
From Black and White to Full Colour: Extending

Redescription Mining Outside the Boolean World∗

Esther Galbrun
†

Pauli Miettinen
‡

Abstract

Redescription mining is a powerful data analysis tool that is used to find multiple
descriptions of the same entities. Consider geographical regions as an example. They can
be characterized by the fauna that inhabits them on one hand and by their meteorological
conditions on the other hand. Finding such redescriptors, a task known as niche-finding, is of
much importance in biology.

Current redescription mining methods cannot handle other than Boolean data. This
restricts the range of possible applications or makes discretization a prerequisite, entailing
a possibly harmful loss of information. In niche-finding, while the fauna can be naturally
represented using a Boolean presence/absence data, the weather cannot.

In this paper, we extend redescription mining to categorical and real-valued data with
possibly missing values using a surprisingly simple and efficient approach. We provide extensive
experimental evaluation to study the behaviour of the proposed algorithm. Furthermore,
we show the statistical significance of our results using recent innovations on randomization
methods.

1 Introduction

Finding multiple ways to characterize the same entities is a problem that appears in many areas of
science. In medical sciences, for example, one typically wants to find a subset of patients sharing
similar symptoms and similar genes. In biology, the bioclimatic constraints that must be met for
a certain species to survive constitute that species’ bioclimatic envelope (or niche1), and finding
such envelopes can help, e.g. to predict the results of global warming [15].

But this process is only semi-automatic. For instance, to find the bioclimatic envelopes, an
expert first selects a species and then uses some method to find the envelope for this particular
species. More complex combinations of species, or even any combinations at all, are rarely studied,
as manually iterating over all possible combinations would be far too laborious.

It is here where redescription mining comes to help. In redescription mining the input contains
entities with two sets of characterizing variables. The task is to find a pair of queries, one query
for both sets of variables, such that both queries describe (almost) the same set of entities. In

∗A preliminary version of this paper appeared in SDM’11. This is the pre-print version of the original article to
appear in Statistical Analysis and Data Mining

†Helsinki Institute for Information Technology (HIIT), Department of Computer Science, University of Helsinki,
Finland, esther.galbrun@cs.helsinki.fi.

‡Max-Planck Institute for Informatics, Saarbrücken, Germany, pmiettin@mpi-inf.mpg.de. Part of this work was
done when the author was with HIIT.

1The term niche is in this paper used in Grinnellian sense [6], considering only environmental variables, not
inter-species competition or such.

niche-finding, the entities would be spatial locations, one set of variables would be the fauna and
the other set would contain the bioclimatic variables. A very simple example of a redescription
in this setting could say that the area where polar bears live is the area where March’s mean
temperature is between −16 and −11 degrees Celsius and May’s mean temperature is between −3
and −7 degrees Celsius.

Until now, redescription mining algorithms (see [4, 14, 17, 25]) have not been able to handle
other than Boolean data. Hence they have not been able to help in the aforementioned cases, not
at least without some pre-processing.

The rest of this paper is organized as follows. The next two sections, Sections 2 and 3,
present notation and definitions, and related work, respectively. We explain the basic structure of
our algorithm in Section 4. In Section 5 we present various extensions to the basic algorithm,
including methods for trading some accuracy for speed and handling missing values. The
experimental evaluation spans Sections 6–8, with focus on studying the properties of the algorithm
and its extensions, comparing it to other algorithms, and a real-world example of niche finding,
respectively. Section 9 concludes the paper.

Contributions. In this paper we extend redescription mining to categorical and real-valued data
with an algorithm that efficiently computes the optimal discretization on-the-fly. The algorithm
can handle missing data. We present experimental studies with synthetic and real-world data
to verify that our algorithm scales and returns good results. We also assess the significance of
our results by testing them against different null models. Our primary application for real-valued
redescription mining is niche-finding, to which we present interesting and intuitive results. The
proposed method is also applicable to other domains, e.g. medicine.

2 Notation and Definitions

This paper considers redescriptors over two sets of variables, VL and VR. The set of entities is
denoted by E. We will represent the data using two matrices, DL and DR. Both matrices have
|E| rows and Di has |Vi| columns. The value of DL(i, j) is the value of vj ∈ VL for ei ∈ E. If I
is a set of row indices (or a characterizing vector thereof), D(I, j) is the column j of D restricted
to the rows in I. The data is a 5-tuple D = (VL, VR, E,DL, DR). We identify variables in VL and
VR with the corresponding columns in DL and DR when there is no risk of ambiguity.

We consider three types of variables: Boolean, categorical, and numerical (real-valued). If
v ∈ V is Boolean, we interpret the column corresponding to it as a truth value assignment for
e ∈ E in a natural way. If v ∈ V is real-valued, we consider an interval [a, b], and the truth
value assignment induced by the relation v ∈ [a, b]. A special case of this is when v is categorical.
Then we consider the relation v = c, where c is some category. We will denote these truth value
assignments using Iverson notation: [a ≤ v ≤ b] is the Boolean (column) vector that has 1 in the
rows where v ∈ [a, b], and 0 elsewhere; [v = c] is defined analogously.

These truth assignments and their negations constitute the set of literals for variables in V .
Notice that there are infinitely many intervals yielding the same truth value assignment for some
real-valued v ∈ V . To avoid ambiguity, we consider only the shortest interval yielding some truth
value assignment. An exception to this is when leaving one side of the interval unbounded is
equivalent. We then consider half-lines (−∞, b] or [a,+∞), respectively, but for the sake of brevity
they are also called intervals. Notice that we can always reconstruct the interval given the data
and the truth value assignment corresponding to the interval.

Literals can be combined with Boolean operators ∧ (and) and ∨ (or). A Boolean formula is
made by combining literals with Boolean operators. A query over V is a Boolean formula with

literals of V . A redescription R of D = (VL, VR, E,DL, DR) is a pair of queries (qL, qR) over VL

and VR, respectively. For a redescription R = (qL, qR), we use VL(R) to denote the variables of
qL; VR(R) is defined analogously.

The support of a query q on D, suppD(q), is a set {e ∈ E : q is true for e}. The support
of a redescription R = (qL, qR), suppD(qL, qR), is the intersection of supports of qL and qR,
supp(qL, qR) = supp(qL) ∩ supp(qR). We will omit the subscripts when they are clear from the
context.

A redescription R = (qL, qR) is exact if and only if supp(qL) = supp(qR). If a redescription is
not exact, it is approximate. The accuracy of a redescription R = (qL, qR) is measured using the
Jaccard coefficient

J(R) = J(qL, qR) =
|supp(qL, qR)|

|supp(qL) ∪ supp(qR)|
.

Formally, redescription mining is defined as follows:

Problem 1. (Redescription Mining) Given data D = (VL, VR, E,DL, DR) and a set of

constraints C, find all redescriptions R1, R2, . . . of D that satisfy constraints in C.

We leave open the exact constraints in C for a while and will turn back to it in Subsection 5.1.
The formulation of redescription mining above assumes that the describing variables are

partitioned into two sets, VL and VR, and looks for a pairs of queries over these two sets,
respectively. Formulations of redescription mining exist that do not include this requirement.
Typically, they consider a single set of describing variables and search for pairs of queries, with the
constraint that the two subsets of variables appearing in the queries of any pair be disjoint. The
methods presented in this paper can be naturally adapted to that alternative formulation.

Our proposed methods could also be adapted to handle multiple data sets, i.e. settings
with more than two sets of variables: VA, VB , . . . , VN , where one looks for tuples of queries
(qA, qB , . . . , qN) over the different sets of variables, respectively.

3 Related Work

3.1 Rule discovery. A characterizing property of redescription mining is its ‘many views’
approach, that is, it deals with entities that can be explained using different sets of variables.
This approach, however, is not unique to redescription mining.

One of the most traditional ‘many views’ approaches is classification, though it is not typically
considered as such. There the data gives one characterization of the entities and the class another.
Mining a single query can be considered as a classification task. Fixing one query at a time gives
us binary class labels and we try to find a good classifier to it.

Logical Analysis of Data (LAD) [2] is a particular example among classification approaches in
the presence of Boolean attributes and target. It aims at finding a perfect classifier of fixed form,
e.g. a horn clause, a DNF, a CNF, or linear or quadratic Boolean formula.

Closer to the idea of redescription mining is Multi-label Classification [21], where the goal is to
learn classifiers for conjunctions of labels. Perhaps the main difference to redescription mining is
this restriction to conjunctions of classes. There is also a big difference in the goals: redescription
mining is descriptive while Multi-label Classification is predictive.

The common aim of mining Emerging Patterns, Constrast Set Mining and Subgroup Discovery
is to find queries whose support is distributed very unevenly with respect to the target attribute.

Emerging Patterns [12] is targeted at Boolean data and uses monotone conjunctive queries, i.e.
itemsets. The purpose is to find itemsets whose presence is statistically dependent on the positive
or negative labelling of the objects. In the extreme case, the itemset would be present only in the

positive example and would form a perfect classifier for the data at hand. However, this is not
generally the case.

Contrast Set Mining [12] can be used with a nominal target attribute to identify a monotone
conjunctive query that best discriminates between the objects from one class and the rest of the
objects.

Subgroup Discovery [22] aims in a more general sense at finding a query such that the objects
in the defined subgroup have atypical values for a target attribute, possibly ordinal or numerical,
compared to other objects. This is extended to several target attributes in Exceptional Model
mining. In that framework, defined by Leman et al. [10], and in its recent instance [23], one
considers a model defined over the target attributes and tries to identify a subgroup of objects
where the fitted model differs significantly from the model fitted to the rest of the data.

A related approach is presented by Garriga, Heikinheimo and Seppänen [5]. It uses frequent
itemsets on the binary attributes to form a partition of the original entities such that for each
subset it is possible to construct a specific model that fits well on the numerical attributes. In
other words, this approach tries to partition the original data into subgroups.

Redescription mining differs from the above techniques in that it aims at simultaneously finding
multiple descriptions of a subset of entities which is not previously specified, selecting the few
relevant among a potentially large set of variables. In contrast to these methods, it does not have
a set of describing features and target attributes but rather several sets of describing variables.
Yet, when there are two sets of describing attributes and a chosen query language, we can define
a one-directional redescription problem. Queries can be built over one set of attributes, defining
subgroups whose quality is measured in terms of how exactly and concisely they can be described
by queries over the other set of attributes. In a sense, this can be loosely understood as a case of
Exceptional Model Mining where the model is the chosen query language and fitting the model to
a subgroup corresponds to finding as concise and exact a query for it over the target attributes
as possible. The aim of redescription mining is then to solve this problem in both directions
simultaneously.

Redescription mining was introduced in [17], and has since attained continuous research
interest (e.g. [14, 25, 4, 9]). The approches proposed for redescription mining have been based
on various ideas, including decision trees [17, 9], Karnaugh maps [25], co-clusters [14] and frequent
itemsets [25, 4].

