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From Behavioral Psychology to Acceleration Modeling: Calibration, 

Validation, and Exploration of Drivers’ Cognitive and Safety 

Parameters in a Risk-Taking Environment  

Samer H. Hamdar* (hamdar@gwu.edu), Hani S. Mahmassani, and Martin Treiber  

ABSTRACT 

 We investigate a utility-based approach for driver car-following behavioral 
modeling while analyzing different aspects of the model characteristics especially in 
terms of capturing different fundamental diagram regions and safety proxy indices. The 
adopted model came from an elementary thought where drivers associate subjective 
utilities for accelerations (i.e. gain in travel times) and subjective dis-utilities for 
decelerations (i.e. loss in travel time) with a perceived probability of being involved in 
rear-end collision crashes. Following the testing of the model general structure, the 
authors translate the corresponding behavioral psychology theory - prospect theory - into 
an efficient microscopic traffic modeling with more elaborate stochastic characteristics 
considered in a risk-taking environment. 

 After model formulation, we explore different model disaggregate and aggregate 
characteristics making sure that fidelity is kept in terms of equilibrium properties. 
Significant effort is then dedicated to calibrating and validating the model using 
microscopic trajectory data. A modified genetic algorithm is adopted for this purpose 
while focusing on capturing inter-driver heterogeneity for each of the parameters. Using 
the calibration exercise as a starting point, simulation sensitivity analysis is performed to 
reproduce different fundamental diagram regions and to explore rear-end collisions 
related properties. In terms of fundamental diagram regions, the model in hand is able to 
capture traffic breakdowns and different instabilities in the congested region represented 
by flow-density data points scattering. In terms of incident related measures, the effect of 
heterogeneity in both psychological factors and execution/perception errors on the 
accidents number and their distribution is studied. Through sensitivity analysis, 
correlations between the crash-penalty, the negative coefficient associated with losses in 
speed, the positive coefficient associated with gains in speed, the driver’s uncertainty, the 
anticipation time and the reaction time are retrieved. The formulated model offers a better 
understanding of driving behavior, particularly under extreme/incident conditions. 

Keywords: 

Car-Following, Congestion, Driver Behavior, Heterogeneity, Prospect Theory, Risk, 
Uncertainty 
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1. INTRODUCTION 

 In 2008, an acceleration-based car-following model was proposed that 
incorporates the risk-taking attitudes of drivers and uses prospect theory to evaluate the 
perceived consequences of applying different acceleration rates, a probability of collision 
and a crash penalty term are explicitly introduced in the formulation (Hamdar et al., 
2008). This paper builds on this approach while changing the fundamental equations 
previously suggested (i.e. subjective utility function) for exploring the characteristics of 
the formulated car-following model in terms of its ability to capture congestion regions, 
equilibrium characteristics, inter-driver heterogeneity and collective accident-prone 
behaviors on a freeway section. Being calibrated against real-life trajectory data (FHWA 
– 2004 a,b,c), different bottleneck and incident scenarios are modeled: bottleneck 
scenarios are tested via deceleration exerted by the leader and on-ramp merging; incident 
scenarios are tested via rear-end collision and fixed object crashes. Special interest is 
given to studying the resulting fundamental diagram especially traffic breakdown and the 
congestion disturbances. The effect of both psychological factors and 
execution/perception errors on the accidents number and their distribution along a 
freeway length is also studied. Through sensitivity analysis, insights into the relationships 
between the crash-penalty, the negative coefficient associated with losses in speed, the 
positive coefficient associated with gains in speed, the driver’s uncertainty, the 
anticipation time and the reaction time are provided.  

 Theobjective of this research is to offer a stochastic fully dynamical acceleration 
model incorporatinga) traffic flow theory fundamentals (i.e. fundamental diagram), (b) 
findings of prospect theory on the form of the perceived (subjective, generalized) utility, 
(c) risk taking, (d) perception limits and subjective behavioral fluctuations.  The model is 
supported by decision-making theories’ concepts and safe/unsafe driving maneuvers are 
created as an inherent result of the utility function without imposing unrealistic safety 
constraints. 

 The first contribution of this research is capturing driver behavior in congested 
and situations while incorporating drivers’ risk-taking attitude in the model equations.   
The model formulated in this paper does not exogenously impose safety constraints to 
prevent accidents. Models used in practice typically preclude accidents, contrary to real-
life situations. One more implication of this contribution is capturing that drivers do not 
perfectly register existing stimuli without subjectively weighing different alternatives 
based on their personality (aggressive versus conservative drivers). This allows risky 
behavior as an inherent result of the model. Moreover, the corresponding acceleration 
choice emerges as a probabilistic decision making process facing uncertainty; the method 
by which the resulting accident causing behavior is weighed can be calibrated based on 
recorded traffic data. It should be mentioned that in the first and only published work on 
the related formulation (i.e. Hamdar et al., 2008), the formulation was not developed 
enough neither to derive the corresponding homogenous fundamental diagram nor to 
reproduce real-world trajectory data in different traffic conditions. In other words, the 
authors did not look beyond the acceleration probability density functions in different 
local scenarios (i.e. for specific relative velocities, spacing and initial velocities with non-
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calibrated model parameters).  The resulting probability density functions were feasible 
and acceptable as drivers accelerated when they were supposed to accelerate and 
decelerated when they were supposed to decelerate.  The logical steps beyond such 
preliminary findings and that are performed in this research work are to: 

a- Expand the formulation and further test the corresponding car-following model in 
terms of the flow-density-speed macroscopic properties. 

b- Utilize a suitable calibration methodology and make sure that the suggested 
model reproduces rear-world trajectories especially during congestion conditions. 

c- Transform the model into an efficient simulation tool (possibly utilized for 
prediction and real-time evaluation purposes) and analyze the corresponding non-
homogenous fundamental diagram (flow-density data points scattering). 

d- Make sure that the resulting model does not produce the same non-realistic crash 
patterns observed in existing acceleration models if the corresponding safety 
constraints were relaxed.  These non-realistic patterns were already analyzed in 
Hamdar and Mahmassani, 2008.  
 

 The second and the third steps mentioned above are essential to be realized so the 
model may be useful for the traffic flow theory and traffic engineering communities. In 
other words, from a practitioner stand point, the main challenge in realizing the stated 
paper’s objective while incorporating the corresponding parameters is the degree of 
complexity that would be added to the eventual model, which would preclude its 
usefulness in actual practice. Accordingly, another contribution of this research is to put 
forward a “logic” that is robust enough to advance the state of knowledge related to the 
driving task but simpleand fastenough so that it can be readily implemented, calibrated 
and validated. The resulting model is intended to provide a competitive stochastic 
alternative to existing simpler models that lack cognitive dimensions.  

 In summary, the main challenge faced is translating the behavioral psychology 
prospect theory into a concise acceleration formulation given the importance of such 
structure for the calibration and the simulation exercise; this challenge is faced through 
the use of a Genetic Algorithm (GA) heuristic that allows calibrating the model for each 
“feasible” vehicle and attempting to capture a heterogeneity pattern. The structure of this 
paper will then follow; a background review on incidents and pertinent car-following 
models is presented in the following section. The framework of the work is shown in the 
third section where the corresponding car-following model is presented. The review and 
the framework will motivate testing the model in terms of equilibrium conditions. After 
calibrating the model, the fifth section includes the simulation results and the 
corresponding data analysis before concluding with some future research needs. 

