicity we restrict ourselves to the case when λ ≤ Z and thus all minimiza-
tion problems with respect to the electronic density ρ are attained; some technical
modifications are needed to also establish assertion (1) of Theorem 4.2 for general
λ). Denoting by un =

√
ρn, it is easy to see that un is bounded in H1, thus up

to an extraction, converges to some u, weakly in H1, strongly in Lp locally for all
1 ≤ p < +∞, and also almost everywhere. In fact, in this framework of locally
compact problems, u can be interpreted as the part of un that remains at finite
distance while n −→ +∞. We then claim that

(4.8)

E∞(u2
n) −

∫
IR3

z1

|x| u2
n −
∫

IR3

z2

|x − ∆ne| u2
n

=
(

E∞(u2) −
∫

IR3

z1

|x|u
2

)

+
(

E∞((un − u)2) −
∫

IR3

z2

|x − ∆ne|(un − u)2
)

+εn,

with εn −→ 0. In order to show this decomposition of the energy, one studies each
term of the energy functional and shows that each term dissociates into the two

expected parts. Quadratic terms (such as indeed the mass constraint
∫

IR3
u2

n = λ)

are easy to deal with because

∫
IR3

u2
n −
∫

IR3
(un − u)2 =

∫
IR3

u(2un − u) −→
∫

IR3
u2

by weak convergence. This applies mutatis mutandis to the von Weizsäcker term.
On the other hand, for nonquadratic terms such as the ρ5/3 term, weak convergence
is not sufficient. The key point is to remark that, for ρ ≥ 1,

if ρn is bounded in Lp(IR3) and ρn
n→+∞−→ ρ a.e.,

then |ρn|p − |ρn − ρ|p n→+∞−→ |ρ|p in L1(IR3).(4.9)
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When p = 1 (4.9) is a straightforward consequence of the Lebesgue dominated
convergence theorem. When p > 1, this property is a corollary of the following one:

If |fn| ≤ gn where gn is weakly compact in L1(IR3),

i.e. sup
n

(∫
A

gn +
∫
|x|≥R

gn

)
−→ 0 when |A| −→ 0, R −→ +∞,

and fn
n→+∞−→ f a.e., then fn

n→+∞−→ f in L1(IR3).(4.10)

Indeed, in order to establish (4.9), it suffices to use∣∣|ρn|p − |ρn − ρ|p
∣∣ ≤ C |ρ| (|ρn|p−1 + |ρ|p−1

)
,

for some universal constant C, and to apply property (4.10). In turn, (4.10) comes
from a direct application of Egorov’s Theorem.

Once (4.8) is proven, it remains to remark that

Iλ(∆n) ≥ Iµ(z1) + Iλn
(z2) + εn,

where λn =
∫

IR3
(un − u)2, and εn is some error term, and to deduce, letting n go

to infinity,

lim inf Iλ(∆n) ≥ Iµ(z1) + Iλ−µ(z2).

This concludes the proof of (4.7), and thus that of Assertion (1) of Theorem 4.2.
The purpose of Assertions (2) and (3) is to show that one can significantly reduce

the number of cases to examine in order to prove (4.2), or in other words that all
the values µ need not be considered.

Let us consider µ where the infimum

inf
µ∈[0,λ]

(
Iµ(z1) + Iλ−µ(z2)

)
is attained. Without loss of generality, we may assume that both minimization
problems Iµ(z1) and Iλ−µ(z2) are indeed attained, respectively for some ρ1 and ρ2.
When z1 ≥ µ and z2 ≥ λ − µ, this is clear by an application of Theorem 3.11, but
careful arguments actually show that we may always assume this is the case. Let us
define u1 =

√
ρ
1

and u2 =
√

ρ
2
. We claim that necessarily the Lagrange multipliers

θ1 and θ2 associated to these minimizers u1 and u2 are equal to one another, and we
henceforth denote by θ the common value. If µ ∈]0, λ[, it is a simple consequence of
the observation along which the Lagrange multiplier can be recast as the derivative

of the infimum with respect to the constraint: θ1 = − d

dµ1
Iµ1(z1), and analogously

for θ2. The optimality of µ then reads

0 =
d

dµ

(
Iµ(z1) + Iλ−µ(z2)

)
=

d

dµ
Iµ(z1) −

d

dµ
Iλ−µ(z2)

= −θ1 + θ2.

In the case when the optimal µ is either 0 or λ, the above simple argument does
not apply, but it may still be proven that θ1 = θ2.
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Assume now, as is the case for Assertion (2), that z1 + z2 = Z ≥ λ. It follows
that only three cases may occur:

(4.11)




either z1 < µ and z2 > λ − µ,
or z1 > µ and z2 < λ − µ,
or z1 ≥ µ and z2 ≥ λ − µ.

In order to prove Assertion (2), which in the present diatomic case reads

(4.12) I(λ; z1, z2) < inf


µ ∈ [0, λ]
z1 ≥ µ
z2 ≥ λ − µ
same Lagrange multiplier

(
Iµ(z1) + Iλ−µ(z2)

)
,

we have to rule out the first two cases of (4.11), which we now do by proving that
in either of the two cases, the strict subadditivity condition automatically holds.

In all of the cases, we have z1 ≥ µ or z2 ≥ λ − µ, and thus, by a property of
the TFW model, we know that the Lagrange multiplier θ1 or θ2 is positive. As
the two of them are identical (and equal to θ), this shows that θ is positive. From
this we deduce the exponential fall-off at infinity of both u1 and u2. This property
is a consequence of the following lemma. For the sake of generality, we state it
in the molecular case, although we only need it here in the atomic case (replace
−
∑K

k=1
zk

|x−x̄k| by − zk

|x| below).

Lemma 4.8. Let ψ > 0 be a solution to

(4.13) −∆ψ −
K∑

k=1

zk

|x − x̄k|
ψ +
(
ψ2 �

1
|x|

)
ψ + c1ψ

7/3 − c2ψ
5/3 + θψ = 0,

with zk ≥ 0,
∫

IR3
ψ2 = Z. Let m =

√
θ. Then there exists some function a, contin-

uous on the unit sphere, such that

(4.14) ψ(x) exp (m |x|) |x| − a
( x

|x|

) |x|→+∞−→ 0.

The proof of this technical lemma falls into two steps. First, a rough estimation
is derived that yields the behaviour at infinity of ψ (it is bounded from above by
an exponentially decreasing function) and that allows us to show that the potential
in (4.13) satisfies

∣∣ K∑
k=1

zk

|x − x̄k|
+
(
ψ2 �

1
|x|

)
+ c1ψ

5/3 − c2ψ
4/3
∣∣ ≤ c

|x|2 .

Second, a technique of supersolution for the elliptic operator

−∆ + m2 ± c

|x|2

leads to the conclusion.
We now introduce the sequence of functions

(4.15) u∆ =
√

λ
u1 + u2(· − ∆e)

‖u1 + u2(· − ∆e)‖L2
,
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which is to be seen as a prototypical example of a loss of compactness. We remark
that the energy of this function can be decomposed into

(4.16) E(u∆) +
z1z2

∆
= Iµ(z1) + Iλ−µ(z2) +

(z1 − µ)(z2 − (λ − µ))
∆

+ o

(
1
∆

)
,

the latter term being a consequence of the exponential behaviour stated in
Lemma 4.8.

We can then conclude that Assertion (2) holds because, in the first two cases of
(4.11), the term (z1 − µ)(z2 − (λ − µ))/∆ in (4.16) is negative and thus for ∆ large
enough we obtain the strict subaddivity condition.

Assertion (3) is an easy consequence of Assertion (2) since the case (z1 ≥ µ,
z2 ≥ λ − µ) is restricted to (z1 = µ, z2 = λ − µ) when z1 + z2 = λ.

We now address Assertion (4). It is to be noted that all of the first three
assertions indeed hold for the TF model (through slight modifications of the above
arguments), but that the fourth one is not true for the TF model because there is
then a special role played by the von Weizsäcker term.

We want to prove that, under the assumption Z = λ, there exists some ∆ such
that

(4.17) Iλ(∆) +
z1z2

∆
< Iz1(z1) + Iz2(z2),

where it is understood that both minimization problems in the r.h.s. share the
same Lagrange mutiplier.

This is a rather involved calculation to prove that, for some ∆ large enough,
(4.18)

E(u∆) +
z1z2

∆
= Iz1(z1) + Iz2(z2)

−
(

lim
∆−→+∞

em∆ ∆
∫

IR3
∇u1(·)∇u2(· − ∆e) + m2

∫
IR3

u1(·)u2(· − ∆e)
)

e−m∆

∆

+o

(
e−m∆

∆

)
.

