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@ Model (or Algorithmic) Complexity [classic NLP]

— word alignment (unsupervised), e.g., IBM models 1-5
(Brown et al., 1993)

— parsing (supervised), e.g., “coarse-to-fine” grammars
(Charniak and Johnson, 2005; Petrov 2009)

o Data (or Problem / Task) Complexity [rare in NLP]

— reinforcement learning, e.g., robot navigation
(Singh, 1992; Sanger 1994)

— closest in NLP: cautious named entity classification
(Collins and Singer, 1999; Yarowsky, 1995)
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Qutline: Three Data-Complexity-Aware Techniques

@ Baby Steps: scaffolding on data complexity
— iterative, requires no initialization

@ Less is More: filtering by data complexity
— batch, capable of using a good initializer

o Leapfrog: a combination (best of both worlds)
— intended as an efficiency hack (but performs best)
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Problem: Unsupervised Learning of Parsing

@ Input: Raw Text (Sentences, Tokens and POS-tags)

... By most measures, the nation’s industrial sector is now
growing very slowly — if at all. Factory payrolls fell in
September. So did the Federal Reserve ...

@ Output: Syntactic Structures (and a Probabilistic Grammar)

/\/\K/—\\
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Motivation: Unsupervised (Dependency) Parsing

@ Insert your favorite reason(s) why you’d like to parse
anything in the first place...

@ ... adjust for any data without reference tree banks:
— i.e., exotic languages and/or genres (e.g., legal).

o Potential applications:

» machine translation
— word alignment, phrase extraction, reordering;

» web search
— retrieval, query refinement;

» question answering, speech recognition, etc.

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 5/ 30



State-of-the-Art: Directed Dependency Accuracy

Spitkovsky et al. (Stanford & Google)

From Baby Steps to Leapfrog



State-of-the-Art

State-of-the-Art: Directed Dependency Accuracy

42.2% on Section 23 (all sentences) of WSJ
(Cohen and Smith, 2009)

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 6 /30



State-of-the-Art

State-of-the-Art: Directed Dependency Accuracy

42.2% on Section 23 (all sentences) of WSJ
(Cohen and Smith, 2009)

31.7% for the (right-branching) baseline
(Klein and Manning, 2004)

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04) 6 /30



State-of-the-Art

State-of-the-Art: Directed Dependency Accuracy

42.2% on Section 23 (all sentences) of WSJ

(Cohen and Smith, 2009)

31.7% for the (right-branching) baseline

(Klein and Manning, 2004)

Scoring example:

N TN
NN NNS VBD

Factory payrolls fell in September .
N
Directed Score: 2 =60% (baseline: 2 =40%);
4 4
5

Undirected Score: =80% (baseline: ¢ =80%).
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@ 2004 — right-branching baseline
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@ 2005 — contrastive estimation (Smith and Eisner)
@ 2006 — structural biasing (Smith and Eisner)
@ 2007 — common cover link representation (Seginer)
@ 2008 — logistic normal priors (Cohen et al.)
@ 2009 — lexicalization and smoothing (Headden et al.)
o 2009 — soft parameter tying (Cohen and Smith)
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State-of-the-Art: Dependency Model with Valence

@ a head-outward model, with word classes

and valence/adjacency (Klein and Manning, 2004)
a a
h A A STOP
adj
/\
P(ty) = H Psrop(ch, dir, 1,—o HP ) Parracu(cn, dir, ¢5;)
[ i=1
dire{Lr} adj
PN

(1 — Pstop(ch, dir, 1i21))

n=|args(h,din)|
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State-of-the-Art: Unsupervised Learning Engine

o EM, via inside-outside re-estimation (Baker, 1979)

(Manning and Schiitze, 1999)

/ /2N

wy . Wp—1 Wp . Wq Wil L Wm
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State-of-the-Art: Unsupervised Learning Engine

@ EM, via inside-outside re-estimation (Baker, 1979)

(Manning and Schiitze, 1999)

wy P Wp—_1 Wp P wg Wg+l A Wm
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State-of-the-Art: The Standard Corpus

@ Training: WSJ10 (Klein, 2005)

» The Wall Street Journal section of the
Penn Treebank Project (Marcus et al., 1993)
» ... stripped of punctuation, etc.

» ... filtered down to sentences left
with no more than 10 POS tags;
» ... and converted to reference dependencies

using “head percolation rules” (Collins, 1999).

o Evaluation: Section 23 of WSJ> (all sentences).
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Issue |: Why so little data?

@ extra unlabeled data
helps semi-supervised parsing (Suzuki et al., 2009)

@ yet state-of-the-art unsupervised methods use even
less than what’s available for supervised training...

@ we will explore (three) judicious uses of data
and simple, scalable machine learning techniques

Spitkovsky et al. (Stanford & Google) From Baby Steps to Leapfrog NAACL HLT (2010-06-04)
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Issue Il: Non-convex objective...

