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Abstract: We recently introduced in [9] a boundary-to-bound dictionary between gravi-

tational scattering data and observables for bound states of non-spinning bodies. In this

paper, we elaborate further on this holographic map. We start by deriving the following

— remarkably simple — formula relating the periastron advance to the scattering angle:

∆Φ(J, E) = χ(J, E) + χ(−J, E), via analytic continuation in angular momentum and bind-

ing energy. Using explicit expressions from [9], we confirm its validity to all orders in

the Post-Minkowskian (PM) expansion. Furthermore, we reconstruct the radial action for

the bound state directly from the knowledge of the scattering angle. The radial action

enables us to write compact expressions for dynamical invariants in terms of the deflec-

tion angle to all PM orders, which can also be written as a function of the PM-expanded

amplitude. As an example, we reproduce our result in [9] for the periastron advance, and

compute the radial and azimuthal frequencies and redshift variable to two-loops. Agree-

ment is found in the overlap between PM and Post-Newtonian (PN) schemes. Last but

not least, we initiate the study of our dictionary including spin. We demonstrate that the

same relation between deflection angle and periastron advance applies for aligned-spin con-

tributions, with J the (canonical) total angular momentum. Explicit checks are performed

to display perfect agreement using state-of-the-art PN results in the literature. Using the

map between test- and two-body dynamics, we also compute the periastron advance up

to quadratic order in spin, to one-loop and to all orders in velocity. We conclude with

a discussion on the generalized ‘impetus formula’ for spinning bodies and black holes as

‘elementary particles’. Our findings here and in [9] imply that the deflection angle already

encodes vast amount of physical information for bound orbits, encouraging independent

derivations using numerical and/or self-force methodologies.
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1 Introduction

Motivated by the new era of gravitational wave science dawning upon us [1–5], as well

as the vast computational challenges [6–8], we have introduced in [9] (hereafter paper I)

a boundary-to-bound dictionary between gravitational scattering data and dynamical in-

variants for elliptic orbits. We were able to bypass the need of rather lengthy and gauge

dependent objects, e.g. the Hamiltonian, by directly mapping scattering information to

gauge independent quantities for bound states, thus simplifying a key step required to

construct accurate waveforms, while revealing a surprising connection between observables

naturally defined the boundary and those in the bulk of spacetime. The construction in

paper I was built upon a remarkable connection between the relative momentum of the

two-body system and the scattering amplitude in the (conservative) classical limit, which
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we dubbed the impetus formula. For generic orbits, the latter allowed us to construct a

radial action depending only on the — analytically continued — scattering amplitude, from

which dynamical invariants such as the periastron advance (∆Φ) can be obtained by differ-

entiation. Moreover, using Firsov’s formula [10–12] — relating the scattering angle (χ) to

the distance of closest approach — we have identified the orbital elements for elliptic orbits

from hyperbolic motion via an additional analytic continuation in the impact parameter.

By imposing the vanishing of the eccentricity, we were able to simplify the derivation of the

orbital frequency for circular orbits (Ω) directly from scattering data. As an example, we

derived expressions for Ω and ∆Φ directly from the knowledge of the scattering amplitude

to two-loops, to all orders in velocity, reproducing known results to second order in the

Post-Newtonian expansion (PN) while also providing a subset of exact (‘non-renormalized’)

contributions to all PN orders. By resorting to a ‘no-recoil’ approximation for the ampli-

tude, together with the impetus formula, we also unveiled the reason behind the map

between test-body and two-body dynamics to 2PM order, originally discovered in [13].

The purpose of this paper is to continue developing further the dictionary of paper I.

In particular, we will elaborate on the (re-)construction of the radial action from boundary

data, and the computation of all the independent gravitational observables for bound orbits.

In principle, the radial action was introduced, see e.g. [14], as an integral over the radial

relative momentum of the two-body system. Only after the impetus formula obtained

in paper I is invoked, we were able to connect the latter to the scattering amplitude, thus

opening the possibility to relate bound and unbound dynamics for generic orbits. However,

despite being gauge invariant, the classical limit of the scattering amplitude per se does

not constitute an observable quantity.1 At the same time, in paper I we also derived

an expression for the scattering angle as a function of the amplitude to all PM orders.