The evaluation of the error term again comes from the exponential decay of u1 and
u2, but now some more precise information is needed on the behaviour at infinity
of the functions ui in order to prove that the term

lim
∆−→+∞

em∆ ∆
∫

IR3
∇u1(·)∇u2(· − ∆e) + m2

∫
IR3

u1(·)u2(· − ∆e)

is indeed positive, which will conclude the proof of Assertion (4) , and thus that of
the theorem.

A number of technical results, in the spirit of the above Lemma 4.8, allows us
to evaluate the asymptotic behaviour, as ∆ goes to infinity, of integrals of the type

ntIR3u1(·) u2(· + ∆e) ,

which basically are convolution terms. This in turn leads to (4.18).
We would like to comment on (4.18) in two respects. First, it shows that the

binding force is exponentially decreasing with respect to the distance (this is exactly
the third term of the right-hand side of (4.18)), which is not a physical property,
as it should decrease only in a polynomial way. Second, we need to remark that
this binding force not only has the wrong scaling law but in addition does not
originate from the electrostatic term (z1 − µ)(z2 − (λ − µ))/∆, which vanishes in
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the neutral case. The binding force comes from the other terms. Moreover, it does
not come from the superquadratic terms u10/3 − u8/3 but from the only quadratic
term, namely that corresponding to the operator −∆+m2. These two observations
show some dramatically nonphysical behaviour of the TFW model: it allows for
binding of molecules, but for some bad reasons. Although it is not proven in its
entire generality (see a heuristic argument in [7]), the above two observations are
likely to extend to all models of DFT type. We shall see below that the situation
is quite different in the Hartree case.

Remark 4.9. On the stability for the N-body problem
It must be mentioned that for the case of the N -body problem, E.H. Lieb and

W. Thirring showed the stability, i.e. the existence of a minimizing configuration,
by showing that there exists at least one configuration that yields an energy strictly
less than the sum of the energies of the two systems at infinity, i.e. the analogous
statement to (4.6)-(4.7). In this setting, they also established (see [163]) that, up
to a rotation of one system with respect to the other, the binding force is at least a
polynomial function with respect to the distance separating the two systems, which
corroborates the Van der Waals interaction law. In this respect, the N -body model
is thus qualitatively better than the TFW theory where the binding force scales
exponentially with respect to the distance, a highly nonphysical property.

4.3. Generalization to M > 2 nuclei. We now would like to briefly indicate how
the above arguments have to be modified in order to deal with the case of M > 2
nuclei. A natural idea (although it is not the only one, and we could alternatively
adopt a direct strategy based upon the concentration compactness principle - we
will come back to that below) is to argue by induction, to suppose that, up to
M − 1 nuclei, all assertions of Theorem 4.2 hold true, and to consider the case of
M nuclei. The point is of course Assertion (4), on which we focus.

The main difference lies in the fact that a nontrivial product of a possible dis-
sociation is not an atom, but a molecule, and therefore intricate geometrical ar-
guments come into play. Indeed, suppose the system splits into (λ1, zi1 , ..., zip

),
(λ2, zip+1 , ..., ziM

), with λ1 + λ2 = λ, {i1, ..., iM} = {1, ..., M}. Suppose also, to
fix the ideas, that each of the subsystems gives rise to a well-posed minimization
problem for the electrons, in the sense that there are a minimizing ρ1 and a min-
imizing ρ2 (and we have already mentioned that we may always restrict ourselves
to this case). If we now wish to apply the same argument, we will consider a re-
combination, formerly denoted by u∆ in (4.15), of the two minimizers ρ1 and ρ2.
The difficulty here originates from the fact that, contrary to the diatomic case,
there are many ways to cluster two molecules: the way one gets closer to the other
one has an impact on the electrostatic balance, and thus on the overall energy of
the recombined system. This can be very well understood intuitively, as chemistry
most often proceeds from geometrical considerations such as aligning and orienting
molecules in a convenient way so that they react together. As it is impossible to
guess which way is the best to recombine the system, we then argue by taking the
spherical average over all possible geometrical arrangements. More precisely, for two
arbitrary rotations R and S, we consider the subsystems (ρ1(R−1·); Rx̄i1 , ..., Rx̄ip

)
and (ρ1(S−1·); Sx̄ip+1 , ..., Sx̄iM

), and next recombine them at the distance ∆ by
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considering the system

(4.19)

(
ρ∆ = λ

(√
ρ
1
(R−1·) +

√
ρ
2
(S−1(· + ∆e))

)2
‖√ρ

1
(R−1·) +

√
ρ
2
(S−1(· + ∆e))‖2

L2

;

Rx̄i1 , ..., Rx̄ip
, ∆e + Sx̄ip+1 , ..., ∆e + Sx̄iM

)
.

In order to check that there exist some convenient rotations R and S such that, for
∆ large enough, the energy balance

(4.20) Iλ(S) < Iµ(S1) + Iλ−µ(S2) + I(R, S, ∆)

(with a self-explanatory notation) is favorable to recombination (so that the strict
subadditivity condition is proven), it suffices to show that the average over all
possible R and S is negative, i.e.

(4.21)
∫ ∫

I(R, S, ∆) dµ(R)dµ(S) < 0

(thus at least for some R and S and in fact for a set of positive measure of them,
the energy balance will be negative). This is in turn obtained by averaging the
estimations done on the M = 2 case.

4.4. Adaptation to the H and HF cases. Regarding the Hartree and Hartree-
Fock cases, the proof of Theorem 4.6 basically follows the same lines as that of
Theorem 4.2, with many more technicalities though (in particular due to the fact
that the wavefunctions in the H and HF model are not signed functions, contrary
to the minimizing u =

√
ρ of TF-like models). The main two differences are, on the

one hand, that only dissociations into two subsystems with an integer number of
electrons have to be considered, and, on the other hand, the proof of Assertion (4)
collapses in the Hartree-Fock case. In fact, as already mentioned above, the fact
that integer dissociations are the only ones to prevent is due to the concavity of
the Hartree and Hartree-Fock models with respect to the mass constraint. A worst
case analysis leads to the conclusion that integer dissociations are those to prevent,
and the proof thus concentrates on them.

In the Hartree case, Assertion (4) can be proven. Beyond the details of the
proof, one interesting feature is that in this model, and contrary to the Thomas-
Fermi type models, the binding force is of electrostatic nature. It comes from the
electron interaction term and not from the other terms, as e.g. in the TFW case
seen above. However, no precise estimate on the binding force has been given to
date.

Let us only outline the proof of Assertion (4). As above in (4.17), we need to
prove that there exists a way to combine the two subsystems in a manner such that
the energy decreases (w.r.t. the situation where the two are taken infinitely far away
from one another). For this purpose, some convenient geometrical arrangement
must be found, as in (4.19), i.e. a convenient distance ∆ and also a convenient
orientation, expressed by the two rotations R and S. The technical novelty with
respect to the recombination (4.19) is that the ground state of each subsystem is not
defined solely by the densities ρi, i = 1, 2, but by two N -tuples (φi

1, ..., φ
i
N ) (with∑N

j=1 |φi
j |2 = ρi). The key difference with the TF-type theory is that the energy

balance term I(R, S, ∆) is here due to the electrostatic balance, as announced above.
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Indeed, it can be seen that

(4.22) I(R, S, ∆) =
(

1
|x| � (ρ1 − m1) � (ρ̂2 − m̂2)

)
(∆),

where mi is the measure defining the nuclei of subsystem i, i.e.

mi =
∑
j∈Si

δ(· − x̄j),

and f̂(x) denotes the function f(−x). The proof of Assertion (4) amounts to proving
that I(R, S, ∆) is negative for some appropriate choice of its arguments. This is
performed by first taking the spherical average

I(∆) = I(R, S, ∆) =
∫ ∫

I(R, S, ∆) dµ(R)dµ(S)

=
(

1
|x| � (ρ1 − m1) � (ρ2 − m2)

)
(∆)

of I(R, S, ∆) (where f denotes the spherical average of f) as in (4.21), and then
showing that I(∆) is negative for some ∆. The latter is proven by showing first
that ∫

I(∆) d∆ = 0.

This fact is a consequence of the very definition (4.22) along with
∫

ρi = mi(IR3),

i = 1, 2, and the property that ρi decays exponentially fast at infinity, which in turn
comes from the fact that the φi

j , j = 1, ..., N satisfy the Euler-Lagrange equation
with a positive Lagrange multiplier since they form the ground state of subsystem
Si. On the other hand I(∆) cannot identically vanish; otherwise, again by (4.22)
and due to the smoothness of ρi, we would have e.g. ρ1 = m1. This concludes the
proof.