The CARTwheels algorithm [17] is an alternating method that uses decision trees. One side
of the redescription is fixed, giving binary labels for the entities and a decision tree over the other
variables, that is, a good classifier with respect to those labels, is constructed. At the next step,
the labelling given by this decision tree is considered as the target and a new decision tree is built
on the other set of variables. The branches of the two trees that correspond to positive labels form
a pair of queries that can be considered as a redescription, as well as the pair of queries associated
to the negative branches. This construction based on decision trees gives the redescriptions an
atypical form. Consider the example of a tree of depth two, with the first level branching variable
A and the second level branching variables B and C. Then, (A ∧ B) ∨ (¬A ∧ C) is a good example of
query obtained by joining branches of such a tree. The fact that the same variable occurs multiple
times with and without negation can make the query difficult to interpret.

Gallo et al. [4] propose two approaches to redescription mining. The first one is based on mining
frequent itemsets from both data sets separately and combining them together. The second one
is a greedy method that forms the basis of our work. We will therefore come back to it in more
details.

A natural extension of redescription mining is storytelling [14], where the aim is to find

consecutive redescriptors. That is, given data D = (VL, VR, E,DL, DR), the goal is to find queries
q1
L
, q1

R
, q2

L
, q2

R
, . . . such that consecutive pairs of queries (q1

L
, q1

R
), (q1

R
, q2

L
), (q2

L
, q2

R
), . . . all form a

valid non-exact redescription. We will not cover storytelling in this paper.

3.2 Data discretization. Generalizing algorithms based on Boolean attributes to real-valued
data has been a recurrent problem in data mining. Most solutions are based on some sort of pre-
processing: typically categorical data is represented using one variable per category, and quantative
data is turned into categorical data using some type of bucketing.

When labels are available on the original data, as is the case for Subgroup Discovery with a
single output feature, a supervised discretisation method can be devised for the problem at hand.
In the method proposed by Grosskreutz and Rüping [7], the discretization happens within the
algorithm and relies on a property of the function measuring subgroup quality to merge basic
intervals in a bottom-up fashion. Yet, the end points for the basic intervals are determined as a
pre-processing step in a way that is not necessarily optimal with respect to their later use.

In most settings, though, no labelling of the data is available and one has to resort to
unsupervised discretization. This approach raises several questions, from the choice of the number
of buckets to the size of the resulting data. A more elegant approach was provided by Srikant and
Agrawal [20], who presented a machinery that solves most of the problems automatically. Their
method is still based on a priori bucketing, and moreover, it is very specific to association rule
mining, making it hard (or impossible) to apply to redescription mining.

The problem of on-the-fly discretization during a classification task was studied by Fayyad and
Irani [3]. Although the task is different, the results we obtained for dynamically choosing the most
accurate extension shares similarities with their result.

Using redescription mining algorithms with non-Boolean data is not a new idea. Already
in [17], the CARTwheels algorithm was used to mine bioinformatics data that was non-Boolean.
As the algorithm requires Boolean input, the data had to be bucketed as a pre-processing step.
But pre-processing typically requires considerable domain knowledge and might still be impossible
or yield exponential growth in the number of variables. This is in contrast to our algorithm,
where the optimal discretization is determined at each iteration within the algorithm, requiring no
pre-processing. Nothing, of course, prevents users to pre-process their data, should that be needed.

3.3 Niche finding. In biology, the problem of finding species’ bioclimatic envelope is a rather
new one (see, e.g. [18] and references therein), but the idea of ecological niches dates back to the
early 20th century [6]. There is also some level of ambiguity in what exactly is meant by the term
niche [18]. In this paper we consider a bioclimatic envelope of a (group of) species to be a set of
limits in climate variables (such as monthly mean temperature) that defines the region occupied
by the species2.

Despite the vague definition, the past ten years have seen a number of methods to model the
bioclimatic envelopes. The methods are based, for example, on regression, neural networks, and
genetic algorithms (see [19]). But to the best of the authors’ knowledge, none of these methods
allows automatically finding both the set of species and their envelope.

Other niche finding tasks have been formulated, for example, in a linguistic context [16]. In
this paper we only consider the biological problem.

2i.e. we consider realized niches using correlative methods (see [15]).

4 The Basic Algorithm

In this section, we present the core of our algorithm. Various extensions to it, such as handling
missing values, are presented in the next section.

4.1 Motivation and background. The redescription mining problem is defined for general
Boolean queries, yet none of the proposed algorithms explores the full search space (using instead
decision trees of fixed depth [17], monotone CNF and DNF formulae [14], or only (possibly negated)
conjunctions [25]). Such restrictions are easy to understand, given the huge search space formed
by all Boolean formulae (22

n

distinct formulae can be defined over n variables). With non-Boolean
data the search space is even more overwhelming. It is therefore evident that when devising an
algorithm usable with real-world data, the space of all Boolean functions cannot be considered in
its entireness.

Type of Boolean queries mined. How to restrict the search space? This question can be
considered from at least three different perspectives: the expressive power of the resulting queries,
the ease of finding them, and their interpretability. For example, monotone conjunctive queries
(i.e. frequent item sets) are easy to interpret and relatively easy to find, given the monotonicity
of the search space, but they lack expressive power. On the other hand, general Boolean queries
have a high expressivity, but are hard to find. Furthermore, deeply nested structures and variables
appearing multiple times can lead to difficulties in interpreting them.

Our aim is to restrict the search to queries that provide a good compromise between the three
aforementioned properties. For this purpose, we follow the approach taken by Gallo, Miettinen and
Mannila [4]. First, we evaluate the queries from left to right irrelevant of the operator precedence.
In other words, we only consider queries that can be parsed in linear order, without trees. For
example, (a∨ b)∧¬c is such a query, but (a∧ b)∨ (c∧ d) is not. Second, we allow every variable to
appear only once. Queries of this type are strict generalizations of purely conjunctive or disjunctive
queries, save the tautological cases a ∧ ¬a and a ∨ ¬a. We consider such queries to be relatively
easy to interpret while still having a satisfying expressive power. While becoming smaller, the
search space still remains exponential. Therefore, we also employ a heuristic pruning, as will be
explained later.

On-the-fly bucketing versus pre-processing. Binning the variables into buckets is a
standard pre-processing technique to make non-Boolean data Boolean (see Section 3.2). But
it has its drawbacks. For example, the resulting data has a special structure, with all variables
corresponding to different buckets of a given non-Boolean variable being mutually disjoint. The
algorithms are typically not adjusted to this property.

Moreover, the bucketing must be made in a pre-processing step, and cannot be modified by
the algorithm later on. If the quality of the bucketing was poor, so will be the results. But the
user typically does not know whether a certain bucketing yields good results before running the
algorithm, so repeated trials and errors are needed to achieve satisfactory results.

Our approach of doing the bucketing on-the-fly avoids these problems. The algorithm will
select the optimal bucket for each case when necessary. This removes the need of pre-processing
and repeated trials. Furthermore, our algorithm can use different buckets for the same variable in
different redescriptions, should that yield better results.

4.2 Outline of the algorithm. We use a strategy similar to beam-search to explore the solution
space. The basic idea is to construct queries bottom-up, starting from singleton redescriptions (i.e.
both queries contain only one literal) and progressively extending them by appending operators
and literals. For example, we could start with a pair (a,¬b), and try to extend it to (a ∧ c,¬b),

Input: Data D = (VL, VR, E,DL, DR), nonnegative integers kp and ki, constraints C.
Output: A set of redescriptions, R.

1: R ← ∅
2: I ← {kp best initial singleton redescriptions }
3: for S ∈ I do

4: K ← {S}
5: FL(S), FL(S)← free variables for S
6: if FL(S) 6= ∅ or FR(S) 6= ∅ then
7: E ← {S}

8: while E 6= ∅ do
9: for each R ∈ E do

10: for side s ∈ {L,R} and operator ◦ ∈ {∨,∧} do
11: if R can be extended on side s with operator ◦ and literal l ∈ Fs(R) then
12: K ← K ∪ {best such extension of R admitting constraints C}

13: K ← {ki best redescriptions from K, with updated free variables.}
14: E ← {R ∈ K : FL(R) 6= ∅ or FR(R) 6= ∅}

15: R ← R∪K
16: Filter R with constraints C
17: return R

Figure 1: ReReMi: Mine data sets for redescriptions

(a ∨ c,¬b), (a ∧ ¬c,¬b), etc. After evaluating all possible one-step extensions, we select the best
candidates and extend them in turn. This process requires a book-keeping procedure to avoid
repeatedly generating the same queries, as we will explain below. When no new redescription can
be generated, we move to the next initial pair. The outline of the algorithm, called ReReMi, is
given in Figure 1.

Our algorithm shares similarites with the Greedy algorithm presented by Gallo et al. [4].
But unlike Gallo et al., and following the idea of beam-search, we allow several extensions to
be generated from a given redescription in each step. In this way we can explore the search
space more extensively. Notice also our algorithm’s resemblance to bottom-up frequent itemset
mining algorithms. Indeed, finding redescriptions can be seen as a generalization of association
rule mining [25], although without the monotonicity property.

4.3 Efficient computation of the accuracy for Boolean variables. Given two queries, qA
and qB , to decide which of the possible extensions of qA yields the best redescription, we need
to compute the accuracy (i.e. Jaccard coefficient) for four different types of extensions for each
Boolean variable v: J(qA ∧ v, qB), J(qA ∧ ¬v, qB), J(qA ∨ v, qB) and J(qA ∨ ¬v, qB). Doing this in
a straight forward way, determining a single Jaccard coefficient requires the computation of three
distinct supports over the data. But this is not necessary. To compute J(qA ∧ v, qB), we need
consider only the rows in supp(qA) – others will never be in supp(qA∧v). On the other hand, rows
in supp(qA) will be in supp(qA ∨ v) in any case and can be omitted when computing J(qA ∨ v, qB).
Let us formalize this intuition.

Let E1,0 be the set of entities for which only the first query holds (i.e. E1,0 = supp(qA) −
supp(qB)), E0,1 those for which only the second query holds, E1,1 those for which both queries
hold, and E0,0 those for which neither of the queries hold. Finally, these sets restricted to supp(v)
are denoted as Ex,y(v) (e.g. E1,0(v) = E1,0 ∩ supp(v)). The same notation is also used with
real-valued variables and Iverson notation, as in E1,0([λ ≤ v ≤ ρ]).

J(qA ∧ v, qB) =
|E1,1(v)|

|E1,0(v)|+ |E0,1|+ |E1,1|

J(qA ∧ ¬v, qB) =
|E1,1| − |E1,1(v)|

|E1,0| − |E1,0(v)|+ |E0,1|+ |E1,1|

J(qA ∨ v, qB) =
|E1,1|+ |E0,1(v)|

|E1,0|+ |E0,1|+ |E1,1|+ |E0,0(v)|

J(qA ∨ ¬v, qB) =
|E1,1|+ |E0,1| − |E0,1(v)|

|E1,0|+ |E0,1|+ |E1,1|+ |E0,0| − |E0,0(v)|

Figure 2: Formulae for computing the Jaccard coefficient for different extensions.

