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An optimal policy has the property that

whatever the initial state and initial

decision are, the remaining decisions

must constitute an optimal policy with

regard to the state resulting from the

first decision.

Richard Bellman, 1957

Abstract We review an approach for discretizing Bellman’s optimality principle

based on piecewise constant functions. By applying this ansatz to a suitable dynamic

game, a discrete feedback can be constructed which robustly stabilizes a given

nonlinear control system. Hybrid, event and quantized systems can be naturally

handeld by this construction.
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1 Introduction

Whenever the state of some dynamical system can be influenced be repeatedly

applying some control (“decision”) to the system, the question might arise how the

sequence of controls – the policy – can be chosen in such a way that some given

objective is met. For example, one might be interested in steering the system to an

equilibrium point, i.e. to stabilize the otherwise unstable point. In many contexts, the

application of some control comes at some cost (fuel, money, time, . . . ) which then

is accumulated over time. Typically, one is interested in meeting the given objective

at minimal accumulated cost. This is the context of Richard Bellman’s famous quote

which already hints at how to solve the problem: One can recursively construct an

optimal sequence of controls backwards in time by starting at the/some final state.
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It just so happens that this is also the idea of Edsger Dijkstra’s celebrated algorithm

for finding shortest paths in weighted directed graphs.

At the core, this procedure requires one to store the minimal accumulated cost at

each state, the value function. According to the recursive construction of the sequence

of optimal controls, the value function satisfies a recursion, i.e. a fixed point equation,

the Bellman equation. From the value function at some state, the optimal control

associated to that state can be recovered by solving a static optimization problem.

This assignment defines a function on (a subset of) the states into the set of all

possible control values and so the state can be fed back into the system, yielding a

dynamical system without any external input. By construction, the accumulated cost

along some trajectory of this closed loop system will be minimal.

In the case of a finite state space (with a reasonable number of states), storing

the value function is easy. In many applications from, e.g., the engineering sciences,

however, the state space is a subset of Euclidean space and thus the value function a

function defined on a continuum of states. In this case, the value function typically

cannot be represented in a closed form. Rather, some approximation scheme has to be

decided upon and the value function (and thus the feedback) has to be approximated

numerically.

In this chapter, we review contributions by the authors developing an approach for

approximating the value function and the associated feedback by piecewise constant

functions. This may seem like a bad idea at first, since in general one would prefer

approximation spaces of higher order. However, it turns out that this ansatz enables

an elegant solution of the discretized problem by standard shortest path algorithms

(i.e. Dijkstra’s algorithm). What is more, it also enables a unified treatment of system

classes which otherwise would require specialized algorithms, like hybrid systems,

event systems or systems with quantized state spaces.

As is common for some discretization, the discrete value function does not inherit

a crucial property of the true one: In general, it does not decrease monotonically

along trajectories of the closed loop system. In other words, it does not constitute

a Lyapunov function of the closed loop system. As a consequence, the associated

feedback may fail to stabilize some initial state. This deficiency can be cured by

considering a more general problem class, namely a system which can be influenced

by two independent controls – a dynamic game. In particular, if the second input is

interpreted as some perturbation induced by the discretization, a discrete feedback

results which retains the Lyapunov function property.

On the other hand, as any construction based on the Bellman equation, or more

generally as any computational scheme which requires to represent a function with

domain in some Euclidean space, our construction is prone to the curse of dimen-

sion1: In general, i.e. unless some specialized approximation space is employed, the

computational cost for storing the value function grows exponentially in the dimen-

sion of state space. That is, in practice, our approach is limited to systems with a low

dimensional state space (i.e. of dimension ≤ 4, say).

1 A term which was already coined by Bellman.
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2 Problem formulation

We are given a control system in discrete time

G:+1 = 5 (G: , D: , F: ), : = 0, 1, . . . , (1)

where G: ∈ - is the state of the system, D: ∈ * is the control input and F: ∈ , is

some external perturbation. We are further given an instantaneous cost function 6

which assigns the cost

6(G: , D: ) ≥ 0

to any transition G: ↦→ 5 (G: , D: , F), F ∈ , .

Our task is to globally and optimally stabilize a given target set ) ⊂ - by

constructing a feedback D : ( → *, ( ⊂ - , such that ) is an asymptotically stable

set for the closed loop system

G:+1 = 5 (G: , D(G: ), F: ), : = 0, 1, . . . (2)

with G0 ∈ ( for any sequence (F: ): of perturbations and such that the accumulated

cost

∞∑

:=0

6(G: , D(G: )) (3)

is minimal.

System classes. Depending on the choice of the spaces -,* and , and the form

of the map 5 , a quite large class of systems can be modelled by (1). Most generally,

-,* and, have to be compact metric spaces – in particular, they may be discrete.

Common examples which will also be considered later, include

• sampled-data systems: -,* and, are compact subsets of Euclidean space, 5 is

the time-)-map of the control flow of some underlying continuous time control

system and 6 typically integrates terms along the continuous time solution over

one sampling interval;

• hybrid systems: - = . × �, where . ⊂ R= compact and � is finite, * and ,

may be continuous (compact) sets or finite (cf. Section 8);

• discrete event systems: 5 may be chosen as a (generalized) Poincaré map (cf.

Section 8).

• quantized systems: The feedback may receive only quantized information on the

state G, i.e. G is projected onto a finite subset of - before D is evaluated on this

quantized state.
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3 The optimality principle

The construction of the feedback law D will be based on a discretized version of

the optimality principle. In order to convey the basic idea more clearly, we start by

considering problem (1) without perturbations, i.e.

G:+1 = 5 (G: , D: ), : = 0, 1, . . . (4)

and assume that - ⊂ R3 and * ⊂ R< are compact, 0 ∈ - and 0 ∈ *. We further

assume that 0 ∈ - is a fixed point of 5 ( · , 0), i.e. 5 (0, 0) = 0, constituting our target

set ) := {0}, that 5 : - × * → - and 6 : - × * → [0,∞) are continuous, that

6(0, 0) = 0 and infD∈* 6(G, D) > 0 for all G ≠ 0.

For a given initial state G0 ∈ - and a given sequence u = (D0, D1, . . .) ∈ *
N of

controls, there is a unique trajectory x(G0, u) = (G: (G0, u)):∈N of (4). For G ∈ - , let

U(G) = {u ∈ *N : G: (G, u) → 0 as : → ∞}

denote the set of stabilizing control sequences and

( = {G ∈ - : U(G) ≠ ∅}

the stabilizable subset of - . The accumulated cost along some trajectory x(G0, u) is

given by

� (G0, u) =

∞∑

:=0

6(G: (G0, u), D: ). (5)

Note that this series might not converge for some (G0, u). The least possible value

of the accumulated cost over all stabilizing control sequences defines the (optimal)

value function + : - → [0,∞],

+ (G) = inf
u∈U(G)

� (G, u) (6)

of the problem. Let (0 := {G ∈ - : + (G) < ∞} be the set of states in which the value

function is finite. Clearly, (0 ⊂ (. On (0, the value function satisfies the optimality

principle [2]

+ (G) = inf
D∈*

{6(G, D) ++ ( 5 (G, D))} . (7)

The right hand side

! [E] (G) := inf
D∈*

{6(G, D) + E( 5 (G, D))}

of (7) defines the Bellman operator ! on real valued functions on - . The value

function+ is the unique fixed point of ! satisfying the boundary condition+ (0) = 0.

Using the value function + , one can construct the feedback D : (0 → *,

D(G) := argmin
D∈*

{6(G, D) ++ ( 5 (G, D))} , (8)



From Bellman to Dijkstra 5

whenever this minimum exists. Obviously, + then satisfies

+ (G) ≥ 6(G, D(G)) ++ ( 5 (G, D(G))), (9)

for G ∈ (0, i.e. the optimal value function is a Lyapunov function for the closed

loop system on (0 (provided that + is continuous at ) = {0}2) – and this guarantees

asymptotic stability of ) = {0} for the closed loop system. By construction, this

feedback D is also optimal in the sense that the accumulated cost � is minimized

along any trajectory of the closed loop system.