2. BACKGROUND REVIEW  

 In the year 2000, the monetary cost relatedto traffic accidents reached 
230.6billion USD (U. S. Dollars) in the U.S.A., only (NHTSA, 2007). Newer financial 
figures on this financial topic were not available. However, since the reduction of fatal 
US accidents in the last decade essentially is compensated for by inflation, it is safe to 
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assume that the present figure is not significantly different in terms of accidents’ costs. 
Based on the National Highway Traffic Safety Agency (NHSTA) studies, 5 accident 
types of interest can be identified: 1) rear impacts (29.6% of US accidents), 2) angle or 
side impacts (28.6 % of US accidents), 3) fixed object crashes (16.1 % of US accidents), 
rollovers (2.3% of US accidents), head-on collisions (2 % of US accidents) and collision 
with pedestrians/bicyclists (1. 8 % of US accidents) (3). In car-following, the focus is on 
the tailgating behavior that may lead to rear-end collisions (Type 1).  

 Based on the objective stated in the previous section, there are three main 
attributes in a car-following model that are desired: a) the model needs to be consistent 
with traffic fllow theory fundamentals (i.e. fundamental diagram and traffic flow 
instabilities), (b) the model needs to have a cognitive dimension allowing for “utility” 
maximization, (c) risk taking and perception limits to be considered, and d) the model 
allows for incident prone conditions and errors to be made so that collisions may be 
created as an inherent result of the model structure without imposing unrealistic safety 
constraints. 

 Regarding the first attribute, there are several models that accurately captures 
traffic trajectory data, such as Gipps's model (Gipps, 1981) or the Intelligent Driver 
Model (IDM) (Treiber et al., 2000). Moreover, other models were built so that the 
perception limits are captured (Wiedemann and Reiter, 1992). Finally, some models were 
formulated using a utilitarian approach with a specific utility to be maximized by the 
drivers (Ahmed, 1999). All these models were tested in terms of the corresponding 
calibration efforts and resulting accuracy (Brockfeld et al., 2005). So one may ask what is 
the added contribution to be made? 
 
 Regarding the first attribute (i.e. attribute a: capturing all traffic flow 
fundamentals especially in relation to the congestion formation), the main assumption in 
“standard” car-following models is that the behavior of the following vehicle (e.g. change 
in acceleration) is directly related to a stimulus observed/perceived by the driver, defined 
relative to the lead vehicle (e.g. difference in speeds, headways etc.). This idea was 
adopted in the car-following models of Chandler, Gazis and Herman (Chandler et al., 
1958, Gaziz et al., 2959 and Herman et al., 1959), known as the General Motor (GM) 
models. These first models are not complete in the sense that they are not applicable to all 
traffic situations including, e.g., free traffic or approaching standing vehicles or obstacles. 
Later investigations proposed improved models by introducing a “safe” time gap and a 
desired speed. The Gipps model (Gipps, 1981), and the intelligent-driver model (IDM) 
(Treiber et al., 2000) contain intuitive parameters that can be related to the driving style 
such as desired accelerations, comfortable decelerations, and a desired “safe” time gap. 
Furthermore, they include braking strategies that prevent accidents under a given 
heuristic. With such safety constraints imposed (i.e. ignoring the importance of attribute d 
stated earlier: allowing incident formation as an inherent result of the driver decision 
making process), these models were able to capture the different traffic flow dynamics in 
congested regimes. However, these models lacked the cognitive dimension desired to 
further understand driver behavior (i.e. attribute b stated earlier). Accordingly, 
subsequent studies have extended these models, by introducing additional parameters 
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intended to capture dimensions such as anticipation, learning, and response to several 
vehicles ahead. Other models such as the human driver model (HDM) (Treiber et al., 
2006) also model human deficiencies, including variable reaction times and the size and 
persistency of estimation errors of the input stimuli depending on the traffic situation. 
The Wiedemann model captures the indifference of the drivers to small changes in the 
stimuli. It also allows different execution modes including emergency braking 
(Wiedemann and Reiter, 1992). The MITSIM model (Ahmed, 1999), adopted a more 
utility-based approach to look into the fundamentals of decision making processes. 

 An open problem is that there is no car-following model having all the attributes 
stated in the objective. More precisely, the car-following models cited earlier are all 
designed to be accident free and therefore are, by definition, unsuited to capture driver 
behavior during incident scenarios (FHWA, 2004; Hamdar and Mahmassani, 2008); 
Moreover, a limited amount of research focused on the cognitive and risk-taking attitudes 
in driver behavior including the heterogeneity aspect that leads to scattering of flow-
density data points and a more favorable environment for incidents (Lu et al., 2013).  

 One additional challenge to be faced when formulating new car-following models 
is the corresponding ease of calibration. Calibrating the above models need different 
levels of effort based on data availability, the number of parameters to calibrate, the 
calibration method and the model structure. For example, calibrating the Wiedemann 
Model requires estimating 18 parameters found in 17 different equations. On the other 
hand, in the IDM model, drivers behavior is captured by one equation with 5 parameters 
to estimate. 

 Before recent developments in collecting microscopic data (allowing the NGSIM 
research effort, FHWA 2004, 2005 a, b and c), a rare amount of data was available to 
calibrate the existing microscopic car-following models stated above. One of these data 
sets was collected by wire-linked vehicles on a test track at the General Motors Technical 
Center (Hamdar et al., 2009). Another technique was by using a camera attached to a 
helicopter. The gathered pictures were input to a time consuming manual processing 
system (Ossen and Hoogendoorn, 2007). Lately, image processing software and 
Differential Global Positions System (DGPS) have become available. This gave new 
tools to researcher to collect more accurate and detailed individual driver information. 

 Once the data is available, different calibrations techniques can be applied. In the 
“traditional” model calibration process, the “car-following” model parameters need to be 
adjusted until an acceptable (qualitative and quantitative) match is found between the 
simulated model dynamics and the observed drivers' behavior. Engineering judgment and 
trial-and-error methods are still widely used especially in the industry (Chu et al., 2004). 
More systematic approaches including the gradient method (Hourdakis et al., 2002) and 
Genetic Algorithm (Cheu et al., 1998) address the model calibration procedure as an 
optimization problem: a combination of parameter values are searched so an objective 
function (error term) is minimized. Lately, most research is oriented to capture intra and 
inter driver heterogeneity and time correlation in the parameters estimates (Ossen and 
Hoogendoorn, 2007). Given the presented literature, the formulation to be presented in 
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this paper need to be transformed in order to calibrate and validate the suggested model’s 
“cognitive-based” parameters while leading to realistic traffic flow dynamics. 

3. FRAMEWORK: the Car-Following Model 

 In this section, the general structure of the stochastic acceleration model is 
introduced. The implementation details of this model can be seen in (Hamdar et al., 
2008). Some analytical and numerical derivations are not presented in this paper for 
conciseness. 
 
 In the free-flow regime, the main factor governing the acceleration behavior of 

adriver is his or her desired speed 0v  (Gipps, 1981). The acceleration applied by a driver 

toreach this speed starting at a speed v and having a maximum possible acceleration 

value maxa is given by 









−=

0

max 1
v

v
av free

ɺ .           Equation 1 

In other words , the acceleration is always to be restricted by a free-flow acceleration 

function where intvv
dt

dv
free

ɺɺ += and intvɺ  is the acceleration adopted when interactions 

between vehicles is present. 