It is well known that the Jaccard coefficient J(qA, qB) can be expressed as

(4.1) J(qA, qB) =
|E1,1|

|E1,0|+ |E0,1|+ |E1,1|
.

Similarly, we can write J(qA∧v, qB) = |E1,1(v)| /(|E1,0(v)|+|E0,1|+|E1,1|). Analogous formulae
can be derived for all different extensions (see Figure 2).

Notice that E1,0, E0,1, and E1,1 can be computed once for a given redescription. Then, for
each candidate variable, it is enough to perform three intersection operations to obtain E1,0(v),
E0,1(v), and E1,1(v). Furthermore, E0,0 and E0,0(v) can be deduced from supp(v) and E, and we
do not have to consider the rows in which neither qA nor qB hold. This observation can significantly
speed up the algorithm.

4.4 Adding categorical variables. Handling the categorical variables is rather straight
forward. We consider only the relation v = c, where c is the label. The above computation
of Jaccard applies, as we can write, for example,

J(qA ∧ [v = c], qB) =
|E1,1([v = c])|

|E1,0([v = c])|+ |E0,1|+ |E1,1|
.

What is different to the Boolean case is that we must select the class label c. But this we can
do easily by trying all class labels and selecting the one that improves the Jaccard most. Naturally
we can use the aforementioned speedup techniques for Jaccard when selecting the label, as each
label just defines different Boolean vector.

4.5 Extension to real-valued variables. With the real-valued data, our approach is to do
bucketing on-the-fly, finding the optimal bucket to add in every step. Assume that our algorithm
tries to extend, say, query qA of redescription (qA, qB) with a real-valued variable v. The algorithm
considers the extended query qA∧ [λ ≤ v ≤ ρ] for different thresholds λ and ρ and selects those that
maximize the accuracy of the extension. Naturally, the optimal λ and ρ are different for different
extensions. The two thresholds are set simultaneously since setting one bound first and possibly
the other later would prevent the greedy search from finding some of the most specific intervals.

How can we find λ and ρ efficiently? To tackle this question, we adapt our approach from the
previous section, using a result similar to that of Fayyad and Irani [3].

We consider only the shortest interval yielding any truth value assignment: only values in
D(E, v), i.e. values taken by the variable v, can be interval bounds. We could try all possibilities,
but if the data contains n entities, this can require n2 time, quickly becoming infeasible since we
have to compute the accuracies for each candidate extension. However, as for the Boolean case,

•
•
•
•

◦
◦
◦

• ◦ •
•
•

• •
•

◦
◦

• ◦ ◦ •
•
•

◦
◦

•

v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 1
0

v 1
1

Figure 3: Example of repartition of the entities for one variable. Each bin represents a value taken
by the variable. Black circles stand for entities belonging to E1,1, white circles for entities from
E1,0.

only two subsets of entities for each type of extension can impact the Jaccard coefficient: those
in E1,1 and E1,0 for conjunctions and those in E0,1 and E0,0 for disjunctions. Furthermore, only
values separating entities from the two sets need to be considered.

Definition 4.1. When extending a redescription with a numerical variable v, we say that value u
is a lower cut point if for any fixed value w larger than u, [u,w] is the shortest interval yielding a

locally optimal support for the extension. Equivalently, we say that w is an upper cut point if for
any fixed value u smaller than w, [u,w] is the shortest interval yielding a locally optimal support

for the extension. In addition, −∞ and +∞ can be lower and upper cut points, respectively.

Example. Consider the example of extending a redescription (qA, qB) by appending a variable v
with a non-negated conjunction. The bins in Figure 3 represent the values taken by the variable,
sorted in increasing order. Black circles stand for entities belonging to E1,1, white circles for entities
from E1,0. Our aim is to find bounds λ and ρ that maximize

(4.2) j(λ, ρ) =
|E1,1([λ ≤ v ≤ ρ])|

|E1,0([λ ≤ v ≤ ρ])|+ |E0,1|+ |E1,1|
.

In this example, there is one entity in E1,1 with value v4, but none in E1,0 with value v3.
Therefore v4 cannot be an optimal choice for λ since choosing v3 instead would always increase
the accuracy. For the same reason, −∞, v2, v3, v7, v10, and v11 are lower cut points, as only these
values can be an optimal choice for λ here. Similarily, v1, v2, v5 and v7 are upper cut points.

To improve the speed of computing optimal extensions, we need to identify lower and upper cut
points efficiently. To that end, we present succinct characterisations of the cut points for different
types of extensions. We use (v1, v2, . . . , vk) to denote the values taken by the variable v for entities
in E1,1 or E1,0, that is, values in D(E1,0 ∪E1,0, v), sorted in increasing order. Similarly, the values
in D(E0,0 ∪ E0,1, v) ordered increasingly are denoted as (v′1, v

′
2, . . . , v

′
l).

Proposition 4.1. For a non-negated conjunction, a lower cut point is a value vi such that

vi ∈ D(E1,1, v) and vi−1 ∈ D(E1,0, v), or −∞ if i = 1 and vi ∈ D(E1,1, v). An upper cut point is

a value vj such that vj ∈ D(E1,1, v) and vj+1 ∈ D(E1,0, v), or +∞ if j = k and vj ∈ D(E1,1, v).
For a negated conjunction, a lower cut point is a value vi such that vi ∈ D(E1,0, v) and

vi−1 ∈ D(E1,1, v), or −∞ if i = 1 and vi ∈ D(E1,0, v). An upper cut point is a value vj such that

vj ∈ D(E1,0, v) and vj+1 ∈ D(E1,1, v), or +∞ if j = k and vj ∈ D(E1,0, v).
For a non-negated disjunction, a lower cut point is a value v′i such that v′i ∈ D(E0,1, v) and

v′i−1 ∈ D(E0,0, v), or −∞ if i = 1 and v′i ∈ D(E0,1, v). An upper cut point is a value v′j such that

v′j ∈ D(E0,1, v) and v′j+1 ∈ D(E0,0, v), or +∞ if j = l and v′j ∈ D(E0,1, v).
For a negated disjunction, a lower cut point is a value v′i such that v′i ∈ D(E0,0, v) and

v′i−1 ∈ D(E0,1, v), or −∞ if i = 1 and v′i ∈ D(E0,0, v). An upper cut point is a value v′j such that

v′j ∈ D(E0,0, v) and v′j+1 ∈ D(E0,1, v), or +∞ if j = l and v′j ∈ D(E0,0, v).

Proof. We concentrate on the case of non-negated conjunction; other cases are similar. The aim
is to maximize j(λ, ρ) (cf. Equation 4.2). We start with the lower bound λ. First, suppose vi 6∈
D(E1,1, v). Then vi must occur in E1,0 and we have |E1,0([vi ≤ v ≤ ρ])| > |E1,0([vi+1 ≤ v ≤ ρ])|
while |E1,1([vi ≤ v ≤ ρ])| = |E1,1([vi+1 ≤ v ≤ ρ])|. Hence, j(vi, ρ) < j(vi+1, ρ). So vi is not an
optimal value for λ. Second, if vi−1 6∈ D(E1,0, v), following a similar reasoning, we notice that
j(vi−1, ρ) > j(vi, ρ) and vi is not an optimal value for λ. Finally, in case v1 ∈ D(E1,1, v), setting
λ = v1 can be optimal and we simply leave the lower bound undefined, i.e. we use the half-line
(−∞, ρ] that yields the same support.

The case of the upper bound ρ is analogous. If vi 6∈ D(E1,1, v), then vi ∈ D(E1,0, v) and we have
|E1,0([λ ≤ v ≤ vi−1])| < |E1,0([λ ≤ v ≤ vi])| while |E1,1([λ ≤ v ≤ vi−1])| = |E1,1([λ ≤ v ≤ vi])|.
Hence, j(λ, vi−1) > j(λ, vi) and vi is not an optimal value for ρ. On the other hand, if
vi+1 6∈ D(E1,0, v) then j(λ, vi−1) > j(λ, vi) and vi is not an optimal value for ρ. Finally, when vk
occurs in E1,1 for the last index k, setting ρ = vk can be optimal and we use the half-line [λ,+∞)
which is equivalent with respect to the support.

The case of negated conjunctions is the reverse of this. Again, we only need to consider
entities in E1,0 or in E1,1, but this time we will try to find an interval [λ ≤ v ≤ ρ] such that the
set |E1,0([λ ≤ v ≤ ρ])| is large while |E1,1([λ ≤ v ≤ ρ])| is small, so as to maximize

(4.3) j(λ, ρ) =
|E1,1| − |E1,1([λ ≤ v ≤ ρ])|

|E1,0| − |E1,0([λ ≤ v ≤ ρ])|+ |E0,1|+ |E1,1|
.

The case of disjunctions is very similar to conjunctions, but focusing on entities in E0,1 and
E0,0 instead of E1,1 and E1,0, respectively.

For non-negated disjunctions the aim is to maximize

(4.4) j(λ, ρ) =
|E1,1|+ |E0,1([λ ≤ v ≤ ρ])|

|E1,0|+ |E0,1|+ |E1,1|+ |E0,0([λ ≤ v ≤ ρ])|
,

that is, we try to maximize the number of entities in E0,1 while minimizing that in E0,0.
The aim for negated disjunctions is to maximize

(4.5) j(λ, ρ) =
|E1,1|+ |E0,1| − |E0,1([λ ≤ v ≤ ρ])|

|E| − |E0,0([λ ≤ v ≤ ρ])|
,

the reverse of the non-negated case, similarly to conjunctions. �

To search for an optimal bucket for variable v, we only need to consider upper and lower cut
points. Denoting by nλ the number of lower cut points and by nρ the number of upper cut points,
the size of the search space is (nλ + 1)(nρ + 1). In many cases, this is considerably smaller than
the näıve n2 (but see Section 5.2 for a method to deal with large (nλ + 1)(nρ + 1)).

4.6 Putting it all together: The ReReMi algorithm. As we mentioned previously, the
algorithm starts by evaluating all possible pairs of singleton redescriptions (i.e. literals) and keeps
only the kp best pairs (line 2). Alternatively, it is possible to extend all pairs with accuracy higher
than some threshold or exhaust all the pairs in order to discover redescriptions with low first
level accuracy. But after some number of initial pairs, a drop in the accuracy of the generated
redescriptions can typically be observed. Limiting kp is therefore reasonable.