@ maximizing the probability of data (sentences):

Ouns = arg meaxz log Z Py(t)

s teT(s)

Pp(s)
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s teT(s)
N——
Py(s)

@ supervised objective would be convex (counting):

Osyp = arg max Z log Py(t"(s)).

@ in general, ésup =+ éu,\.s and QAUNS =+ Oyns--- (see CoNLL)

@ initialization matters!
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|dea I: Baby Steps ... as Non-convex Optimization

global non-convex optimization is hard ...
meta-heuristic: take guesswork out of local search

°
°

@ start with an easy (convex) case

@ slowly extend it to the fully complex target task
°

take tiny (cautious) steps in the problem space
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|dea I: Baby Steps ... as Non-convex Optimization

global non-convex optimization is hard ...
meta-heuristic: take guesswork out of local search
start with an easy (convex) case

slowly extend it to the fully complex target task
take tiny (cautious) steps in the problem space

®© 6 6 ¢ ¢ ¢

. try not to stray far from relevant
neighborhoods in the solution space

©

base case: sentences of length one (trivial — no init)
@ incremental step: smooth WSJk; re-init WSJ(k + 1)

@ ... this really is grammar induction!
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|dea |: Baby Steps ... as Graduated Learning

@ |WSJ1| — Atone (verbs!)

Darkness fell.  (nouns!)

° — ltis.

Judge Not

Become a Lobbyist (determiners!)

° — But many have.

They didn’t.
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|dea |: Baby Steps ... and Related Notions

@ shaping (Skinner, 1938)
@ less is more (Kail, 1984; Newport, 1988; 1990)
@ starting small (Elman, 1993)
» scaffold on model complexity [restrict memory]

» scaffold on data complexity [restrict input]
controversy! (Rohde and Plaut, 1999)

o stepping stones (Brown et al., 1993)
@ coarse-to-fine (Charniak and Johnson, 2005)
@ curriculum learning (Bengio et al., 2009)
@ continuation methods (Aligower and Georg, 1990)

successive approximations!
NAACL HLT (2010-06-04)
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|dea |: Baby Steps ... Concerns?

@ ignores a good initializer

@ unnecessarily meticulous

'\'.E&?C}

\?ﬁ’
H H [ £
@ excruciatingly slow! g

@ about a year behind state-of-the-art (on long sentences)
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Idea |l: Less is More

@ short sentences are not representative (and few)
@ long sentences are overwhelmingly difficult ...

@ is there a sweet spot data gradation?

@ perhaps train where Baby Steps flatlines!
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|dea Il: Less is More ... the Learning Curve

bpt
5.0 |
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Cross-entropy £ (in bits per token) on WSJ45

— automatically detect the knee: [7,15]

— train at the “sweet spot” gradation: WSJ15
35 f:
301 -+ Knee T
S [7,15] Tight, Flat, Asymptotic Bound
WSJk 5 10 15 20 25 30 35 40 45
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Idea |l: Less is More
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o discards most of the data

@ beats state-of-the-art (on long sentences, off WSJ15)
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Idea |l: Less is More ... Concerns?

o discards most of the data

@ beats state-of-the-art (on long sentences, off WSJ15)

@ ignores a decent complementary initialization strategy
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|dea Ill: Leapfrog ... a Hack

(]

use both good systems!

(]

thorough training up to WSJ15, where it’s cheap

(]

use both good initializers (mix their best parse trees)

©

execute just a few steps of EM where it’s expensive

©

hop on from WSJ15 to WSJ45, via WSJ30...
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Results: ... on Section 23 of WSJ

Right-Branching
DMV

Baby Steps
Baby Steps

Soft Parameter Tying  (Cohen and Smith, 2009)

Less is More
Leapfrog

(Klein and Manning, 2004)

31.7%
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39.2%
39.4%
42.2%
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Conclusion

Summary

o explored scaffolding on data complexity

@ awareness of data complexity does help!
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Conclusion

Summary

o explored scaffolding on data complexity
@ awareness of data complexity does help!

@ beats state-of-the-art with older techniques
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(]

(need a less adversarial learning algorithm)

(]

paradox: improved performance with less data

(]

despite discarding samples from the true (test) distribution

(]

focusing on simple examples guides unsupervised learning

@ mirrors supervised boosting (Freund and Schapire, 1997)
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Teaser

@ we push the state-of-the-art further, to 50.4% (up
another 5%) using even faster and simpler methods!

@ ... hear us at CoNLL and ACL (Spitkovsky et al., 2010)

o similar approaches may apply in other settings
(e.g., word alignment)

@ ... more to come!
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Thanks!

Questions?

Spitkovsky et al. (Stanford & Google)
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