In the case when the two subsystems are planar (not necessarily coplanar) an
alternative proof can be provided that shows that, for ∆ large enough, I(∆) < 0,
the argument requiring a sharp asymptotic expansion as |x| −→ +∞ of φi, in the
spirit of Lemma 4.8.

On the other hand, an analogous recombination of two subsystems in the Hartree-
Fock setting presents an unsolved mathematical problem: it is not known how to
deal with the orthonormality constraint, and the proof of Assertion (4) therefore
remains an unsolved mathematical question.

4.5. On the concentration-compactness method. A useful rereading of the
previous proofs consists of the following. We have brought down the stability of a
system (or in mathematical words the compactness of the associated minimization
problem) into two steps:

• the identification of a necessary and sufficient condition consisting of the
strict subadditivity condition (4.2),

• the estimation of interaction laws in order to prove that the strict subad-
ditivity condition holds, under convenient conditions.

This scheme of proof applies to many contexts and is the essence of the concen-
tration-compactness method, first introduced in [167, 168].
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As a further example of the power of this general strategy, we briefly come
back to a setting hardly approached above, that of the electronic problem for the
TFDW problem (note that we come back to a setting where nuclei are clamped at
fixed positions). Another instance of applications of concentration-compactness is
nuclear physics: in [120], the possible fission of a nucleus is investigated with this
method.

For convenience, let us recall the TFDW problem already introduced in (3.47):

ITFDW
λ = inf

{
ETFDW (ρ), ρ ≥ 0,

√
ρ ∈ H1(IR3),

∫
IR3

ρ = λ

}
,

with

ETFDW (ρ) = CW

∫
IR3

|∇√
ρ|2 + CTF

∫
IR3

ρ5/3 +
∫

IR3
ρV

+
1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy − CD

∫
IR3

ρ4/3.

It is easy to see that, due to the −CD

∫
IR3

ρ4/3 term, the functional is not weakly

lower semicontinuous for the H1 weak topology. Consequently, for the weak limit
ρ of a minimizing sequence, we do not have any longer the very useful information
ETFDW (ρ) ≤ ITFDW

N . In addition, again because of the Dirac term, we cannot
relax the mass constraint so easily, and prove by pushing some mass to infinity that

we may replace the equality constraint
∫

IR3
ρ = λ by an inequality

∫
IR3

ρ ≤ λ. It

follows that we lack information on the tentative minimizer ρ.
A more precise argument is in order. Here, we must indeed estimate (as we did

above for the geometry optimization problem) which part of the energy is carried
by some piece of the minimizing sequence ρn possibly escaping at infinity. For this
purpose, we introduce the problem at infinity

(4.23) ITFDW,∞
λ = inf

{
ETFDW,∞(ρ), ρ ≥ 0,

√
ρ ∈ H1(IR3),

∫
IR3

ρ = λ

}
,

where
(4.24)

ETFDW,∞(ρ) = identical to ETFDW (ρ) but with the potential V set to zero.

This translates the fact that the electronic density ρ, escaped at infinity, does not
interact with the nuclei.

Then, in the spirit of what has been done for the geometry optimization prob-
lem (note that the proof of the existence of a minimizer for the TFDW problem,
published in [166] is nevertheless anterior to that of the existence of the optimal ge-
ometry), it can be shown that a necessary and sufficient condition for all minimizing
sequences of the TFDW problem to be relatively compact reads

ITFDW
λ < ITFDW

µ + ITFDW,∞
λ−µ

for all µ ∈ [0, λ[. This condition is rather intuitive, as it compares the energy of the
system under consideration with the sum of the energies of two subsystems, one at
finite distance (µ electrons have stayed in the vicinity of the nuclei, this corresponds
to the weak limit of the minimizing sequence), and the other one at infinity (the

loss of mass in the constraint
∫

IR3
ρ ≤ λ corresponds to λ − µ electrons).
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This condition is in turn established for Z ≥ λ, again by carefully examining
the interaction potential between two subsystems at large distance. It can indeed
be proven that, for spectral reasons, the minimizing sequence may only separate
into a finite number of pieces and that each of the subsystems is compact (i.e.
each of the minimization problems created by the splitting is attained). Again, a
crucial role is played by the positivity of the Lagrange multipliers, which enforces
the exponential decay of the minimizers for the subsystems, and thus allows for the
precise calculations of the interaction.

Note that one of the difficulties mentioned above was that no information could
be obtained at once on the weak limit of minimizing sequences (contrary to the case
say of the TFW model, where it is shown that the weak limit is a minimizer for the
problem with relaxed constraint). In fact, such information is indeed present in the
problem, when one looks at the good minimization problem, which is here ITFDW

µ

and not ITFDW
λ with relaxed constraint, again because of the nonconvexity of the

functional.

Remark 4.10. On the Kohn-Sham model
We would like to recall that the same approach allows us to prove the existence

of a ground state for the Kohn-Sham model (see [140]).

5. A detour by time-dependent models

Analogous comments to those made in the static setting hold on the difficulty of
directly approximating numerically the time-dependent version of (2.1):

(5.1) i
∂ψ

∂t
= H ψ.

A commonly used approach to circumvent the dimensionality problem is to resort to
the ab initio molecular dynamics equations. In this approximation, one solves the
time evolution of the molecular structure according to the Newton law of classical
mechanics

(5.2) mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), · · · , x̄M (t)),

where the potential W comes both from the potential created by the electrons of
the system and from the internuclear repulsion:

(5.3) W (x̄1, · · · , x̄M ) = U(x̄1, · · · , x̄M , t) +
∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
.

There remains then to know how to calculate the potential U(x̄1, · · · , x̄M , t), and
this is where different models exist. We will briefly overview here some of the
mathematical works dealing with the various models employed at this level. Doing
so, we concentrate on the quantum level, i.e. the determination of the potential
U(x̄1, · · · , x̄M , t) in a quantum setting, and its coupling with the classical descrip-
tion of the evolution of the nuclei. On the other hand, the mathematical study of
the case when U(x̄1, · · · , x̄M , t) is modelled at a simple classical level, and that of
the classical evolution of the nuclei are left aside. The latter problems are much
easier mathematically, for they involve ODEs rather than PDEs. Notice however
that they give birth to the enormous field of molecular dynamics, and thus to an
incredible number of numerical issues.
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In its entire generality, the potential U comes from the time evolution of the
electronic wavefunction, dictated by the time-dependent Schrödinger equations for
the electronic wavefunction:

(5.4) i
∂ψe

∂t
= H(x̄1(t),··· ,x̄M (t))

e ψe.

The coupled system to simulate thus reads
(5.5)


mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), · · · , x̄M (t), t),

W (x̄1, · · · , x̄M , t) = U(x̄1, · · · , x̄M , t) +
∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
,



U(x̄1, · · · , x̄M , t) = −
M∑

k=1

∫
IR3

zk ρ(t, x)
|x − x̄k|

dx,

ρ(t, x) = N

∫
IR3(N−1)

|ψe|2(t; x, x2, ..., xN ) dx2 · · · dxN ,

i
∂ψe

∂t
= H(x̄1(t),··· ,x̄M (t))

e ψe,

H(x̄1,··· ,x̄M )
e = −

N∑
i=1

1
2
∆xi

−
N∑

i=1

M∑
k=1

zk

|xi − x̄k|
+
∑

1≤i<j≤N

1
|xi − xj |

.

We refer to [36] for a mathematical analysis of the relation between (5.5) and the
original problem (5.1). This approximation is called the nonadiabatic approxima-
tion, as opposed to the adiabatic approximation, which we now see.

The adiabatic approximation consists of assuming that for any time t the elec-
trons remain in the ground state (or in some well-defined excited state) of the
electronic Hamiltonian H

(x̄1(t),··· ,x̄M (t))
e . The electrons are said to evolve on a given

Born-Oppenheimer energy surface. Even if electronic nonadiabatic effects are im-
portant in some fundamental molecular processes such as collisions, the adiabatic
approximation is valid in many cases. In this approximation, the last four lines of
(5.5) are replaced by
(5.6)


U(x̄1, · · · , x̄M ) = inf
{
〈ψe, H

(x̄1,··· ,x̄M )
e ψe〉, ψe ∈ He, ‖ψe‖L2 = 1

}
,

H(x̄1,··· ,x̄M )
e = −

N∑
i=1

1
2
∆xi

−
N∑

i=1

M∑
k=1

zk

|xi − x̄k|
+
∑

1≤i<j≤N

1
|xi − xj |

.

It is not easy to study the mathematical properties of this approximation and its
connection with the nonadiabatic setting. Particularly intricate is the analysis of the
so-called energy crossings, i.e. the pathological cases when the Born-Oppenheimer
energy surfaces happen to cross each others for some given configuration of nuclei.
For a mathematical study of this approximation, we refer to [124, 125, 38].