Generating the initial pairs from real-valued data requires some extra work. There are two
options. First, if one of the matrices (say DL) is Boolean while the other is real-valued, we

create the initial pairs by considering redescriptions R = (vL, ∅) for each vL ∈ VL, and extending
their right-hand side using the standard on-the-fly bucketing approach. Second, if both sides are
real-valued, an exhaustive search of all possible intervals needs to be performed. This might be
computationally very expensive, and in Section 5.3 we present a method to find the initial pairs
faster with possible loss in accuracy.

Each of the initial pairs is extended in turn (lines 3–15), selecting at each step the ki most
promising candidates (line 13). A value of 4 for ki, for example, enables to keep the candidates
for both operators and both sides on the first step. Two sets of variables, FL(R) ⊂ VL and
FR(R) ⊂ VR, are associated to each redescription R. They contain the variables that can be
used to expand that redescription, which we call the free variables of R. The free variables are
determined so as to avoid generating several times the same redescription. The variables leading
from R to some already generated one-step extension, i.e. redescriptions obtained by appending
one literal to it, are not free for R; this includes the variables that appear in R.

For the purpose of determining free variables, the algorithm maintains a list of the redescrip-
tions generated so far. We assign a set of keys to every redescription, one for each literal involved.
The redescriptions can be indexed using these keys in space bounded by the number of explored
redescriptions multiplied by a factor quadratic in the maximal allowed query length. Then, given
any redescription containing l literals, we can retrieve the sets of redescriptions associated to each
of its keys in l accesses to the index. Its one-step extensions are the redescriptions of length l + 1
in the intersection of these sets.

In addition, when the query on either side of the redescription has reached the maximum
number of variables, all remaining free variables for that side are removed. Among the selected
candidates, those that have some free variables are put into the set E of redescriptions to be
extended during the next iteration (lines 14). The loop ends when E is empty, that is, when there
is no extendible redescription left.

5 Extensions to the Algorithm

With the basic algorithm presented in the previous section, we now turn to study some extensions
to it. We first start by studying the possible constraints one can apply for the redescriptions,
then present two methods that can be used to speed up the algorithm (possibly trading off some
accuracy) with real-valued data. Finally, we explain how to extend the algorithm to handle missing
values.

5.1 Constraints on the redescriptions. In this section, we discuss the different constraints
one can apply to redescriptions. The accuracy is a simple constraint: leave out all redescriptions
with accuracy lower than some threshold. But in addition to being accurate, we would like the
redescriptions to be statistically significant. That is, the support of a redescription (qL, qR) should
carry some new information, given the support of the queries. To measure this, we test against
the null-model representing the case in which the two queries would be independent. We compute
a p-value that represents the probability that two random queries with marginal probabilities (i.e.
the fraction of entities supporting them) equal to those of qL and qR have an intersection equal to
or larger than |supp(qL, qR)|. This probability uses the binomial distribution and is given by

pvalM(qL, qR) =

|E|
∑

s=|supp(qL,qR)|

(

|E|

s

)

(pR)
s(1− pR)

|E|−s,

where pR = |supp(qL)| |supp(qR)| / |E|2 . The higher the p-value, the more likely it is to observe
such a support for independent queries, and the less significant the query.

Similarly, when appending a literal l to a redescription, we would like it to be as informative
as possible. On one hand, if qA and l have very similar supports, qA ∨ l will not carry much
more information than the original qA, so we want qA and l to be as uncorrelated as possible and
intersect less than would occur randomly. On the other hand, when extending qA to qA ∧ l we
expect qA and l to be correlated and intersect more than would occur randomly. Hence we define
pvalE(qs,∧l) = pvalM(qs, l) and pvalE(qs,∨l) = 1− pvalM(qs, l).

Also important are the size of the support of the redescriptions and the number of entities by
which each variable contributes to it, since redescriptions characterizing too few entities or almost
all of them are of no interest.

These constraints on p-value and support can be applied more or less strictly during the
beam search, using thresholds to penalize or simply disqualify candidate redescriptions that do
not comply with them. The redescription p-value and support size can also be used to filter
out uninteresting results a posteriori. Of course, the stricter the constraints applied within the
candidate selection, the faster the search, but the more likely it becomes to miss candidates that
would expand to acceptable redescriptions.

The type of query can also be selected, for example to disallow negations or use only
disjunctions. Most of the constraints need not be tuned for good results, but they can be used to
incorporate domain knowledge or to guide the algorithm to search for special redescriptors.

5.2 Interval approximation. In cases where the search space of possible intervals is still too
large (i.e. (nλ + 1)(nρ + 1) is too big, cf. Section 4.5), we use a faster search to find an interval
whose accuracy is a good lower bound to the optimal one.

Let (t0, t1, . . . , tnλ+nρ+1) be the ordered list of cut points (as per Proposition 4.1), with the
special cases t0 = −∞ and tnλ+nρ+1 = +∞. Let l, i, and u be any indices such that S1 = [tl, ti],
S2 = [ti, ti+1], and S3 = [ti+1, tu] are valid intervals. Note that we can have ti = ti+1 = w, when
the value w is both a lower and an upper cut point.

On one hand, if the accuracy obtained by merging intervals S1 and S2 is lower than that of S2

alone, then merging S1, S2, and S3 yields lower accuracy than S2 alone or merging S2 and S3, for
any interval S3. That is, if j(tl, ti+1) < j(ti, ti+1), then

j(tl, tu) < max(j(ti, ti+1), j(ti, tu)).

We use this property to find the best interval by upward aggregation. Starting with the first
interval, we construct at each iteration an interval of the form Ii = [λi, ti]. We go through the
possible optimal values in ascending order, while keeping track of the best accuracy encountered:
λi+1 = ti if j(λi, ti+1) < j(ti, ti+1), and λi+1 = λi otherwise

On the other hand, if the accuracy obtained by merging intervals S1 and S2 is greater than that
of S2 alone, there might still be an interval S3 such that merging S2 and S3 yields a higher accuracy
than S1, S2 and S3 together. That is, even if j(ti, ti+1) < j(tl, ti+1), it does not necessarily follow
that j(ti, tu) < j(tl, tu). Therefore, we also compute the best interval using downward aggregation,
starting with the last interval and iterating over the possible optimal values in reverse order. Then
we combine the two best intervals to eliminate possible undesirable values on either ends. Let
Iu and Id denote the best intervals found using upward and downward aggregations, respectively.
The final interval returned is either Iu, Id, or Iu ∩ Id, depending on which maximizes j(). Using
this method, we can compute an interval that approximates the optimal accuracy in O(nλ + nρ).
This is especially useful in cases where the rows in E1,0 and E1,1 (for conjunctions) or E0,1 and

E0,0 (for disjunctions) are not clearly separated, saving heavy computations when encountering
variables that are intuitively poor extensions.

5.3 Approximating the initial pairs for real-valued data. The approximate search
presented in Section 5.2 might not be sufficient to find the initial pairs in reasonable time. This is
especially the case when the data contain dense variables with many different values on both sides.
We then resort to unsupervised bucketing to reduce the number of intervals tested and make the
computation tractable.

During the initial pair generation, when the number of intervals to test for a given pair of
variables exceeds a predefined threshold, different values of the variables are aggregated together
to construct non-overlapping contiguous buckets. Only the intervals corresponding to the bounds
of the buckets are tested. The agressiveness of the method can be adapted by tuning the threshold
on the original number of intervals and the number of entities that can be grouped.

Unlike with usual pre-bucketing approaches, the static buckets are only used for this special
cases of initial pair generation; during the later extension steps, the algorithm determines the
intervals dynamically as described previously.

5.4 Handling missing values. Real-world data often contains missing values, i.e. cases where
not all values are known for all entities. In order to handle such data, we consider the extended
truth value set {True,False,Missing}. Any truth value assignment for a variable with missing
values will lead to Missing as the value for those entites. When evaluating Boolean queries, the
following new cases emerge: the negation of Missing is Missing; the value of X ∧Missing is False
if X is False and Missing otherwise; the value of X ∨ Missing is True if X is True and Missing
otherwise.

With missing values, there are five new groups of entities given a redescription (qA, qB): either
qA or qB can be Missing while the other is True or False, or they are both Missing. Following the
notation of already-defined sets E1,0, E0,1, E1,1 and E0,0, we denote these sets by E1,?, E0,?, E?,1,
E?,0, and E?,?.

The presence of missing values requires us to re-define how we compute the quality of the
redescription, i.e. the Jaccard coefficient. A common approach is to ignore those entities that have
missing values. With relatively few missing values that are evenly distributed, this should give a
reasonably good estimate of the true accuracy. We call this method rejective Jaccard, denoted JR,
to distinguish from the cases with no missing values.

The rejective Jaccard has its problems, though. If the missing values are not evenly distributed,
we may have to reject too much data to be able to obtain reasonable estimates. Therefore, we
also consider two other estimates: the optimistic Jaccard (JO) and the pessimistic Jaccard (JP),
defined as follows:

JO(qA, qB) =
|E1,1|+ |E1,?|+ |E?,1|+ |E?,?|

|E1,0|+ |E0,1|+ |E1,1|+ |E1,?|+ |E?,1|+ |E?,?|
(5.6)

JP(qA, qB) =
|E1,1|

|E1,0|+ |E0,1|+ |E1,1|+ |E0,?|+ |E?,0|+ |E?,?|
.(5.7)

The optimistic Jaccard gives the upper bound and the pessimistic the lower bound of the
Jaccard coefficient when truth values are assigned to the missing values. In other words, the
optimistic Jaccard corresponds to the accuracy obtained if one could assign truth values to the
missing values in the most favorable way while the pessimistic Jaccard is the accuracy that would

result from an adversarial assignment of the missing values.
These three accuracy measures change the way our algorithm behaves by changing the objective

function. Optimizing JO, for example, means that we try to find a maximum upper bound, while
optimizing JP means we try to find a maximum lower bound. We study these effects in Section 6.4.

Other than the different accuracy measures, the missing values are rather straight forward to
implement. We need to keep track of the new sets, E1,?, E0,?, E?,1, E?,0, and E?,?, for efficient
computation of the different versions of Jaccard (cf. Section 4.3), but this does not alter the main
principle. Similarly with real-valued data, having missing values only adds notational complexity
– the concepts remain the same.

6 Experimental Evaluation of Algorithm’s Properties

We now turn to the experimental evaluation of our algorithm. We divide this in three parts. The
first part (this section) studies the various properties of our algorithm with both synthetic and
real-world data. The next two sections compare our algorithm to other methods and present a
real-world application of our algorithm, namely biological niche finding.

But before starting with the experiments, we explain a method for assessing the significance
of the results based on randomizations and explain the data sets used.

An implementation of the ReReMi algorithm and the synthetic data generator are available
online3.

