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Abstract

This work covers several aspects of the optimism in the face of un-
certainty principle applied to large scale optimization problems under
finite numerical budget. The initial motivation for the research reported
here originated from the empirical success of the so-called Monte-Carlo
Tree Search method popularized in Computer Go and further extended
to many other games as well as optimization and planning problems.
Our objective is to contribute to the development of theoretical foun-
dations of the field by characterizing the complexity of the underlying
optimization problems and designing efficient algorithms with perfor-
mance guarantees.

The main idea presented here is that it is possible to decompose
a complex decision making problem (such as an optimization problem
in a large search space) into a sequence of elementary decisions, where
each decision of the sequence is solved using a (stochastic) multi-armed
bandit (simple mathematical model for decision making in stochastic
environments). This so-called hierarchical bandit approach (where the
reward observed by a bandit in the hierarchy is itself the return of an-
other bandit at a deeper level) possesses the nice feature of starting the
exploration by a quasi-uniform sampling of the space and then focusing
progressively on the most promising area, at different scales, according
to the evaluations observed so far, until eventually performing a lo-
cal search around the global optima of the function. The performance
of the method is assessed in terms of the optimality of the returned
solution as a function of the number of function evaluations.

Our main contribution to the field of function optimization is a
class of hierarchical optimistic algorithms designed for general search
spaces (such as metric spaces, trees, graphs, Euclidean spaces) with
different algorithmic instantiations depending on whether the evalua-
tions are noisy or noiseless and whether some measure of the “smooth-
ness” of the function is known or unknown. The performance of the
algorithms depends on the “local” behavior of the function around its
global optima expressed in terms of the quantity of near-optimal states
measured with some metric. If this local smoothness of the function is
known then one can design very efficient optimization algorithms (with
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convergence rate independent of the space dimension). When this infor-
mation is unknown, one can build adaptive techniques which, in some
cases, perform almost as well as when it is known.

In order to be self-contained, we start with a brief introduction
to the stochastic multi-armed bandit problem in Chapter 1 and de-
scribe the UCB (Upper Confidence Bound) strategy and several exten-
sions. In Chapter 2 we present the Monte-Carlo Tree Search method
applied to Computer Go and show the limitations of previous algo-
rithms such as UCT (UCB applied to Trees). This provides motivation
for designing theoretically well-founded optimistic optimization algo-
rithms. The main contributions on hierarchical optimistic optimization
are described in Chapters 3 and 4 where the general setting of a semi-
metric space is introduced and algorithms designed for optimizing a
function assumed to be locally smooth (around its maxima) with re-
spect to a semi-metric are presented and analyzed. Chapter 3 considers
the case when the semi-metric is known and can be used by the algo-
rithm, whereas Chapter 4 considers the case when it is not known and
describes an adaptive technique that does almost as well as when it
is known. Finally in Chapter 5 we describe optimistic strategies for a
specific structured problem, namely the planning problem in Markov
decision processes with infinite horizon discounted rewards.

R. Munos. From Bandits to Monte-Carlo Tree Search:
The Optimistic Principle Applied to Optimization and Planning. Foundations and
Trends R© in Machine Learning, vol. 7, no. 1, pp. 1–129, 2014.
DOI: 10.1561/2200000038.
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About optimism...

Optimists and pessimists inhabit different worlds, reacting to the same
circumstances in completely different ways.

Learning to Hope, Daisaku Ikeda.

Habits of thinking need not be forever. One of the most significant
findings in psychology in the last twenty years is that individuals can
choose the way they think.

Learned Optimism, Martin Seligman.

Humans do not hold a positivity bias on account of having read
too many self-help books. Rather, optimism may be so essential to our
survival that it is hardwired into our most complex organ, the brain.

The Optimism Bias:
A Tour of the Irrationally Positive Brain, Tali Sharot.