 The acceleration in dense or congested traffic is mainly controlled by interactions 
with the leading vehicle. In this model, the acceleration is modeled by a stochastic 
process that is characterized by the following: 

1- The expected acceleration value )(ˆ ta  

2- the variance )(2
taσ  

3- and by the correlation time corrτ  

 

At each given time, the stochastic acceleration intvɺ is distributed according to a continuous 

logit model whose distribution function is conditioned to the actual  

speed )(tv , the space gap )(ts to the leader, and the relative speed )(tv∆ to the leader  

( 0>∆v  when approaching): ),,(LOGIT~int vvsv ∆ɺ . 

The conditional probability density ),,|(int vvsaf ∆ of the Logit model is given by 

∫
∆

∆

=∆
'

),,|(
),,;'(

),,;(

int
dae

e
vvsaf

vvsaU

vvsaU

β

β

.  Equation 2 
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The (generalized) utility U  of the model is composed of the generalized (or perceived) 
prospect-theoretic acceleration utility )(aU PT whose form is derived by the prospect 

theory, and a penalty )(aUcrash for the risk of accidents: 

),,;()(),,;( vvsaUaUvvsaU crashPT ∆+=∆ .  Equation 3 

We specify the utility component by 

UPT (x) = x * 0.5* wm +0.5*(1−wm )*(tanh x( ) +1) * 1+ x
2( )0.5*(γ−1)

, Equation 3.1 

where 
0a

a
x = , 

and  

cccrash wpvvsaU =∆ ),,;( . Equation 3.2 

In the prospect theoretic utility PTU , a weighing function is adopted to evaluate the 

subjective utilities of different accelerations (Tversky and Kahnemann, 1986). The gains 
and losses are expressed as a function of acceleration, or, equivalently, in terms of 
expected speed gains and losses over a specific period of time (Figure 1). The non-varied 
model parameter 0a  indicates the subjective scale of the acceleration: accelerations 

0int av <ɺ  are considered to be “near the reference point” leading to increased sensitivity 

(Figure 1). In fact, even though �� is a fixed number for a given simulation (e.g., 1 m/s2), 
this referencing parameter may have two simultaneous meanings: (i) it may be interpreted 
as the scaling unit of the acceleration to be used inside exponentials or non-integer 
powers (such as )(aUPT ) requiring dimensionless arguments; (ii) moreover, this 

parameter denotes the range of accelerations where the prospect-theoretic subjective 
utility is significantly influenced by the reference point �=0 (hence the wording "range" 
in Table 1). Otherparameters of interest in the corresponding value function are the 

weight associated with negative acceleration ( −
w or mw ) and the nonlinear sensitivity 

component γ. The weight associated with the gains ( +
w ) is assumed to be one, so is the 

weighting of losses relative to that of gains(relative measure between +
w and mw ).In other 

words, for γ = 1 (no increased sensitivity at the reference acceleration), the function 
expressed in Equation 3.1 has linear asymptotes just retaining the different positive and 
negative weighing, and a smooth transition of width 0a around zero. Additionally, when 

mw = 1, the utility becomes linear as 0/)( aaxxU PT == . 

The second term on the right hand side of Equation 3 denotes the crash-related utility. In 
contrast to )(aU PT  which is monotonously increasing with the acceleration a ,  crashU is 

monotonously decreasing with a  since a higher acceleration, and the ensuing higher 
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future speed, increases the risk of rear-end collisions. The utility crashU  consists of the 

estimated probability of a crash cp and a crash weight cw . The gradient of the crash 

utility is given explicitly by Equation 13.The estimated crash probability cp  is the 

probability of a rear-end collision within the time horizon τ  assuming that i) the chosen 
acceleration a of the follower remains unchanged within this interval, ii) the speed of the 
leader is constant, and iii) this speed is only known imprecisely in terms of an unbiased 
Gaussian distribution of relative error (variation coefficient) α. In other words, when 
estimating the crash probability, drivers are assumed to predict the future position of a 
leader where the variation of this speed is dictated by an estimation uncertainty 

ll vv ασ =)(  of the speed of the leader lv .Regarding cw , a higher cw corresponds to 

conservative individuals while a lower corresponds to drivers willing to take a higher 
risk. 

 Notice that we assume the utility to be dimensionless. Furthermore, its derivative

da

dU
U ≡' with respect to acceleration is of the order of 1/ 0a  where 0a =1m/s2. 

Consequently, 
β
1

has the order of magnitude of the intra-driver uncertainties of the 

acceleration.  

3.1. Expectation Value 

 For sufficiently high values of β (which we will assume henceforth), the 

expectation value a of the distribution for intvɺ can be approximated by its mode value, 

i.e., by the acceleration at the maximum of its probability density: 

∫ ∆=∆≈∆=∆ ),,;(maxarg),,(*),,|(),,( int vvsaUvvsadavvsaafvvsa . Equation 4 

As usual, the value )(* ta for maximum utility can be determined by the condition: 

0))(),(),(*;(' =∆ tvtvtsaU .  Equation 5 

The dependencies between )(aU PT  and ),,;( vvsaUcrash ∆ usually lead to a unique 

maximum of the generalized utility at some acceleration *a . The condition in Equation 5, 
however, generally will be satisfied for two values of the acceleration, where the higher 
one pertains to a minimum of the utility (unsafe driving mode).  

Since, in general, the maximum of the total utility U(a) can not be calculated analytically, 
a good initial guess for *a  is essential to allow for a robust and effective numerical 
approximation. Such a guess is provided by the special case γ=wm=1, where U'PT(a)=1/a0. 
The ensuing condition U'crash(a*)+1/a0=0, with U'crash(a) given by Equation 13, can be 
analytically solved for a*. This results in following initial guess (for details, see Hamdar 
et al., 2008): 
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� *a � � �� �
��	
� � ��
 ��� � �� � ��� *z � 

 
where 

*z � � ����� � ������������ 

 

3.2. Variance and Correlation Time 

Assuming again a sufficiently large value of the Logit uncertainty parameter β , the 

variance of the distribution characterized by the probability density in Equation 2 can be 
calculated with the method of the asymptotic expansion. The result is: 

,
))(),(),(),(*(''

1
)(2

tvtvtstaU
ta ∆

−=
β

σ
 

Equation 6 

where the second derivative ),,*,('' vvsaU ∆ can be calculated analytically. The 

correlation time is given directly by the model parameter corrτ . 

The total number of parameters that need to be calibrated is seven. These parameters are 
presented in Table 1.  The corresponding prospect theoretic utility function PTU may be 

observed below: 

 

Figure 1: Prospect theoretic utility function PTU for the proposed car-following 

model with the parameters from Table 1. 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 

Hamdar, Mahmassani and Treiber, 2015  TR-B: Methodological 

13 

 

It should be noted that the logit expression (corresponding to Gumbel distributed 
acceleration estimation errors) expressed in Equation 2 was first chosen since there is no 
closed exact form maximizing the realizations of the total subjective utility in the 
presence of more than two alternatives for any other distribution. However, in the 
following, the approximation of asymptotic expansion leading to Equation 6 have led to 
the approximation of the Gumbel distribution by a Gaussian distributions, i.e., a second-
order Gaussian stochastic process is produced for the acceleration errors which is 
uniquely characterized by � and ���  . 
 
Given the above, for Equation 6 to be valid, !""
�� must not vary significantly in#�$ �%&�' �$ � %&�( . Assuming a constant !""
��   near the maximum �$ , i.e., !
�� �!
�$� � )*!""
�$�
� � �$�*  and inserting this into +,-.  automatically leads to +,-. 
proportional to /01�#)*!22
�$�
� � �$�*( , i.e., to Gaussian distributed acceleration 

uncertainties whose variance is given by Equation 6.  
 