4 A discrete optimality principle

In general, the value function (resp. the associated feedback) cannot be determined

exactly and some numerical approximation has to be sought. Here, we are going

to approximate + by functions which are piecewise constant on some partition of

- . This approach is motivated by the fact that the resulting discrete problem can

be solved efficiently and that, via a generalization of the framework to perturbed

systems in Section 5 the feedback is also piecewise constant and can be computed

offline.

Let P be a finite partition of the state space - , i.e. a finite collection of pairwise

disjoint subsets of - whose union covers - . For G ∈ - , let c(G) ∈ P denote the par-

tition element that contains G. In what follows, we identify any subset {%1, . . . , %: }

of P with the corresponding subset
⋃

8=1,...: %8 of - .

Let RP ⊂ R- = {E : - → R} be the subspace of real valued functions on -

which are piecewise constant on the elements of P. Using the projection

k [E] (G) := inf
G′∈c (G)

E(G ′), (10)

from R- onto RP, we define the discretized Bellman operator

!P := k ◦ !.

Again, this operator has a unique fixed point +P satisfying the boundary condition

+P (0) = 0, which will serve as an approximation to the exact value function + .

Explicitely, the discretized operator reads

!P [E] (G) = inf
G′∈c (G)

{
inf
D∈*

{6(G ′, D) + E( 5 (G ′, D))}

}
.

and +P satisfies the optimality principle

+P (G) = inf
G′∈c (G) ,D∈*

{6(G ′, D) ++P ( 5 (G
′, D))} . (11)

2 This property can be ensured by suitable asymptotic controllability properties and bounds on 6.
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Recalling that +P is constant on each element % of the partition P, we write +P (%)

in order to denote the value +P (G) for some G ∈ %. We can rewrite (11) as

+P (G) = min
%

inf
(G′,D)

{6(G ′, D) ++P (%)} (12)

where the min is taken over all % ∈ P for which %∩ 5 (c(G),*) ≠ ∅ and the inf over

all pairs G ′ ∈ c(G), D ∈ * such that 5 (G ′, D) ∈ %. Now define the multivalued map

F : P⇒ P,

F(%) = {%′ ∈ P : %′ ∩ 5 (%,*) ≠ ∅} (13)

and the cost function G : P × P → [0,∞),

G(%, %′) = inf
D∈*

{6(G, D) | G ∈ %, 5 (G, D) ∈ %′}. (14)

Equation (12) can then be rewritten as

+P (%) = min
%′∈F (%)

{G(%, %′) ++P (%
′)}.

Graph interpretation. It is useful to think of this reformulation of the discrete

optimality principle in terms of a directed weighted graph�P = (P, �P). The nodes

of the graph are given by the elements of the partition P, the edges are defined by the

map F: there is an edge (%, %′) ∈ �P whenever %′ ∈ F(%) and the edge 4 = (%, %′)

is weighted by G(4) := G(%, %′), cf. Figure 1. In fact, the value +P (%) is the length

Fig. 1 Partition of phase

space, image of an element

(left) and corresponding edges

in the induced graph (right).

P

f(P, U)

P

F(P )

G(?) :=
∑<

:=1 G(4: ) of the shortest path ? = (41, . . . , 4<) from % to the element

c(0) containing 0 in this graph. As such, it can be computed by (e.g.) the following

algorithm with complexity O( |P| log( |P|) + |� |):

Algorithm Dijkstra [5]

for each % ∈ P: + (%) := ∞; + (c(0)) := 0; Q := P

while Q ≠ ∅

% := argmin%′∈Q+ (%
′)

Q := Q\{%}

for each & ∈ P with (&, %) ∈ �P

if + (&) > G(&, %) ++ (%) then

+ (&) := G(&, %) ++ (%) �
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The time complexity of this algorithm depends on the data structure which is used

in order to store the set Q. In our implementation we use a binary heap which leads to

a complexity of O(( |P| + |� |) log |P|). This can be improved to O( |P| log |P| + |� |)

by employing a Fibonacci heap.

A similar idea is at the core of fast marching methods [19, 17] and ordered upwind

methods [18].

Implementation. We use the approach from [4, 3] as implemented in GAIO in

order to construct a cubical partition of - , stored in binary tree. For the construction

of the edges and their weights, we use a finite set of sample points *̃ ⊂ * and %̃ ⊂ %

for each % ∈ P and compute the approximate image

F̃(%) = {%′ ∈ P : %′ ∩ 5 (%̃, *̃) ≠ ∅}, (15)

so that the set of edges is approximately given by all pairs (%, %′) for which %′ ∈

F̃(%). Correspondingly, the weight of the edge (%, %′) is approximated by

G̃(%, %′) = min
(G,D) ∈%̃×*̃

{6(G, D) | 5 (G, D) ∈ %′}.

This construction of the graph via the mapping of sample points indeed constitutes

the main computational effort in computing the discrete value function. It might

be particularly expensive if the control system 5 is given by the control flow of a

continuous time system. Note, however, that a sampling of the system will be required

in any method that computes the value function. In fact, in standard methods like

value iteration, the same point might be sampled multiple times (in contrast to the

approach described here).

Certainly, this approximation of the box images introduces some error, i.e. one

always has that F̃(%) ⊂ F(%), but typically F(%) $ F̃(%). In experiments, one

often increases the number of sample points until the result of the computation

stabilizes. Alternatively, in the case that one is interested in a rigorous computation,

either techniques based on Lipschitz estimates [14] or interval arithmetic [20] can

be employed.

Example 1 (A simple 1D system) Consider the system

G:+1 = G: + (1 − 0)D:G: , : = 0, 1, . . . , (16)

where G: ∈ - = [0, 1], D: ∈ * = [−1, 1] and 0 ∈ (0, 1) is a fixed parameter. Let

6(G, D) = (1 − 0)G,

such that the optimal control policy is to steer to the origin as fast as possible, i.e.

for every G, the optimal sequence of controls is (−1,−1, . . .). This yields + (G) = G

as the value function.

For the experiment, we consider 0 = 0.8 and use partitions of equally sized

subintervals of [0, 1]. The edge weights (14) are approximated by minimizing over

100 equally spaced sample points in each subinterval and 10 equally spaced points in

http://www.github.com/gaioguy/gaio
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*. Figure 2 shows the exact and two discrete value functions, resulting from running

the code in Figure 9 in Matlab (requires the GAIO toolbox3).

Fig. 2 Exact (red) and discrete

value functions for the simple

example on partitions of

64 (black) and 1024 (blue)

intervals.

1 a = 0.8;
2 f = @(x,u) [x + (1-a).*x.*u, (1-a)*x]; % control system
3 X = linspace(-1,1,100)’; % state samples
4 U = linspace(-1,1,10)’; % control samples
5

6 depth = 6; c = 0.5; r = 0.5;
7 tree = Tree(c, r); % construct full tree
8 subdivide(tree, depth); % construct partition
9 A = dpgraph(tree, f, X, U, depth); % compute graph

10 D = tree.search(0, depth); % find destination box
11 [V,~] = dijkstra(A’, D); % compute value function
12

13 n = 2^depth; dx = 1/n; x = linspace(dx/2,1-dx/2,n);
14 clf; plot(0:1,0:1,’r’); hold on; bar(x,V,1);
15 axis tight; axis square;
16 xlabel(’$x$’); ylabel(’(discrete) value function’);

Fig. 3 Code: value function for a simple 1d system.

4.1 The discrete value function

Proposition 1 [15] For every partition P of - , +P (G) ≤ + (G) for all G ∈ - .

3 Available at http://www.github.com/gaioguy/gaio

http://www.github.com/gaioguy/gaio
http://www.github.com/gaioguy/gaio
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Proof The statement obviously holds for G ∈ - with + (G) = ∞. So let G ∈ (0, i.e.