In practice, again because of the high dimension of the electronic problem, both
systems (5.5) and (5.6) have to be further approximated.

As in the previous sections for the time-independent case, the minimization
problem (5.6) is approximated by one of the standard methods, HF or DFT. The
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system obtained then reads

(5.7)




mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), · · · , x̄M (t)),

W (x̄1, · · · , x̄M ) = U(x̄1, · · · , x̄M ) +
∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
,

U(x̄1, · · · , x̄M ) evaluated in a given static model.

With a view to circumvent the difficulty of solving a minimization problem (i.e.
in practice a nonlinear eigenvalue problem) at each time step, which turns out to be
more difficult than advancing forward in time an evolution electronic Schrödinger
equation, the idea has arisen to replace the minimization by a virtual time evolution.
This is the Car-Parrinello dynamics, introduced in [58]. It consists of replacing
the minimization problem by a fictitious (nonphysical) electronic dynamics which
makes the electronic wave function evolve in the neighbourhood of the adiabatic
state. Heuristically, the method is close to the notion of relaxing a holonomous
constraint in classical dynamics. From a mathematical point of view, the Car-
Parrinello method is investigated in [37]. Explicitly, the last four lines of (5.5) are
replaced by

(5.8)




U(x̄1, · · · , x̄M , t) = EKS
x̄1,··· ,x̄M

(φ1(t), ..., φN (t)),

µ
∂2φi

∂t2
(t) = −K(ρΦ(t))φi(t) +

N∑
j=1

Λij(t)φj(t),

Λij(t) = 〈φj(t), K(ρΦ(t))φj(t)〉 − µ

∫
IR3

∂φj

∂t
(t)

∂φi(t)
∂t

(t),

where µ is a fictitious mass that needs to be properly fitted to reach efficiency in
the computations. In particular, it is chosen much larger than the electron mass
(me = 1). This allows one to numerically integrate (5.8) with a larger timestep than
that for the nonadiabatic simulations, thus giving a more efficient method. On the
other hand, although the timestep used for (5.8) needs to be smaller than that
used for the adiabatic simulation, the Car-Parrinello method is also more efficient
than the adiabatic ones because no minimization is required. Formally, the limit
µ −→ 0 allows one to recover the adiabatic approximation, as may be understood
by looking at the last two lines of (5.8).

Less clear is the way to further approximate the nonadiabatic system (5.5). This
requires us to concentrate on the approximation of the time-dependent Schrödinger
equation for electrons (5.4).

A commonly used approximation is the time-dependent Hartree-Fock model. It
consists of the system of evolution equations

(5.9)




i
∂φi

∂t
= −1

2
∆φi −

M∑
k=1

zk

| · −x̄k(t)|φi +


 N∑

j=1

|φj |2 �
1
|x|


φi

−
N∑

j=1

(
φ∗

jφi �
1
|x|

)
φj

supplied with some initial condition φi(0) = φ0
i . These equations are obtained as

the stationary condition for the action when the wave function ψe solution to (5.4) is
bound to evolve on the manifold of Slater determinants. The well-posedness of the
Cauchy problem (for fixed nuclei x̄k) has been proven by Chadam and Glassey in
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[70]. The relation between the time-dependent Hartree-Fock equation and the orig-
inal Schrödinger equation is mostly unclear (mathematically). In fact, the TDHF
equation is the simplest way to close the time-dependent Schrödinger hierarchy.
This hierarchy is obtained by successively integrating the Schrödinger equation,
multiplied by ψe, over any subset of p electrons amongst the N electrons (recall
we have seen the static version of this technique in Remark 3.13). An evolution
equation on each of the density matrices (marginal distributions) at all orders is
therefore obtained. The Hartree-Fock approximation amounts to approximating
the matrix of order 2 by an antisymmetrized product built with the matrix of or-
der 1. It therefore closes the hierarchy at the lowest possible order. By studying
the TDHF equation as a closure of the Schrödinger hierarchy, C. Bardos, F. Golse
and collaborators (see [9] and other references by the same authors) have recently
shown that the TDHF equation approaches the Schrödinger equation in the limit of
an infinite number of electrons. However, the proof applies only for well-prepared
initial states (Slater determinants, and slightly more general initial data), and only
in the weak coupling picture. The latter assumption means that a factor 1/N is
inserted in front of the electronic interaction term

∑
i �=j

1
|xi−xj | in the Hamiltonian

He so that each electron only experiences a force (a potential) of size O(1) and not
of order N . Note that, as often, the same proof in the setting of the Hartree model,
is significantly simpler.

In this vein, an interesting approach would be to stay in the strong coupling
framework (no factor 1/N) but to try to prepare data such that the electrons
spontaneously stay at a controlled distance and arrange themselves (in a classic
picture) so that they experience a force O(1). In particular, this might be possible
in the presence of nuclei.

Once the time-dependent Hartree-Fock equation is inserted in a coupled evolu-
tion with nuclei, we obtain the system
(5.10)


mk
d2x̄k

dt2
(t) = −∇x̄k

W (x̄1(t), · · · x̄M (t), t),
x̄k(0) = x̄0

k,
dx̄k

dt
(0) = v̄0

k,

W (x̄1, · · · x̄M , t) = −
M∑

k=1

N∑
i=1

zk

∫ |φi(t, x)|2
|x − x̄k|

dx +
∑

1≤k<l≤M

zk zl

|x̄k − x̄l|
,

i
∂φi

∂t
= −1

2
∆φi −

M∑
k=1

zk

| · −x̄k(t)|φi +


 N∑

j=1

|φj |2 �
1
|x|


φi

−
N∑

j=1

(
φ∗

jφi �
1
|x|

)
φj .

It is proven in [52] that the Cauchy problem for (5.10) is well-posed, provided
that the initial conditions φ0

i are chosen regular enough. This assumption is not
restrictive because in practice the initial data are often eigenstates of an electronic
Hamiltonian, thus regular functions.

Remark 5.1. On the control of molecular evolutions
One may modify any of the above systems with a view to modelling a molecular

system subject to an electric field. In the framework of perturbation theory, it
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suffices to insert some term of the type

−E(t, x)ψe

in the right-hand side of the electronic Schrödinger equation. The approximated
systems can be modified correspondingly. A typical case of relevance for such mod-
els is the control of molecular evolutions, and beyond, that of chemical reactions.
The electric field is then obtained by a laser shining on the molecular system under
study. For an introduction to the challenges of this emerging field, we refer to the
book [10] and the introductory survey [145] therein. There are a few mathemat-
ical works dealing with such situations: we wish to mention [55] for an existence
of an optimal control in this setting, together with works by J.-P. Puel and col-
laborators [11, 12, 13] for an extension. For the exact control (note the problem
is bilinear as E multiplies ψe), we refer to a series of works by G. Turinici and
collaborators (see [202] and references therein).

6. From molecules to crystals

6.1. The bulk limit problem. Let us come back to the static setting. As a natu-
ral follow-up for the geometry optimization problem, stands the following question:
can one have some mathematical insight on the reason why matter at zero temper-
ature arranges in periodic crystals? This so-called crystal problem is a cornerstone
of physics. Unfortunately, nothing or almost nothing is known at the theoretical
level.

Suppose we give ourselves a system of N identical nuclei of unit charge (for
simplicity) and provide them with N electrons, suppose they form a stable neutral
system in the setting of any model for which the geometry optimization problem
has been answered positively in Section 4. Suppose we now let N go to infinity:
why are crystal geometries favored energetically in this limit?

The mathematical literature is really poor on the subject, whatever the model
chosen. Already for simpler models than the ab initio models treated here, i.e.
models based upon two-body interactions, the results are rare: [203, 174, 175],
[118] in one dimension, [184] in two dimensions. For the type of models we are
interested in for this survey, the only result we are aware of is an oversimplified
one-dimensional TF-type model, settled in [25]. It is proven there that any ground
state is indeed periodic, and the proof relies on a simple application of the Cauchy
uniqueness theorem for ODEs. The technique of proof unfortunately collapses in
dimensions 2 and 3 and gives no insight on the result there. Just to mention it, let
us indicate that proving periodicity for a TF-like model in 3D basically amounts to
studying the Euler-Lagrange equation of the problem, which reads as a system of
the form

(6.1)




−∆u + up =
∑
x̄k

δ(· − x̄k),

u ≥ 0,

∇
(
u − 1

| · −x̄k|
)∣∣∣∣

x=x̄k

= 0, for all k,

and showing that the existence of a solution (u, x̄1, ..., x̄k, ...) to this system indeed
imposes that the x̄k are periodically arranged. The first two lines indeed translate
the optimality of the electronic density, while the third line translates that of the
positions of nuclei. The difficulty of the mathematical enterprise is likely to be
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overwhelming. With a view to proceeding further in the program consisting in
determining the macroscopic limit of microscopic systems, some ways to circumvent
the difficulty will be mentioned in Section 7.