4. FUNDAMENTAL DIAGRAM AND EQUILIBRIUM CONDITIONS 

 The fundamental diagram, i.e., the steady-state relation for speed or flow as a 
function of density (or spatial gap), is given by the full model with following equilibrium 
conditions: 

•  The speeds of all vehicles are the same, and constant over time: i.e., 

o acceleration 00 =vɺ , 

o speed difference (approaching rate to the leader) 0=∆v , 

•  no stochasticity is allowed, i.e., ∞→β . 

 
4.1. Microscopic Relations 

 The equilibrium relation is formulated as a relation between the gap s  and the 

speed v , e.g., )(svv e= or )(vss e= . Assuming 0≤
∂
∂
v

vɺ
(which should be satisfied for all 

sensible micro-models) (Treiber and Kesting 2013), the above equilibrium condition 
leads to: 

))(,min()( 0 svvsve = ,  Equation 7 

where the steady-state speed )(sv in the interacting rangeis defined by 

0),0,,(int =∞→=∆ βvvsvɺ .  Equation 8 
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Table 1:  Car-Following Model Parameters and Corresponding Symbols for the 

Simulation Exercise: the parameters in the top part (above the horizontal line) are 

the actual model parameters to be calibrated; the parameters in the lower part are 

secondary parametersthat are not subject to calibration. 

Parameter Symbols and Initial Values 
Sensitivity Exponents of the Generalized Utility 3.0=γ  

Asymmetry Factor for Negative Utilities 4=mw  

Speed Uncertainty Variation Coefficient 08.0=α  
Weighing Factor for Accidents 100000=cw  

Maximum Anticipation Time Horizon s5=τ  
Logit Uncertainty Parameter (Intra-Driver Variability) 5=β  

Correlation Time of Intra-Driver Variability scorr 20=τ  

Maximum Acceleration 
maxa = 1.5 m/s2 

Desired Speed 300 =v  m/s 

Minimum Gap 30 =s m 

Acceleration Range Considered Near Interaction Point =0a 1 m/s2 

 

For the deterministic limit ∞→β , the interaction acceleration reads 

)))0,,;(arg(max(int vsaUv =ɺ ,  Equation 9 

so the steady-state relation can be expressed by  

0|)0,,;(' 0 ==avsaU ,  Equation 10 

where the generalized utility ),,;( vvsaU ∆  is understood as a function of the acceleration 

a . 

Setting the seriousness term of the crash utility 1),( =∆vvσ , one obtains from Equation 3 

the condition: 

0)0,,;0()0()0()0( '''' =+=+ vspwUUU ccPTcrashPT .  Equation 11 

The gradient of the PT utility at 0=a  is obtained according to: 

0

' 2

1

)0(
a

w

U

m

PT








 +

= . Equation 12 
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As stated in Section 3 (see Hamdar et al., 2008), the gradient of the utility due to the 
crash risk is given by: 

vv

ss
av

fwaU Nccrash α
τ

α
τ

τ

2
2

1

)(

0

'

















 −
−+∆

−= , Equation 13 

or,  after inserting the steady-state conditions 0=a and 0=∆v : 

2
0

20'

22

)(

2
)0(








 −
−

−=






 −−
−= τα

απ
τ

ταα
τ v

ss

c

N

c

crash e
v

w

v

ss
f

v

w
U . Equation 14 

Inserting Equations (14) and (12) into (11) and solving for the steady-state gap s results 
in: 


























 +
+






+=

2

1
22

lnln2)( 0
0

m

c

w

w

v

a
vsvs

απ

τατ . Equation 15 

4.2. Macroscopic Relations 

The congested (interacting) branch of the macroscopic fundamental diagram is obtained 
by applying the usual micro-macro relations: 

)(

1
)(

vsl
v

veh +
=ρ ,  Equation 16 

and 

)()( vvvQ ρ∗= .  Equation 17 

It should be noted that based on the initial parameter testing, the first log term in the 
square root term of Equation 15 is of the order of unity (unless the speed is very small), 

while the secondconstant log term is of the order of ten ( cw is in the range of 100 000). 

Therefore the steady-state time gap 
v

vs
vTe

)(
)( = is nearly constant (Figure2) resulting in 

an approximately triangular fundamental diagram (Figure 3). 
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Figure 2: Steady-state time gap vvsvTe /)()( =  for the proposed car-following model 

with the parameters from Table 1. 

 

Figure 3: Fundamental diagram for the acceleration model with the parameters 

from Table 1. 

As in other triangular-shaped fundamental diagrams, the capacity is mainly determined 
by the inverse of the time gap. The only parameter in the logarithmic term of Equation 15 
influencing )(vs (and thus the capacity), and where a variation by several orders of 

magnitude is probable, is the crash weighing factor cw : all other logarithmic expressions 

are essentially zero compared to ln( cw ). Therefore, the effective time gap can be 

approximated by 

)ln(2: max
0

c

e

eff w
v

ss
T ατ≈

−
= .  Equation 18 
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Figure 4 plots the exact analytic value for effT calculated based on Equation 15 together 

with the approximation obtained from Equation 18– both as a function of the speed. One 
sees that the approximation breaks down only for very low values of v. By varying the 
model parameters while keeping the product defined by Equation 18 constant, once can 
change the dynamical model properties (e.g., string stability, sensitivities, and 
accelerations) independently of the static properties which are essentially defined by the 
capacity. 

 

Figure 4: Effective time gap vsvsT eeff /))(( 0−=  as a function of the speed in the 

congested regime. Compared is the exact analytic expression based on Equation 15 

with the constant approximation of Equation 18. 

After studying the suggested car-following model in terms of derivation and micro/macro 
properties, a detailed numerical analysis is presented in the following section. 

5. NUMERICAL RESULTS: Calibration and Data Analysis 

 The authors recognize the complexity involved when calibrating a car-following 
model using trajectory data, if the model’s acceleration function is not given explicitly. 
Multiple alternatives exist when choosing the optimization algorithm, the measures of 
performance, and the goodness of fit function (Punzo et al., 2012). Even though 
calibrating the model does not constitute the focus of this study, this section presents a 
thorough calibration exercise highlighting the car-following model properties. 

5.1. Data Description and Calibration 

 To calibrate the model, we have used trajectory data of the Federal Highway 
Administration’s (FHWA) Next Generation Simulation (NGSIM) project (FHWA, 2005 
a, b and c); Data for 5678 vehicles have been collectedon the 13th of April, 2005, on a 
segment of the Interstate I-80 in Emeryville, San Francisco, USA. The vehicles 
considered were traveling North-Bound and were tracked using video cameras mounted 
on the Pacific Park Plaza (a 30 story building located on 6363 Christine Avenue).   
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 The videos were recorded using 7 video cameras (cameras 1 through 7).  Camera 
1 recorded the southernmost section of the I-80 segment included in the study area and 
Camera 7 recorded the northernmost section. 

Finally, the filtered trajectory points were grouped inthree 15 minutes’ intervals: 

1- Data Set 1: collected from 4:00 PM to 4:15 PM (2052 vehicles) 
2- Data Set 2: collected from 5:00 PM to 5:15 PM (1836 vehicles) 
3- Data Set 3: Collected from 5:15 PM to 5:30 PM (1790 vehicles) 

 
Data were recorded every 1/10 second. The area covered in these data sets includes an 
on-ramp but does not include an off-ramp and has a length of 1650 feet. The focus of this 
paper is on Data Sets 1 and 2 (FHWA, 2005 a and b). 