+ (G) < ∞. For arbitrary Y > 0, let u = (D0, D1, . . .) ∈ U(G) be a control sequence

such that � (G, u) < + (G)+Y and (G: (G, u)): the associated trajectory of (4). Consider

the path

(41, . . . , 4<), 4: = (c(G:−1), c(G: )), : = 1, . . . , <,

where G = G0 and and < is minimal with G< ∈ c(0). The length of this path is

<∑

:=1

G(4: ) =

<∑

:=1

inf
D∈*

{6(G, D) | G ∈ c(G:−1), 5 (G, D) ∈ c(G: )}

≤

<∑

:=1

6(G:−1, D:−1) ≤

∞∑

:=1

6(G:−1, D:−1) = � (G, u),

yielding the claim. �

This property immediately yields an efficient aposteriori error estimate for +P: For

G ∈ (0 consider

4(G) = inf
D∈*

{6(G, D) ++P ( 5 (G, D))} −+P (G). (17)

Note that 4(G) ≥ 0. Since

+ (G) −+P (G) = inf
D∈*

{6(G, D) ++ ( 5 (G, D))} −+P (G)

≥ inf
D∈*

{6(G, D) ++P ( 5 (G, D))} −+P (G) = 4(G),

we obtain

Proposition 2 The function 4 : (0 → [0,∞) is a lower bound on the error between

the true value function + and its approximation +P:

4(G) ≤ + (G) −+P (G), G ∈ (0.

Now consider a sequence (P(ℓ) )ℓ∈N of partitions of - which is nested in the sense

that for all ℓ and every % ∈ P(ℓ+1) there is a %′ ∈ P(ℓ) such that % ⊂ %′. For the next

proposition recall that ( ⊂ - is the set of initial conditions that can be asymptotically

controlled to 0.

Proposition 3 [15] For fixed G ∈ (, the sequence (+P(ℓ) (G))ℓ∈N is monotonically

increasing.

Proof For G ∈ (, the value+P(ℓ) (G) is the length of a shortest path ? = (41, . . . , 4<),

4: ∈ �P(ℓ) , connecting c(G) to c(0) in P(ℓ) . Suppose that the claim was not

true, i.e. for some ℓ there are shortest paths ? in �P(ℓ) and ?′ in �P(ℓ+1) such

that G(?′) < G(?). Using ?′, we are going to construct a path ?̃ in �P(ℓ) with

G( ?̃) < G(?), contradicting the minimality of ?: Let ?′ = (4′
1
, . . . , 4′<′), with

4′
:
= (%′

:−1
, %′

:
) ∈ �P(ℓ+1) . Hence, 5 (%′

:−1
,*) ∩ %′

:
≠ ∅, for : = 1, . . . , <′. Since
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the partitions P(ℓ) are nested, there are sets %̃: ∈ P(ℓ) such that %′
:
⊂ %̃: for

: = 0, . . . , <′. Thus, 5 (%̃:−1,*) ∩ %̃: ≠ ∅, i.e. 4̃: = (%̃:−1, %̃: ) is an edge in �P(ℓ)

and ?̃ = (4̃1, . . . , 4̃<′) is a path in �P(ℓ) . Furthermore, for : = 1, . . . , <′,

G(4̃: ) = inf
D∈*

{6(G, D) | G ∈ %̃:−1, 5 (G, D) ∈ %̃: }

≤ inf
D∈*

{6(G, D) | G ∈ %′
:−1, 5 (G, D) ∈ %

′
: } = G(4′: ).

This yields G( ?̃) ≤ G(?′) < G(?), contradicting the minimality of ?. �

So far we have shown that for every G ∈ ( we have a monotonically increasing

sequence (+P(ℓ) (G))ℓ∈N, which is bounded by + (G) due to Proposition 1. The fol-

lowing theorem states that for points G ∈ ( the limit is indeed + (G) if the maximal

diameter of the partition elements goes to 0. For some finite partition P of - , let

diam(P) := max8 diam(%8) be the diameter of the partition P.

Theorem 1 [15] If diam(P(ℓ) ) → 0 then +P(ℓ) (G) → + (G) as ℓ → ∞ for all G ∈ (.

4.2 The discrete feedback

Recall that an optimally stabilizing feedback can be constructed using the (exact)

value function for the problem (cf. (8)). We will use this idea, replacing + by its

approximation +P: using *̃ from (15)4, for G ∈ ( we define

DP (G) := argmin
D∈*̃

{6(G, D) ++P ( 5 (G, D))} (18)

(the minimum exists because *̃ is a finite set) and consider the closed loop system

G:+1 = 5 (G: , DP (G: )), : = 0, 1, . . . . (19)

The following theorems state in which sense this feedback is stabilizing and ap-

proximately optimal. Let again (P(ℓ) )ℓ∈N be a nested sequence of partitions of -

and � ⊆ (, 0 ∈ �, an open set with the property that for each Y > 0 there exists

ℓ0 (Y) > 0 such that

max
G∈�

|+ (G) −+P(ℓ) (G) | ≤ Y, for ℓ ≥ ℓ0 (Y).

Let further 2 > 0 be the largest value such that

+−1
P(1) ( [0, 2]) ⊂ �.

Note that by Proposition 3 this implies that +−1
P(ℓ) ( [0, 2]) ⊂ � for all ℓ ∈ N.

4 The subsequent statements remain true if we replace *̃ by any set *̂ ⊂ * with *̃ ⊂ *̂ for which

the argmin in (18) exists.
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Theorem 2 [7] Under the assumptions above, there exists Y0 > 0 and a function

X : R → R with limU→0 X(U) = 0, such that for all Y ∈ (0, Y0], all ℓ ≥ ℓ0 (Y/2),

all [ ∈ (0, 1) and all G0 ∈ +−1
P(ℓ) ( [0, 2]) the trajectory (G: ): generated by the closed

loop system (19) with feedback DP(ℓ) satisfies

+ (G: ) ≤ max



+ (G0) − (1 − [)

:−1∑

9=0

6(G 9 , DP(ℓ) (G 9 )), X(Y/[) + Y



.

This apriori estimate shows in which sense the feedback DP approximately yields

optimal performance. However, the theorem does not give information about the

partition P which is needed in order to achieve a desired level of accuracy. This can

be achieved by employing the error function 4 from above.

Consider some partition P of - . Let 60 (G) := infD∈* 6(G, D) and �Y (P) :=

{G ∈ +−1
P

( [0, 2] | 60 (G) ≤ Y} and define X(Y) := supG∈�Y
+ (G). Note that if + is

continuous at ) = {0} then X(Y) → 0 as Y → 0 because �Y (P) shrinks down to 0

since 6 and thus 60 are continuous.

Theorem 3 [7] Assume that for some Y > 0 and some [ ∈ (0, 1), the error function

4 satisfies

4(G) ≤ max{[60 (G), Y} for all G ∈ +−1
P

( [0, 2]). (20)

Then, for each G0 ∈ +−1
P

( [0, 2], the trajectory (G: ): generated by the closed loop

system (19) satisfies

+P (G: ) ≤ max



+P (G0) − (1 − [)

:−1∑

9=0

6(G 9 , DP (G 9 )), X(Y/[) + Y



. (21)

Example 2 (An inverted pendulum) We consider a model for an inverted pendulum

on a cart, cf. [15, 7]. We ignore the dynamics of the cart, and so we only have one

degree of freedom, namely the angle i ∈ [0, 2c] between the pendulum and the

upright vertical. The origin (i, ¤i) = (0, 0) is an unstable equilibrium (with the

pendulum pointing upright) which we would like to stabilize. The model reads

(
4
3
− <A cos2 i

)
¥i + <A

2
¤i2 sin 2i −

6

ℓ
sin i = −D <A

<ℓ
cos i, (22)

where < = 2 is the mass of the pendulum, " = 8 the mass of the cart, <A =

</(< + "), ℓ = 0.5 the length of the pendulum and 6 = 9.8 the gravitational

constant. We consider the discrete time control system (4) with 5 (G, D) = ΦC (G, D),

G = (i, ¤i), for C = 0.1, where ΦC (G, D) denotes the controlled flow of (22) with

constant control input D(g) = D for g ∈ [0, C]. For the instantaneous cost function

we choose

6(G, D) =

∫ C

0

@(Φg (G, D), D) 3g,

with the quadratic cost @(G, D) = 1
2

(
0.1i2 + 0.05 ¤i2 + 0.01D2

)
.
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We use the classical Runge-Kutta scheme of order 4 with step size 0.02 in order

to approximate ΦC , choose - = [−8, 8] × [−10, 10] as state space for G = (i, ¤i),

which we partition into 29 ×29 boxes of equal size, and* = [−64, 64] as the control

space. In approximating the graph’s edges and their weights, we map an equidistant

grid of 3 × 3 points on each partition box, choosing from 17 equally spaced values

in*.