Of course, numerical experiment could provide an alternative to mathematical
arguments. At least it might help to figure out the result. For models based upon
two-body interactions (or more) such as particles interacting via a Lennard-Jones-
like potential, the literature reports on many numerical experiments. Depending
on the potential used for interaction, the ground-state structure might be periodic,
or almost periodic, or neither.

In the absence of mathematical evidence, or at least of a convincing piece of
understanding, of the periodicity of the set of nuclei, one is left with postulating,
e.g. on the basis of experimental observation, that such a periodicity exists, and
that it also holds, and here is the delicate point, for the mathematical model under
consideration.

In spite of this simplification, the mathematical content of the problem is far
from being empty. One indeed needs to establish that the electronic ground state
also becomes periodic in the limit, and one needs to properly define the energy
of this infinite periodic arrangement of nuclei, together with all the electrons they
bind.

The basic question of interest is to define such an energy, and as well to check that
there exists a minimizer for it in terms of electronic structure, both in a consistent
way with the models for the molecular systems of finite size. Doing so, one aims at
a threefold goal:

• first, rigorously define the energy,
• second, show the robustness of the molecular model as the size increases,
• third, assess the validity of the models for the crystalline phase that are

used for numerical simulation (see the introductory article [20], and beyond,
the treatises [2, 134] for the physical background, [90, 181] for the details
of computational strategies).

The mathematical construction we are interested in reads as follows. Consider
ZZ3 as a prototype example of a periodic lattice. Then define a finite subset ΛN (this
is a historic notation) of N points of the lattice ZZ3, by intersection of the lattice
with a large cube (this is for simplicity, as any sequence of domains, for which the
number of sites on the boundary is asymptotically negligible with respect to the
number of those in the interior, would be convenient; such domains are called Van
Hove sequences in statistical mechanics). Assign a nucleus of unit charge (again
this is for simplicity) to each of the points of ΛN , and consider a well-posed model
for the neutral molecular system of finite size composed of the N nuclei plus N
electrons. To fix the ideas, suppose it is a Thomas-Fermi-type model, and define

(6.2) ITF,TFW (ΛN ) = ITF,TFW
N +

1
2

∑
x̄j �=x̄k∈ΛN

1
|x̄j − x̄k|

,

the ground-state energy, i.e. the sum of the electronic energy plus the nuclear term,

and let ρN denote the minimizing density; thus
∫

IR3
ρN = N . For a Hartree-Fock-

type model, the density matrix ρN (x, y) would play the main role.
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The so-called thermodynamic limit problem (a more appropriate name is the bulk
limit problem, as no finite temperature effect is considered here) consists of asking
the following two questions on limits as N grows to infinity:

• (i) does the energy per unit volume
I(ΛN )

N
converge to a limit? which

limit?
• (ii) does the density (or respectively the density matrix) converge to a limit?

To some extent, the question under consideration is both related to fundamental
questions of thermodynamics (see [8] for the background) and to the question of
defining effective properties of composite materials on the basis of the knowledge
of the properties of their constitutive materials.

It is expected that there is some consistency between the limit of the energy
and the density in the following sense: in good cases, the energy will converge to
a scalar that can be recast as the infimum value of a minimization problem set on
the unit cell of the lattice (here the unit cube), the minimizer of which is the limit
of the sequences of densities ρN . We recover here a result similar to those of the
Γ-limit theory.

The thermodynamic limit in the terms stated above has been the subject of
many outstanding contributions, notably by L. Van Hove, D. Ruelle, or Ch. Feffer-
man [104], in the second half of the 20th century.

But for the models we deal with in the present paper, the landmark work is
that by E. Lieb and B. Simon on the thermodynamic limit in the framework of the
Thomas-Fermi model. They proved that the questions (i)-(ii) of the thermodynamic
limit problem can be answered positively in the setting of the TF theory. In particu-
lar, they set a Thomas-Fermi-type model for crystals. It is to be mentioned however
that their strategy of proof relies very much upon Teller’s no binding theorem, and
therefore, it cannot be carried through the TFW setting. It is kind of a paradoxical
fact that the definition of a crystal in the TF theory is possible, while this model
does not allow for binding even for the most simple molecule. Mathematically, the

proof thoroughly exploits the pointwise relation (ρN )2/3 =
3

5CTF
(ΦN )+ provided

by the Euler-Lagrange equation (3.54) between, for all N , the electronic density
ρN and the effective potential ΦN (defined in (3.55)). Note in addition that for the
TF model for neutral systems, the Lagrange multiplier vanishes and consequently
ΦN ≥ 0; thus taking the positive part in the right-hand side is unnecessary. As
ΦN is mononotic with respect to N (see Remark 4.3), the property carries through
to ρN and the limit can be determined. This pointwise relation does not hold for
the TFW theory: it is replaced by an elliptic PDE, (3.57), linking ΦN and ρN . A
different strategy of proof has thus to be developed (see in particular Remark 6.3).

The two of us, in collaboration with I. Catto have thus devoted a series of works
to the Thomas-Fermi-von Weizsäcker model [64, 61], giving a complete description
of the thermodynamic limit for this model. For the Hartree and Hartree-Fock-
type models, the fundamental issues (i)-(ii) remain open. The two key difficulties
are first that the latter models are not convex (convexity plays a crucial role in
the analysis of the TFW model) and second that the number of wavefunctions ϕi

to be dealt with is also growing to infinity (in the TFW model, only the density
ρ is relevant). For the H and HF models, we have only established preliminary
results in [65, 63, 62]. In the H and HF cases, we need to postulate, in addition
to the periodicity of the set of nuclei, the periodicity of the matrix density in the
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limit. The latter is kind of an auxiliary postulate, in view of the former, and at
least is a fact that can be established on the basis of experimental observations.
This allows us to then identify and study the variational problem obtained in the
thermodynamic limit.

6.2. Thomas-Fermi-type models: the complete story. In order to illustrate
the difficulty of the problem, let us recall the TFW energy functional. Without
changing the notation, we add to the energy functional defined in Section 3.2 the
interaction term accounting for the repulsion between the nuclei:

ETFW (ρ) = CW

∫
IR3

|∇√
ρ|2 + CTF

∫
IR3

ρ5/3

−
∑

x̄k∈ΛN

∫
IR3

ρ(x)
|x − x̄k|

+
1
2

∫
IR3

∫
IR3

ρ(x)ρ(y)
|x − y| dx dy

+
1
2

∑
x̄j �=x̄k∈ΛN

1
|x̄j − x̄k|

(6.3)

and recall that we expect the energy ETFW (ρN ) at the minimizer ρN to be asymp-
totically linear with respect to N . Now it is easy to see that each of the last three
terms of the electrostatic energy

Eelec
ΛN

(ρ) = −
∑

x̄k∈ΛN

∫
IR3

ρ(x)
|x − x̄k|

dx +
1
2

∫∫
IR3×IR3

ρ(x) ρ(y)
|x − y| dxdy

+
1
2

∑
x̄j �=x̄k∈ΛN

1
|x̄j − x̄k|

(6.4)

scales as N5/3. For instance, a vague evaluation as follows:∑
x̄j �=x̄k∈ΛN

1
|x̄j − x̄k|

≈
∫∫

(Cube of volume N)2

dx dy

|x − y|

= N5/3

∫∫
(Unit cube)2

dx dy

|x − y| ,

using a change of variables in the integral, suffices to prove this for the last term.
Therefore, cancellation effects are needed to obtain a linear behaviour of the

electrostatic energy Eelec
ΛN

(ρ). A key point in the strategy of the proof is therefore
to prove that the electronic density spreads in such a homogeneous way all over the
cube of size N so that the effect of the electronic cloud is to screen the electrostatic
interaction, thereby making possible the proper scaling law for the energy Eelec

ΛN
(ρ).

It is actually doable to write down a mathematical proof that follows the above
program, working directly on the energy functional and proving that such cancella-
tions do occur. A more powerful approach to the problem that may be applied to
more general settings consists of treating the Euler-Lagrange equation rather than
the energy functional.