3
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1
The stochastic multi-armed bandit problem

We start with a brief introduction to the stochastic multi-armed ban-
dit setting. This is a simple mathematical model for sequential decision
making in unknown random environments that illustrates the so-called
exploration-exploitation trade-off. Initial motivation in the context of
clinical trials dates back to the works of Thompson [1933, 1935] and
Robbins [1952]. In this chapter we consider the optimism in the face
of uncertainty principle, which recommends following the optimal pol-
icy in the most favorable environment among all possible environments
that are reasonably compatible with the observations. In a multi-armed
bandit the set of “compatible environments” is the set of possible dis-
tributions of the arms that are likely to have generated the observed
rewards. More precisely we investigate a specific strategy, called UCB
(where UCB stands for upper confidence bound) introduced by Auer,
Cesa-Bianchi, and Fischer in [Auer et al., 2002], that uses simple high-
probability confidence intervals (one for each arm) for the set of pos-
sible “compatible environments”. The strategy consists of selecting the
arm with highest upper-confidence-bound (the optimal strategy for the
most favorable environment).

We introduce the setting of the multi-armed bandit problem in Sec-

4
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1.1. The K-armed bandit 5

tion 1.1.1, then present the UCB algorithm in Section 1.1.2 and existing
lower bounds in Section 1.1.3. In Section 1.2 we describe extensions of
the optimistic approach to the case of an infinite set of arms, either
when the set is denumerable (in which case a stochastic assumption is
made) or where it is continuous but the reward function has a known
structure (e.g. linear, Lipschitz).

1.1 The K-armed bandit

1.1.1 Setting

Consider K arms (actions, choices) defined by distributions (νk)1≤k≤K

with bounded support (here we will assume that the support lies in
[0, 1]) that are initially unknown to the player. At each round t =
1, . . . , n, the player selects an arm It ∈ {1, . . . , K} and obtains a reward
Xt ∼ νIt , which is a random sample drawn from the distribution νIt

corresponding to the selected arm It, and is assumed to be independent
of previous rewards. The goal of the player is to maximize the sum of
obtained rewards in expectation.

Define μk = EX∼νk
[X] as the mean values of each arm, and μ∗ =

maxk μk = μk∗ as the mean value of one best arm k∗ (there may exist
several).

If the arm distributions were known, the agent would select the arm
with the highest mean at each round and obtain an expected cumulative
reward of nμ∗. However, since the distributions of the arms are initially
unknown, he needs to pull each arm several times in order to acquire
information about the arms (this is called exploration) and while his
knowledge about the arms improves, he should pull increasingly often
the apparently best ones (this is called exploitation). This illustrates
the so-called exploration-exploitation trade-off.

In order to assess the performance of any strategy, we compare its
performance to an oracle strategy that would know the distributions
in advance (and would thus play the optimal arm). For that purpose
we define the notion of cumulative regret: at round n,

Rn
def= nμ∗ −

n∑
t=1

Xt. (1.1)

Full text available at: http://dx.doi.org/10.1561/2200000038



6 The stochastic multi-armed bandit problem

This defines the loss, in terms of cumulative rewards, resulting from
not knowing from the beginning the reward distributions. We are thus
interested in designing strategies that have a low cumulative regret.
Notice that using the tower rule, the expected regret can be written:

ERn = nμ∗ − E

[ n∑
t=1

μIt

]
= E

[ K∑
k=1

Tk(n)(μ∗ − μk)
]

=
K∑

k=1
E[Tk(n)]Δk,

(1.2)
where Δk

def= μ∗ − μk is the gap in terms of expected rewards, between
the optimal arm and arm k, and Tk(n) def=

∑n
t=1 1{It = k} is the number

of pulls of arm k up to time n.
Thus a good algorithm should not pull sub-optimal arms too of-

ten. Of course, in order to acquire information about the arms, one
needs to explore all the arms and thus pull sub-optimal arms. The
regret measures how fast one can learn relevant quantities about
one’s unknown environment while simultaneously optimizing some cri-
terion. This combined learning-optimizing objective is central to the
exploration-exploitation trade-off.

Proposed solutions: Since initially formulated by Robbins [1952], sev-
eral approaches have addressed this exploration-exploitation problem,
including:

• Bayesian exploration: A prior is assigned to the arm distribu-
tions and an arm is selected as a function of the posterior (such
as Thompson sampling [Thompson, 1933, 1935] which has been
analyzed recently in [Agrawal and Goyal, 2012, Kauffmann et al.,
2012, Agrawal and Goyal, 2013, Kaufmann et al., 2013], the Git-
tins indexes, see [Gittins., 1979, Gittins et al., 1989], and op-
timistic Bayesian algorithms such as in [Srinivas et al., 2010,
Kauffman et al., 2012]).

