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Abstract

Recent advances in high-throughput technologies have led to the emergence of systems biology as a holistic
science to achieve more precise modeling of complex diseases. Many predict the emergence of personalized

medicine in the near future. We are, however, moving from two-tiered health systems to a two-tiered personalized

medicine. Omics facilities are restricted to affluent regions, and personalized medicine is likely to widen the
growing gap in health systems between high and low-income countries. This is mirrored by an increasing lag

between our ability to generate and analyze big data. Several bottlenecks slow-down the transition from

conventional to personalized medicine: generation of cost-effective high-throughput data; hybrid education and
multidisciplinary teams; data storage and processing; data integration and interpretation; and individual and global

economic relevance. This review provides an update of important developments in the analysis of big data and

forward strategies to accelerate the global transition to personalized medicine.
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Introduction

Access to large omics (genomics, transcriptomics, proteo-

mics, epigenomic, metagenomics, metabolomics, nutrio-

mics, etc.) data has revolutionized biology and has led to

the emergence of systems biology for a better understand-

ing of biological mechanisms. Systems biology aims to

model complex biological interactions by integrating in-

formation from interdisciplinary fields in a holistic man-

ner (holism instead of the more traditional reductionism).

In contrast to treating a mixture of factors as single

entities leading to an endpoint, systems biology relies on

experimental and computational approaches in order to

provide mechanistic insights to an endpoint [1]. Trad-

itional observational epidemiology or biology alone are

not sufficient to fully elucidate multifaceted heterogeneous

disorders and this directly limits all prevention and treat-

ment pursuits for such diseases [2, 3]. It is widely recog-

nized that multiple dimensions must be considered

simultaneously to gain understanding of biological sys-

tems [4]. Systems approaches are driving the leading-edge

of biology and medicine [5, 6]. The use of deterministic

networks for normal and abnormal phenotypes are

thought to allow for the proactive maintenance of wellness

specific to the individual, that is predictive, preventive,

personalized, and participatory medicine (P4, or more

generally speaking, personalized medicine) [1].

Many predict the emergence of personalized medicine

in the near future, but it is not likely to come about as

quickly as the scientific community and the media may

think [7]. In parallel to an escalating two-tiered health

system at the global level, a similar two-tiered phenomenon

is observed with regard to our ability to generate and

analyze omics data that may delay even further the transi-

tion to personalized medicine. The generation and manage-

ment (storage, and computational resources) of omics data

remain expensive despite technological progress. This im-

plies that personalized medicine could be restricted to the

wealthier countries [8]. This is mirrored by a growing gap

in our abilities to generate and interpret omics data. The

bottleneck in omics approaches is becoming less and less

about data generation and more and more about data man-

agement, integration, analysis, and interpretation [9]. There

is an urgent need to bridge the gap between advances in

high-throughput technologies and our ability to manage,
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integrate, analyze, and interpret omics data [10–12]. This

review addresses the growing gaps in socioeconomic and

scientific progress toward personalized medicine.

Review

The rich get richer and the poor get poorer

The developing world is home to 84 % of the world’s

population, yet accounts for only 12 % of the global

spending on health [13]. There is a large disparity be-

tween the distribution of people and global health ex-

penditures across geographical regions (Fig. 1). While

public financing of health from domestic sources has in-

creased globally by 100 % from 1995 to 2006, a majority

of low and middle-income countries experienced a re-

duction of funding during the same time [14]. Several

life-threating but easily preventable or treatable diseases

are still prevalent in developing countries (e.g. malaria).

Personalized medicine will further increase these dispar-

ities and many low and middle-income countries may

miss the train of personalized medicine [15–17], unless

the international community devotes important efforts

towards strengthening health systems of the most disad-

vantaged nations.

Systems medicine, the application of systems biology

to human diseases [18], requires investments in infra-

structures with cutting-edge omics facilities and analyt-

ical tools, advanced digital technologies (high computing

performance and storage resources), and highly-qualified

multi-disciplinary teams (clinicians, epidemiologists, biol-

ogists, computer scientists, statisticians and mathemati-

cians) in addition to investments in security and privacy.