Figure 4 shows the discrete value function as well as the trajectory generated

by the discrete feedback for the initial value (3.1, 0.1), as computed by the GAIO

code in Figure 6. As shown on the right of this figure, the discrete value function

does not decrease monotonically along the feedback trajectory, indicating that the

assumptions of Theorem 3 are not satisfied. And indeed, as shown in Figure 5, this

trajectory repeatedly moves through regions in state space where the error function

4 is not smaller than 60. In fact, on a coarser partition (27 × 27 boxes), the discrete

feedback (18) is not even stabilizing this initial condition any more. We will adress

this deficiency in the next sections.

Fig. 4 Left: Discrete value function and feedback trajectory for the inverted pendulum. Right:

Behaviour of the discrete value function along the feedback trajectory.

Fig. 5 Inverted pendulum:

region where 4 (G) < 60 (G)

(green) and feedback trajec-

tory.

http://www.github.com/gaioguy/gaio
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1 m = 2; M = 8; m_r = m/(m+M); l = 0.5; g = 9.8;
2 q1 = 0.1; q2 = 0.05; r0 = 0.01;
3 v = @(x,u) [ x(:,2), ... % vector field & cost
4 (g/l*sin(x(:,1)) - 0.5*m_r*x(:,2).^2.*sin(2*x(:,1)) - ...
5 m_r/(m*l)*u.*cos(x(:,1)))./(4.0/3.0 - m_r*cos(x(:,1)).^2), ...
6 0.5*( q1*(x(:,1).^2) + q2*(x(:,2).^2) + r0*u.^2 )];
7 h = 0.02; steps = 5; % step size, # of steps
8 f = @(x,u) rk4u(v,[x zeros(size(x,1),1)],u,h,steps);% control system
9 n = 2; x1 = linspace(-1,1,n)’;

10 [XX,YY] = meshgrid(x1,x1); X = [ XX(:) YY(:) ]; % sample points
11 U = linspace(-64,64,17)’; % control samples
12

13 depth = 18; c = [0 0]; r = [8 10];
14 tree = Tree(c, r);
15 subdivide(trre, depth); % construct partition
16 G = dpgraph(tree, f, X, U, depth); % compute graph
17 dest = tree.search([0;0], depth); % target set
18 [V,~] = dijkstra(G’, dest); % discrete value function
19

20 V(find(V == Inf)) = NaN; V(find(V > 7)) = 7;
21 clf; boxplot2(tree, ’density’, V); % plot value function
22 colorbar; colormap jet; shading flat; axis(’tight’)
23 xlabel(’$\varphi$’); ylabel(’$\dot\varphi$’);
24

25 %% discrete feedback, trajectory of the closed loop system
26 x(1,:) = [3.1, 0.1];
27 for k = 1:200
28 fxc = f(ones(size(U))*x(k,:), U)’; % map current point under all controls
29 bn = tree.search(fxc(1:2,:),depth)’; % determine corresp. boxes
30 [v, k_min] = min(fxc(3,:) + V(bn)); % determine minimizing control
31 V_fb(k) = V(bn(k_min)); % value at next point
32 x(k+1,:) = fxc(1:2,k_min); % next iterate
33 end
34 hold on; plot(x(:,1),x(:,2),’k.-’,’linewidth’,1,’markersize’,22);
35 axis([-0.1 6 -8 8]);
36 figure(2); plot(V_fb,’.-’,’linewidth’,1,’markersize’,22)
37 xlabel(’$k$’); ylabel(’$V_\mathcal{P}(x_k)$’);

Fig. 6 Code: discrete value function for the inverted pendulum

5 The optimality principle for perturbed systems

Let us now return to the full problem from Section 2 of optimally stabilizing the

discrete time perturbed control system

G:+1 = 5 (G: , D: , F: ), : = 0, 1, . . . . (23)

subject to an instantaneous cost 6(G: , D: ). For the convergence statements later,

we assume 5 : - × * × , → - and 6 : - × * → [0,∞) to be continuous

and - ⊂ R3 ,* ⊂ R< and , ⊂ Rℓ to be compact. More general spaces will

be discussed in Section 8. For a given initial state G0 ∈ - , a control sequence

u = (D: ):∈N ∈ *N and a perturbation sequence w = (F: ):∈N ∈ ,N, we obtain the

trajectory (G: (G, u, w)):∈N satisfying (23) while the associated accumulated cost is
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given by

� (G, u, w) =

∞∑

:=0

6(G: (G, u, w), D: ).

Recall that our goal is to derive a feedback D : ( → *, ( ⊂ - , that stabilizes the

closed loop system

G:+1 = 5 (G: , D(G: ), F: ), : = 0, 1, 2, . . . (24)

for any perturbation sequence (F: ): , i.e. for every trajectory (G: (G0, w)): of (24)

with G0 ∈ ( and w ∈ ,N arbitrary, we have G: → ) as : → ∞, where ) ⊂ ( is a

given target set, and the accumulated cost
∑∞

:=0 6(G: , D(G: )) is minimized.

The problem formulation can be interpreted as describing a dynamic game (see

e.g. [6]), where at each step of the iteration (23) two players choose a control D: and

a perturbation F: , respectively. The goal of the controlling player is to minimize �,

while the perturbing player wants to maximize it. We assume that the controlling

player chooses D: first and that the perturbing player knows D: when choosing F: .

We further assume that the perturbing player cannot foresee future choices of the

controlling player. This can be formalized by restricting the possible w to

w = V(u),

where V : *N → ,N is a nonanticipating strategy, i.e. a strategy satisfying

D: = D′: ∀: ≤  ⇒ V: (u) = V: (u
′) ∀: ≤  

for any u = (D: ): , u
′ = (D′

:
): ∈ *N. We denote by B the set of all nonanticipating

strategies V : *N → ,N.

The control task is finished once we are in ) , we therefore assume that ) is

compact and robustly forward invariant, i.e. for all G ∈ ) there is a control D ∈ *

such that 5 (G, D, F) ⊂ ) for all F ∈ , , that 6(G, D) = 0 for all G ∈ ) , D ∈ * and

6(G, D) > 0 for all G ∉ ) , D ∈ *.

Our construction of the feedback D : ( → * will be based on the upper value

function + : - → [0,∞],

+ (G) = sup
V∈B

inf
u∈*N

� (G, u, V(u)), (25)

of the game (23), which is finite on the set (0 := {G ∈ - | + (G) < ∞}. The upper

value function satisfies the optimality principle [9]

+ (G) = inf
D∈*

[
6(G, D) + sup

F ∈,

+ ( 5 (G, D, F))

]
, G ∈ (0. (26)

The right hand side ! [E] (G) = infD∈*
[
6(G, D) + supF ∈, E( 5 (G, D, F))

]
of this fixed

point equation again defines a dynamic programming operator ! : R- → R- . The

upper value function is the unique fixed point of ! satisying the boundary condition
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+ (G) = 0, G ∈ ) . Like in the unperturbed case, using the upper value function+ , one

can construct the feedback D : (0 → *,

D(G) := argmin
D∈*

[
6(G, D) + sup

F ∈,

+ ( 5 (G, D, F))

]
, (27)

whenever this minimum exists.

6 A discrete optimality principle for perturbed systems

Analogously to the discretization in Section 4 we now derive a discrete version of

(26), cf. [9]. Again, to this end, we will approximate the upper value function by a

function which is piecewise constant on the elements of some partition of - . This

approach will lead to a directed weighted hypergraph instead of the ordinary directed

graph in Section 4 and, again, the approximate upper value function can be computed

by an associated shortest path algorithm.

Let P be a finite partition of - . Using the projection (10), the discretized dynamic

game operator !P : RP → RP is defined by

!P := k ◦ !.

Again, this operator has a unique fixed point +P satisfying the boundary condition

+P (G) = 0, G ∈ ) , which will serve as an approximation to the exact value function

+ .