• ε-greedy exploration: The empirical best arm is played with prob-
ability 1 − ε and a random arm is chosen with probability ε (see
e.g. Auer et al. [2002] for an analysis),
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1.1. The K-armed bandit 7

• Soft-max exploration: An arm is selected with a probability that
depends on the (estimated) performance of this arm given pre-
vious reward samples (such as the EXP3 algorithm introduced
in Auer et al. [2003], see also the learning-from-expert setting of
Cesa-Bianchi and Lugosi [2006]).

• Follow the perturbed leader: The empirical mean reward of
each arm is perturbed by a random quantity and the best
perturbed arm is selected (see e.g. Kalai and Vempala [2005],
Kujala and Elomaa [2007]).

• Optimistic exploration: Select the arm with the
largest high-probability upper-confidence-bound (ini-
tiated by Lai and Robbins [1985], Agrawal [1995b],
Burnetas and Katehakis [1996a]), an example of which is
the UCB algorithm [Auer et al., 2002] described in the next
section.

1.1.2 The Upper Confidence Bounds (UCB) algorithm

The Upper Confidence Bounds (UCB) strategy by Auer et al. [2002]
consists of selecting at each time step t an arm with largest B-values:

It ∈ arg max
k∈{1,...,K}

Bt,Tk(t−1)(k),

where the B-value of an arm k is defined as:

Bt,s(k) def= μ̂k,s +

√
3 log t

2s
, (1.3)

where μ̂k,s
def= 1

s

∑s
i=1 Xk,i is the empirical mean of the s first rewards

received from arm k, and Xk,i denotes the reward received when pulling
arms k for the i-th time (i.e., by defining the random time τk,i to be the
instant when we pull arm k for the i-th time, we have Xk,i = Xτk,i

). We
described here a slightly modified version where the constant defining
the confidence interval is 3/2 instead of 2 for the original version UCB1
described in [Auer et al., 2002].

Full text available at: http://dx.doi.org/10.1561/2200000038



8 The stochastic multi-armed bandit problem

This strategy follows the so-called optimism in the face of uncer-
tainty principle since it selects the optimal arm in the most favor-
able environments that are (in high probability) compatible with the
observations. Indeed the B-values Bt,s(k) are high-probability upper-
confidence-bounds on the mean-value of the arms μk. More precisely
for any 1 ≤ s ≤ t, we have P(Bt,s(k) ≥ μk) ≤ 1−t−3. This bound comes
from the Chernoff-Hoeffding inequality which is described below. Let
Yi ∈ [0, 1] be independent copies of a random variable of mean μ. Then

P
(1
s

s∑
i=1

Yi − μ ≥ ε
)

≤ e−2sε2 and P
(1
s

s∑
i=1

Yi − μ ≤ −ε
)

≤ e−2sε2
.

(1.4)
Thus for any fixed 1 ≤ s ≤ t,

P

(
μ̂k,s +

√
3 log t

2s
≤ μk

)
≤ e−3 log(t) = t−3, (1.5)

and

P

(
μ̂k,s −

√
3 log t

2s
≥ μk

)
≤ e−3 log(t) = t−3. (1.6)

We now deduce a bound on the expected number of plays of sub-
optimal arms by noticing that with high probability, the sub-optimal
arms are not played whenever their UCB is below μ∗.

Proposition 1.1. Each sub-optimal arm k is played in expectation at
most

ETk(n) ≤ 6log n

Δ2
k

+ π2

3 + 1

time. Thus the cumulative regret of UCB is bounded as

ERn =
∑

k

ΔkETk(n) ≤ 6
∑

k:Δk>0

log n

Δk
+ K

(π2

3 + 1
)
.

First notice that the dependence in n is logarithmic. This says that
out of n pulls, the sub-optimal arms are played only O(log n) times, and
thus the optimal arm (assuming there is only one) is played n−O(log n)
times. Now, the constant factor in the logarithmic term is 6

∑
k:Δk>0

1
Δk

which deteriorates when some sub-optimal arms are very close to the
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1.1. The K-armed bandit 9

optimal one (i.e., when Δk is small). This may seem counter-intuitive,
in the sense that for any fixed value of n, if all the arms have a very
small Δk, then the regret should be small as well (and this is indeed
true since the regret is trivially bounded by n maxk Δk whatever the
algorithm). So this result should be understood (and is meaningful)
for a fixed problem (i.e., fixed Δk) and for n sufficiently large (i.e.,
n > mink 1/Δ2

k).