On the bright side, technology is evolving quickly and

new developments are producing data more efficiently. A

few examples include the development of high-through-

put next generation sequencing and microarrays in

genomics and transcriptomics, mass spectrometry-based

flow cytometer in proteomics, real-time medical imaging,

and more recently, lab-on-a-chip technologies [19]. Some

predict that a technological plateau may be reached for

different reasons (reliability, cost-effectiveness), but these

projections are not validated by historical trends in science

as novel technological developments can always occur

[20]. However, there is a consensus that most of the cost

in omics studies will come from data analysis rather than

data generation [9].

The economic value of omics networks as personalized

tests for future disease onset or response to specific

treatments / interventions remains largely unknown. A

recent study by Philips et al. reflects this issue and high-

lights a lag between clinical and economical value

assessment of personalized medical tests in current re-

search [21]. Very few studies have incorporated an eco-

nomic aspect in the evaluation of personalized tests.

These tests range from those available in clinical use or

in advanced stage of development, genetic tests with

Food and Drug Administration labels, tests with demon-

strated clinical utility, and tests examining conditions

with high mortality or high health-associated expendi-

tures. Economic evaluations of personalized tests are

needed to guide investments and policy decisions. They

are an important pre-requisite to hasten the transition

to personalized medicine. In addition, those few person-

alized tests that included economic information were

found to be relatively cost-effective, but only a minority

of them were cost-saving, suggesting that better health is

not necessarily associated with lower expenditures [21].

In summary, the costs associated with personalized

medicine transition remain unclear, but personalized

medicine may further widen the economic inequality in

health systems between high and low-income countries.

Fig. 1 Distributions of populations and global health expenditure according to WHO 2012
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This jeopardizes social and political pillars of stability,

and highlights the need for a broader translation-oriented

focus across the globe [22].

Several ideas for stimulating sustainable innovations in

developing nations include micro-grants as proposed by

Ozdemir V. et al. [23]. Although $1,000 micro-grants

are relatively small, they far exceed the annual income of

individuals below the poverty line of $1.25/day as de-

fined by the World Bank. Recipients of these grants may

go a long way in connecting and co-producing know-

ledge based innovations to broaden translational efforts.

Type 1 micro-grants which are awarded through funding

agencies may support small labs and local scholars to

connect personalized medicine with new models of dis-

covery and translation [23]. Type 2 micro-grants funded

by science observatories and/or citizens through crowd-

funding mechanisms may facilitate developments of glo-

bal health diplomacy to share novel innovations (i.e.

therapeutics, diagnostics) in areas with similar burdens

[23]. There is an overall need to support local scholars

in promoting knowledge and innovation within low and

middle-income countries [24]. This includes for ex-

ample, the case of advocating for treatment of persons

with Human Immunodeficiency Virus (HIV) infections

where their peers may not recognize their illness as an

endemic that affects society [24]. One successful ex-

ample of personalized medicine for HIV patients in low

and middle-income countries include personal text mes-

sages for improving adherence to antiretroviral therapy

in Kenya and Cameroon [25].

Interdisciplinary programs for global translational sci-

ence such as the Science Peace Corps are another prom-

ising catalyzing agent for research and developments in

low and middle-income countries (http://www.peace-

corps.gov/) [22]. The present Peace Corps program en-

tails volunteer work (6 weeks minimum and up to

2 years) in various regions across the globe to serve as a

steady flux of knowledge for translational research. Jun-

ior or senior scientists may cover topics from life sci-

ences, medicine, surgery, and psychiatry. This program

is bi-directional as it serves both the rich and poor to

elucidate the concept of “health” and integrate personal-

ized medicine within various environments. Lagging de-

velopments in low and middle-income countries are in

fact open opportunities with rewards for intellectual

individuals given the simple fact that it is where the

majority of the human populations reside.

The “tragedy of the commons” is a conceptual economic

problem where the benefits of common and open re-

sources are jeopardized by individuals’ self-interest to

optimize personal gains [26]. The 2009 Economics Nobel

Laureate, Elinor Ostrom, has shown that this issue is not

actually common among humans since individuals work

through establishing trust, and tend to find solutions to

common problems themselves [27]. Societies do systemat-

ically develop complex sustainable regulations to collect-

ively benefit each other where assurance is a critical factor

for cooperation [28]. There is a need to understand ins-

titutional diversity if humans are to act collectively to

benefit each other. Diverse applications of personalized

medicine can be envisioned to cope with the diversity of

the world by allowing multi-tier personalized health care

systems at multiple scales and avoiding a single top-tier

health care system that may instead compromise resource

management. This also brings about the need for nested

regulation systems for both science and ethics (i.e. ethics-

of-ethics) as the assurance factor for cooperation [29, 30].