5.2. Model Calibration with Heterogeneity 

 Since the model relies on utility maximization technique with a stochastic choice 
between different acceleration alternatives, the corresponding equations contain 
stochastic elements themselves and therefore are analytically intractable.Moreover, this 
also implies that the objective function (the sum of squared errors) is not smooth as a 
function of the parameters. For that reason, we have calibrated the model using a 
nonlinear optimization procedure that is based on a genetic algorithm (Hamdar et al., 
2009). The objective is to minimize the deviations between the observedand simulated 
trajectories when following the same designated leader, and avoiding local minima. 

Based on the stimuli considered in the acceleration model, the required trajectory 
data should include speeds for both the leading and the following vehicles of interest. 
Accordingly, a direct comparison between the measured driver behavior and the 
trajectories simulated by the car-following model - with the leading vehicle serving as 
externally controlled input - is possible. In the simulation set-up, the calibration is 
performed by taking different leader-follower pairs and comparing their driving dynamics 
with the behavior obtained from the simulated car-following model. The simulated 
relative speed and the distance gap are initialized to the empirically given relative speed 
and gap (prescribed values: Treiber and Kesting, 2013): 

)0()0( datasim vtv ∆==∆ ,  Equation 19 

)0()0( datasim sts == .  Equation 20 

The microscopic acceleration model is used to compute the acceleration and thus the 
trajectory of the following vehicle. The gap to the leading vehicle is computed as the 

difference between the simulated trajectory )(ts sim (front bumper position) and the 

recorded position of the rear-bumper of the leading vehicle )(ts
data

lead : 

)()()( txtxts
simdata

leader

sim −= .  Equation 21 
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The above measure can be directly compared to the gap )(ts data provided by the data.It 

should be noted that the rear-end and the front-end bumper positions of the leaders and 
the followers can be extracted since the NGSIM data contains the corresponding vehicle 
lengths. 

In the calibration process, the difference between the observed driving behavior 
and the driving behavior obtained by the simulated car-following model should be 
minimized by choosing a set of “optimal” model parameters. Different error measures 
based on speed, relative speed, or the space gap, can be used. Normally, the error in the 
space gap  s  is adopted: when optimizing with respect to s , the average relative speed 
errors are automatically reduced. In contrast, when optimizing with respect to the relative 
speeds v∆ , the error in the distance gap may incrementally grow (Punzo et al., 2012). 

In this study, due to errors in recording the space gaps in the NGSIM data 
(Thiemann et al., 2008), the optimization procedure is performed with respect to the 
speed v ; since the NGSIM data are collected during the peak-hour PM congested period, 
the image processing of the recorded videos resulted in transforming some space gaps 
into negative space gaps after subtracting the vehicle lengths. On the other hand, since the 
form of the objective function has a direct impact on the calibration results, three 
different error measures can be considered. The relative error is defined as a function of 

the empirical and the simulated time series ( )(tv sim and )(tvdata  respectively): 

[ ]
2








 −=
data

datasim
sim

rel
v

vv
vF ,  Equation 22 

where . refers to the temporal average of a time series of duration T∆ : 

∫
∆

∆
=

T

dttz
T

z
0

)(
1

.  Equation 23 

The relative error is more sensitive to small speeds v than to large speeds. The main 
reason behind such a sensitivity is that the measure is weighted by the inverse recorded 

speed data
v . 

The second measure considered is the absolute error: 

[ ] ( )
2

2

data

datasim

sim

abs

v

vv
vF

−
=  . Equation 24 

Since the denominator is averaged over the whole trajectory interval, the absolute error 

[ ]sim

abs vF  is less sensitive to small deviations from the empirical data than the relative 

error [ ]sim

rel vF . On the other hand, the absolute error is more sensitive to largedifferences 
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in the numerator (large speeds reflecting large gaps). It should be noted that the error 
measures are normalized so they are independent from the duration T∆ . 

Since the absolute error systematically overestimates errors for large gaps (at high 
speeds) while the relative error systematically overestimates deviations of the observed 
gap in the low speed range, a mixed error measure will be used as the objective function 
in this paper: 

[ ] ( )
data

datasim

data

sim

mix
v

vv

v
vF

2
1 −= .  Equation 25 

Once the objective function to be minimized is defined, the genetic algorithm is 
applied as a search heuristic to find an approximate solution to the nonlinear optimization 
problem: 

i- A “chromosome” represents a parameter set of the car-following model 
introduced earlier in this work (notice that, in biology, the genome, i.e., the complete 
genetic information, generally includes several chromosomes; here we just consider 
one chromosome). A population consists of NGA such chromosomes. 

ii- In each population generation, the fitness of each chromosome is 
determined via the objective function defined in Equation 25. 

iii- Pairs of chromosomes are exclusively generated from the current 
population and recombined to generate a new population of chromosomes. 

iv- The cross-over point where two chromosomes are combined is randomly 
selected. It should be noted that we simply adopt a one-point cross-over strategy at 
this stage. 

v- Except for the chromosome with the best fitness score, all the genes 
(model parameters) are mutated (varied randomly) following a given probability. The 
resulting chromosomes (new generation) are used in the next iteration. 

vi- Initially, a fixed number of generations is evaluated. The evolution is then 
terminated when the best-of-generation score does not improve from one iteration to 
another for a given number of generations. 

 
In this research, the initial set of 10 parents is initiated where the parameters are 

given values in the proximity of those provided and tested in Table 1. At each iteration, 
these parents produce 90 children chromosomes where the best 10 candidates of the NGA 
population (NGA = 90 + 10) are kept to the next iteration. The calibration process 
continues until no improvement of more than 0.01 is observed for 20 consecutive 
iterations, or when the error reaches the threshold of 15%. It should be noted that a 
mutation rate of 10% is applied in all iterations. 

As seen in Table 1, there are seven main parameters to be calibrated. The additional 
parameter incorporated in the process is the reaction time. The reaction time is normally 
incorporated in an acceleration model using one of two methods. In the first method, it is  
associated with the update time of the numerical integration scheme. If accelerations are 
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kept constant during each update step (“ballistic update”) as is done here, this means the 
driver is not reacting to his/her surrounding during the update time or, in other words, the 
driver reacts to his surrounding every reaction time in a discrete. On the other hand, the 
reaction time may be implemented on the model’s level as a explicit delay leading to a 
delay-differential equation which is subsequently solved with small time steps (2nd 
implementation method). The authors chose the first implementation method when 
calibrating the corresponding reaction time. It should be noted that the effect of a given 
update time is essentially that of an explicit delay of half that duration (Treiber et. al., 
2006).  

Focusing on the car-following instances in the offered trajectory data,the related 
summary results of the calibration exercise using data sets 1 and 2 are shown in Tables2 
and3(i.e; all vehicle trajectories). The presented parameters arethe calibrated parameters 
that led toerrors below a 30%threshold. For illustration reasons, sample simulated versus 
trajectory data are shown in Figure 5.Notice that towards the end of the calibration 
simulation (aroundtime-step 1000 in Figure 5), the simulated speeds and the simulated 
space gaps drop to zero. The time of this drop corresponds to the time when gap data 
ceases to exist in the NGSIM data sets (i.e., the cameras cannot detect anymore the 
corresponding lead vehicle). When such lead-vehicle data are not available (space gaps 
and relative speeds), the calibration exercise is terminated and no further contribution to 
the mixed error term is recorded.  

