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— word alignment (unsupervised), e.g., IBM models 1-5
(Brown et al., 1993)

— parsing (supervised), e.g., “coarse-to-fine” grammars
(Charniak and Johnson, 2005; Petrov 2009)

Data (or Problem / Task) Complexity [rare in NLP]

— reinforcement learning, e.g., robot navigation
(Singh, 1992; Sanger 1994)

— closest in NLP: cautious named entity classification
(Collins and Singer, 1999; Yarowsky, 1995)
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Overview

Outline: Three Data-Complexity-Aware Techniques

Baby Steps: scaffolding on data complexity
— iterative, requires no initialization

Less is More: filtering by data complexity
— batch, capable of using a good initializer

Leapfrog: a combination (best of both worlds)
— intended as an efficiency hack (but performs best)
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Input: Raw Text (Sentences, Tokens and POS-tags)

... By most measures, the nation’s industrial sector is now

growing very slowly — if at all. Factory payrolls fell in

September. So did the Federal Reserve ...

Output: Syntactic Structures (and a Probabilistic Grammar)

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 4 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Potential applications:

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Potential applications:
◮ machine translation

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Potential applications:
◮ machine translation

— word alignment, phrase extraction, reordering;

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Potential applications:
◮ machine translation

— word alignment, phrase extraction, reordering;

◮ web search

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Potential applications:
◮ machine translation

— word alignment, phrase extraction, reordering;

◮ web search
— retrieval, query refinement;

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30



The Problem

Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Potential applications:
◮ machine translation

— word alignment, phrase extraction, reordering;

◮ web search
— retrieval, query refinement;

◮ question answering

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5 / 30
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Motivation: Unsupervised (Dependency) Parsing

Insert your favorite reason(s) why you’d like to parse
anything in the first place...

... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

Potential applications:
◮ machine translation

— word alignment, phrase extraction, reordering;

◮ web search
— retrieval, query refinement;

◮ question answering, speech recognition, etc.
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State-of-the-Art: Directed Dependency Accuracy
42.2% on Section 23 (all sentences) of WSJ

(Cohen and Smith, 2009)

31.7% for the (right-branching) baseline
(Klein and Manning, 2004)

Scoring example:

NN NNS VBD IN NN ♦
| | | | | |

Factory payrolls fell in September .

Directed Score: 3
5 = 60% (baseline: 2

5 = 40%);

Undirected Score: 4
5 = 80% (baseline: 4

5 = 80%).
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2004 — right-branching baseline
— valence (DMV) (Klein and Manning)

2004 — annealing techniques (Smith and Eisner)
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2006 — structural biasing (Smith and Eisner)

2007 — common cover link representation (Seginer)

2008 — logistic normal priors (Cohen et al.)

2009 — lexicalization and smoothing (Headden et al.)
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State-of-the-Art

State-of-the-Art: Dependency Model with Valence

a head-outward model, with word classes
and valence/adjacency (Klein and Manning, 2004)

h

a1 a2

STOP

P(th) =
∏

dir∈{L,R}




PSTOP(ch, dir,

adj
︷︸︸︷

1n=0)

n∏

i=1

P(tai ) PATTACH(ch, dir, cai )

(1− PSTOP(ch, dir,

adj
︷︸︸︷

1i=1))






n=|args(h,dir)|
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w1 wmwp−1 wp wq wq+1

N1 (Manning and Schütze, 1999)
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w1 wmwp−1 wp wq wq+1

N1 (Manning and Schütze, 1999)

N j

· · · · · · · · ·

α

β

BLACK

BOX
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State-of-the-Art: The Standard Corpus

Training: WSJ10 (Klein, 2005)

◮ The Wall Street Journal section of the
Penn Treebank Project (Marcus et al., 1993)

◮ ... stripped of punctuation, etc.
◮ ... filtered down to sentences left

with no more than 10 POS tags;
◮ ... and converted to reference dependencies

using “head percolation rules” (Collins, 1999).