6.1 Assessing the significance with randomization methods. When mining the redescrip-
tions, we compute various p-values in order to prune uninteresting rules. But these p-values are
based on assumptions about the distribution of 0s and 1s in the (bucketed) data. Given the
generality of our algorithm, we cannot assume the distributions to model exactly the underlying
distribution of values. Hence, we also use property-preserving randomization methods. Such meth-
ods sample random matrices that share some property with the original matrix. The algorithm is
then re-run using a random matrix as an input, and this process is repeated multiple times. If the
results with random matrices contain multiple redescriptions that have same or higher accuracy
than some redescription found from the original data, that redescription is deemed insignificant;
otherwise it is significant (with respect to the property preserved by the randomization method).

For these experiments, we used two randomization methods. The first method permutes the
matrix, preserving the values of the matrix. On symmetric matrices, we used a variation that
preserves their symmetry: only the upper-right triangle was permuted, and the lower-left triangle
was copied from there. The property of a matrix having the same values is not a very strong one.
Hence, we also used a method to preserve the distribution of values in columns and rows of the
matrix [13]. This method is called swap-randomization. While swap-randomization is in many
ways stronger than permutation, the latter is used for two reasons. First, its use is suggested
in [13]. Second, unlike swap-randomization, permutation can preserve symmetrical matrices.

6.2 The real-world data sets. For the real-world data, we used two basic data sets: DBLP and
Bio. The former is obtained from the DBLP data base4, and its entities are authors. The first
matrix defines the conferences in which each of them has published, while the second defines other
authors with whom each of them has published. The entities of the latter data set are spatial areas,

3http://www.cs.helsinki.fi/u/galbrun/redescriptors/
4http://www.informatik.uni-trier.de/~ley/db

Table 1: Statistics of the real-world data sets used in the experiments.

Data set Description Dimensions Type Density

DBLPF authors × conferences 6455× 304 integer values 0.033
authors × authors 6455× 6455 integer values 0.002

DBLPN authors × conferences 2345× 19 integer values 0.194
authors × authors 2345× 2345 integer values 0.005

DBLPB authors × conferences 2345× 19 Boolean indicators 0.194
authors × authors 2345× 2345 Boolean indicators 0.005

Bio locations × mammals 2575× 194 Boolean indicators 0.166
locations × climate 2575× 48 real values —

Biosmall locations × mammals 1271× 119 Boolean indicators 0.259
locations × climate 1271× 24 real values —

that is, approximately 50 km squares over Europe5. The data itself is composed from two publicly
available data bases: European mammal atlas [11] and Worldclim climate data [8]. The mammals
data contains presence/absence information of mammal species in Europe, and the climate data
contains minimum, average, and maximum monthly temperatures as well as average monthly
precipitation. Notice that the mammals data is Boolean while the climate data is continuous.

We created variations of these two basic data sets for specific purposes. From the DBLP

data we created three variations: DBLPF, DBLPN, and DBLPB. The first, DBLPF, is a big data set
with 6455 authors and 304 conferences containing information on how many times each author
has published in each conference and with each other author. The second, DBLPN, also contains
numerical information but is restricted to 19 hand-picked conferences6 and 2345 authors. The
third, DBLPB, is like DBLPN, but Boolean: every positive value of DBLPN is replaced with 1. This
data is identical to the one used by Gallo et al. [4].

For the Bio data, we constructed two variations. The basic Bio data contains the whole data
while smaller Biosmall concentrates only on Northern Europe (specifically, areas between 50 and
71 degrees North). Also, it does not include monthly maximum or minimum temperatures, leaving
only monthly average temperature and average precipitation.

The statistics of the real-world data sets used in the experiments are presented in Table 1.

6.3 Finding planted redescriptions. To study the behaviour of our algorithm we first apply
it to synthetic data. The idea is to generate data with planted redescriptions and check whether
our algorithm is able to recover the redescriptions. Generating matrices such that, for example,
no subset of the query forms an exact redescription, is not trivial.

To generate a pair of synthetic Boolean 500 × 10 matrices, we plant on both matrices one
Boolean formula, either conjunction or disjunction over 3 variables with 50 supporting rows, such
that the resulting redescription is exact. Then we add random noise of density between 0.01 and
0.1. The noise can either be conservative or destructive, leaving the redescription exact or not. A
synthetic real-valued data matrix is then obtained replacing ones and zeros by values uniformly
sampled from the intervals [0.75, 1] and [0, 0.25], respectively.

5Details of the grid can be found in www.fmnh.helsinki.fi/english/botany/afe/index.html.
6Namely www, sigmod, vldb, icde, kdd, sdm, pkdd, icdm, edbt, pods, soda, focs, stoc, stacs, icml, ecml,

colt, uai and icdt.

0

0.2

0.4

0.6

0.8

1

1% missing
M F

5% missing
M F

10% missing
M F

0

0.2

0.4

0.6

0.8

1

1% missing
M F

5% missing
M F

10% missing
M F

0

0.2

0.4

0.6

0.8

1

1% missing
M F

5% missing
M F

10% missing
M F

(a) Rejective Jaccard (b) Pessimistic Jaccard (c) Optimistic Jaccard

Figure 4: Distribution of redescription accuracies with missing values, conservative noise, and
different accuracy measures. The three panels of subplots correspond to, from left to right, 1%,
5%, and 10% of missing values. In each panel, the left-hand box is the distribution of accuracies
with missing data and using the corresponding accuracy measure (M) and the right-hand box is
the distribution of accuracies of the same redescriptions computed over full data and using normal
Jaccard (F).

Applied to some two hundred synthetic Boolean matrix pairs with conservative noise the
algorithm managed to find all planted queries. In the case of destructive noise and fully Boolean
data, the algorithm managed to find the planted queries in only about 40% of the data sets, but
always found queries with higher accuracy than that of the planted redescription. The algorithm
cannot be considered faulty is these cases: It behaved as assumed, finding the redescriptions with
the highest accuracies.

Applied to synthetic data sets where one matrix is Boolean and the other real-valued, both
with conservative noise, the algorithm managed to find the planted redescriptions or equivalent in
76 cases out of 80. The planted redescriptions that were not found had contributions below the
acceptance threshold. Thus, the algorithm again worked as assumed.

6.4 Experiments with missing values. As for the full data, our first experiment with missing
values is on synthetic data. We removed values from synthetic Boolean matrices with planted
redescriptions (cf. Section 6.3) uniformly at random. We removed 1%, 5%, and 10% of the values
(zeroes or ones) and replaced them with markers for missing values. Then we mined them with
our algorithm and checked how well the planted redescriptions were discovered.

For the planted redescriptions with conservative noise, the planted redescription was found in
97% of the cases. With increasing ratio of missing values the algorithm more often did not found
the complete planted redescription but rather one or several fragments of high accuracies.

We report the distributions of the accuracies in Figures 4 (conservative noise) and 5 (destructive
noise). The results compare the different variations of the Jaccard (rejective, pessimistic, and
optimistic) as well as their estimates to the true Jaccard computed over the full data (i.e. with no
missing values).

In both figures, it is clear that the rejective Jaccard is the best. With conservative noise
(Figure 4(a)) missing values have hardly any effect, and while the destructive noise reduces the
quality (Figure 5(a)), different levels of missing values have very small effect and the estimated

0

0.2

0.4

0.6

0.8

1

1% missing
M F

5% missing
M F

10% missing
M F

0

0.2

0.4

0.6

0.8

1

1% missing
M F

5% missing
M F

10% missing
M F

0

0.2

0.4

0.6

0.8

1

1% missing
M F

5% missing
M F

10% missing
M F

(a) Rejective Jaccard (b) Pessimistic Jaccard (c) Optimistic Jaccard

Figure 5: Distribution of redescription accuracies with missing values, destructive noise, and
different accuracy measures. The three panels of subplots correspond to, from left to right, 1%,
5%, and 10% of missing values. In each panel, the left-hand box is the distribution of accuracies
with missing data and using the corresponding accuracy measure (M) and the right-hand box is
the distribution of accuracies of the same redescriptions computed over full data and using normal
Jaccard (F).

Jaccards are close to the true Jaccards. Pessimistic Jaccard is the second-best option. While
its estimates look bad (Figures 4(b) and 5(b)), the true Jaccards are almost as good as those
with rejective Jaccard. One has to remember that the estimate of the pessimistic Jaccard is only
the lower bound, and therefore having very low estimate is not bad in itself. The last option,
optimistic Jaccard (Figures 4(c) and 5(c)) has the worst behaviour with higher level of missing
values (although with 1% and 5% of missing values the true Jaccards are slightly better than those
of pessimistic Jaccard).

As the missing values were evenly scattered over the data, the good behaviour of rejective
Jaccard was no surprise.

Next, we experimented with the Biosmalldata set, generating copies with 1% or 5% of randomly
chosen values removed. For each setting, we generated 10 copies and mined them. We compared
the queries found in the data with missing values to thoses found in the full data. We only used
rejective Jaccard due to its good performance with synthetic data.

The results are reported in Figure 6. With 1% of missing values the results are almost as good
as the results with full data, but with 5% of missing values the true Jaccards are somewhat worse,
even if the estimates are still high.

6.5 From Boolean to Numerical: the DBLP data. The purpose of this experiment is to
study the behaviour of our algorithm with two versions of the same data, one Boolean and one
numerical. For this we used the two variants of the DBLP data: DBLPB and DBLPN.

Some results with DBLPN are presented in Table 2, while some example results with DBLPB are
in Table 3. In all tables, J stands for the Jaccard, supp is the support of the redescription, and
the p-value is computed as in Section 5.1.

For these experiments, we disabled negations to allow later comparison (see Section 7.2).
Comparing the two tables, it is obvious that DBLPN contains more information, allowing ReReMi
to find more accurate redescriptions (the best Jaccard in Table 2 is 0.625). But the rules are also

0

0.2

0.4

0.6

0.8

1

no missing
F

1% missing
M F

5% missing
M F

Figure 6: Results with Biosmall data set having missing values. Left: distribution of similarities
with all values known. Middle: distribution of similarities with 1% of values missing. Right:
distribution of similarities with 5% of values missing. In middle and right panels, left-hand box
is rejective Jaccard with missing values (M), and the right-hand box is the normal Jaccard of the
same redescriptions computed over full data (F).