The first interesting finding is the important level of inter-driver heterogeneity 
although the distributions of parameters values are not clear Gaussian distributions. A 
clear peak appears in all distributions but with a vast range of parameters values. When 
examining the average values, the cognitive nature of parameters allows interesting 
interpretations; for example, drivers seem to put 4 times the negative weight (Wm ~ 4) on 
losses in speed than on gains (the corresponding weight is assumed to be equal to 1). 
Moreover, even though crashes are not avoided through the use of safety constraints, the 
calibrated high value of the crash weight Wc (~100000) reduces the possibility of 
accidents in this simulation exercise. On the other hand, notice that the mean and the 
standard deviation for the Gamma and the reaction timeRt parameters are close in value. 
This may suggest a possible exponential probability density function. Also notice that the 
correlation matrix shows mainly low correlation values between different parameters. 
This may indicate a high level of independence between parameters which is a desirable 
property. The corresponding parametric correlation is a subject of future research. 

 The distributions of the different calibrated parameters values are illustrated in the 
figures of Appendix A; one may point that theparameters havea non-Gaussian shaped 
distribution functions with a governing peak value. 
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Table 2: Summary Statistics for Calibrated Parameter Values Using Genetic 

Algorithm (GA) – Data Set 1. 

Parameter Units Mean Std. Dev. Minimum Maximum 

Gamma  (γ ) - 0.333991 0.339046 0 1.9 

Wm ( mw ) - 3.97208 2.6452 0.2 9.8 

Wc ( cw ) - 97077.4 21143.6 50000 149000 

T (τ ) seconds 5.08938 1.98571 1 10.9 

Alpha (α ) - 7.74E-02 3.93E-02 1.00E-02 0.46 

Beta ( β ) - 5.32671 2.097 1 10.9 

Tcorr ( corrτ ) seconds 19.9833 4.53906 10 29 

Reaction Time (Rt) seconds 0.587102 0.688398 0.1 3.2 

 

Table 3: Correlation Matrix for Calibrated Parameters Using GA– Data Set 1. 

Correlation Gamma Wm Wc Tmax Alpha Beta Tcorr Rt 

Gamma 1 0.26 -0.07 0.4 -0.14 0.2 0.01 -0.009 
Wm 0.26 1 -0.02 0.15 -0.09 0.11 0.05 -0.04 
Wc -0.07 -0.02 1 -0.07 0.001 -0.03 0.01 -0.002 
T 0.4 0.15 -0.07 1 -0.18 0.04 -0.06 0.19 
Alpha -0.14 -0.09 0.001 -0.18 1 -0.08 -0.00007 -0.02 
Beta 0.2 0.11 -0.03 0.04 -0.08 1 -0.03 0.07 
Tcorr 0.01 0.05 0.01 -0.06 -0.00007 -0.03 1 0.04 
Rt -0.009 -0.04 -0.002 0.19 -0.02 0.07 0.04 1 

 

Table 4: Summary Statistics for Calibrated Parameter Values Using Genetic 

Algorithm (GA) – Data Set 2. 

Parameter Units Mean Std. Dev. Minimum Maximum 

Gamma  (γ ) - 0.31619 0.345064 0 1.9 

Wm ( mw ) - 3.85276 2.62247 0.2 9.9 

Wc ( cw ) - 97556.2 22059.5 50000 149000 

T (τ ) seconds 5.04476 1.95507 1 10.9 

Alpha (α ) - 7.72E-02 3.54E-02 1.00E-02 0.45 
Beta ( β ) - 5.37314 2.33261 1 10.8 

Tcorr ( corrτ ) seconds 20 4.45203 10 29 

Reaction Time (Rt) seconds 0.658857 0.726583 0 2.9 
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Table 5: Correlation Matrix for Calibrated Parameters Using GA– Data Set 2. 

Correlation Gamma Wm Wc Tmax Alpha Beta Tcorr Rt 

Gamma 1 0.23 0.04 0.34 -0.11 0.16 -0.03 -0.02 
Wm 0.23 1 0 0.19 -0.11 0.13 0.03 -0.05 
Wc 0.04 0 1 0.02 0.03 0.02 -0.07 0.06 
T 0.34 0.19 0.02 1 -0.24 0.13 0.05 0.16 
Alpha -0.11 -0.11 0.03 -0.24 1 -0.07 -0.06 0.02 
Beta 0.16 0.13 0.02 0.13 -0.07 1 0.00 0.12 
Tcorr -0.03 0.03 -0.07 0.05 -0.06 0.00 1 0 
Rt -0.02 -0.05 0.06 0.16 0.02 0.12 0 1 

 

 

 

Figure 5: Simulated versus observed speeds (upper graph – mixed error = 0.12) and 

space gaps (lower graph – mixed error = 0.29) for Vehicle 32 from data set 1  

However, when trying to estimate the corresponding distributions, no statistically 
significant function was found. In other words, at this stage, due to the lack of data, 
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conclusive results on the distribution followed by each parameter values could not be 
reached (null hypothesis on the corresponding distributions tested for acceptance or 
rejection); In addition to the lack of data, themain reason behind such result is that, even 
though a significant heterogeneity (spread of parameter values across drivers) exists, the 
concentration of parameter values around one peak is too high for existing parametric 
distribution functions to capture. 

5.3. Model Validation 

 In this section, we perform a simple validation to assess the robustness of the 
parameter values calibrated in the previous section. Since the acceleration model 
parameters (Table 1) are driver specific, and data sets 1 and 2 have a different number of 
vehicles, the parameter values corresponding to the peak values found in the calibration 
process are applied in the validation process. In other words, for each vehicle in data set 
2, the longitudinal trajectory points (xdata and vdata) obtained from NGSIM are compared 
to the trajectory points (xsim and v

sim
) obtained if applying the peak-parameter values 

obtained through the calibration exercise performed on data set 1 (i.e. Appendix A: 
Figure A.1 through Figure A.8). For each vehicle, the mixed error velocity term is 
recorded. The same exercise is repeated on data set 1 using the calibrated peak-
parameters of data set 2 (i.e. Appendix A: Figure A.9 through Figure A.16). The 
corresponding error terms are presented in Table 7. 

Table 7: Validation Error Terms 

Validation Error Mean Mixed Error Std of Mixed Error Minimum Maximum 

Data Set 1 0.3258 0.353026 0.036213 1.965293 

Data Set 2 0.3107 0.291286 0.048659 2.191862 

 

For both data sets 1 and 2, the mean mixed error term is equal to ~0.3.  

 Some of the validation errors reach values close to 200%. To examine this 
phenomenon, the distribution of the error term is plotted for data sets 1 and 2 in Figure 6; 
around 50% of the errors have a value less than 30% (~50% of the error values less than 
30%). This error threshold is comparable to that found in existing calibration studies 
(Kesting and Treiber, 2008) and is considered reasonable. For the remaining 50%, the 
main problem is the deterministic nature of assigning calibrated parameter values (peak 
values) to different drivers irrespective of their behavioral nature found in the calibration 
process (their initial calibrated parameters).In addition, inter-driver variations pertain to 
the discussed distributions of the parameters; an upper limit of the intra-driver variations 
can be assessed by the residual sum of squared errors (SSE). In terms of variances and 
assuming independence between inter- and intra-drive variations, the cross-
calibration/validation variance (or SSEcross) can be used to estimate the relative 
contributions: 

SSEcross=SSEintra + SSEinter  Equation 26 
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Where SSEintra (the average SSE of all trajectories on calibration) characterizes the upper 
limit of the intra-driver variations, and SSEinter represents inter-driver variations. After 
filtering the trajectories that led to determinate error values, SSEcross and SSEintra were 
computed for data sets 1 and 2 and the following was found: 

Data Set 1: SSEcross = 548.7836 and SSEintra = 118.3996 

Data Set 2: SSEcross= 390.0792 and SSEintra = 102.7188 

Such results indicate the considerable contribution of inter-driver heterogeneity to the 

cross-validation error variance. 