Transparency and accountability need to be imposed on

all scientists, practitioners, ethicists, sociologists, and pol-

icymakers. No one should be above the fray for account-

ability if a sustainable transition towards personalized

medicine is to occur.

Omics data: the shifting bottlenecks

In parallel to the gap in health systems between rich and

poor countries that personalized medicine may widen,

an increasing lag has been observed in our ability to

generate versus integrate and interpret omics data these

last ten years [9]. New technologies and knowledge

emerging from the Human Genome Project, fueled by

biotechnology companies, led to the omics revolution in

the beginning of the 21th century [31]. Using high-

throughput technologies, we are now able to perform an

exhaustive number of measurements over a short period

of time giving access to individuals’ DNA (genomics),

transcribed RNA from genes over time (transcriptomics),

DNA methylation and protein profiles of specific tissues

and cells (epigenomics and proteomics), metabolites

(metabolomics), among other types of omics data [32].

Even histopathological and radiological images which

are traditionally evaluated and scored by trained experts

are now subjected to computational quantifications (i.e.

imaging informatics) [10–12, 33]. Business models based

on returns on investments have driven ongoing techno-

logical developments to accelerate the generation of

omics data at increased affordability in comparison with

existing technologies. As a consequence, omics plat-

forms and individual omics profiles are expected to be-

come fairly affordable and data generation is no more a

bottleneck for most laboratories, at least in the middle

and high-income countries [34].

Initially, there were great expectations for omics data

to provide clues on the mechanisms underlying disease

initiation and progression as well as new strategies for

disease prediction, prevention and treatment [1]. The

idea was to translate omics profiles into subject-specific

care based on their disease networks (Fig. 2). However, our

ability to decipher molecular mechanisms that regulate
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complex relationships remains limited despite growing

access to omics profiles. Biological processes are very com-

plex, and this coupled with the noisy nature of experimen-

tal data (e.g. cellular heterogeneity) and the limitations of

statistical analyses (e.g. false positive associations) poses

many challenges to detecting interactions between “net-

works” and “networks of networks”. As an illustration, only

a minority of the genetic variants predisposing to type 2

diabetes have been identified so far, despite large-scale

studies involving up to 150,000 subjects [1, 35]. It becomes

more and more obvious that the bottleneck in laboratories

has shifted from data generation to data management and

interpretation [36].

Personalized medicine needs hybrid education

Although solutions for the challenges of big data already

exist and are adopted by companies such as Google, Apple,

Amazon, and Facebook to tackle the fairly homogenous

big data (i.e. user data) [37], the heterogeneous nature of

omics data presents a new challenge that requires sufficient

understanding of the underlying biological concepts and

analysis algorithms to carry out data integration and inter-

pretation [38]. It is important for the working scientist to

understand 1) the underlying problem, 2) the methods of

data analysis, and 3) the advantages, and disadvantages of

different computational platforms to carry out explorations

and draw inference. Expertise in biology provides a founda-

tion to contextualize causal effects and guide identification

and interpretation of interaction signals from noise. There

is also no uniformly most powerful method to analyze

omics data and the use of various approaches to infer

biological interactions requires modeling expertise [39].

Otherwise, research quality is sacrificed to avoid the logis-

tical challenges of modeling in exchange for the use of

more straightforward approaches [40]. Lastly, computer

programing skills are necessary to navigate explorations

and analyze omics data accordingly. There is a need for re-

liable and maintainable computer codes through best prac-

tices for scientific computing [41]. Approximately 90 % of

scientists are self-taught in developing software and

one may lack basic practices such as task automation,

code review, unit testing, version control and issue

tracking [42, 43]. Barriers between disciplines still exist

between informaticians, mathematicians, statisticians,

biologists, and clinicians due to a too divergent scien-

tific background. Cutting-edge science is integrative by

essence and innovative strategies in universities to edu-

cate and train future researchers at the interface of

traditionally partitioned disciplines is urgently needed

for the transition to personalized medicine. Johns

Hopkins University is leading this evolution by chan-

ging the teaching plans and establishing new programs

in the school of medicine that integrate the notion of

personalized medicine [44]. Although increased know-

ledge at the population level is a key factor in develop-

ment of modern societies, there is an upper limit to the

wealth of knowledge and expertise a single individual

can hold [45]. This is the reason why, in addition to

multidisciplinary individual training, initiatives by uni-

versities, research funding agencies, and governments

Fig. 2 A basic framework of personalized medicine. The integration of omics profiles permit accurate modeling of complex diseases and opens