Table 2: Example results of ReReMi with DBLPN.

qL qR J supp p-value

(1) [1.0 ≤ STOC ≤ 6.0]∧ [8.0 ≤ COLT] [1.0 ≤ D.P. Helmbold] ∨ [1.0 ≤ M. Frazier]
∨ [2.0 ≤ N. Cesa-Bianchi ≤ 2.0]

0.625 15 0.000

(2) [1.0 ≤ VLDB≤ 18.0]∧[2.0 ≤ ICDM]
∧ [1.0 ≤ SDM ≤ 5.0]
∧ [3.0 ≤ ICDE]

(

([5.0 ≤ W. Wang] ∨ [1.0 ≤ J. Pei])
∧ [2.0 ≤ P.S. Yu]

)

∨ [6.0 ≤ G. Das ≤ 6.0]
0.600 12 0.000

(3) [5.0 ≤ COLT] [2.0 ≤ P.L. Bartlett] ∨ [1.0 ≤ M.K. Warmuth]
∨ [1.0 ≤ E.B. Kinber] ∨ [1.0 ≤ S.A. Goldman]

0.472 42 0.000

Table 3: Example results of ReReMi with DBLPB.

qL qR J supp p-value

(1) STOC ∧ COLT ∧ ICML Y. Freund ∨ N. Littlestone ∨ P.M. Long ∨ S. Kwek 0.500 21 0.000

(2)VLDB ∧ ICDM ∧ SDM ∧ SIGMOD (J. Han ∧ P.S. Yu)∨ C.-R. Lin ∨ S. Lonardi 0.444 16 0.000
(3) ICDM ∧ SDM ∧ KDD J. Lin ∨ I.S. Dhillon ∨ P.S. Yu ∨ V. Kumar 0.338 44 0.000

(4) FOCS ∧ SODA ∧ STOC B. Awerbuch ∨ S. Khanna ∨ R.E. Tarjan ∨ N.
Alon

0.324 158 0.000

more specific than those in Table 3, with small support and often requiring multiple publications
in the same conference, making them possibly harder to interpret than those of Table 3. Yet, in
both cases the algorithm correctly identifies subfields of computer science and well-known authors
from those fields.

6.6 Approximating the initial pairs. To study the effects of approximating the initial pairs,
we took the climate data of the Biosmall data set and divided it into two: the monthly average
temperatures and monthly average rainfall. This gave us two real-valued data sets with 12 variables
each. We call this data Climate.

This seemingly small data set is already hard for exhaustive initial pairs selection due to the
nature of the data: almost each data point contains different values. Consequently, the exhaustive
search was not able to finish in two days.

Instead of exhaustive search we used the binning-based initial-pairs searching method explained
in Section 5.3. We tried different bin sizes, ranging from 10 to 100. We compared this with fully
pre-bucketing approach, bin size again ranging from 10 to 100.

The results were clear. There was very little variation between different bin sizes for initial
pairs in terms of accuracy: the smaller bins gave overall slightly better results, but all sizes had top-
20 redescriptions with accuracy clearly above 0.8 with bests above 0.9. Pre-bucketing approaches,
on the other hand, were clearly inferior, with the best results (obtained with bin size 10) being
below 0.7.

In terms of speed, the pre-bucketed approaches were the fastest, with even the slowest (bin
size 10) taking less than 4 minutes. The fastest method with initial bins (bin size 100) took
roughly 10 times longer, 38 minutes. The slowest method (initial bin size 10) took one day and 24
minutes. In all the methods with initial bins, the time differences are explained by the time spent
on constructing the initial pairs; after that, they all took roughly the same time.

The results were as expected. Using binning only for initial pairs (as opposed to working with
pre-bucketed data) gave much better results, but also took more time. It is, however, noteworthy
that increasing the bin size used for selecting the initial pairs did not have considerable effect on
the quality. Apparently, the algorithm was able to overcome the possibly weaker initial pairs in
later phases.

6.7 Running times. Does our algorithm scale? The data sets we used were not extremely large
(although DBLPF is already of considerable size), but we feel confident to say that our algorithm is
scaling reasonably well. All experiments were conducted in a single core of an 8 core Intel Xeon
2.8 GHz processor and with 32 GB of memory.

The statistics of the running times on the different data sets are presented in Table 4. There we
can see that original data takes much more time to run than randomized data. This is because with
randomized data, there are less potential redescriptions, and the algorithm can prune the search
space much faster. The longest time required, 1 hour with DBLPF, is still very good, especially
when one remembers that the algorithm needs to be run only once for the original data.

To evaluate more precisely the evolution of our algorithm’s running time with respect to the
size of the data, we generated synthetic matrices of increasing sizes. As we just mentionned, the
running times on random data is not representative. Therefore, we need to insure that some
redescriptions are present in the synthetic data. Thus, we constructed diagonal block matrices,
where the blocks on the diagonal are matrices obtained as described in Section 6.3 while off-diagonal
blocks are filled with randon noise. We used original matrices of size 500×10 for the fully Boolean
setting and of size 250×10 for the setting where one side is Boolean and the other real-valued. We

0 1000 2000 3000 4000 5000 6000
0

2000

4000

6000

8000

10000

12000

14000

16000

Data size (number of rows)

R
u

n
n

in
g

 t
im

e
 (

s
)

Total time

Initial pairs

Extensions

Figure 7: Running times for mining redescriptions on synthetic data of increasing sizes with one
side Boolean and the other real-valued.

Table 4: Running times for the different data sets. For mean time, ‘—’ denotes that there was
only one data set.

Data Set mean max

DBLPF — 60min
DBLPF permuted 5min 16s 6min 32s
DBLPF swap 16min 18min
DBLPN — 7min
DBLPB — 1min
Bio — 10min
Bio permuted and swap 6min 48s 10min 30s

let our algorithm run on ten such synthetic data sets for each studied size. The algorithm consists
of two major steps: firstly, computing singleton redescriptions by trying out all pairs of variables
and secondly extending the best pairs in turn. In the case of fully Boolean data, the computation
of initial pairs clearly dominates as the data grows larger, since it is quadratic in the number of
columns while finding extension is linear. The running times remain reasonable even for very large
data sets.

When real-valued data is involved, the running times are much greater, as expected. Therefore
we had to restrict the experiments to smaller data sets. The running times for that experiment
are displayed in Figure 7. The increase in running times is due to the fact that extending a
redescription is no longer linear and the search for initial pairs also has increased complexity.

7 Experimental Comparison Against Other Methods

With the previous sections results showing that our algorithm has solid performance, we can now
turn to comparing our algorithm to other methods.

7.1 Comparison to association rule mining. The first experiment with real-world data
mirrors the experiments with synthetic data: the task is to study how well our algorithm finds
redescriptions from the data. But as we cannot know all redescriptions present in the real-world
data, we narrow our scope to monotone conjunctive redescriptions from Boolean data. These
redescriptions are simply bi-directional association rules, and hence can be found by mining all
frequent itemsets from both data matrices and using the itemset pairs as redescriptions. This gives
us the ground truth, against which we can compare our algorithm.

For these experiments we used the DBLPB data (see Section 6.2). We used the Eclat frequent
itemset miner [24]. The redescriptions were generated as follows: first, all closed frequent itemsets
with support greater than 5 were mined for both data sets. The itemsets were then combined
into redescriptions. Only those with accuracy greater than 0.1, support above 10 but below 100
(inclusive), and p-value higher than 0.01 were retained. The same parameters were set to ReReMi,
and it was only allowed to find monotone conjunctive redescriptions.

The best four redescriptions found using Eclat had a Jaccard similarity between 0.366 and
0.333. ReReMi found exactly the same redescriptions. After these four redescriptions, the Eclat
approach found several redundant redescriptions: they were minor variations of the first four
redescriptions. ReReMi did not report these redundant redescriptions, which we consider a
positive feature – the user should not be overwhelmed by the quantity of results.

The next non-redundant redescription found by Eclat approach was also found by ReReMi.
The same trend continued throughout the results: Eclat approach found several thousands of
redescriptions, but most of them were redundant.

Applying Eclat on swapped and permuted randomized copies of the original data (500 pairs of
matrices for each method) following the same approach did not return any redescription. Therefore
all original redescriptions are considered significant with respect to these null hypotheses.

While these experiments cannot guarantee that ReReMi will always find the best redescrip-
tions, they suggest that it is able to find most of the important ones.

7.2 Comparison to the work of Gallo et al. As we used the same data set as Gallo et al. [4],
DBLPB, we compared the results obtained with ReReMi to theirs. Following [4], we did not allow
negations. The example results were already presented in Table 3.

The results obtained by ReReMi had higher Jaccard similarity than those obtained by Gallo et
al.: the highest accuracy they report is 0.35, while ReReMi returns a redescription with accuracy
0.5, and 9 redescriptions have accuracy above 0.35.

An effect of the beam search is illustrated by the following for example. The results presented
by Gallo et al. contain the following redescription of accuracy 0.30:

SDM ∧ ICDE P. S. Yu ∨ J. Lin ∨ M. Schubert ∨ Y. Ma.

Our results do not contain this redescription, but

SDM ∧ ICDM ∧ KDD P. S. Yu ∨ J. Lin ∨ I. S. Dhillon ∨ V. Kumar,

instead, with accuracy 0.34. Indeed, when starting from the intial pair (SDM, P. S. Yu), keeping at
each step only the best candidate does not allow to find this redescription as it is obtained from a
candidate ranked lower during the extension process.

While allowing for a better exploration of the search space, our algorithm required only a third
of Greedy’s running time (3 min) with the same data. This shows that the proposed algorithm
is faster yet more exhaustive on Boolean redescription mining than the Greedy algorithm.

Table 5: Example results of CARTwheels with DBLPB.

qL qR J supp p-value

(1) (STOC ∧ ¬FOCS) ∨ ¬STOC B. Dageville ∨ (¬B. Dageville ∧ ¬A. Wigderson) 0.736 1673 0.011
(2) (STOC ∧ ¬FOCS) ∨ ¬STOC T. Grust ∨ (¬T. Grust ∧ ¬A. Wigderson) 0.736 1673 0.011
(3)EDBT ∨ (¬EDBT ∧ ¬STOC) (P. Datta ∧ P. Langley) ∨ (¬P. Datta

∧ ¬A. Wigderson)

0.693 1577 0.021

(4) ICDM ∨ (¬ ICDM ∧ ¬STOC) (C. Olston ∧ ¬C. Chekuri) ∨ (¬C. Olston

∧ ¬A. Wigderson)

0.691 1570 0.017

(5)PKDD ∨ (¬PKDD ∧ ¬STOC) T. Grust ∨ (¬T. Grust ∧ ¬A. Wigderson) 0.689 1567 0.019

Otherwise the results are similar; both algorithms identify sets of conferences from different
fields of computer science together with well-known authors from those fields. Both algorithms are
also able to identify interdisciplinary researchers, say, theoretical machine learners who publish in
both machine learning and theoretical conferences (row 1 of Table 3).

7.3 Comparison to CARTwheels and pre-bucketing numerical data. We now turn to
another algorithm for mining redescriptions, CARTwheels [17]. We used the implementation of
CARTwheels provided by the authors. Because of this, we do not have any control over the
results reported by CARTwheels (e.g. minimum support, type of queries, p-values).

Boolean data. First, we tried CARTwheels with DBLPB. The algorithm returned in total 35
redescriptions before running out of the available 32 GB of memory. Of these, only 5 were retained
after removing rules with p-value higher than 0.05. All of the remaining redescriptions had p-values
between 0.0111 and 0.02, making them insignificant on the highest significance level (99%). The
rules also covered almost the whole data, having at least 1567 (of 2345) rows in the support. This
high support is a consequence of using mostly negated variables. Results are reported in Table 5.