Proof. Assume that a sub-optimal arm k is pulled at time t. This means
that its B-value is larger than the B-values of the other arms, in par-
ticular that of the optimal arm k∗:

μ̂k,Tk(t−1) +
√

3 log t

2Tk(t − 1) ≥ μ̂k∗,Tk∗ (t−1) +
√

3 log t

2Tk∗(t − 1) . (1.7)

Now, either one of the two following inequalities hold:

• The empirical mean of the optimal arm is not within its confi-
dence interval:

μ̂k∗,Tk∗ (t−1) +
√

3 log t

2Tk∗(t − 1) < μ∗, (1.8)

• The empirical mean of the arm k is not within its confidence
interval:

μk,Tk(t−1) > μk +
√

3 log t

2Tk(t − 1) , (1.9)

or (when both previous inequalities (1.8) and (1.9) do not hold), then
we deduce from (1.7) that

μk + 2
√

3 log t

2Tk(t − 1) ≥ μ∗,

which implies Tk(t − 1) ≤ 6 log t
Δ2

k
.

This says that whenever Tk(t − 1) ≥ 6 log t
Δ2

k
+ 1, either arm k is not

pulled at time t, or one of the two small probability events (1.8) or

Full text available at: http://dx.doi.org/10.1561/2200000038



10 The stochastic multi-armed bandit problem

(1.9) holds. Thus writing u
def= 6 log t

Δ2
k

+ 1, we have:

Tk(n) ≤ u +
n∑

t=u+1
1{It = k; Tk(t) > u}

≤ u +
n∑

t=u+1
1{(1.8) or (1.9) holds}. (1.10)

Now, the probability that (1.8) holds is bounded by

P

(
∃1 ≤ s ≤ t, μ̂k∗,s +

√
3 log t

2s
< μ∗

)
≤

t∑
s=1

1
t3 = 1

t2 ,

using Chernoff-Hoeffding inequality (1.5). Similarly the probability
that (1.9) holds is bounded by 1/t2, thus by taking the expectation
in (1.10) we deduce that

E[Tk(n)] ≤ 6 log(n)
Δ2

k

+ 1 + 2
n∑

t=u+1

1
t2

≤ 6 log(n)
Δ2

k

+ π2

3 + 1 (1.11)

The previous bound depends on some properties of the distribu-
tions: the gaps Δk. The next result states a problem-independent
bound.

Corollary 1.1. The expected regret of UCB is bounded as:

ERn ≤

√
Kn
(
6 log n + π2

3 + 1
)

(1.12)

Proof. Using Cauchy-Schwarz inequality,

ERn =
∑

k

Δk

√
ETk(n)

√
ETk(n)

≤
√∑

k

Δ2
kETk(n)

∑
k

ETk(n).

The result follows from (1.11) and that
∑

k ETk(n) = n

Full text available at: http://dx.doi.org/10.1561/2200000038



1.1. The K-armed bandit 11

1.1.3 Lower bounds

There are two types of lower bounds: (1) The problem-dependent
bounds [Lai and Robbins, 1985, Burnetas and Katehakis, 1996b] say
that for any problem in a given class, an “admissible” algorithm will
suffer -asymptotically- a logarithmic regret with a constant factor that
depends on the arm distributions, (2) The problem-independent bounds
[Cesa-Bianchi and Lugosi, 2006, Bubeck, 2010] states that for any al-
gorithm and any time-horizon n, there exists an environment on which
this algorithm will suffer a regret lower-bounded by some quantity.

Problem-dependent lower bounds: Lai and Robbins [1985] consid-
ered a class of one-dimensional parametric distributions and showed
that any admissible strategy (i.e. such that the algorithm pulls each
sub-optimal arm k a sub-polynomial number of times: ∀α > 0,
ETk(n) = o(nα)) will asymptotically pull in expectation any sub-
optimal arm k a number of times such that:

lim inf
n→∞

ETk(n)
log n

≥ 1
K(νk, νk∗) (1.13)

(which, from (1.2), enables the deduction of a lower bound on the re-
gret), where K(νk, νk∗) is the Kullback-Leibler (KL) divergence between
νk and νk∗ (i.e., K(ν, κ) def=

∫ 1
0

dν
dκ log dν

dκdκ if ν is dominated by κ, and
+∞ otherwise).