 

Figure 6: Error distribution across vehicles when using parameters of data set 2 on 

data set 1 (Data Set 1), and using parameters of data set 1 on data set 2 (data set 2). 

Finally, for added verification, the same calibration method (i.e., the Genetic Algorithm – 
GA – Method) was used to calibrate a well-known car-following model, the Intelligent 
Driver Model (IDM) (Treiber et al., 2000). This model was also tested with the MOBIL 
lane-changing model showing that integrating an acceleration function within the lane-
changing module is a possibility without reducing the significance of the contributions 
related to the captured car-following dynamics and the resulting congestion regime(s). 
For the NGSIM data set collected between 5 and 5:15 pm, the longitudinal trajectories for 
2956 vehicles were compiled. With 20 iterations as a maximum allowable number of 
iterations, a defined calibration solution corresponding to a mixed speed error term less 
than 33% was found for 1779 vehicles. The median mixed speed error value is 11% and 
the minimum mixed speed error value is 2%. These results are comparable to that 
obtained for the Prospect-Theory based model. For the 1588 trajectories from the same 
data set having a mixed speed error threshold below 33%, the median mixed speed error 
value is 13% and the minimum mixed speed error value is 3%. We find that the proposed 
prospect-theoretic model results in slightly larger fitting errors. However, this is to be 
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expected since, in contrast to the IDM, our proposed model is stochastic in nature 
simulating all the intra-driver variability. Since one cannot expect any correlation 
between the real and the simulated intra-driver variations, the variance of the speed errors 
is the sum of the variances originating from both sources when calibrating single 
trajectories. 

6. SIMULATION AND SENSITIVITY ANALYSIS 

6.1. Flow-Density Relation 

 In this section, the car-following model is simulated using parameters values of 
the same order of the estimates found in the previous section. The car-following model is 
combined in this exercise with the MOBIL lane changing model for added robustness 
(Kesting et al., 2007): the acceleration rules are used for assessing the “safe” comfortable 
gaps to change lanes. The vehicles are “injected” on a two-lane freeway and a one-lane 
on-ramp merging together at location x = 10 km. The “freeway entrance” is at x=0 km, 
and x=6 km, 9 km, and 10 km are the positions of virtual detectors. The calibrated lane-
changing function is called at each simulation time step to determine the desirability of 
changing lanes. Figure 7 illustrates the resulting fundamental diagram. 

 In the fundamental diagram, analytically, two main regions emerge: a free-flow 
region (green straight line) and a congested region (red straight line). When simulating 
the model, virtual one-minute detectors are placed to collect flow and density measures in 
three different scenarios based on the location of the merging of the on-ramp traffic and 
the main-stream traffic. When this location is close to the “freeway entrance” (x = 6 km), 
the transition between the free-flow region and the congested region is seen through a 
sharp traffic breakdown (sudden drop in volume – red line). This traffic breakdown is 
followed by scattered “non-synchronized” flow-density points in the congested region. 
As the on-ramp is further away from the free-way entrance, a smoother transition occurs 
where synchronized flow-density points appear. This kind of traffic dynamics imitate 
some of the observations that appear in real-life situations (Treiber et al., 2000). 
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Figure 7: Fundamental diagram of the combined car-following/MOBIL model with 

the parameters described in Table 1. The results are based on virtual one-minute 

detectors at the indicated locations. The on-ramp bottleneck is at x=10 km. 

6.2. Inter-Driver Heterogeneity 

 In the inter-driver heterogeneity related simulation sensitivity analysis, the base-
case scenario is taken with the calibrated parameters. The main cognitive parameters of 
interest are the crash-penalty, the negative coefficient associated with losses in speed, the 
positive coefficient associated with gains in speed, the driver’s uncertainty, the 
anticipation time and the reaction time. 

 The acceleration model is simulated with a simulation time-step of 0.1 second. 
The vehicles are “injected” into a 10 km two-lane freeway section. The initial flow-rate is 
controlled by an exponential inter-arrival time with a given mean. Since the interest is in 
capturing all the regions of the fundamental diagram (free-flow and uncongested), at 
different road sections, a kilometer bottleneck is created through the allowance of an 
unstable and abrupt vehicle deceleration. This also favor the creation of rear-end collision 
for testing the influence of the different model parameters. Figure 8-a shows the resulting 
flow-density data points and hysteresis triangle if formed accordingly. 

 To test the effect of inter-driver heterogeneity, two families of scenarios are 
offered. The first family is related to homogenous traffic where the parameters values for 
all vehicles are constant and correspond to the peak of values of the parameters 
distributions found in the calibration exercise. The second family is related to 
heterogeneous traffic where the parameters values have a normal distribution where the 
mean corresponds to the peak found in the calibration results; Figure 8-b shows a slightly 
increasing flow-density data points scattering if compared to the homogeneous scenario 
simulation. Such slight increase in scattering of the flow-density data points while 
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keeping the corresponding triangular fundamental diagram characteristics underlines the 
robustness of the model. 

 

Figure 8-a: Flow-density relation. The results are based on virtual one-minute 

detectors at the indicated locations. 

 

Figure 8-b: Flow-density relation with and without heterogeneity 

6.3. Crash Investigation 

Further extensive sensitivity analysis is performed to test the effect the parameters values 
and heterogeneity on the crash creation and distribution. It should be noted that for the 
simulation runs performed using the calibrated model parameters, no collisions were 
observed. When changing the parameter values and the corresponding distributions, 
collisions did occur. The basic results are shown in Table 8: 
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- There are two types of scenarios: with heterogeneity and without heterogeneity. 

For the scenarios with heterogeneity, we assume, for each parameter, 
symmetrically truncated Gaussians defined by the mean, the standard deviation 
and the range. When changed, the mean, standard deviation and the range are 
given in the second and the fourth columns of Table 8. As for the “no-
heterogeneity” scenarios, only the mean value is used in the simulation as a 
deterministic parameter for all vehicles. In such cases, for each scenario, one 
parameter value is changed (as specified in the second and the fourth columns of 
Table 8). 

- The non-changed parameter values are those found in the calibration exercise for 
data set 1. In the case of allowed “Inter-Driver Heterogeneity” (See Table 8), the 
corresponding distribution is assumed to Gaussian. The mean is considered to be 
the peak value observed in Figure 6, the range is taken to be the range that allows 
for only realistic parameter values to be obtained – i.e. defined by the minimum 
and the maximum values presented in Table 2, and the standard deviation is 
assumed to be equal to the standard deviation provided in Table 2. In the case of 
“Constant Change – All Vehicles” (i.e. homogenous traffic - See Table 8), the rest 
of the parameter values are set to be equal to peak values observed in Figure 6.  