As can be seen from Table 5, the results have high accuracy, which is not surprising, given their
high support. Results also have many negations, making them less interesting. We let ReReMi
find results with negations, too, and while we were not able to find results with as high accuracy
(results omitted), they all had p-values essentially 0. We conclude that while CARTwheels finds
more accurate redescriptions, they are somewhat insignificant, and less interesting than the ones
found by ReReMi.

Pre-bucketing numerical data. In this section, we compare our on-the-fly bucketing
approach to CARTwheels with bucketing as a pre-processing step.

To bucket the data, one has to select the bucketing method. For a fair comparison, we used
three different methods with a number of buckets per variable varying between 10 and 150, ran
CARTwheels for all of these configurations, and selected the best results. The three methods
were (1) buckets of equal width, where the range of the values in a column was divided into equally
long buckets; (2) buckets of equal height, where each bucket contained approximately equally
many entities; and (3) segmentation, where the entities were separated into segments (i.e. buckets)
minimizing the sum-of-square distances to the segment’s mean (the segmentation was obtained
using Bellman’s algorithm [1]).

The CARTwheels algorithm was unable to handle the full Bio data, so we used Biosmall

instead.
The results are reported in Table 6. The aim of this experiment is to study how good accuracies

can be obtained with pre-processed buckets compared to ReReMi.
The first results are the five best (with respect to the accuracy) from CARTwheels using

Table 6: Example redescriptions from Biosmall data: tmin
X , tmax

X , and tavgX stand for minimum,
maximum, and average temperature of month X in degrees Celsius, and pavgX stands for average
precipitation of month X in millimeters.

qL qR J supp p-value

CARTwheels

(1) (European Pine Vole

∧ European Pine Marten)

∨ (¬European Pine Vole)

([57.5 ≤ p
avg
Nov

≤ 62.706] ∧ ¬[75.03 ≤ p
avg
Jun

≤

82.6]) ∨ (¬[57.5 ≤ p
avg
Nov

≤ 62.706])

0.980 1244 0.007

(2) (Argali ∧ Hazel Dormouse)

∨ (¬Argali)

([78.291 ≤ p
avg
Aug

≤ 82.282] ∧ ¬[0.8245 ≤ t
avg
Nov

≤

2.2357]) ∨ (¬[78.291 ≤ p
avg
Aug

≤ 82.282])

0.974 1237 0.158

(3) (Brown Bear ∧¬Arctic Fox)

∨ (¬Brown Bear)

([43.163 ≤ p
avg
Dec

≤ 46.92] ∧ ¬[tavg
Jul

≤ 10.427]) ∨

(¬[43.163 ≤ p
avg
Dec

≤ 46.92])

0.974 1237 0.074

(4) (Nathusius’ Pipistrelle

∧ ¬Mediterranean Water Shrew)

∨ (¬Nathusius’ Pipistrelle)

([40.896 ≤ p
avg
Nov

≤ 46.743] ∧ ¬[16.32 ≤ t
avg
Jul

≤

16.751]) ∨ (¬[40.896 ≤ p
avg
Nov

≤ 46.743])

0.974 1235 0.000

(5) (Brown Bear ∧¬Arctic Fox)

∨ (¬Brown Bear)

([60.13 ≤ p
avg
Apr

≤ 74.305] ∧ ¬[82.6 ≤ p
avg
Jun

]) ∨

(¬[60.13 ≤ p
avg
Apr

≤ 74.305])

0.964 1224 0.337

CARTwheels pruned

(1) (Eurasian Least Shrew)∨ (¬Eurasian

Least Shrew ∧¬House mouse)

([75.154 ≤ p
avg
Aug

≤ 78.291] ∧ ¬[1.622 ≤ t
avg
Feb

≤

3.44]) ∨ (¬[75.154 ≤ p
avg
Aug

≤ 78.291] ∧ ¬[5.488 ≤

t
avg
Mar

])

0.832 944 0.000

(2) (Wisent)

∨ (¬Wisent ∧¬House mouse)

([34.467 ≤ p
avg
Feb

≤ 41.402] ∧ ¬[5.488 ≤ t
avg
Mar

]) ∨

(¬[34.467 ≤ p
avg
Feb

≤ 41.402] ∧ ¬[3.15 ≤ t
avg
Jan

])

0.824 940 0.000

(3) (Red-necked Wallaby) ∨ (¬Red-

necked Wallaby ∧ House mouse)

([6.12 ≤ t
avg
Nov

] ∧ ¬[14.028 ≤ t
avg
Sep

]) ∨ (¬[6.12 ≤

t
avg
Nov

] ∧ [1.622 ≤ t
avg
Feb

≤ 3.44])

0.522 175 0.000

(4) (European Mole ∧¬House mouse) ∨

(¬European Mole ∧ House mouse)

([5.0439 ≤ t
avg
Nov

≤ 6.12] ∧ ¬[1.691 ≤ t
avg
Mar

≤

2.9013])∨(¬[5.0439 ≤ t
avg
Nov

≤ 6.12]∧[6.12 ≤ t
avg
Nov

])

0.674 225 0.000

(5) (European Mole ∧ House mouse) ∨

(¬European Mole ∧¬House mouse)

([5.0439 ≤ t
avg
Nov

≤ 6.12] ∧ [1.691 ≤ t
avg
Mar

≤

2.9013]) ∨ (¬[5.0439 ≤ t
avg
Nov

≤ 6.12] ∧ ¬[6.12 ≤

t
avg
Nov

])

0.896 937 0.000

ReReMi

(1) ¬House mouse (¬[3.4133 ≤ t
avg
Mar

] ∨ [1.790 ≤ t
avg
Aug

] ∨ [6.5917 ≤

p
avg
May

≤ 6.6083]) ∧ ¬[2.3667 ≤ t
avg
Jan

≤ 3.0667]

0.948065 931 0.000

(2) ¬House mouse ([tavg
Feb

≤ 2.20] ∧ [tavg
Mar

≤ 3.41]) ∨ [1.790 ≤ t
avg
Aug

] ∨

[6.5917 ≤ p
avg
May

≤ 6.6083]

0.947101 931 0.000

(3) ¬House mouse

∧ ¬ Eastern gray squirrel

[1.8375 ≤ t
avg
Jan

≤ 1.90] ∨ ¬[0.25 ≤ t
avg
Feb

] 0.934359 911 0.000

(4) ¬House mouse ∧¬ Raccoon

∧ ¬ Eastern gray squirrel

([5.37 ≤ t
avg
Apr

≤ 6.1357] ∨ [5.04 ≤ t
avg
Nov

≤ 5.10] ∨

¬[1.25 ≤ t
avg
Dec

]) ∧ [3.775 ≤ t
avg
Mar

]

0.925965 888 0.000

(5) ¬Grey Red-Backed Vole

∧ ¬Wolverine ∧¬ Brown Bear

∧ ¬ Siberian Flying Squirrel

(¬[tavg
Jan

≤ − 6.4615] ∧ [−5.70 ≤ t
avg
Feb

]) ∨ [tavg
Jul

≤

4.6267] ∨ [−4.9133 ≤ p
avg
Dec

≤ − 4.871]

0.923681 823 0.000

ReReMi bucketed

(1) (Striped Field Mouse

∨ House mouse)∧ Wood mouse

[5.925 ≤ t
avg
Apr

≤ 7.0] ∨ [7.0 ≤ t
avg
Apr

≤ 7.9077] ∨

[7.9077 ≤ t
avg
Apr

≤ 8.46] ∨ [8.46 ≤ t
avg
Apr

]

0.807 442 0.000

(2) House mouse [−0.21534 ≤ t
avg
Feb

≤ 1.622] ∨ [1.622 ≤ t
avg
Feb

≤

3.44] ∨ [3.44 ≤ t
avg
Feb

]

0.778 308 0.000

(3) European Rabbit [1.691 ≤ t
avg
Mar

≤ 2.9013] ∨ [2.9013 ≤ t
avg
Mar

≤

3.9685] ∨ [3.9685 ≤ t
avg
Mar

≤ 5.488] ∨ [5.488 ≤ t
avg
Mar

]

0.774 441 0.000

(4) House mouse [2.9013 ≤ t
avg
Mar

≤ 3.9685] ∨ [3.9685 ≤ t
avg
Mar

≤

5.488] ∨ [5.488 ≤ t
avg
Mar

]

0.773 307 0.000

(5) North American Beaver ∧ Reindeer [tavg
Jan

≤ − 11.9] ∧ [14.994 ≤ t
avg
Jul

≤ 15.785] ∧

[7.1073 ≤ t
avg
Sep

≤ 8.5667] ∧ [70.333 ≤ p
avg
Jul

≤

73.385]

0.700 7 0.000

10 buckets of approximately equal number of entities (this method produced the best overall
results, although 10 segments gave very similar results). The redescriptions have again very high
accuracy, and, again, they cover almost all of the studied area. Furthermore, two of them are
clearly insignificant and one is not very significant, according to the p-values. Results of this type
are rarely of any interest for users, as they do not convey any interesting information.

We pruned out results that had too high support (leaving less than 250 entities uncovered) or
too high p-value. CARTwheels can still return rather accurate redescriptions, but the quality
drops quickly after the first ones.

The last results in this experiment are from ReReMi. As CARTwheels obtained almost
all of its results using negations, we allowed also ReReMi to use negations. As can be seen,
ReReMi positions itself between non-pruned and pruned CARTwheels. But unlike the non-
pruned CARTwheels, ReReMi does not return insignificant results.

We also experimented with bucketed data and Boolean ReReMi. The results were similar
to those with pruned CARTwheels, but without the quick drop in accuracy. Also, they were
considerably worse than the results with ReReMi using on-the-fly bucketing.

We conclude that with similar constraints, the on-the-fly bucketing of ReReMi gives the best
results, although in this application, not allowing negations could be considered more reasonable
an option.

8 Real-world application: Finding bioclimatic envelopes.

Our final experiment is a real-world application of finding bioclimatic envelopes.
ReReMi was run on full Bio data for a maximum of 100 initial pairs, minimum score for the

initial pairs 0.2, minimum support 15, minimum number of uncovered entities 500, and minimum
contribution 3, disallowing negated variables. This was done because the negated variables can lead
to counterintuitive redescriptions in this type of application. The algorithm found 69 redescriptions
within these constraints. Again, we regard it positively that our algorithm returns only a reasonable
amount of results.

The data was randomized using swap-randomization and permutation. With both methods,
500 random matrices were generated, and in both cases the best redescription had lower accuracy
than the lowest original accuracy. Hence, all redescriptions were considered significant with respect
to these null hypotheses. The algorithm processed the full data in about 13 minutes.