Therefore, it is natural to explore the possibility to recast our dictionary by re-expressing

the coefficients of the amplitude in terms of those of the deflection angle, for instance for the

computation of the periastron advance. As we discuss here, a remarkable simplification

arises, directly connecting the latter to the (even coefficients of the) former in the PM

framework. It turns out, once this relationship is found, the vestiges of the impetus formula

disappear, hence begging for a more general explanation. We provide it as the starting

point of our paper, by demonstrating the following remarkably simply relationship

∆Φ(J, E) = χ(J, E) + χ(−J, E) , E < 0 , (1.1)

between the periastron advance and the analytic continuation of the scattering angle, both

in angular momentum and binding energy, in the conservative sector. We provide not only

the basis for the relation in (1.1) but also extensive evidence in concrete calculations. In par-

ticular, we demonstrate its validity in an exact case as well as to all orders in PM theory.

Armed with (1.1), we can then reconstruct the radial action entirely in terms of the

scattering angle, by integrating with respect to the angular momentum. As we show,

1Nevertheless, we have argued in paper I that the impetus formula invites itself to interpret the co-

efficients of the scattering amplitude (in Fourier space) as carrying physical information in the form of

asymptotic charges.

– 2 –



J
H
E
P
0
2
(
2
0
2
0
)
1
2
0

the integration constant may be matched in the large angular momentum limit, which

can be computed exactly. Using the expressions derived in paper I, we then provide a

compact expression in the PM framework that can be used to obtain all of the gravitational

observables of the two-body system, directly from the (analytically continued) scattering

angle. As an example we derive the azimuthal and radial frequency as well as the redshift

function to two-loop orders, in addition to (re-)deriving the expression for the periastron

advance first obtained in paper I.

Due to several subtleties in the definition of the momentum and orbital elements, we

have not attempted in this paper to study the extension of our formalism to spinning

bodies with general orientations. Yet, the fact that the assumptions leading to (1.1) are

quite general, naturally led us to explore whether it applies once rotation is included, at

least in some restricted situations. We demonstrate that is indeed the case for black holes

with aligned-spins. The map consists on replacing J in (1.1) by the total canonical angular

momentum. The proof of (1.1) for the case of aligned-spins relies solely on the existence of

the quasi-isotropic gauge, in which the Hamiltonian depends on the canonical momentum

via the combination P 2 = P 2
r + L2/r2, with L the canonical orbital angular momentum,

except in the odd-spin case where one has single factors of L · a → La, with a the spin

parameter (with units of length) [13]. Even though at this stage we resort to the existence

of the quasi-isotropic gauge, this is ultimately the one (implicitly) chosen by the Fourier

transform of the amplitude in the center of mass frame. Therefore, provided the matching

discussed in [15–18] carries over to spin, as suggested in [19–26], the existence of this gauge

is guarantee to all PM orders. As before, the exact form of the Hamiltonian is never needed,

although it may be obtained and shown to agree with the existent literature, e.g. [27–34].

As an example, we explicitly show that (1.1), applied to the results obtained in [13] for

the deflection angle, accurately predicts the value of the PN-expanded periastron advance

to 3.5PN order computed in [35]. Moreover, using the map between test- and two-body

dynamics for spinning bodies to 2PM uncovered in [13], we compute the periastron advance

up to quadratic order in the spin, to one-loop and to all orders in velocity. We will return

to the study of spin effects in forthcoming work.

2 Radial action

The classical problem of motion in gravity involving two non-rotating objects occurs

in a plane, which we can choose to coincide with θ = π/2. Following Hamilton-Jacobi

theory, and given the translational and rotational invariance in time and φ, there exist an

effective action describing the dynamics in the center of mass frame of the form

S = −µEt+ Jφ+ Sr(J, E), (2.1)

where the conservation of energy,

E = M + µE = M(1 + νE) , (2.2)

is manifest. Here M = m1 + m2 is the total mass, µ = m1m2/M is the reduced mass,

ν ≡ µ
M is the symmetric mass ratio, and J is the angular momentum. The radial action
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takes the form [14]:

Sr =
1

2π

∮
pr(J, E , r)dr , (2.3)

where

pr(J, E , r) ≡
√
p2(E , r)− J2/r2 , (2.4)

is the radial momentum of the two-body system in the center of mass, written as a function

of the energy and angular momentum, by solving for pr the equation H(pr, J, r) = E.