In particular, this proof permits us to treat general geometries for the infinite
set of nuclei. The set of nuclei need not be the periodic measure

∑
x̄k∈ZZ3 δ(· − x̄k)

but needs only to enjoy convenient properties that will be made precise below.
Let us now introduce the periodic minimization problems we will obtain by

passing to the thermodynamic limit. We define the following periodic minimization
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problem set on the unit cell Q of the lattice (take Q = [−1
2 , +1

2 ]3 for simplicity):

(6.5) ITFW
per = inf{ETFW

per (ρ); ρ ≥ 0,
√

ρ ∈ H1
per(Q),

∫
Q

ρ = 1},

ETFW
per (ρ) = CW

∫
Q

|∇√
ρ|2 + CTF

∫
Q

ρ5/3 −
∫

Q

ρ(x)G(x)dx

+
1
2

∫∫
Q×Q

ρ(x)ρ(y)G(x− y)dxdy,(6.6)

where H1
per(Q) is the subset of H1

loc(IR
3) consisting of functions which satisfy the

periodic boundary conditions on the boundary of Q. The potential G which appears
in the definition (6.6) of the TFW functional is defined, in a unique way, by

(6.7) −∆G = 4π

(
−1 +

∑
y∈Z3

δ(· − y)
)

and

(6.8)
∫

Q

G = 0.

The main results are collected in the following theorem.

Theorem 6.1. [61] Thermodynamic limit for the TFW model
In the thermodynamic limit N −→ +∞, we have

• (i) convergence of the energy per unit volume:

lim
N→+∞

1
N

ITFW (ΛN ) = ITFW
per +

M

2
,

where M/2 is a universal constant, that depends only on G, through

M = lim
x→0

[G(x) − 1
|x| ],

and which is just a matter of normalization.
• (ii) convergence of the electronic density ρN to the minimizer ρper of ITFW

per

in the following senses: uN =
√

ρ
N

converges to uper =
√

ρ
per

strongly in
H1

loc(IR
3)∩Lp

loc(IR
3) for all 1 ≤ p < +∞, uniformly on the compact sets of

IR3, and
‖ρN − ρper‖L∞(ΩN ) −→ 0,

for any sequence of domains ΩN included in the large cube of size N , grow-
ing as this cube, and asymptotically far from its boundary (a sequence called
an interior domain in statistical mechanics).

We now outline the proof of this theorem. As mentioned above, part (i) of
the theorem can be proven by direct techniques on the energy functional and the
variational problems. But the most efficient way to proceed is to prove (ii) and
next (i) by arguing on the Euler-Lagrange equation of the TFW problem.

Let us recall that the TFW equation reads as stated in (3.57):

−CW ∆uN −
( ∑

x̄k∈ΛN

1
|x − x̄k|

)
uN +

5
3
CTF ρ

2/3
N uN +

(
ρN �

1
|x|

)
uN = −θNuN ,
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where uN =
√

ρ
N

. Introducing again the effective potential

(6.9) ΦN =
∑

x̄k∈ΛN

1
|x − x̄k|

− ρN �
1
|x| − θN ,

it can be written in the form of the system

(6.10)




−CW ∆uN +
5
3
CTF u

7/3
N − ΦN uN = 0,

uN ≥ 0,

− 1
4π

∆ΦN =
∑

x̄k∈ΛN

δ(· − x̄k) − ρN .

This is the form we shall manipulate henceforth.
The strategy is as follows. First, we establish some a priori bounds on ρN and

ΦN , which allow us to pass to the limit in the Euler-Lagrange system (6.10) and
obtain the system (6.12) below for the limits (u, Φ). The main result that will
allow for the proof of Theorem 6.1 is the uniqueness result stated in Lemma 6.2
below. The proof of this latter lemma is the second step. Once this uniqueness
is established, it suffices to suppose some additional structure hypothesis on the
measure m, such as periodicity, to recover (by a straightforward argument) the
same structure on the solution (u, Φ). Finally, the average energy (here the periodic
energy) is then found by simply inserting the convergence of uN and ΦN in all terms
of the energy functional (this will not be detailed here). The proof of Theorem 6.1
is then concluded.

Lemma 6.2. Let m be a locally bounded measure that satisfies

(6.11)




sup
x∈IR

m(x + B1) < +∞,

∃R, inf
x∈IR3

m(x + BR) ≥ 1.

Then there is one and only one solution (u, Φ) to the system

(6.12)




−CW ∆u +
5
3
CTF u7/3 − Φ u = 0,

u ≥ 0,

− 1
4π

∆Φ = m − ρ,

such that u∈L∞ and Φ belongs to L1
unif (IR3)(which means sup

x∈IR3
‖Φ‖L1(x+B1)<+∞).

In addition,
inf
IR3

u > 0,

and Φ belongs to the uniform Marcinkiewitz space L3,∞
unif (IR3), i.e.

sup
y∈IR3

sup
t>0

t3Meas {x ∈ y + B1; |Φ(x)| ≥ t} < +∞.

Some remarks are needed on assumptions (6.11). Of course the case of the
periodic lattice corresponds to m =

∑
x̄k∈ZZ3 δ(· − x̄k), which fulfills the above

conditions. These conditions are known as those defining a Delaunay lattice in
crystallography. Heuristically, Assumptions (6.11) exclude situations where the set
of nuclei include infinitely charged clusters of nuclei somewhere or infinitely huge
empty zones. We will come back to these assumptions in Section 7.1 below.
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It is worth emphasizing the fundamental reason why uniqueness holds for a
system of type (6.12). Basically, the reason is the strict convexity of the TFW
energy functional. As indicated by the condition u ≥ 0, we deal here with the
ground state, and this ground state is unique. However, the argument is not as
straightforward as the natural framework would be to work in the energy space,
say H1, or any space of functions that in some weak sense at least vanish at infinity:
now the solution we manipulate is definitely not in such a space, as we expect it
to be periodic. The point is therefore to understand to which extent there is
still enough convexity in the equations to enforce uniqueness even without the
“boundary condition” at infinity. In this respect, the argument is reminiscent of
arguments of [17] and [47] on the equation

−∆Φ + |Φ|p−1Φ = m

with m a locally bounded measure. The latter equation can in fact be recovered as
a degenerate case of our system (6.12) by erasing the Laplacian term and formally
factoring out by uN .

The first step of the proof of Theorem 6.1 is devoted to the derivation of a
priori estimates, as usual in such contexts. These a priori estimates translate the
fact that ρN progressively fills in the whole space in a rather regular way, thereby
preparing the second step where periodicity is proven. This homogeneity of ρN in
space indeed comes from an a priori estimate on the energy: as the energy is known
to be bounded, the cancellation effects mentioned above must occur, and thus ρN

resembles
∑

x̄k∈ΛN
δ(· − x̄k). In terms of equations, the effective potential ΦN is

first shown to be bounded, and thus, as

− 1
4π

∆ΦN =
∑

x̄k∈ΛN

δ(· − x̄k) − ρN ,

it follows that ρN is close to the sum of the Dirac masses.
The very first estimate is provided by an inequality which is a general observation

due to J.P. Solovej [189]:

(6.13) αu
4/3
N − ΦN ≤ (C − θN )+,

for some constant C (independent of N) and all α small enough. This estimate is
based upon a tricky argument and a standard application of the maximum principle
for elliptic operators. It provides us with the bound from below

(6.14) ΦN ≥ Cte.

Remark 6.3. The estimate (6.13) shows that “half of the” pointwise information
of the TF case ΦN = Cte u

4/3
N survives for the TFW model. More generally, the

determination of the thermodynamic limit for the TFW model follows the same
pattern as that for the TF model, with the difference that the pointwise relations
linking the potential to the density in the vein of the Euler-Lagrange equation
(3.54) are now replaced by elliptic PDEs, such as (3.57). The repeated use of the
maximum principle allows for circumventing the difficulties while obtaining roughly
the same results.

Next we turn to the bound from above for ΦN . This is done first by showing a
bound in the average, namely that

(6.15) ΦN � µδ ≤ C(δ)
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where µδ is a regularization kernel with parameter δ and C(δ) is a constant de-
pending on δ but not on N . Such information comes from the observation along
which the first eigenvalue

λ1

(
−CW ∆ +

5
3
CTF u

4/3
N − ΦN , Ω

)
≥ 0,

of the operator appearing in the left-hand side of the TFW equation needs to be
nonnegative on any bounded domain Ω (by a simple application of the Green for-
mula, and the Hopf Lemma). Now, and this is a general fact, if we have information
on the sign of a Schrödinger operator, we certainly cannot deduce an estimate on its
potential, but we can do it on the average of the potential, thus the bound (6.15).

Next, we use the estimates above to prove that the potential itself is bounded
from above:

(6.16) ΦN (x) ≤ Cte Maxx̄k∈ΛN

1
|x − x̄k|

.

The latter bound is obtained by a technique of comparison on solutions for elliptic
equations.

Collecting (6.14) and (6.16), we know that ΦN remains bounded independently
of N , which is, as we said, an expression of the fact that cancellation effects do
occur.

It now suffices to turn to uN . As

−∆uN + u
7/3
N ≤ ΦN uN

(up to irrelevant constants), we deduce using Young’s inequality in the right-hand
side and again comparison techniques on −∆u + up that uN is bounded indepen-
dently of N .