Burnetas and Katehakis [1996b] extended this result to several
classes P of multi-dimensional parametric distributions. By writing

Kinf(ν, μ) def= inf
κ∈P:E(κ)>μ

K(ν, κ),

(where μ is a real number such that E(ν) < μ), they showed the im-
proved lower bound on the number of pulls of sub-optimal arms:

lim inf
n→∞

ETk(n)
log n

≥ 1
Kinf(νk, μ∗) . (1.14)

Those bounds consider a fixed problem and show that any algorithm
that is reasonably good on a class of problems (i.e. what we called an
admissible strategy) cannot be extremely good on any specific instance,
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12 The stochastic multi-armed bandit problem

and thus needs to suffer some incompressible regret. Note also that
these problem-independent lower-bounds are of an asymptotic nature
and do not say anything about the regret at any finite time n.

A problem independent lower-bound: In contrast to the previous
bounds, we can also derive finite-time bounds that do not depend
on the arm distributions: For any algorithm and any time hori-
zon n, there exists an environment (arm distributions) such that
this algorithm will suffer some incompressible regret on this environ-
ment [Cesa-Bianchi and Lugosi, 2006, Bubeck, 2010]:

inf supERn ≥ 1
20

√
nK,

where the inf is taken over all possible algorithms and the sup over all
possible (bounded) reward distributions of the arms.

1.1.4 Recent improvements

Notice that in the problem-dependent lower-bounds (1.13) and (1.14),
the rate is logarithmic, like for the upper bound of UCB, however the
constant factor is not the same. In the lower bound it uses KL diver-
gences whereas in the upper bounds the constant is expressed in terms
of the difference between the means. From Pinsker’s inequality (see
e.g. [Cesa-Bianchi and Lugosi, 2006]) we have: K(ν, κ) ≥ (E[ν]−E[κ])2

and the discrepancy between K(ν, κ) and (E[ν] − E[κ])2 can be very
large (e.g. for Bernoulli distributions with parameters close to 0 or 1).
It follows that there is a potentially large gap between the lower and
upper bounds, which motivated several recent attempts to reduce this
gap. The main line of research consisted in tightening the concentration
inequalities defining the upper confidence bounds.

A first improvement was made by Audibert et al. [2009] who in-
troduced UCB-V (UCB with variance estimate) that uses a variant of
Bernstein’s inequality to take into account the empirical variance of the
rewards (in addition to their empirical mean) to define tighter UCB on
the mean reward of the arms:

Bt,s(k) def= μ̂k,s +

√
2Vk,s log(1.2t)

s
+ 3 log(1.2t)

s
, (1.15)
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1.2. Extensions to many arms 13

where Vk,s is the empirical variance of the rewards received from arm
k. They proved that the regret is bounded as follows:

ERn ≤ 10
( ∑

k:Δk>0

σ2
k

Δk
+ 2
)

log(n),

which scales with the actual variance σ2
k of the arms.

Then Honda and Takemura [2010, 2011] proposed the DMED (De-
terministic Minimum Empirical Divergence) algorithm and proved
an asymptotic bound that achieves the asymptotic lower-bound of
Burnetas and Katehakis [1996b]. Notice that Lai and Robbins [1985]
and Burnetas and Katehakis [1996b] also provided an algorithm with
asymptotic guarantees (under more restrictive conditions). It is only in
[Garivier and Cappé, 2011, Maillard et al., 2011, Cappé et al., 2013]
that a finite-time analysis was derived for KL-based UCB algorithms,
KL-UCB and Kinf -UCB, that achieve the asymptotic lower bounds of
[Lai and Robbins, 1985] and [Burnetas and Katehakis, 1996b] respec-
tively. Those algorithms make use of KL divergences in the definition
of the UCBs and use the full empirical reward distribution (and not
only the two first moments). In addition to their improved analysis in
comparison to regular UCB algorithms, several experimental studies
showed their improved numerical performance.

Finally let us also mention that the logarithmic gap between the
upper and lower problem-independent bounds (see (1.12) and (1.14))
has also been closed (up to a constant factor) by the MOSS algorithm
of Audibert and Bubeck [2009], which achieves a minimax regret bound
of order

√
Kn.