Depending on the type of trajectory, unbound (E > 0) or bound (E < 0), the endpoints of

the radial integral are the point of closest approach and infinity, as in a scattering process,

or the motion occurs between the real positive zeros of pr, as for elliptic motion. The

scattering angle and periastron advance can be obtained by taking the derivative with

respect to the angular momentum of the radial action.

Notice that, at this stage, we have not made any additional assumption about the

motion, which is assumed to be conservative, other than the fact that the bodies are non-

rotating. As we shall see, continuing the development of the dictionary put forward in

paper I, the scattering angle can be directly connected to the periastron advance for bound

states, via analytic continuation in energy and angular momentum. This can be achieved

once the orbital elements are identified, as we did in paper I.

In what follows we will denote as r̃± the roots associated to the radial variable for the

scattering problem; and omit the tilde, e.g. simply r±, for the case of bound orbits [9].

2.1 Deflection angle

The computation of the deflection angle is standard in the literature, see e.g. [11, 12]. It

can also be derived directly from the radial action, with a contour ‘around infinity’,

Sr(J, E) =
2

2π

∫ ∞

rmin(J,E)
pr(J, E , r)dr (unbound) (2.5)

where E > 0. (The factor of two is due to the ‘return trip’.) The function rmin(J, E) > 0

is the point of closest approach in hyperbolic motion. The impact parameter is related to

the angular momentum via J = p∞b, with p∞ the center of mass momentum at infinity.

In the notation of paper I, we have

p2∞ = µ2 γ
2 − 1

Γ2
, (2.6)

with γ = p1 · p2/(m1m2) in the center of mass and Γ = E/M . We will also identify

rmin = r̃−, the one positive (real) root obeying

pr(J, E , r̃±(J, E)) = 0, (2.7)

with the other root, r̃+, being negative (see figure 1) [9]. Then, we have

χ+ π

2π
= −∂Sr(J, E)

∂J
=

1

π

∫ ∞

r̃−(J,E)

J

r2
√
p2(E , r)− J2/r2

dr , (2.8)

for the scattering angle.
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Figure 1. The geometry of the scattering problem. The motion of the bodies traces two hyperbolas,

which are separated by r̃
−

at the point of closest approach. See paper I for details.

2.2 Periastron advance

Similar considerations apply to the bound case, except that now we have two real and

positive roots in (2.7), denoted as r± in paper I, which determine the turning points of the

orbit, see figure 2. The radial action takes the form

Sr(J, E) =
2

2π

∫ r+(J,E)

r−(J,E)
pr(J, E , r)dr (bound) (2.9)

with E < 0, and the same factor of 2 to complete the orbit. The periastron advance follows

via differentiation

∆Φ + 2π

2π
= −∂Sr(J, E)

∂J
=

1

π

∫ r+(J,E)

r−(J,E)

J

r2
√
p2(E , r)− J2/r2

dr . (2.10)

The reader will immediately notice that, written in this form, the similarity to the scattering

angle is conspicuously displayed.

2.3 Endpoints: hyperbola vs ellipse

As it was demonstrated in paper I, the orbital elements for bound and unbound orbits

can be related via analytic continuation. For the scattering process, the point of closest

approach rmin corresponds to the positive of the two (real) roots of (2.7), while the other

root is negative. The two (real) roots for bound orbits, 0 < r− < r+, can then be obtained

from to the hyperbolic case as follows. First the smaller root is obtained via analytic

continuation in the energy and impact parameter [9]

r−(b, E) = r̃−(ib, E) b > 0, E < 0 , (2.11)

where the (real) impact parameter is related to the angular momentum via

b = J/|p∞| > 0 . (2.12)

Notice we have taken the absolute value of p∞, which is purely imaginary for negative

energies, namely p∞ → −ip∞, such that p2∞ < 0 for bound orbits. In terms of the angular

momentum, we have J = p∞b = (−ip∞)(ib) > 0, therefore it remains the same under the

above analytic continuation. This implies

r−(J, E) = r̃−(J, E) J > 0, E < 0 . (2.13)

– 5 –



J
H
E
P
0
2
(
2
0
2
0
)
1
2
0

r+

r−
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a

ea

u

Figure 2. Bound elliptic motion in the center of mass frame. The black ellipses mark the individual

paths. The heavier body lies on the focus of the green dashed ellipse. The latter describes the

worldline of the lighter body in the companion’s frame. The dotted circle of radius a defines the

eccentric anomaly, u, with e the eccentricity. See paper I for details.