Evaluation: Section 23 of WSJ∞ (all sentences).
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Issue I: Why so little data?

extra unlabeled data
helps semi-supervised parsing (Suzuki et al., 2009)

yet state-of-the-art unsupervised methods use even
less than what’s available for supervised training...

we will explore (three) judicious uses of data
and simple, scalable machine learning techniques
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log
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︸ ︷︷ ︸

Pθ(s)

supervised objective would be convex (counting):

θ̂SUP = argmax
θ

∑

s

log Pθ(t
∗(s)).

in general, θ̂SUP 6= θ̂UNS and θ̂UNS 6= θ̃UNS... (see CoNLL)

initialization matters!
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Idea I: Baby Steps ... as Non-convex Optimization

global non-convex optimization is hard ...

meta-heuristic: take guesswork out of local search

start with an easy (convex) case

slowly extend it to the fully complex target task

take tiny (cautious) steps in the problem space

... try not to stray far from relevant
neighborhoods in the solution space

base case: sentences of length one (trivial — no init)

incremental step: smooth WSJk; re-init WSJ(k + 1)

... this really is grammar induction!

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 15 / 30



Baby Steps

Idea I: Baby Steps ... as Graduated Learning

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 16 / 30



Baby Steps

Idea I: Baby Steps ... as Graduated Learning

WSJ1 — Atone (verbs!)

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 16 / 30



Baby Steps

Idea I: Baby Steps ... as Graduated Learning

WSJ1 — Atone (verbs!)

Darkness fell. (nouns!)
WSJ2 — It is.

Judge Not

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 16 / 30



Baby Steps

Idea I: Baby Steps ... as Graduated Learning

WSJ1 — Atone (verbs!)

Darkness fell. (nouns!)
WSJ2 — It is.

Judge Not

Become a Lobbyist (determiners!)
WSJ3 — But many have.

They didn’t.
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Idea I: Baby Steps ... and Related Notions

shaping (Skinner, 1938)

less is more (Kail, 1984; Newport, 1988; 1990)

starting small (Elman, 1993)

◮ scaffold on model complexity [restrict memory]
◮ scaffold on data complexity [restrict input]

controversy! (Rohde and Plaut, 1999)

stepping stones (Brown et al., 1993)

coarse-to-fine (Charniak and Johnson, 2005)

curriculum learning (Bengio et al., 2009)

continuation methods (Allgower and Georg, 1990)

successive approximations!
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Baby Steps

Idea I: Baby Steps ... Concerns?

ignores a good initializer

unnecessarily meticulous

excruciatingly slow!

about a year behind state-of-the-art (on long sentences)
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Less is More

Idea II: Less is More

short sentences are not representative (and few)

long sentences are overwhelmingly difficult ...

is there a sweet spot data gradation?

perhaps train where Baby Steps flatlines!
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Idea II: Less is More ... the Learning Curve
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WSJk

bpt

Cross-entropy h (in bits per token) on WSJ45

Knee

[7, 15] Tight, Flat, Asymptotic Bound

— automatically detect the knee: [7, 15]

— train at the “sweet spot” gradation: WSJ15
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Less is More

Idea II: Less is More ... Concerns?

discards most of the data

beats state-of-the-art (on long sentences, off WSJ15)

ignores a decent complementary initialization strategy

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 23 / 30



Leapfrog

Idea III: Leapfrog ... a Hack

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 24 / 30



Leapfrog

Idea III: Leapfrog ... a Hack

use both good systems!

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 24 / 30



Leapfrog

Idea III: Leapfrog ... a Hack

use both good systems!

thorough training up to WSJ15, where it’s cheap

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 24 / 30



Leapfrog

Idea III: Leapfrog ... a Hack

use both good systems!

thorough training up to WSJ15, where it’s cheap

use both good initializers (mix their best parse trees)

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 24 / 30



Leapfrog

Idea III: Leapfrog ... a Hack

use both good systems!

thorough training up to WSJ15, where it’s cheap

use both good initializers (mix their best parse trees)

execute just a few steps of EM where it’s expensive

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 24 / 30



Leapfrog

Idea III: Leapfrog ... a Hack

use both good systems!

thorough training up to WSJ15, where it’s cheap

use both good initializers (mix their best parse trees)

execute just a few steps of EM where it’s expensive

hop on from WSJ15 to WSJ45, via WSJ30...
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Conclusion

Conclusion

(need a less adversarial learning algorithm)

paradox: improved performance with less data

despite discarding samples from the true (test) distribution

focusing on simple examples guides unsupervised learning

mirrors supervised boosting (Freund and Schapire, 1997)
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another 5%) using even faster and simpler methods!

... hear us at CoNLL and ACL (Spitkovsky et al., 2010)

similar approaches may apply in other settings
(e.g., word alignment)

... more to come!
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Conclusion

Thanks!

Questions?
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