Some of the results are displayed in Table 7. The redescriptions have varying support sizes:
some cover only a small part of the data, while others cover almost the whole data. Yet, they all
have very high accuracy. The first two redescriptions cover exactly the same area. They represent
the Svalbard archipelago (see Fig. 8(a)). The climate in Svalbard is so different from other areas
that it allows multiple ways to define it, causing multiple redescriptions. The fourth redescription
has only European Elk on the left hand side, but the right hand side is more complex, characterizing
very accurately the environment in Scandinavia and Baltia (Fig. 8(b)), the area occupied by the
European Elk. The remaining redescriptions are more complex. The fifth redescription (Fig. 8(c))
covers Northern and Central Europe, while the last covers only Central Europe (Fig. 8(d)).

We point out that while the results of [5] are superficially similar, the differences in the methods
used and the goals pursued make the results incomparable.

9 Conclusions

We have presented a new algorithm to mine redescriptions from real-valued data. Unlike previous
algorithms, ours does not require any pre-processing when used with non-Boolean data. It is based
on a beam-search type of method. We have shown with both synthetic and real-world data sets

Table 7: Example redescriptions from Bio data: tmin
X , tmax

X , and tavgX stand for minimum, maximum,
and average temperature of month X in degrees Celsius, and pavgX stands for average precipitation
of month X in millimeters.

qL qR J supp p-value

(1) Polar Bear [−7.0727 ≤ t
avg
May

≤ − 3.375] 0.973 36 0.000

(2) Polar Bear [−16.694 ≤ t
avg
Mar

≤ − 11.462] 0.973 36 0.000

(3) Bank Vole

∨ Northern Red-backed Vole

∨ Steppe Mouse ∨ Harbor Seal

(

([11.20 ≤ tmax
Jul

≤ 15.40]∨[13.10 ≤ tmax
Aug ≤ 27.40])

∧ [42.5 ≤ p
avg
Jul

]
)

∨ [17.10 ≤ tmax
Apr ≤ 17.50]

0.818 1679 0.000

(4) European Elk ([−9.80 ≤ tmax
Feb

≤ 0.40] ∧ [12.20 ≤ tmax
Jul

≤ 24.60]

∧ [56.852 ≤ p
avg
Aug

≤ 136.46])

∨ [183.27 ≤ p
avg
Sep

≤ 238.78]

0.814 582 0.000

(5) Arctic Fox ∨ Stoat
(

([2.60 ≤ tmax
Jun ≤ 8.50] ∨ [7.20 ≤ tmax

Sep ≤ 22.20])

∧ [36.667 ≤ p
avg
Aug

]
)

∨ [21.133 ≤ t
avg
Jul

≤ 21.20]

0.813 1477 0.000

(6) Greater White-toothed Shrew

∧ Egyptian Mongoose

([15.60 ≤ tmin
Aug ≤ 19.00] ∧ [1.625 ≤ p

avg
Aug

≤ 7.4444]

∧ [66.222 ≤ p
avg
Dec

≤ 137.27])

∨ [19.083 ≤ t
avg
Oct

≤ 19.10]

0.790 49 0.000

(7) House Mouse ∨ Caucasian Squirrel

∨ Marbled Polecat

(

([3.50 ≤ tmax
Jan] ∧ [4.40 ≤ tmax

Feb
])

∨ [3.5071 ≤ t
avg
Mar

≤ 4.1727]
)

∧ [3.30 ≤ tmax
Dec]

0.765 1034 0.000

(8) Southwestern Water Vole

∨ Azores Noctule

∨ Common Noctule ∨ Blind Mole

([17.10 ≤ tmax
Mar] ∨ [19.30 ≤ tmax

Aug ≤ 26.90]

∨ [12.40 ≤ tmax
Nov ≤ 14.50]) ∧ [14.60 ≤ tmax

Sep]

0.697 1072 0.000

(9) Brown Long-eared Bat ([13.70 ≤ tmax
Sep ≤ 22.70]

∨ [8.4111 ≤ t
avg
Nov

≤ 8.6444])

∧ [17.30 ≤ tmax
Jul

≤ 28.40]

∧ [−8.15 ≤ t
avg
Jan

≤ 6.0083]

0.693 963 0.000

(10) Harvest Mouse ∧ European Mole [−0.30 ≤ tmin
Apr ≤ 8.70] ∧ [19.40 ≤ tmax

Aug ≤ 27.20]

∧ [45.417 ≤ p
avg
Jun

] ∧ [48.75 ≤ p
avg
Aug

≤ 126.33]

0.677 774 0.000

(11) (Serotine Bat ∨ Lesser Mole Rat)

∧ European Mole

[19.70 ≤ tmax
Jul

] ∧ [16.90 ≤ tmax
Sep ≤ 23.70]

∧ [43.111 ≤ p
avg
Jul

≤ 149.5]

∧ [31.875 ≤ p
avg
Oct

≤ 119.5]

0.634 664 0.000

(12)Wood Mouse ∧ Natterer’s Bat

∧ Eurasian Pygmy Shrew

([3.20 ≤ tmax
Mar ≤ 14.50] ∧ [17.30 ≤ tmax

Aug ≤ 25.20]

∧ [14.90 ≤ tmax
Sep ≤ 22.80])

∨ [19.60 ≤ t
avg
Jul

≤ 19.956]

0.623 681 0.000

(a) (b)

(c) (d)

Figure 8: Support of redescriptions when mining Bio data. (a) Row 1, (b) row 4, (c) row 5, and
(d) row 12 in Table 7. Green circles, cyan plus crosses and magenta plus signs respectively indicate
areas where both queries hold, only the left query holds and only the right query holds.

that our algorithm performs better than its peers. In particular, the experiments show the benefits
of on-the-fly bucketing against pre-processing.

The non-Boolean redescription mining has many applications in various fields of science, of
which niche-finding is the one we have studied here. One of the most prominent future works
would be to collaborate with biologists and ecologists and explore the true value of redescription
mining in finding the bioclimate envelopes. Also other fields should be considered. Medical data
describing patients where the matrices would contain genetic or physiological characteristics and
symptoms, respectively, is one example.

While our algorithm seems to be working fine, it is by no means the final word. Building better
algorithms is, as always, an important future direction. For a concrete example, the selection of
initial pairs seems to have space for improvements.

Finally, having proofs of the behaviour of the algorithms is important. Is there, for example, an
algorithm for real-valued redescription mining for which one can prove that it finds a redescription,
provided that the redescription is sufficiently strong?

Acknowledgements

The authors are grateful to Dr. Jussi Eronen for helpful comments and suggestions.

References

[1] R. Bellman. On the approximation of curves by line segments using dynamic programmming. Comm.
ACM, 4(6):284, 1961.

[2] E. Boros, P. L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, and I. B. Muchnik. An implementation
of logical analysis of data. IEEE Trans. Knowl. Data Eng., 12(2):292–306, 2000.

[3] U. Fayyad and K. Irani. Multi-interval discretization of continuous-valued attributes for classification
learning. Mach. Learn., pages 1022–1027, 1993.

[4] A. Gallo, P. Miettinen, and H. Mannila. Finding subgroups having several descriptions: Algorithms
for redescription mining. In SDM, pages 334–345, 2008.

[5] G. C. Garriga, H. Heikinheimo, and J. K. Seppänen. Cross-mining binary and numerical attributes.
In ICDM, pages 481–486, 2007.

[6] J. Grinnell. The niche-relationships of the California Thrasher. The Auk, 34(4):427–433, 1917.
[7] H. Grosskreutz and S. Rüping. On subgroup discovery in numerical domains. Data Min. Knowl.

Disc., 19(2):210–226, 2009.
[8] R. J. Hijmans, S. Cameron, L. Parra, P. Jones, and A. Jarvis. Very high resolution interpolated

climate surfaces for global land areas. Int. J. Climatol., 25:1965–1978, 2005. www.worldclim.org.
[9] D. Kumar. Redescription mining: Algorithms and applications in bioinformatics. PhD thesis,

Department of Computer Science, Virginia Tech, 2007.
[10] D. Leman, A. Feelders, and A. J. Knobbe. Exceptional model mining. In ECML/PKDD, pages 1–16,

2008.
[11] A. J. Mitchell-Jones, G. Amori, W. Bogdanowicz, B. Krystufek, P. Reijnders, F. Spitzenberger,

M. Stubbe, J. Thissen, V. Vohralik, and J. Zima. The atlas of European mammals. Academic Press,
London, 1999. www.european-mammals.org.

[12] P. K. Novak, N. Lavrac, and G. I. Webb. Supervised descriptive rule discovery: A unifying survey of
contrast set, emerging pattern and subgroup mining. J. Mach. Learn. Res., 10:377–403, 2009.

[13] M. Ojala, N. Vuokko, A. Kallio, N. Haiminen, and H. Mannila. Randomization methods for assessing
data analysis results on real-valued matrices. Stat. Anal. Data Min., 2(4):209–230, 2009.

[14] L. Parida and N. Ramakrishnan. Redescription mining: Structure theory and algorithms. In AAAI,
pages 837–844, 2005.

[15] R. G. Pearson and T. P. Dawson. Predicting the impacts of climate change on the distribution of
species: Are bioclimate envelope models useful? Global Ecol. Biogeogr., 12:361–371, 2003.

[16] V. Pericliev and R. E. Vladès-Pérez. Differentiating 451 languages in terms of their segment
inventories. Studia Linguistica, 56(1):1–27, 2002.

[17] N. Ramakrishnan, D. Kumar, B. Mishra, M. Potts, and R. F. Helm. Turning CARTwheels: An
alternating algorithm for mining redescriptions. In KDD, pages 266–275, 2004.

[18] J. Soberón and M. Nakamura. Niches and distributional areas: Concepts, methods, and assumptions.
PNAS, 106(Supplement 2):19644, 2009.

[19] J. Soberón and A. T. Peterson. Interpretation of models of fundamental ecological niches and species
distributional areas. Biodiv. Inform., 2(0), 2005.

[20] R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables. In
SIGMOD, pages 1–12, 1996.

[21] G. Tsoumakas, I. Katakis, and I. Vlahavas. Mining multi-label data. In O. Maimon and L. Rokach,
editors, Data Mining and Knowledge Discovery Handbook, pages 667–685. Springer, 2010.

[22] L. Umek, B. Zupan, M. Toplak, A. Morin, J.-H. Chauchat, G. Makovec, and D. Smrke. Subgroup
discovery in data sets with multi-dimensional responses: A method and a case study in traumatology.
In AIME, pages 265–274, 2009.

[23] M. van Leeuwen. Maximal exceptions with minimal descriptions. Data Min. Knowl. Disc., 21(2):1–
18, 2010.

[24] M. J. Zaki. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng., 12(3):372–
390, 2000.

[25] M. J. Zaki and N. Ramakrishnan. Reasoning about sets using redescription mining. In KDD, pages
364–373, 2005.