In other words, as expected from the condition in (2.7), one of the roots is simply related

by analytic continuation in the energy at fixed (positive) angular momentum.

For the other root, which for the scattering problem is negative, we showed that it can

be connected to r̃− via an additional analytic continuation in the impact parameter [9],

r+(b, E) = r̃−(−ib, E) b > 0, E < 0 , (2.14)

or equivalently, using (2.11),

r+(b, E) = r−(−b, E) , b > 0 , (2.15)

both evaluated at fixed (negative) binding energy. In terms of the angular momentum, the

analytic continuation to negative impact parameter and binding energy implies J → −J ,

which yields

r+(J, E) = r̃−(−J, E) J > 0, E < 0 , (2.16)

or equivalently,

r+(J, E) = r−(−J, E) J > 0 . (2.17)

The above relationships will play a central role in connecting the scattering angle and

periastron advance, as we show next.

3 From scattering angle to periastron advance . . .

3.1 Analytic continuation

The idea is to relate the radial action for the bound and unbound case, via analytic con-

tinuation. In order to remove the upper limit at infinity, let us consider the following
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combination,

(
χ(J, E)
2π

+
1

2

)
+

(
χ(−J, E)

2π
+

1

2

)
=

1

π

∫ r̃−(−J,E)

r̃−(J,E)

J

r2
√
p2(E , r)− J2/r2

dr , (3.1)

where we used that, without spins,

pr(J, E , r) = pr(−J, E , r) . (3.2)

(We will return to this condition in section 5 when we discuss spin effects.) Hence, from the

analytical continuation to E < 0, which connects the endpoints from hyperbolic to elliptic

motion (see section 2.3), we find

1 +
1

2π
(χ(J, E) + χ(−J, E)) = 1

π

∫ r+(J,E)

r−(J,E)

J

r2
√
p2(E , r)− J2/r2

dr

= 1 +
1

2π
∆Φ(J, E) ,

(3.3)

such that

∆Φ(J, E) = χ(J, E) + χ(−J, E) , E < 0 , (3.4)

analytically continued both in angular momentum and binding energy. As a side-product,

the above relationship implies ∆Φ(J, E) = ∆Φ(−J, E), which is indeed a symmetry in the

conservative sector.

Notice that, while χ in principle is an incomplete hyper-elliptic integral, its symmet-

ric part (in J → −J) becomes a complete elliptic integral, which gives us the periastron

advance after analytic continuation in the energy. Since we have not assumed a perturba-

tive expansion, the above relationship applies also in the non-perturbative (conservative)

regime, including radiation-reaction effects (in the regime where the scattering angle is a

smooth function of energy and angular momentum).

3.2 Post-Minkowskian expansion

The non-perturbative relationship between scattering angle and periastron advance can

also be studied in the PM framework. Introducing the PM expansions in j = J/(GMµ)

(notice only even terms in j contribute for non-rotating bodies)

∆Φ(j, E) =
∑

n=1

∆Φ
(2n)
j (E)/j2n , (3.5)

and
χ

2
(j, E) =

∑

n=1

χ
(n)
j (E)/jn , (3.6)

the map in (3.4) yields, for non-spinning bodies,

∆Φ
(2n)
j (E) = 4χ

(2n)
j (E) , (3.7)

after analytic continuation in the energy.
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In paper I we provided expression for both the l.h.s. and r.h.s. of (3.7) in terms of the

scattering amplitude, via the radial action together with the impetus formula [9]

p2 = p2∞ + M̃(r,p) , (3.8)