windows of opportunities for innovative clinical applications to subsequently benefit the patient
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are encouraged to connect researchers from diverse sci-

entific backgrounds on interface topics related to sys-

tems biology and personalized medicine. The recent

shift by the Canadian Institutes of Health Research from

distinct discipline (e.g. genetics) to multidisciplinary ex-

pert panels in funding biomedical research is a step in the

right direction. The creation of interdisciplinary research

institutes, such as the Steno Diabetes Center in Denmark

that combine clinical, educational and multifaceted re-

search activities to lead translational research in diabetes

care and prevention, is another sensible initiative that

could prefigure what may become personalized medicine

institutes in the future.

Management and processing of omics data

Major investments need to be made in bioinformatics,

biomathematics, and biostatistics by the scientific commu-

nity to accelerate the transition to personalized medicine.

Classic research laboratories do not possess sufficient stor-

age and computational resources for processing omics

data. Laboratory-hosted servers require investments in in-

formatics support for configuring and using software.

Such servers are not only expensive to setup and maintain,

but do not meet the dynamic requirements of different

workflows for processing omics data, leading to either ex-

travagant or sub-optimal servers. One promising technol-

ogy to close the gap between generation and handling of

omics data is cloud computing [46, 47]. It is an adaptive

storage and computing service that exploits the full poten-

tial of multiple computers together as a virtual resource

via the Internet [48]. Examples include the EasyGenomics

cloud in Beijing Genomics Institute (BGI), and “Embassy”

clouds as part of ELIXIR project in collaboration with

multiple European countries (UK, Sweden, Switzerland,

Czech Republic, Estonia, Norway, the Netherlands, and

Denmark) [49]. The focus is currently placed on develop-

ing cloud-based toolkits and workflow platforms for high-

throughput processing and analysis of omics data [50, 51,

49, 52]. More recently, Graphics Processing Units (GPUs)

have been proposed for general-purpose computing in a

cloud environment [53]. GPUs provide faster computa-

tions as accelerators by one or two orders of magnitudes

compared to general Central Processing Units (CPUs) and

have been exploited to cope with exponentially growing

data [54–56]. MUMmerGPU for example, processes quer-

ies in parallel on a graphics card, achieves more than a 10-

fold speedup over a CPU version of the sequence alignment

kernel, and outperforms the CPU version of MUMmer by

3.5-fold in total application time when aligning reads [57].

However, a significant amount of work will be required

for developing parallelization algorithms considering the

heterogeneous framework of omics data that present

challenges in communications and synchronizations [37].

There are tradeoffs between computational cost (floating-

point operations), synchronization, and communications to

consider while developing parallelization algorithms [58].

Moreover, developing error-free and secure applications is

a challenging and labor-intensive, yet critically important

task. Examples of programming errors and studies outlining

wrongly mapped SNPs in commercial SNP chips have been

reported in literature [59–61]. There is a need to validate

the reliability of research platforms before considering the

clinical utility of omics data. For instance, ToolShed, a fea-

ture of the Galaxy project that draws in software developers

worldwide to upload and validate software tools, aims to

enhance the reliability of bioinformatics tools. Novel tools

and workflows with demonstrated usefulness and ins-

tructions are publically available (http://toolshed.g2.bx.p-

su.edu/) [62]. Both storage and computing platform such

as Bioimbus [63], Bioconductor [64], CytoScape [65], are

made available by scientists to exchange algorithms and

data. There are many questions and methodologies that

researchers may wish to consider, and this continuously

drives on novel bioinformatics tools. Ultimately, light-

weight programing environments and supporting pro-

grams with diverse cloud-based utilities are essential to

enable those without or with limited programing skills to

investigate biological networks [66]. Figure 3 illustrates a

cloud-based framework that may help to implement per-

sonalized medicine. Much more programing efforts are

still needed for the integration and interpretation of omics

data in the transition to personalized medicine. Potential

downstream applications are not always apparent when

data are generated, promoting sophisticated flexible pro-

grams that may be regularly updated [67].