1.2 Extensions to many arms

The principle of optimism in the face of uncertainty has been success-
fully extended to several variants of the multi-armed stochastic bandit
problem, notably when the number of arms is large (possibly infinite)
compared to the number of rounds. In those situations one cannot even
pull each arm once and thus in order to achieve meaningful results we
need to make some assumptions about the unobserved arms. There are
two possible situations:
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14 The stochastic multi-armed bandit problem

• When the previously observed arms do not give us any informa-
tion about unobserved arms. This is the case when there is no
structure in the rewards. In those situations, we may rely on a
probabilistic assumption on the mean value of any unobserved
arm.

• When the previously observed arms can give us some information
about unobserved arms: this is the case of structured rewards, for
example when the mean reward function is a linear, convex, or
Lipschitz function of the arm position, or also when the rewards
depend on some tree, graph, or combinatorial structure.

1.2.1 Unstructured rewards

The so-called many-armed bandit problem considers a countably infinite
number of arms where there is no structure among arms. Thus at any
round t the rewards obtained by pulling previously observed arms do
not give us information about the value of the unobserved arms.

To illustrate, think of the problem of selecting a restaurant for din-
ner in a big city like Paris. Each day you go to a restaurant and receive
a reward indicating how much you enjoyed the food you were served.
You may decide to go back to one of the restaurants you have already
visited either because the food there was good (exploitation) or be-
cause you have not been there many times and want to try another
dish (exploration). However you may also want to try a new restaurant
(discovery) chosen randomly (maybe according to some prior informa-
tion). Of course there are many other applications of this exploration-
exploitation-discovery trade-off, such as in marketing (e.g. you want to
send catalogs to good customers, uncertain customers, or random peo-
ple), in mining for valuable resources (such as gold or oil) where you
want to exploit good wells, explore unknown wells, or start digging at
a new location.

A strong probabilistic assumption that has been made by
Banks and Sundaram [1992], Berry et al. [1997] to model such situa-
tions is that the mean-value of any unobserved arm is a random variable
that follows some known distribution. More recently this assumption
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K(t) played arms Arms not played yet

Figure 1.1: The UCB-AIR strategy: UCB-V algorithm is played on an increasing
number K(t) or arms

has been weakened by Wang et al. [2008] with an assumption focusing
on this distribution upper tail only. More precisely, they assume that
there exists β > 0 such that the probability that the mean-reward μ of
a new randomly chosen arm is ε-optimal, is of order εβ :

P(μ(new arm) > μ∗ − ε) = Θ(εβ), 1 (1.16)

where μ∗ = supk≥1 μk is the supremum of the mean-reward of the arms.
Thus the parameter β characterizes the probability of selecting a

near-optimal arm. A large value of β indicates that there is a small
chance that a new random arm will be good, thus an algorithm trying
to achieve a low regret (defined like in (1.1) with respect to μ∗) would
have to pull many new arms. Conversely, if β is small, then there is a
reasonably large probability that a very good arm will be obtained by
pulling a small number of new arms.

The UCB-AIR (UCB with Arm Increasing Rule) strategy intro-
duced in Wang et al. [2008] consists of playing a UCB-V strategy
[Audibert et al., 2009] (see (1.15)) on a set of current arms, whose
number is increasing with time. At each round, either an arm already
played is chosen according to the UCB-V strategy, or a new random
arm is selected. Theorem 4 of [Wang et al., 2008] states that by select-
ing at each round t a number of active arms defined by

K(t) =

⎧⎨⎩ 
t
β
2 � if β < 1 and μ∗ < 1


t
β

β+1 � if β ≥ 1 or μ∗ = 1

then the expected regret of UCB-AIR is upper-bounded as:

1We write f(ε) = Θ(g(ε)) if ∃c1, c2, ε0, ∀ε ≤ ε0, c1g(ε) ≤ f(ε) ≤ c2g(ε).
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ERn ≤

⎧⎨⎩ C
(

log n
)2√

n if β < 1 and μ∗ < 1
C
(

log n
)2

n
β

1+β if μ∗ = 1 or β ≥ 1
,

where C is a (numerical) constant.
This setting illustrates the exploration-exploitation-discovery trade-

off where exploitation means pulling an apparently good arm (based
on previous observations), exploration means pulling an uncertain arm
(already pulled), and discovery means trying a new (unknown) arm.