Explicitely, the discretized operator reads

!P [E] (G) = inf
G′∈c (G)

(
inf
D∈*

[
6(G ′, D) + sup

F ∈,

E( 5 (G ′, D, F))

] )

and +P satisfies the optimality principle

+P (G) = inf
G′∈c (G) ,D∈*

[
6(G ′, D) + sup

F ∈,

+P ( 5 (G
′, D, F))

]
. (28)

Note that since +P is constant on each partition element, we can rewrite this as

+P (G) = inf
G′∈c (G) ,D∈*

[
6(G ′, D) + sup

%′∈F (G′,D)

+P (%
′)

]
,

where

F(G ′, D) = {% ∈ P | 5 (G ′, D, F) ∈ % for some F ∈ ,}.

Since the partition P is finite, there are only finitely many possible sets F(G ′, D) and

we can further rewrite (28) as
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+P (G) = min
N

inf
(G′,D)

[
6(G ′, D) + sup

%′∈N

+P (%
′)

]
,

where the min is taken over all collections N ∈ {F(G ′, D) | G ′ ∈ c(G), D ∈ *} and

the inf over all (G ′, D) such that F(G ′, D) = N. Now define the multivalued map

F : P⇒ 2P,

F(%) = {F(G, D) : (G, D) ∈ % ×*},

and the cost function

G(%,N) = inf
D∈*

{6(G, D) : G ∈ %,F(G, D) = N}.

Equation (28) can then be rewritten as

+P (%) = min
N∈F (%)

[
G(%,N) + sup

%′∈N

+P (%
′)

]
,

Graph interpretation. Like in the unperturbed case, we can think of this refor-

mulation of the optimality principle in terms of a graph. More precisely, we have a

directed hypergraph (P, �P) with the set � ⊂ P × 2P of directed hyperedges given

by

�P = {(%,N) | N = F(G, D) for some (G, D) ∈ % ×*} ,

and each edge (%,N) is weighted by G(%,N), c.f. Figure 7. The discrete upper value

function+P (%) is the length of a shortest path from % to some element %′ which has

a nonempty intersection with the target set ) (and, thus, by the boundary condition,

+P (%
′) = 0).

Fig. 7 Illustration of the con-

struction of the hypergraph.

f(x, u,W ) ρ(f(x, u,W ))

P
P

N1

N2

Shortest paths in hypergraphs. Algorithm 1 can be generalized to the hypergraph

case, cf. [9, 21]. To this end, we modify lines 5–7 such that the maximization over

the perturbations is taken into account:

for each (&,N) ∈ �P with % ∈ N

if + (&) > G(&,N) + max# ∈N + (#) then

+ (&) := G(&,N) + max# ∈N + (#)

Note that during the while-loop of Algorithm 1,
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+ (%) ≥ + (%′) for all %′ ∈ P\Q.

Thus, if N ⊂ P\Q, then max# ∈N + (#) = + (%), and the value of the node & will

never be decreased again. On the other hand, if N ⊄ P\Q, then the value of& will be

further decreased at a later time – and thus we can save on changing it in the current

iteration of the while-loop. We can therefore save on the explicit maximization and

replace lines 5–7 by

for each (&,N) ∈ �P with % ∈ N

if N ⊂ P\Q then

if + (&) > G(&,N) ++ (%) then

+ (&) := G(&,N) ++ (%)

The overall algorithm for the hypergraph case is as follows. Here, T := {% ∈ P |

% ∩ ) ≠ ∅} is the set of target nodes.

Algorithm minmax-Dijkstra

for each % ∈ P: + (%) := ∞; for each % ∈ T: + (%) := 0; Q := P

while Q ≠ ∅

% := argmin%′∈Q+ (%
′)

Q := Q\{%}

for each (&,N) ∈ �P with % ∈ N

if N ⊂ P\Q then

If + (&) > G(&,N) ++ (%) then

+ (&) := G(&,N) ++ (%) �

Time complexity. In line 5, each hyperedge is considered at most # times, with

# being a bound on the cardinality of the hypernodes N. Additionally, we need to

perform the check in line 6, which has linear complexity in # . Thus, the overall

complexity of the minmax-Dijkstra algorithm is O( |P| log |P| + |� |# (# + log |P|))

(when using a binary heap for storing Q), cf. [21].

Space complexity. The storage requirement grows linearly with |P|. This number,

however, grows exponentially with the dimension of state space (if the entire state

space is covered and under the assumption of uniformly large elements). The number

of hyperedges is determined by the Lipschitz constant of 5 , the size of the hypernodes

N will be given by the magnitude of the perturbation.

Implementation. We use the same approach as in the unperturbed case: A cubical

partition is constructed hierarchically and stored in a binary tree. In order to approx-

imate the set �P ⊂ P × 2P of hyperedges, we choose finite sets %̃ ⊂ %, *̃ ⊂ * and

,̃ ⊂ , of sample points, set

F̃(G, D) = {% ∈ P | 5 (G, D, F) ∈ % for some F ∈ ,̃}

and compute

F̃(%) := {F̃(G, D) : (G, D) ∈ %̃ × *̃} ⊂ 2P

as an approximation to F(%). Correspondingly, the weight on the hyperedge (%,N)

is approximated by



18 Lars Grüne and Oliver Junge

G̃(%,N) = min{6(G, D) : (G, D) ∈ %̃ × *̃, F̃(G, D) = N}.

Example: A simple 1D system. We reconsider system (16), adding a small pertur-

bation at each time step:

G:+1 = G: + (1 − 0)D:G: + F: , : = 0, 1, . . . ,

with G: ∈ [0, 1], D: ∈ [−1, 1], F: ∈ [−Y, Y] for some Y > 0 and the fixed parameter

0 ∈ (0, 1). The cost function is still 6(G, D) = (1 − 0)G so that the optimal control

policy is again D: = −1 for all : , independently of the perturbation sequence. The

optimal strategy for the perturbing player is to slow down the dynamics as much as

possible, corresponding to F: = Y for all : . The dynamical system resulting from

inserting the optimal strategies is

G:+1 = 0G: + Y, : = 0, 1, . . . .

This map has a fixed point at G = Y/(1 − 0). In the worst case, i.e. F: = Y for all : ,

it is not possible to get closer than U0 := Y/(1− 0) to the origin. We therefore define

) = [0, U] with U > U0 as the target set. With

: (G) =

⌈
log

U−U0

G−U0

log 0

⌉
+ 1,

the exact optimal value function is

+ (G) = (G − U0)
(
1 − 0: (G)

)
+ Y: (G),

as shown in Figure 8 for 0 = 0.8, Y = 0.01 and U = 1.1U0. In that figure, we also show

the approximate optimal value functions on partitions of 64, 256 and 1024 intervals,

respectively. In the construction of the hypergraph, we used an equidistant grid of ten

points in each partition interval, in the control space and in the perturbation space.

6.1 Convergence

It is natural to ask whether the approximate value function converges to the true

one when the element diameter of the underlying partition goes to zero. This has

been proven pointwise on the stabilizable set ( in the unperturbed case [15], as

well as in an !1-sense on ( and an !∞ sense on the domain of continuity in the

perturbed case, assuming continuity of + on the boundary of the target set ) [9].

The same reference also provides an analysis for state constrained problems. Here

an additional robustness condition is needed, namely that the optimal value function

changes continuously with respect to the ! ?-norm for some ? ∈ {1, . . . ,∞} if the

state constraints are tightened. If this condition holds, then the convergence statement

remains valid under state constraints, with !∞ replaced by ! ? .
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Fig. 8 Exact (red) and discrete

upper value functions for the

perturbed simple example on

partitions of 64 (black) and

1024 (blue) intervals.