Integrative methods of omics data

Lastly, the depiction of biological systems through the

integration of omics data requires appropriate mathem-

atical and statistical methodologies to infer and describe

causal links between different subcomponents [40]. The

integration of omics data is both a challenge and an

opportunity in biostatistics and biomathematics that is

an increasing reality with the decreasing costs of omics

profiles. Aside from the computational complexity of

analyzing thousands of measurements, the extraction of

correlations as true and meaningful biological interac-

tions is not trivial. Biological systems include non-linear

interactions and joint effects of multiple factors that

make it difficult to distinguish signals from random

errors. Caspase-8 for example, has opposing biological

functions as it promotes cell death by triggering the extrin-

sic pathway of apoptosis, while having beneficial effects on

cell survival through embryonic development, T-lympho-

cyte activation, and resistance to necrosis induced by tumor

necrosis factor-α (TNF-α) [68]. Genes may carry out differ-

ent functions in different cell types / tissues, which adds to

the already substantial inter-individual variability. Biological
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complexity presents a challenge in extracting useful infor-

mation within high-dimensional data [69]. Both computa-

tional and experimental methodologies are needed to fully

elucidate biological networks. However, in contrast to ex-

perimental assays, computational models rely on biologic-

ally driven variables and have inherent pitfalls of omics data.

Coping with to the curse of dimensionality

High-dimensionality is one of the main challenges that

biostatisticians and biomathematicians face when deci-

phering omics data. It is the issue of “large p, small n”,

where the number of measurements, p, is far greater

than the number of independent samples, n [69, 33].

The analysis of thousands of measurements often leads

to results with poor biological interpretability and

plausibility. The reliability of models decreases with each

added dimension (i.e. increased model complexity) for a

fixed sample size (i.e. bias-variance dilemma, see Fig. 4)

[69]. All estimate instability, model overfitting, local

convergence, and large standard errors compromise the

prediction advantage provided by multiple measures. A

better understanding of these inherent caveats comes

from the key concept behind statistical inference that is

the distribution of repeated identical experiments. This

distribution can be characterized by parameters such as

the mean, and variance that quantify the average value

(i.e. effect size), and degree of variability (i.e. biological

or experimental noise). These parameters are estimated

from observed data drawn from the true distribution

(i.e. a finite number of independent samples). The

reliability of estimates from a small sample size is low

where it is more likely to observe estimates that deviate

from the true distribution parameters. The chance of en-

countering such deviations also increases with the num-

ber of different measurements in a fixed sample. It is

difficult to reliably estimate many parameters, and cor-

rectly infer associations from multiple hypotheses tested

simultaneously. As a result, the analysis of both single

and integrative omics data is prone to high rates of

false-positives due to chance alone. This requires re-

searchers to adjust for multiple testing to control for

type 1 error rate using various methods based on the

Fig. 3 An interdisciplinary cloud-based model to implement personalized medicine. The consecutive knowledge and service swapping between

modeling and software experts in research and development units is essential for the management, integration, and analysis of omics data.

Thorough software and model development will derive updates upon knowledge bases for complex diseases, in addition to clinical utilities,

commercial applications, privacy and access control, user-friendly interfaces, and advanced software for fast computations within the cloud. This

translates into personalized medicine via personal clouds that upload wellness indices into personal devices, electronic databases for health

professionals, and innovative medical devices
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family-wise error rate (e.g. Bonferroni corrections, Westfall

and Young permutation), and the false-positive rate (e.g.

Benjamin and Hochberg) that are under strict assumptions

[70–75]. Another solution to overcome multiple testing is-

sues is to reduce dimensionality via sparse methods that

provide sparse linear combinations from a subset of rele-

vant variables (i.e. sparse canonical correlation analysis,

sparse principal components analysis, sparse regression)

[76, 77]. Both mixOmics and integrOmics are publically

available R packages for utilizing sparse methods on omics

data [77, 78]. There are several approaches to derive “opti-

mal” tuning parameters to dictate the number of relevant

variables to pursue [79, 80]. However, stochastic processes

to select “best” subsets of variables inferred from a given

sample population may not contain the best information on

another independent study, and certainly not at an individ-

ual level (i.e. selection-bias) [81, 82]. Reducing dimensional-

ity is problematic as key mechanistic information could be

lost. There is an overall tradeoff between false positive rates

and the benefit of identifying novel associations within bio-

logical process that align with that of bias and variance

(Fig. 4) [70].