An important aspect of this model is that the coefficient β charac-
terizes the probability of choosing randomly a near-optimal arm (thus
the proportion of near-optimal arms), and the UCB-AIR algorithm re-
quires the knowledge of this coefficient (since β is used for the choice
of K(t)). An open question is whether it is possible to design an adap-
tive strategy that could show similar performance when β is initially
unknown.

Here we see an important characteristic of the performance of the
optimistic strategy in a stochastic bandit setting, that will appear sev-
eral times in different settings in the next chapters: The performance
of a sequential decision making problem in a stochastic environment
depends on a measure of the quantity of near-optimal solutions,
as well as on our knowledge about this quantity.

1.2.2 Structured bandit problems

In structured bandit problems we assume that the mean-reward of an
arm is a function of some arm parameters, where the function belongs
to some known class. This includes situations where “arms” denote
paths in a tree or a graph (and the reward of a path being the sum
of rewards obtained along the edges), or points in some metric space
where the mean-reward function possesses a specific structure.

A well-studied case is the linear bandit problem where the set of
arms X lies in a Euclidean space R

d and the mean-reward function is
linear with respect to (w.r.t.) the arm position x ∈ X : at time t, one
selects an arm xt ∈ X and receives a reward rt

def= μ(xt) + εt, where the
mean-reward is μ(x) def= x ·θ with θ ∈ R

d is some (unknown) parameter,
and εt is a (centered, independent) observation noise. The cumulative
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regret is defined w.r.t. the best possible arm x∗ def= arg maxx∈X μ(x):

Rn
def= nμ(x∗) −

n∑
t=1

μ(xt).

Several optimistic algorithms have been introduced and ana-
lyzed, such as the confidence ball algorithms in [Dani et al., 2008],
as well as refined variants in [Rusmevichientong and Tsitsiklis, 2010,
Abbasi-Yadkori et al., 2011]. See also [Auer, 2003] for a pioneering
work on this topic. The main bounds on the regret are either problem-
dependent, of the order O

(
log n

Δ

)
(where Δ is the mean-reward differ-

ence between the best and second best extremal points), or problem-
independent of the order2 Õ(d

√
n). Several extensions to the lin-

ear setting have been considered, such as Generalized Linear models
[Filippi et al., 2010] and sparse linear bandits [Carpentier and Munos,
2012, Abbasi-Yadkori et al., 2012].

Another popular setting is when the mean-reward function x �→
μ(x) is convex [Flaxman et al., 2005, Agarwal et al., 2011] in which
case regret bounds of order O(poly(d)

√
n) can be achieved3. Other

weaker assumptions on the mean-reward function have been consid-
ered, such as Lipschitz condition [Kleinberg, 2004, Agrawal, 1995a,
Auer et al., 2007, Kleinberg et al., 2008b] or even weaker local assump-
tions in [Bubeck et al., 2011a, Valko et al., 2013]. This setting of ban-
dits in metric spaces as well as more general spaces will be further
investigated in Chapters 3 and 4.

1.3 Conclusions

It is worth mentioning that there have been a huge development of the
field of Bandit Theory over the last few years which have produced
emerging fields such as contextual bandits (where the rewards depend
on some observed contextual information), adversarial bandits (where
the rewards are chosen by an adversary instead of being stochastic),
and has drawn strong links with other fields such as online-learning

2where Õ stands for a O notation up to a polylogarithmic factor
3where poly(d) refers to a polynomial in d
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(where a statistical learning task is performed online given limited
feedback) and learning from experts (where one uses a set of recom-
mendations given by experts). The interested reader may find addi-
tional references and developments in the following books and PhD
theses [Cesa-Bianchi and Lugosi, 2006, Bubeck, 2010, Maillard, 2011,
Bubeck and Cesa-Bianchi, 2012].

This chapter presented a brief overview of the multi-armed bandit
problem which can be seen as a tool for rapidly selecting the best
action among a set of possible ones, under the assumption that each
reward sample provides information about the value (mean-reward) of
the selected action. In the next chapters we will use this tool as a
building block for solving more complicated problems where the action
space is structured (for example when it is a sequence of actions, or
a path in a tree) with a particular interest for combining bandits in
a hierarchy. The next chapter introduces the historical motivation for
our interest in this problem while the later chapters provide algorithmic
and theoretical contributions.
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