1 a = 0.8; ep = 0.01;
2 alpha0 = ep/(1-a); alpha = 1.1*alpha0;
3 f = @(x,u,w) [x + (1-a).*x.*u + w, (1-a)*x]; % control system
4 X = linspace(-1,1,5)’; % state samples
5 U = linspace(-1,1,2)’; % control samples
6 W = linspace(-ep,ep,3)’; % perturbation samples
7

8 depth = 6; c = [0.5]; r = [0.5];
9 tree = Tree(c, r); % construct full tree

10 subdivide(tree, depth); % construct partition
11

12 G = compute_hypergraph(tree, f, X, U, W, depth); % construct hypergraph
13 Gt = trnsp_hgraph(G); % transpose hypergraph
14 T = tree.search_box([0],[alpha],depth); % target boxes
15 V_P = minmax_dijkstra(G, Gt, T); % upper value function
16

17 n = 2^depth; dx = 1/n; x = linspace(dx/2,1-dx/2,n);
18 k = @(x) floor(log((alpha-alpha0)./(x-alpha0))/log(a))+1;
19 V = @(x) (x>alpha).*((x-alpha0).*(1-a.^k(x))+ep*k(x));% exact value function
20 bar(x,V_P,1,’k’); hold on; plot(x,V(x),’r’);
21 axis tight; axis square; xlabel(’$x$’);
22 ylabel(’(discrete) value function’);

Fig. 9 Code: upper value function for the perturbed simple 1d system.

Due to the construction of the discretization, the approximation +P of the op-

timal value function is always less or equal than the true optimal value function.

This is not necessarily a good property. For instance, for proving stability of the

system controlled by the numerical feedback law it would be convenient if +P was a

Lyapunov function. Lyapunov functions, however, are supersolutions to the dynamic

programming equation, rather than subsolutions as our+P. In order to overcome this

disadvantage, in the next section we present a particular construction of a dynamic

game in which the discretization error is treated as a perturbation.
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7 The discretization as a perturbation

As shown in Theorems 2 and 3, the discrete feedback (18) will practically stabilize

the closed loop system (19) under suitable conditions. Our numerical experiment in

Example 2, however, revealed that a rather fine partition might be needed in order

to achieve stability. More generally, as we have seen in Figure 4 (right), the discrete

value function is not a Lyapunov function of the closed loop system in every case.

Construction of the dynamic game. In order to cope with this problem we are

going to use the ideas on treating perturbed systems in Section 5 and 6. The idea is

to view the discretization error as a perturbation of the original system. Under the

discretization described in Section 4, the original map (G, D) ↦→ 5 (G, D) is perturbed

to

(G, D) ↦→ 5̂ (G, D, F) := 5 (G + F, D), G + F ∈ c(G).

Note that this constitutes a generalization of the setting in Sections 5 and 6 since the

perturbation space , here depends on the state, , = , (G). Correspondingly, the

associated cost function is

6̂(G, D) = sup
G′∈c (G)

6(G ′, D). (29)

Theorem 4 [8] Let + denote the value function (6) of the control system ( 5 , 6),

+̂ the value function (25) of the associated game ( 5̂ , 6̂) and +P the discrete value

function (28) of ( 5̂ , 6̂) on a given partition P with numerical target set )P ⊂ P,

) = {0} ⊂ )P. Then +P (G) = +̂ (G) and

+ (G) − max
H∈)P

+ (H) ≤ +P (G), (30)

i.e. +P is an upper bound for + − max+ |)P . Furthermore, +P satisfies

+P (G) ≥ min
D∈*

{6(G, D) ++P ( 5 (G, D))} (31)

for all G ∈ - \ )P.

Proof We first note that +̂ is constant on the elements of P: On )P, this is true since

)P is a union of partition elements by assumption. Outside of )P, by definition of

the game ( 5̂ , 6̂) we have

+̂ (G) = inf
D∈*

{
sup

G′∈c (G)

6(G ′, D) + sup
G′∈ 5 (c (G) ,D)

+̂ (G ′)

}
,

so that infG′∈c (G) +̂ (G
′) = +̂ (G). On the other hand, according to [9, Proposition 7.1]

we have +P (G) = infG′∈c (G) +̂ (G
′), so that +P = +̂ .

Now for G ∉ )P, equation (26) yields
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+̂ (G) = inf
D∈*

sup
G′∈c (G)

{
6(G ′, D) + +̂ ( 5 (G ′, D))

}

≥ min
D∈*

{
6(G, D) + +̂ ( 5 (G, D))

}
(32)

which shows (31).

In order to prove (30), we order the elements %1, %2, . . . ∈ P such that 8 ≥ 9

implies +P (%8) ≥ +P (% 9 ). Since infD∈* 6(G, D) > 0 for G ≠ 0 by assumption,

+P (%8) = 0 is equivalent to %8 ⊆ )P. By the ordering of the elements this implies

that there exists 8∗ ≥ 1 such that %8 ⊆ )P ⇔ 8 ∈ {1, . . . , 8∗} and thus (30) holds

for G ∈ %1, . . . , %8∗ . We now use induction: fix some 8 ∈ N, assume (30) holds for

G ∈ %1, . . . , %8−1 and consider G ∈ %8 . If +P (%8) = ∞ there is nothing to show.

Otherwise, since + satisfies the dynamic programming principle, using (32) we

obtain

+ (G) − +̂ (G) ≤ inf
D∈*

{6(G, D) ++ ( 5 (G, D))} − min
D∈*

{
6(G, D) + +̂ ( 5 (G, D))

}

≤ + ( 5 (G, D∗)) − +̂ ( 5 (G, D∗)),

where D∗ ∈ * realizes the minimum in (32). Now, since 6(G, D∗) > 0, we have

+̂ ( 5 (G, D∗)) < +̂ (G) implying 5 (G, D∗) ∈ % 9 for some 9 < 8. Since by the induction

assumption the inequality in (30) holds on % 9 , this implies that it also holds on %8
which finishes the induction step. �

The feedback is the shortest path. As usual, we construct the discrete feedback by

DP (G) := argmin
D∈*

[
6̂(G, D) + sup

G′∈ 5 (c (G) ,D)

+P (G
′)

]
.

By construction, this feedback is constant on each partition element. Moreover,

we can directly extract DP from the minmax-Dijkstra algorithm: We associate the

minimizing control value D(%,N) to each hyperedge (%,N),

D(%,N) = argmin
D∈*,F (%)=N

[
sup
G∈%

6(G, D)

]
. (33)

The feedback is then immediately given by

DP (G) = D(c(G),N(c(G))), (34)

where

N(%) = argmin
N∈F (%)

{
G(%,N) + sup

# ∈N

+P (#)

}

is defining the hypernode of minimal value adjacent to some node % in the hyper-

graph. The computation of N(%) can be done on the fly within the minmax-Dijkstra

algorithm 2:
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Algorithm minmax-Dijkstra with feedback

for each % ∈ P: + (%) := ∞, N(%) := ∅; for each % ∈ T: + (%) := 0; Q := P

while Q ≠ ∅

% := argmin%′∈Q+ (%
′)

Q := Q\{%}

for each (&,N) ∈ �P with % ∈ N

if N ⊂ P\Q then

if + (&) > G(&,N) ++ (%) then

+ (&) := G(&,N) ++ (%)

N(&) := N �

Consequently, the discrete feedback D can be computed offline. Once D(%,N(%))

has been computed for every partition element %, the only remaining online com-

putation is the determination of c(G: ) for each state G: on the feedback trajectory.

In our case, this can be done efficiently, since we store the partition in a binary tree.

Note, however, that the fast online evaluation of the feedback law is enabled by a

comparatively large offline computation, namely the construction of the hypergraph.

Behaviour of the closed loop system.

Theorem 5 [8] Under the assumptions of Theorem 4, if (G: ): denotes the trajectory

of the closed loop system (19) with feedback (34) and if +P (G0) < ∞, then there

exists :∗ ∈ N such that G:∗ ∈ ) and

+P (G: ) ≥ 6(G: , DP (G: )) ++P (G:+1), : = 0, . . . , :∗ − 1.

Proof From the construction of DP we immediately obtain the inequality

+P (G: ) ≥ 6(G: , DP (G: )) ++P (G:+1) (35)

for all : ∈ N0 with G: ∈ - \ )P. This implies the existence of :∗ such that the first

two properties hold since 6(G: , DP (G: )) > 0 for G: ∉ )P, +P is piecewise constant

and equals zero only on )P. �

Theorem 5 implies that the closed-loop solution reaches the target )P at time step

:∗ and that the optimal value function decreases monotonically until the target is

reached, i.e., it behaves like a Lyapunov function. While it is in principle possible

that the closed-loop solution leaves the target after time :∗, this Lyapunov function

property implies that after such excursions it will return to )P.