The multi-level ontology analyses (MONA) is one ap-

proach that bypasses the high-dimensionality as de-

scribed by Sass et al. [83]. This method integrates

multiple omics information (DNA sequence, mRNA and

protein expressions, DNA methylation, and other regula-

tion factors) and copes with redundancies related to

multiple testing problems by approximating marginal

probabilities using the expectation propagation algo-

rithm [84]. The MONA approach allows for biological

insights to be incorporated into the defined network as

prior knowledge. This can address overfitting or uncer-

tainty issues though reducing the solutions space to

biological meaningful regions [85, 86]. This approach,

however, relies on predefined known biological networks

(i.e. protein–protein interactions) or on the accuracy of

mechanistic models (i.e. network models). Another strat-

egy to analyze omics data involves integrating multiple

data types into one single data set that holds maximum

information. This reduces the complexity of omics data

to the analysis of a single high-dimensional data set. Co-

inertia analysis for example, has been used to integrate

both proteomic and gene expression data to visualize

and identify clusters of networks [87, 88]. It was initially

introduced by Culhane et al. to compare gene expres-

sion data provided by different platforms, but has been

further generalized to assess similarities between omic

data sets [89]. The basic principal is to apply within

and between principal component analysis, corres-

pondence analysis, or multiple correspondence analysis

while maximizing the sum of squares of covariances

between variables (i.e. maximizing co-inertia between

hyperspaces). The omicade4 package in R is available

for exploring omics data using multiple co-inertia

analysis [90]. Other similar, but conceptually different

approaches include generalized singular value decom-

position [91], and integrative bioclustering methods

[92, 93]. An integrative omics study by Tomescu

et al., have utilized all three approaches to characterize

networks within Plasmodium faclicparum at different

stages of life cycles [94]. Although the basic mathem-

atical assumptions are different, the overlap in their

results was considerable. The relative importance and

incremental value of individual omics data on one an-

other may also be considered when predicting specific

outcomes. For instance, Hamid et al. recently pro-

posed a weighted kernel Fisher discriminant analysis

that accounts for both quality and informativity of

each individual omics data to integrate [95]. Significant

improvements however, may not occur when data are

redundant (i.e. correlated) or of low quality.

Fig. 4 The bias-variance tradeoff with increasing model complexity
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Mixing apples and oranges

Another challenge for integrating omics data lies in

deriving meaningful interpretable correlations. For ex-

ample, direct correlation analyses between transcripto-

mics and proteomics profiles are not valid in eukaryotic

organisms. No high correlations between the two do-

mains were observed as reported by multiple studies,

and this was attributed to post-transcriptional and post-

translational regulations [96–99]. The advantage of inte-

grating transcriptomic and proteomic data may diminish

without accounting for regulation factors as the resulting

inflated variability may limit reliability and reproducibil-

ity of findings [100]. Many complex traits are tightly reg-

ulated and incorporating regulation factors may explain

a relevant portion of observed variations due to true

heterogeneity (i.e. true differences in effect sizes). Unlike

the impact of noise on estimate precision which could

be minimized by increasing the sample size, true

heterogeneity may only be adjusted for during analysis

when possible or via standardizations that limit

generalizability. True heterogeneity poses a problem

given biological complexity in the pursuit of precise

effect size estimations (Fig. 5). Hence, there is a need for

network analysis to account for protein-protein and pro-

tein-DNA interactions in the context of integrating tran-

scriptomics and proteomics data alone. An early study

by Hwang et al. utilized network models to identify pro-

tein-protein and DNA-protein interactions with experi-

mental verifications [101].