We may therefore pass to the limit in the Euler-Lagrange equation and obtain
the system (6.12) for the limits (u, Φ).

The second part of the proof consists of proving that a solution (u, Φ) to the
Euler-Lagrange equation is periodic. For this purpose, we know it suffices to prove
the uniqueness, i.e. Lemma 6.2. A simple argument of translation will then give
the periodicity.

We begin by noticing that a (nontrivial) nonnegative solution u is necessarily
bounded away from zero, i.e.

(6.17) inf
IR3

u > 0.

This can be seen by arguing by contradiction. If u(xn) goes to zero for some
sequence of points xn, then we may translate and use a compactness argument,
so that xn can be supposed to be identically the origin in IR3 without loss of
generality. Then we repeatedly use the Harnack inequality to prove u = 0 and
reach a contradiction. In such an argument, we crucially use the fact that there is
homogeneity (no hole, no cluster) encoded in the periodicity of the lattice.

Once we know that nonnegative solutions satisfy (6.17), we are in a position to
conclude the proof.

Let us forget all constants for simplicity, and consider two positive solutions u
and v of the equation

(6.18)
{

−∆u + u7/3 − φu = 0,
−∆v + v7/3 − ψv = 0,
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thus satisfying inf
IR3

u > 0 and inf
IR3

v > 0. Subtracting one equation from the other

yields
−∆(u − v) + u7/3 − v7/3 − (φu − ψv) = 0.

Using the convexity of t −→ t7/3 and writing φu − ψv =
φ + ψ

2
w +

φ − ψ

2
(u + v),

we obtain

Lw +
4
3

u4/3 + v4/3

2
w − u + v

2
(φ − ψ) ≤ 0,

where w denotes u − v and

(6.19) L = −∆ +
1
2
(u4/3 + v4/3) − φ + ψ

2
.

Next we notice that, because u > 0 and v > 0 both solve (6.18), the first eigenvalues
of the elliptic operator of the left-hand side of (6.18) are nonnegative:

(6.20)
{

λ1(−∆ + u4/3 − φ) ≥ 0,
λ1(−∆ + v4/3 − ψ) ≥ 0

on IR3. It follows by sum that λ1(L) ≥ 0, and thus that

λ1

(
L +

4
3

u4/3 + v4/3

2

)
≥ λ1(L) + ν > 0

for some ν > 0 since u and v are both bounded away from 0. The situation is thus
as follows:

(6.21)

{
L w + ν w ≤ u + v

2
(φ − ψ),

−∆ (φ − ψ) = −(u + v)w.

Using an adequate sequence of cut-off functions, it can be proven that this implies
w = 0 and thus uniqueness.

As announced above, the rest of the proof of Theorem 6.1 is a simple matter.

6.3. Hartree-type models: partial results. With the notation of this section,
emphasizing the dependence with respect to the set of nuclei ΛN , and that for the
electrostatic energy introduced above in (6.4), the Hartree model reads

(6.22) IH
ΛN

= inf
{

EH
ΛN

(ϕ1; · · · ; ϕN ); ϕi ∈ H1(IR3),
∫

IR3
ϕ2

i = 1, 1 ≤ i ≤ N

}
,

where the ϕi are the atomic orbitals and where

EH
ΛN

(ϕ1; · · · ; ϕN ) =
N∑

i=1

(∫
R3

|∇ϕi|2 −
1
2
D(ϕ2

i , ϕ
2
i )
)

+ Eelec
ΛN

(ρ)

with ρ =
N∑

i=1

|ϕi|2, and we recall the notation (3.12).

The sum of the self-interactions of the electrons, that is
∑N

i=1 D(ϕ2
i , ϕ

2
i ), is ex-

pected to be of the order of N . As the other electrostatic terms of Eelec
ΛN

(ρ) are of the
order of N5/3, one could be inclined to believe that the term

∑N
i=1 D(ϕ2

i , ϕ
2
i ) does

not contribute to the thermodynamic limit. This is not the case. Indeed, the com-
parison of two different models will illustrate this point. First the Restricted Hartree
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model may be considered. It is obtained by getting rid of this self-interaction, and
reads:

IRH
ΛN

= inf
{

ERH
ΛN

(ϕ1; · · · ; ϕN ) ; ϕi ∈ H1(IR3),
∫

IR3
ϕ2

i = 1, 1 ≤ i ≤ N

}
,

ERH
ΛN

(ϕ1; · · · ; ϕN ) =
N∑

i=1

∫
R3

|∇ϕi|2 + Eelec
ΛN

(ρ).

It turns out that the unique minimizer of ERH
ΛN

(ϕ1; · · · ; ϕN ) is of the form(√
ρΛN

N
; · · · ;

√
ρΛN

N

)
.

For this model, the limit of the energy per unit volume may be identified as

IRH
per = inf

{
ERH

per (ρ) ; ρ ≥ 0,
√

ρ ∈ H1
per(Q)

∫
Q

ρ = 1
}

+
M

2
,

where

ERH
per (ρ) =

∫
Q

|∇√
ρ|2 −

∫
Q

Gρ +
1
2

∫∫
Q×Q

ρ(x) G(x − y) ρ(y) dxdy.

We thus obtain a model, say of the Thomas-Fermi type, to fix the ideas.
Alternatively, a particular Hartree model may be considered. This model empha-

sizes the contribution of the self-interaction term. We consider a model where the
point nuclei have been smeared out by a convolution with a smooth regularization
kernel. On purpose, we choose this kernel as the minimizer ϕC of the Choquard
problem:

(6.23) IC = inf
{∫

IR3
|∇ϕ|2 − 1

2
D(ϕ2, ϕ2) ; ϕ ∈ H1(IR3),

∫
IR3

ϕ2 = 1
}

.

Then it is simple to see that the Hartree model with nuclei smeared out in this way
converges in the thermodynamic limit to

inf
{∫

IR3
|∇ϕ|2 − 1

2
D(ϕ2, ϕ2) +

1
2

∫∫
Q×Q

(ρ − ϕ2
C)(x) G(x− y) (ρ − ϕ2

C)(y) dxdy;

ρ =
∑

k∈ZZ3

ϕ2(· + k), ϕ ∈ H1(IR3)
∫

IR3
ϕ2 = 1

}
− 1

2
D(ϕ2

C , ϕ2
C),

(6.24)

which indeed is IC , thereby proving that the limit is not a functional of the density,
and that the self-interaction term does have an impact on the thermodynamic limit.

In view of the above two examples, and in the absence of a definite strategy to
prove the thermodynamic limit for the Hartree problem, a reasonable guess is that
the problem obtained in the limit reads as follows:

(6.25) IH
per = inf

{
EH

per(ϕ) ; ϕ ∈ H1(IR3),
∫

IR3
ϕ2 = 1

}
+

M

2
,

EH
per(ϕ) =

∫
IR3

|∇ϕ|2 − 1
2
D(ϕ2, ϕ2)

−
∫

Q

Gρ +
1
2

∫∫
Q×Q

ρ(x)G(x − y)ρ(y) dxdy,(6.26)
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with ρ(x) =
∑

k∈Z3 ϕ2(x + k).
A precise mathematical analysis of the above problem has been conducted in

[63] and has shown that there exists a minimizer.

6.4. Hartree-Fock-type models: partial results again. For the Hartree-Fock
model, it is intuitive (also for the reader at this stage of the present survey) that
the results will be even harder to obtain than in the Hartree case.

For the mathematical analysis of the thermodynamic limit problem of this model,
the convenient language is that of density matrices, as introduced in Section 3.3
above. We now detail a little bit further than above the mathematical context.

The (reduced) one-particle density matrix, denoted by γ in the sequel, is a self-
adjoint operator on L2(R3), with finite trace, such that

0 ≤ γ ≤ 1

(in the sense of self-adjoint operators) where 1 denotes the identity on L2(R3),
and whose trace fits the number of electrons. The density matrix being a Hilbert-
Schmidt operator on L2(R3), its kernel (still denoted by γ) may be decomposed
along a complete set of orthonormal eigenfunctions (ϕn)n≥1 ∈ L2(R3) of γ associ-
ated to the eigenvalues 0≤λn≤1 in such a way that γ(x, y)=

∑
n≥1 λn ϕn(x) ϕ


n(y).
The density is then ργ =

∑
n≥1 λn |ϕn(x)|2. The Hartree-Fock functional may then

be expressed in terms of density matrices as

EHF
ΛN

(γ) = Tr
[
−∆ γ

]
+ Eelec

ΛN
(ργ) − 1

2

∫∫
R3×R3

|γ(x, y)|2
|x − y| dxdy,

where Eelec
ΛN

(ργ) is defined in (6.4) and thus accounts for the repulsion between
nuclei. Let us note that, in the above expression of the energy, we have

Tr
[
−∆ γ

]
=
∑
n≥1

λn

∫
R3

|∇ϕn(x)|2 dx.