If the system (4) is asymptotically controllable to the origin and + is continuous,

then we can use the same arguments as in [9] in order to show that on increasingly

finer partitions Pℓ and for targets )Pℓ
shrinking down to {0} we obtain +Pℓ

→ + .

This can also be used to conclude that the distance of possible excursions from the

target )Pℓ
become smaller and smaller as Pℓ becomes finer.

We note that the Lyapunov function property of +P outside )P holds regardless

of the size of the partition elements. However, if the partition is too coarse then
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+P = ∞ will hold on large parts of - , which makes the Lyapunov function property

useless. In case that large partition elements are desired — for instance, because they

correspond to a quantization of the state space representing, e.g., the resolution of

certain sensors — infinite values can be avoided by choosing the control value not

only depending on one partition element but on two (or more) consecutive elements.

The price to pay for this modification is that the construction of the hypergraph

becomes significantly more expensive, but the benefit is that stabilization with much

coarser discretization or quantization is possible. For details we refer to [10, 11].

Example 3 (The inverted pendulum reconsidered.) We reconsider Example 2 and

apply the construction from this section. Figure 10, which results from running

the code shown in Figure 11 as well as lines 25ff. from the code in Figure 6,

shows the discrete upper value function on a partition of 216 boxes with target set

) = [−0.1, 0.1]2 as well as the trajectory generated by the discrete feedback (33) for

the initial value (3.1, 0.1). As expected, the approximate value function is decreasing

monotonically along this trajectory. Furthermore, this trajectory is clearly closer to

the optimal one because it converges to the origin much faster.

Fig. 10 Inverted pendulum: Discrete upper value function and robust feedback trajectory (left);

decrease of the discrete value function along the feedback trajectory.
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1 m = 2; M = 8; m_r = m/(m+M); l = 0.5; g = 9.8;
2 q1 = 0.1; q2 = 0.05; r0 = 0.01;
3 v = @(x,u) [ x(:,2), ... % vector field & cost
4 (g/l*sin(x(:,1)) - 0.5*m_r*x(:,2).^2.*sin(2*x(:,1)) - ...
5 m_r/(m*l)*u.*cos(x(:,1)))./(4.0/3.0 - m_r*cos(x(:,1)).^2), ...
6 0.5*( q1*(x(:,1).^2) + q2*(x(:,2).^2) + r0*u.^2 )];
7 h = 0.02; steps = 5; % step size, # of steps
8 f = @(x,u) rk4u(v,[x zeros(size(x,1),1)],u,h,steps);% control system
9 n = 3; x1 = linspace(-1,1,n)’;

10 [XX,YY] = meshgrid(x1,x1); X = [ XX(:) YY(:) ]; % sample points
11 U = linspace(-64,64,17)’; % control samples
12

13 depth = 16; c = [0 0]; r = [8 10];
14 tree = Tree(c, r); sd = 8; % construct full tree
15 subdivide(tree, depth),
16

17 G = dphgraph2(tree, f, X, U, depth); % construct hypergraph
18 Gt = trnsp_hgraph(G); % transpose hypergraph
19 T = tree.search_box([0;0], [0.1;0.1], depth); % target boxes
20 [V, u] = minmax_dijkstra(G, Gt, T); % value function,feedback
21

22 V(find(V == Inf)) = NaN; % unstabilizable set
23 figure(1); clf; boxplot2(tree, ’density’, V); % plot value function
24 colorbar; shading flat; axis(’tight’)
25 xlabel(’$\varphi$’); ylabel(’$\dot\varphi$’);

Fig. 11 Code: discrete upper value function and robust feedback for the inverted pendulum

8 Hybrid, event and quantized systems

Hybrid systems. The discretization of the optimality principle described in Sec-

tions 4–7 can be used in order to deal with hybrid systems in a natural way. Hybrid

systems can often be modeled by a discrete time control system of the form

G:+1 = 52 (G: , H: , D: )

H:+1 = 53 (G: , H: , D: )
: = 0, 1, . . . , (36)

with two maps 52 : - × . × * → - ⊂ R= and 53 : - × . × * → . . The set *

of control inputs can be discrete or continuous, the (compact) set - ⊂ R= is the

continuous part of state space and the set . of discrete states (or modes) is a finite

set. The class of hybrid systems described by (36) is quite general: It comprises

• models with purely continuous state space (i.e. . = {0}, 52 (G, H, D) = 52 (G, D),

53 ≡ 0), but discrete or finite control space*;

• models in which the continuous part 52 is controlled by the mode H and only the

discrete part 53 of the map is controlled by the input ( 52 (G, H, D) = 52 (G, H) and

53 (G, H, D) = 53 (H, D) may be given by an automaton);

• models with state dependent switching: Here we have a general map 52 and

53 (G, H, D) = 53 (G).

As in the previous chapters, we denote the solutions of (36) for initial values

G0 = G, H0 = H and some control sequence u = (D0, D1, . . .) ∈ *
N by G: (G, H, u) and
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H: (G, H, u), respectively. We assume that for each : , the map G: (·, H, u) is continuous

for each H ∈ . and each u ∈ *N. We prescribe a target set ) ⊂ - (i.e. a subset of the

continuous part of state space) and our aim is to find a control sequence u = (D: ):∈N
such that G: (G, H, u) → ) as : → ∞ for initial values G, H in some stabilizable

set ( ⊂ - × . , while minimizing the accumulated cost
∑∞

:=0 6(G: , H: , D: ), where

6 : - × . × * → [0,∞) is a given instantaneous cost with 6(G, H, D) > 0 for all

G ∉ ) , H ∈ . and D ∈ *. To this end, we would like to construct an approximately

optimal feedback D : ( → * such that a suitable asymptotic stability property for

the resulting closed loop system holds. Again, the construction will be based on a

discrete value function. For an appropriate choice of 6 this function is continuous in

G at least in a neighborhood of ) [12].

Computational approach. Let Q be a partition of the continuous part - of state

space. Then the sets

P := {&8 × {H} |&8 ∈ Q, H ∈ . } (37)

form a partition of the product state space / = - × . . On P the approaches from

Sections 4–7 can be applied literally.

Example 4 (Example: A switched voltage controller) This is an example taken from

[16]: . Within a device for DC to DC conversion, a semiconductor is switching the

polarity of a voltage source +in in order to keep the ouput voltage G1 as constant as

possible close to a prescribed value +ref, cf. Figure 12, while the load is varying and

thus the output current �load changes. The model is

¤G1 =
1

�
(G2 − �load)

¤G2 = −
1

!
G1 −

'

!
G2 +

1

!
D+in (38)

¤G3 = +ref − G1,

where D ∈ {−1, 1} is the control input. The corresponding discrete time system is

Fig. 12 A switched DC/DC

converter (cf. [16]).

switch loadC

LR

V
in

I
load

x
2

x
1

given by the time-C-map ΦC (C = 0.1 in our case) of (38), with the control input

held constant during this sampling period. We use the quadratic instantaneous cost

function

6(G, D) = @% (Φ
C
1 (G) −+ref)

2 + @� (ΦC
2 (G) − �;>03)

2 + @�Φ
C
3 (G)

3.

The third component in (38) is only used in order to penalize a large !1-error of

the output voltage. We slightly simplify the problem (over its original formulation
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in [16]) by using G3 = 0 as initial value in each evaluation of the discrete map.

Correspondingly, the map reduces to a two-dimensional one on the G1, G2-plane.

In the following numerical experiment we use the same parameter values as given

in [16], i.e. +in = 1+ , +ref = 0.5, ' = 1Ω, ! = 0.1�, � = 4�, �load = 0.3 �,

@% = 1, @� = 0.3 and @� = 1. Confining our domain of interest to the rectangle

- = [0, 1] × [−1, 1], our target set is given by ) = {+ref} × [−1, 1]. For the

construction of the finite graph, we employ a partition of - into 64 × 64 equally

sized boxes. We use 4 test points in each box, namely their vertices, in order to

construct the edges of the graph.