Bayesian networks are graphical models that involve

structure and parameter optimization steps to represent

probabilistic dependencies [102]. This modeling strategy

that elucidates biological networks has been utilized in

various studies [103, 104]. A seminal example includes

the use of dynamic Bayesian networks trained on chroma-

tin data to identify expressed and non-expressed DNA

segments in a myeloid leukemia cell line [105]. This was

done by integrating position of histone modifications, and

transcription factors’ binding sites at multiple intervals. It

is however, a computationally demanding approach that

requires advanced computing methods such as parallel

computing and acceleration via GPUs [106]. Network

models may serve as meaningful statistical results to be

integrated with the biological domain. It has the potential

Fig. 5 Noise and true heterogeneity within complex systems. Source of noise include measurement error and sampling variability. True

heterogeneity however, is the result of true differences of effect sizes due to 1) the dynamic biological nature which encompasses feedback loops

and temporal associations; and 2) multi-factorial complexity. Increasing the sample sizes is one solution to bypass noise and attain precise effect

sizes, but true heterogeneity can only be adjusted during analysis when possible and via standardizations and calibrations that limit

generalizability of the conclusions
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to generate insight and a number of hypotheses on bio-

logical interactions to be experimentally and/or inde-

pendently verified through a follow-up validation set.

The ultimate goal is to continuously provide insight

into biological interactions to subsequently build upon.

Separate the wheat from the chaff

It is important to minimize sources of error with omics

data as it is challenging to distinguish between random

error and true interaction signals. Hence, it is necessary

to utilize statistical methods to account for sources of

error. For example, the quality of omics data may vary

between high-throughput platforms. Hu et al. have pro-

posed quality-adjusted effect size models that were used

to integrate multiple gene-expression microarray data

given heterogeneous microarray experimental standards

[107]. Omic studies are also prone to errors such as

sample swapping and improper data entry. New method-

ologies for assessing data quality include Multi-Omics

Data Matcher (MODMatcher) [108]. Moreover, complex

diseases are often evaluated using a single phenotype

that compromises statistical analysis by introducing er-

rors such as misclassifications, and/or lack of account-

ability for disease severity [109]. Modeling images for

example, requires multiple phenotypes to properly cap-

ture image features [110]. Joint modeling of multiple re-

sponses to accurately capture complex phenotypes has

been shown to increase power of discovery in genome-

wide association studies [111]. There are even novel net-

work methodologies to account for within-disease

heterogeneity [112, 113]. Network approaches in model-

ing complex diseases may provide a map of disease pro-

gression and play a major role in the proactive

maintenance of wellness [114]. All reproducibility and

validations of complex interaction signals are essential in

the pursuit of personalized medicine. This highlights the

growing need for metadata as the science of hows (i.e.

“data about data”) to help harmonize omics studies and

enable proper reproducibility of research results [115].

Examples of a metadata checklist and a metadata publi-

cation are available [116, 117]. Metadata may also serve

as open innovations for integrative sciences, and may

prove to be valuable for diversifying models of discovery

and translation in high, and more importantly, low

and middle-income countries. Altogether, validations on

multiple data sets are required as evidence of stability,

and that theoretically sound new methods outperform

existing ones [118]. Both descriptive and mechanistic

models for determining relevant biological networks re-

quire handling with care [119]. Software that integrate

and interpret omics data are currently developed by

competing companies in the private sector (e.g. Anaxo-

mics, LifeMap), which may rapidly advance the field in

the near future.

Fig. 6 Bottleneck toward personalized medicine. The collective challenges to make the transition from conventional to personalized medicine

include: i) generation of cost-effective high-throughput data; ii) hybrid education and multidisciplinary teams; iii) data storage and processing; iv)

data integration and interpretation; and v) individual and global economic relevance. Massive global investment in basic research may precede

global investment in public health for transformative medicine
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Conclusion

This review aims to stimulate research initiatives in the

field of big data analysis and integration. Omics data

embody a large mixture of signals and errors, where our

current ability to identify novel associations comes at

the cost of tolerating larger error thresholds in the con-

text of big data. Major investments need to be made in

the fields of bioinformatics, biomathematics, and biostat-

istics to develop translational analyses of omics data and

make the best use of high-throughput technologies. New

generations of multi-talented scientists and multidiscip-

linary research teams are required to build accurate

complex disease models and permit effective personal-

ized prevention, diagnosis and treatment strategies. Our

ability to integrate and interoperate omics data is an im-

portant limiting factor in the transition to personalized

medicine. Overcoming these limitations may boost the

nation-wide implementation of omics facilities in clinical

settings (Fig. 6). The subsequent economies of scale may

in turn favor the access to personalized medicine to dis-

advantaged nations, repelling the growing shadow of

two-tiered personalized medicine.
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