- Once two vehicles collide, simplified post-collision dynamics are assumed with 
the two impacted vehicles having aligned centers of gravities (no “off-set” 
allowed): the two vehicles decelerate at the maximum deceleration rate until 
reaching complete stop. The remaining vehicles continue maneuvering around 
these collided vehicles in the blocked lane(s). The authors did not force the 
vehicles to disappear as this is the current practice in other microscopic traffic 
simulation software and this unrealistic treatment is exactly what the authors are 
trying to avoid. 
 

 Incidents are created while there is an interplay between the weight parameters 
(Wm, W+ and Wc) and the time parameters (Tau = anticipation time and RT = reaction 
time). Regarding the weight parameters, the relative decrease of Wm (a lesser value than 
0.098 < 1) with respect to W+ (= 1 initially) starts producing incidents. On the other 
hand, when increasing W+ to 2 (until we have a linear value function with Wm = W+), 
no incidents are created even when tailgating is favored and higher throughput is 
observed: the incident creation in rear-end collisions is related to a deceleration behavior 
rather than an acceleration behavior. Finally, as observed in the homogeneous case (2nd 
row), the relative weight between Wm and W+ contribute in creating the incident while 
the crash weight’s (Wc) role seems to be producing the flow dynamics and instability; 
such instabilities (stop and go, tailgating) constitutes an encouraging environment for 
incident scenarios. On the other hand, reaction time and anticipation time contributes for 
the creation of incident in a different manner; when comparing the reaction time 
scenarios in the heterogeneous traffic versus the homogeneous traffic, it is the 
heterogeneity in the reaction time that produced the highest number of incidents. This 
may suggest the role of correlation between two successive vehicles in stabilizing traffic 
conditions. As for the anticipation time, when low anticipation times are used or when a 
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high discrepancy between the anticipation times of two successive vehicles exists, the 
probability of incidents creation increases. Accordingly, inter-driver heterogeneity is a 
major aspect than needs to be understood when studying safety in vehicular traffic. 

Table 8:  Sensitivity Analysis Results: Heterogeneity VS Crash Distribution. 

Bottleneck Scenario 
Inter-Driver Heterogeneity 

Inter-Driver Heterogeneity 1 Inter-Driver Heterogeneity 2 

Parameter (mean, std, range) # Accidents (mean, std, range) # Accidents 

Wm 1, 0.5, 2 30 0.5, 0.5, 1 9 

W+ 1, 0.5, 2 0 2, 0.5, 2 0 

Wc 100000, 10000, 40000 0 100, 50, 200 0 

Beta Utility Uncertainty 5, 0.5, 2 0 100, 25, 100   

Tau 4, 0.5, 2 (1.3 sec) 0 4, 1.5, 7 (1.3 sec) 4 

Reaction Time 2, 1, 3.8 249 1, 0.5, 0.9 0 

Bottleneck Scenario 
Constant Change - All Vehicles 

Change 1 Change 2 

Parameter Value # Accidents Value # Accidents 

Wm 1 0 3 0 

W+ 2 0 5 0 

Wc 50000 0 500 0 

Beta Utility Uncertainty 100 0 0.1 0 

Tau 2 0 1 0 

Reaction Time 5 27 1 0 

  Change 3 Change 4 

Wm 0.1 9 0.5 0 

W+ 20 0 100 0 

Wc 5 0 0.5 0 

Beta Utility Uncertainty 100000 0 0 0 

Tau 1 (inter-arrival 0.1) 0 1  (1.3 seconds  RT) 4 

Reaction Time 1.3 0 2 0 

 

7.CONCLUSIONS AND FUTURE RESEARCH NEEDS 

 In this paper, we propose a stochastic car-following model incorporating (a) 
common observations of traffic flow, (b) findings of prospect theory on the form of the 
perceived (subjective, generalized) utility, (c) risk taking, and (d) perception limits and 
subjective behavioral fluctuations. All model parameters can be attributed to these 
four“dimensions” as follows:  
 

a- The model produces an essentially triangular fundamental diagram characterized 
by the desired free-flow speed��� 
� the effective vehicle length �344 composed of 
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the actual vehicle length and the minimum gap��
�and a time gap resulting from 
the risk-related parameters via Equation 18. Furthermore, the model reproduces 
traffic flow instabilities and the often observed widely scattered congested flow-
density data (Fig. 9).  
 

b- The prospect-theoretic subjective utility is modeled as a function of the objective 
utility by the parameters �5 (weighting of losses relative to gains), 6 (weighting 
of utility differences far from the reference point relative to the sensitivity at the 
reference), and �� (the acceleration range that is considered “near the reference”). 
As in the original formulation of Kahneman and Twersky (1974), the formulation 
incorporates a power law of exponent 6. However, the suggested subjective utility 
(Equation 3.1) is smooth and has a finite gradient at the reference point. Both of 
these properties are desirable properties and allow an efficient model 
implementation. While such functions are often drawn in a qualitative way, an 
explicit function with these properties has never been proposed for microscopic 
traffic modeling. 

 
c-  The risk-related aspects are characterized by the weighting ��  of crashs (the 

higher��� is, the more conservative a driver is), the time horizon � (the higher�� is, 
the more conservative the driver is since no reactions of the drivers are assumed 
in determining the crash risk over this time horizon), and the relative speed 
uncertainty ��(the higher�� is, the more uncertain a driver will be about the future 
speed of the lead vehicle and the more conservative he/she will be). The steady-
state time gap emerges from these risk-related aspects as an increasing function of 
these parameters (Equation 18).  

 
d- The perception limits and subjective behavioral fluctuationsare are characterized 

by the intra-driver variability parameters �,���  , and the reaction time. 
 
There may be models with a smaller number of parameters accurately capturing traffic 
trajectory data, such as Gipps's model (Gipps, 1981) or the Intelligent Driver Model 
(IDM) (Treiber et al., 2000). However, the model suggested in this paper shows how 
general decision making tendencies/components influence the specific driving behavior 
which, consequently, may be approximated by “simpler” models. The presented 
formulation allows to relate each proposed parameterto fundamental behavioral 
components (risk-taking, uncertainty and perception limits) seen in different decision 
making/psychology theories (i.e. Prospect Theory). 
 
 To assess the properties of the proposed model, we have calibrated it on trajectory 
data and tested it for validity in terms of reproducing scattered flow-density data and 
realistic congestion dynamics. Based on the extensive numerical analysis, this study 
showed that the GA approach is suitable to calibrate car-following models with complex 
structures and capturing inter-driver heterogeneity. The study shows that the parameters 
related to prospect theory are estimated in accordance with this theory, i.e., losses are 
weighted higher than gains (wm>1), and the subjective sensitivity decreases far from the 
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reference point (γ<1), cf. Table 1.  Moreover, inter-driver heterogeneity generally 
outweighs intra-driver heterogeneity. 

 After testing the model for incidents creation, the presented utility-based structure 
seems to be more robust (cognitive aspect) than existing models when two vehicles 
collide (Hamdar and Mahmassani, 2008). Both individual and chain type accidents can be 
produced using weight parameters and time parameters. However, incident creation is not 
based on a simple relaxation of safety constraints since our model has no explicit safety 
criteria. Instead, the probability of crashes results from a complex interplay of the three 
risk-related parameters and the reaction time. 

 In future studies, this calibration exercise should be performed on different data 
sets where the inter-driver dynamics are recorded for longer durations and on a longer 
stretch of freeway. Calibration should be performed while considering intra-driver 
heterogeneity and parameters inter-correlation. Finally, the incident-related sensitivity 
analysis should be generalized to include fixed-object crashes, and the results need to be 
calibrated with real-life incidents scenarios. 
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