Using the resulting discrete value function (associated to a nominal �;>03 = 0.3

A) and the associated feedback, we repeated the stabilization experiment from [16],

where the load current is changed after every 100 iterations. Figure 4 shows the result

of this simulation, proving that our controller stabilizes the system as requested.

Fig. 13 Simulation of the

controlled switched power

converter.
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Event systems. In many cases, the discrete-time system (1) is given by time-

sampling an underlying continuous time control system (an ordinary differential

equation with inputs D and F), i.e. by the time-C-map of the flow of the continuous

time system. In some cases, instead of fixing the time step C in each evaluation of 5 ,

it might be more appropriate to chosen C in dependence of the dynamics. Formally,

based on the discrete time model (1) of the plant, we are dealing with the discrete

time system

Gℓ+1 = 5̃ (Gℓ , Dℓ), ℓ = 0, 1, . . . , (39)

where

5̃ (G, D) = 5 A (G,D) (G, D), (40)

A : -×* → N0 is a given event function and the iterate 5 A is defined by 5 0 (G, D) = G

and 5 A (G, D) = 5 ( 5 A−1 (G, D), D), cf. [13]. The associated instantaneous cost 6̃ :

- ×* → [0,∞) is given by
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6̃(G, D) =

A (G,D)−1∑

:=0

6( 5 : (G, D), D). (41)

The time : of the underlying system (1) can be recovered from the event time ℓ

through

:ℓ+1 = :ℓ + A (Gℓ , Dℓ).

Note that this model comprises an event-triggered scenario where the event function

is constructed from a comparison of the state of (1) with the state of (39), as well as

the scenario of self-triggered control (cf. [1]) where the event function is computed

from the state of (1) alone.

Quantized systems. The approach for discretizing the optimality principle de-

scribed in Sections 4–6 is based on a discretization of state space in form of a finite

partition. While in general the geometry of the partition elements is arbitrary (except

from reasonable regularity assumptions), in many cases (e.g. in our implementation

in GAIO) cubical partitions are a convenient choice. In this case, the discretization

can be interpreted as a quantization of (1), where the quantized system is given by

the finite state system

%:+1 = � (%: , D: , W: ), : = 0, 1, . . . , (42)

with

� (%, D, W) = c( 5 (W(%), D)), % ∈ P, D ∈ *,

where W : P → - is a function which chooses a point G from some partition element

% ∈ P, i.e. it satisfies c(W(%)) = % for all P ∈ % [10]. The choice function models

the fact that it is unknown to the controller from which exact state G: the system

transits to the next cell %:+1. It may be viewed as a perturbation which might prevent

us from reaching the target set – in this sense, (42) constitutes a dynamic game in

the sense of Section 6.

9 Lazy feedbacks

In some applications, e.g. when data needs to be transmitted between the system

and the controller over a channel with limited bandwidth, it might be desirable to

minimize the amount of transmitted data. More specifically, the question might be

how to minimize the number of times that a new control value has to be transmitted

from the controller to the system. In this section, we show how this can be achieved

in an optimization based feedback construction by defining a suitable instantaneous

cost function.

In order to detect a change in the control value we need to be able to compare its

current value to the one in the previous time step. Based on the setting from Section

2, we consider the discrete-time control system
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I:+1 = 5̄ (I: , D: ), : = 0, 1, 2, . . . (43)

with I: = (G: , F: ) ∈ / := - ×*, D: ∈ * and

5̄ (I, D) = 5̄ ((G, F), D) :=

[
5 (G, D)

D

]
.

Given some target set ) ⊂ - , we define )̄ := ) ×* as the target set in the extended

state space / . The instantaneous cost function 6̄ : / ×* → [0,∞), which penalizes

control value changes is given by

6̄_ (I, D) = 6̄_ ((G, F), D) := (1 − _)6(G, D) + _X(D − F) (44)

with

X(D) =

{
0 if D = 0,

1 else.
(45)

Here, _ ∈ [0, 1) (in particular, _ < 1 in order to guarantee that 6̄(I, D) = 0 iff I ∈ )̄).

In order to apply the construction from Section 7, we choose a finite partition

P of - . Let +̂P denote the associated discrete upper value function, (̂ = {G ∈ - :

+̂P (G) < ∞} the stabilizable set, and D̂P the associated feedback for the original

system ( 5 , 6). For simplicity, we assume that * is finite and use P × * as the

partition of the extended state space / . We denote the discrete upper value function

of ( 5̄ , 6̄_) by +̄_ : / → [0,∞], the stabilizable subset by (̄_ := {I ∈ / : +̄_ (I) < ∞}

and the associated feedback by D̄_ : (̄_ → *.

For some arbitrary feedback D_ : (̄_ → *, consider the closed loop system

I:+1 = 5̄ (I: , D_ (I: )), : = 0, 1, 2, . . . . (46)

We will show that for any sufficiently large _ < 1 the closed loop system with

D_ = D̄_ is asymptotically stable on (̄_, more precisely that for I0 ∈ (̄_ the trajectory

of (46) enters )̄ in finitely many steps and that the number of control value changes

along this trajectory is minimal.

To this end, for some initial state I0 ∈ (̄_, let (I: ): ∈ /N, I: = (G: , F: ), be the

trajectory of (46). Let ^(I0, D_) = min{: ≥ 0 : I: ∈ )̄} be the minimal number of

time steps until the trajectory reaches the target set )̄ ,

� (I0, D_) =

^ (I0 ,D_)∑

:=0

X
(
D_ (I: ) − F:

)

the number of control value changes along the corresponding trajectory as well as

� (I0, D_) =

^ (I0 ,D_)∑

:=0

6(G: , D(I: )), resp. �̄ (I0, D_) =

^ (I0 ,D_)∑

:=0

6̄(I: , D(I: ))

the associated accumulated costs. Note that
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�̄ (I0, D_) = (1 − _)� (I0, D_) + _� (I0, D_).

Theorem 6 For all _ ∈ [0, 1), (̂ ×* ⊂ (̄_. Using the optimal feedback D̄_ in (46)

and for I0 ∈ (̄_, I: → )̄ as : → ∞. Further, there exists _ < 1 such that for any

feedback D_ : (̄_ → * and I0 ∈ (̄_ with ^(I0, D_) <  for some arbitrary  ∈ N,

we have � (I0, D_) ≥ � (I0, D̄_).

Proof By construction, the system (43, 44) fulfills the assumptions of Theorem 5,

so we have asymptotic stability of the closed loop system (46) with D_ = D̄_ for all

I0 ∈ (̄_.

In order to show that (̂ ×* ⊂ (̄_ for all _ ∈ [0, 1), choose _ ∈ [0, 1) and some

initial value I0 = (G0, D0) ∈ (̂ ×*. Consider the feedback

D(I) = D((G, D)) := D̂P (G)

for system (43). This leads to a trajectory (G: , D: ): of the extended system with

(G: ): being a trajectory of the the closed loop system for 5 with feedback D̂P. Since

G0 ∈ (̂, +̂P (G0) is finite and the accumulated cost �̄ (I0, D) for this trajectory does not

exceed (1 − _)+̂P (G0) + _^(I0, D) which is finite. According to the optimality of +_,

+_ (I0) ≤ (1 − _)+̂P (G0) + _^(I0, D) < ∞

follows, i.e. I0 ∈ (̄_.

To show the optimality of D̄_ with respect to the functional � , assume there exists

a feedback D_ : (̄_ → * with � (I0, D_) ≤ � (I0, D̄_) − 1 for some I0 ∈ (̄_. Since D̄_
is optimal, the following inequality holds:

(1 − _)� (I0, D_) + _� (I0, D_) = �̄ (I0, D_)

≥ �̄ (I0, D̄_)

= (1 − _)� (I0, D̄_) + _� (I0, D̄_)

≥ (1 − _)� (I0, D̄_) + _� (I0, D_) + _

and thus

(1 − _)� (I0, D_) ≥ (1 − _)� (I0, D̄_) + _. (47)

Let � (D_) = maxI0
{� (I0, D_) | ^(I0, D_) <  } which is finite. From (47) we get

(1 − _)� (D_) ≥ (1 − _)� (D̄_) + _. (48)

so that _ → 1 leads to a contradiction. �
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