The Hartree-Fock ground-state energy is then defined by

IHF
ΛN

= inf{EHF
ΛN

(γ) ; γ ∈ ΓN},
where the set of admissible density matrices ΓN is composed of density matrices as
above, satisfying in addition γ2 = γ, Tr (γ) = N and that Tr

[
−∆ γ

]
< +∞.

No result to date gives the thermodynamic limit of the HF problem. Neverthe-
less, there is such a result for the restricted Hartree-Fock model, which consists
of erasing the exchange term in the HF model. The analysis is then far simpler
because convexity is restored. This model can be shown to converge to the RHF
periodic model

IRHF
per = inf{ERHF

per (γper); γper ∈ Γ},

ERHF
per (γper) =

1
(2 π)3

∫
Q�

TrL2
ξ(Q)

[
−∆ξγξ

]
dξ

−
∫

Q

G ρper +
1
2

∫∫
Q×Q

ρper(x) G(x − y) ρper(y) dxdy

in the thermodynamic limit.
On the basis of this, it is natural to postulate that the Hartree-Fock energy per

unit volume converges to the following periodic model:

IHF
per = inf{EHF

per (γper); γper ∈ Γ},
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EHF
per (γper) =

1
(2 π)3

∫
Q�

TrL2
ξ(Q)

[
−∆ξγξ

]
dξ −

∫
Q

G ρper

+
1
2

∫∫
Q×Q

ρper(x) G(x− y) ρper(y) dxdy − 1
2

∫∫
Q×R3

|γper(x, y)|2
|x − y| dxdy.

This model can be shown to be well-posed (see [62]): there exists a minimizer. It
is worth noticing that the exchange term may be rewritten in the equivalent form∫∫

Q×R3

|γper(x, y)|2
|x − y| dxdy

=
1

(2 π)6

∫∫∫∫
(Q�)2×Q2

γξ(x, y) W∞(ξ − ξ′, x − y) γξ′(x, y)∗ dξdξ′dxdy,

where, for every η in Q
 and z in IR3,

W∞(η, z) =
∑

k∈Z3

eik·η

|z + k| .

(Note that eiη·zW∞(η, z) is Q-periodic with respect to z.) On this latter form the
nonlocal feature of the exchange term is more easily seen. The Euler-Lagrange
equation satisfied by any minimizer may be written as follows: at every fixed phase
ξ in Q
, and for every n ≥ 1,

(i∇ + ξ)2un(ξ, ·) − G un(ξ, ·) +
(∫

Q

G(· − y) ρξ(y) dy

)
un(ξ, ·)

− 1
(2 π)3

∫∫
Q�×Q

γ(ξ′; ·; y) W∞(ξ − ξ′; · − y) eiξ·y un(ξ, y) dydξ′

= εn(ξ) un(ξ, ·), on Q,

together with 


λn(ξ) = 0 =⇒ εn(ξ) ≥ π,
0 < λn(ξ) < 1 =⇒ εn(ξ) = π,
λn(ξ) = 1 =⇒ εn(ξ) ≤ π.

These equations are indeed those solved in the numerical simulations.

Remark 6.4. On the relativistic models for the solid phase
It is possible to examine the same questions as those addressed here in the

context of relativistic models. A recent work [60] aims to define in a rigorous way
a Dirac-Fock model for crystals.

7. Unaddressed topics, trends and perspectives

We collect in this final section some topics that have been hardly addressed so
far in this article and that we consider to be interesting approaches for further
research. To date, we have only obtained preliminary results in the directions that
are mentioned below. We hope to be able to complement these results in the near
future.
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7.1. Energy of infinite microscopic systems. We have made it clear from the
very beginning of Section 6 that, in the absence of a theoretical solution of the
crystal problem, the results enclosed therein were demonstrating, in good cases,
the periodicity of the electronic structure, being postulated that the nuclei arrange
themselves periodically. The enterprise of trying to establish the periodicity of the
nuclei has been mentioned to be a difficult approach. At this stage, many ways for
proceeding further may be envisioned.

The main approach we would like to follow is to ask the following question.
Suppose we are definitely not able to prove the periodicity of the set of nuclei, or
suppose that this periodicity simply does not hold. Would we be able to still define
the energy for the infinite set of nuclei and electrons within a given model? Slightly
changing the viewpoint is indeed worthwhile. The following question may thus be
asked:
(7.1)

What is the most general geometric property of an infinite set of nuclei
(possibly accompanied by their cloud of electrons) that allows us to define
the average energy of the set?

Let us first lay some groundwork. There are simple extensions of periodicity that
allow for a straightforward generalization of the arguments of Section 6. Indeed, as
the heart of the matter is the existence and uniqueness Lemma 6.2 and the assump-
tions (6.11) therein, it suffices to say that these assumptions hold for quasiperiodic
and almost periodic measures, and consequently obtain a result of thermodynamic
limit for quasicrystals. Such extensions are included in [61]. However, these exten-
sions are to some extent too close to periodicity, and might be judged unsatisfactory,
with a view to seeking generality.

An interesting point to make is that, if the assumptions (6.11) are in some sense
important, they are not absolutely necessary either, and can be slightly circum-
vented. Indeed, one may examine the case of a periodic one-dimensional structure
embedded in IR3 (a model for a linear very large molecule), or that of a periodic
two-dimensional structure embedded again in IR3 (a model for a thin film), and still
prove the existence of a limit energy (see [24]). Such situations obviously do not
satisfy the assumptions (6.11). In both of the above situations, these assumptions
are nevertheless fulfilled “along the direction of” the infinite part of the system,
which is the only necessary property needed. Apart from its interest per se, the
study of such models arises as the need to rule out degenerate situations when
proving the existence of an optimal periodic lattice that minimizes the periodic
energy among all possible periodic lattices; see [21, 22]. Another, and much more
important, example of a situation that can be treated with the same tools as the
full crystal is the case of surface energies, i.e. the definition of the energy of a
crystal filling in the half space x1 < 0 in IR3, while the other half is a vacuum; see
[23]. One step beyond the definition of surface energies is that of interface energies,
an approach that will be followed in the near future. Likewise, the definition of
the energy of defaults in crystals, i.e. mathematically compact perturbations of
periodic structures, can be examined.

More generally, a possible answer to question (7.1) has been provided in [27].
Based on some very weak properties imposed to the set of nuclei (these properties
in particular include assumptions (6.11)), we are able to construct an algebra of
functions, on which we set the variational problems that express the energy of
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the infinite set of particles. We currently examine an alternative way that relies
upon the introduction of a stochastic formalism. The positions of the nuclei are
now random variables, or alternatively the measure m defining these positions is
a stationary random process m(·, ω). It is natural, and it actually underlies the
results proven so far, that the notion of stationary process plays a role in such a
problem. What is indeed required is that, whatever the place it is located, the
nucleus sees the same environment. A simple way to think of such a formalism is
to consider a random perturbation of periodic lattices, but the formalism is indeed
much more general than that. Then, energies can be defined in terms of expectation
values. Again, Assumptions (6.11) are not stricto sensu needed. We refer to [28],
still in progress.

7.2. Macroscopic limits. It is a longstanding goal to determine densities of con-
tinuum mechanical energy on the basis of microscopic models for matter. Mathe-
matically, this amounts to determining the macroscopic limits of our microscopic
energies for infinite sets, when the material is subjected to given forces that induce
a deformation. For instance, determining the macroscopic limit of microscopic lat-
tices energies has been often performed by Gamma-limit techniques. We refer e.g.
to [75, 42, 43], and the references therein. The works [44, 45, 46, 177, 116] are
instances of works that more precisely deal with the macroscopic limit of discrete
systems. We also would like to mention the work [115]. In [29] and [26], we have
investigated a strategy consisting of passing to the macroscopic limit for a given
macroscopic deformation of the sample. This has been done in the context of per-
fect crystals and a given fixed deformation. The various extensions described in the
previous section could allow for a generalization of this procedure.

A better understanding at the theoretical level of the connections between the
discrete microscopic description of matter with the continuous macroscopic descrip-
tion would certainly have a deep impact on the numerical simulations commonly
used in materials science. This is true first in a static picture, which has been the
main viewpoint adopted in the present survey, but also in a dynamic picture, when
trying to relate/combine molecular dynamics simulation and dynamic simulation
in continuum mechanics (propagation of fractures, etc...). Such theoretical contri-
butions would open the way to a rigorous foundation of the methods of multiscale
simulations of materials (see e.g. [183, 78, 170]).
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