(ignoring thus far radiation-reaction effects) expanded perturbatively as

= p2∞

(
1 +

∑

i=1

fi(E)
(GM)i

ri

)
= p2∞ +

∑

n=1

M̃n(E)
Gn

rn
, (3.9)

where2

M̃n(E) =
rn

2E

∫
d3q

(2π)3
Mn(p, q)e

iq·r . (3.10)

For instance, using (2.10) to 4PM order we found [9]

∆Φ(j, E) = π
M̃2

µ2M2j2
+

3π

4

1

M4µ4j4
(
M̃2

2 + 2M̃1M̃3 + 2p2∞M̃4

)
+ · · · . (3.11)

On the other hand, we also derived the PM coefficients of the scattering angle as a function

of the scattering amplitude,

χ
(n)
j = p̂n∞χ

(n)
b = p̂n∞

√
π

2
Γ

(
n+ 1

2

) ∑

σ∈P(n)

1

Γ
(
1 + n

2 − Σℓ
)
∏

ℓ

fσℓ

σℓ

σℓ!
, (3.12)

where p̂∞ = p∞/µ. The above expression is written in terms of integer-partitions of

n = σℓσ
ℓ (summation), with Σℓ ≡

∑
ℓ σ

ℓ, see paper I for more details. Through (3.12), the

relationship in (3.7) yields3

∆Φ
(2)
j =4χ

(2)
j =πp̂2∞ f2=π

M̃2

M2µ2
,

∆Φ
(4)
j =4χ

(4)
j =

3πp̂4∞
4

(
f2
2 +2f1f3+2f4

)
=

3π

4M4µ4

(
M̃2

2+2M̃1M̃3+2p2∞M̃4

)
,

(3.13)

to 4PM order, which are in perfect agreement with our previous result in (3.11). Note that

the connection to the scattering angle explains the factor of p2∞ in front of M̃4.

We emphasize that the relationship in (3.7) does not rely on the impetus formula,

which is only used to relate fn’s appearing on the left- and right-hand side of (3.7), to the

M̃n expansion coefficients of the scattering amplitude. As we demonstrate in appendix A,

see also section 4.1, the agreement between the periastron advance and scattering angle

continues to all PM orders. We have checked that the agreement continues also in the PN

theory, see section 5 where we incorporate spin effects.

2M(q,p) =
∑

n GnMn(p, q) is the (IR-finite part of the) relativistic 2 → 2 amplitude in the (conserva-

tive) classical limit. See paper I for more details.
3For the case 2n = 4 we have four partitions in (3.12): 2n = 4 · 1 = 2 · 2 = 3 · 1 + 1 · 1 = 1 · 4 , such that

∆Φ
(4)
j = 4χ

(4)
j = 2p̂4∞

√
π Γ

(

5

2

)(

1

Γ(2)

f1
4

1!
+

1

Γ(1)

f2
2

2!
+

1

Γ(1)

f1
1 f

1
3

1!1!
+

1

Γ(−1)

f4
1

4!

)

= p̂4∞
3π

2

(

f4 +
1

2
f2
2 + f1f3

)

.

Notice that, due to 1
Γ(−1)

→ 0, the f4
1 term is absent.
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3.3 The exact f2-theory

The relationship in (3.4), however, is valid also in the non-perturbative regime. An illumi-

nating example is given by the ‘f2-theory’, in which we set fn 6=2 = 0.4 It is easy to show

that in this case we only have even PM contributions to the scattering angle,

χ
(2n)
j [f2] = p̂2n∞

√
πΓ

(
n+ 1

2

)

2Γ(n+ 1)
fn
2 , n = 1, 2, · · ·

χ
(2n+1)
j [f2] = 0 ,

(3.14)

obtained from (3.12). It is straightforward to perform the resummation, see paper I, and

we found
χ[f2] + π

2
=

π

2
√
1− p̂2∞f2

j2

. (3.15)

On the other hand, the periastron advance can be also computed exactly for the f2-theory,

directly from the radial action at one-loop order [9]. We obtained in paper I,

∆Φ[f2]

2π
=


 1√

1− M̃2
M2µ2j2

− 1


 . (3.16)

Hence, using p̂2∞f2 = M̃2/(M
2µ2), we have

∆Φ(J, E) = χ(J, E) + χ(−J, E) = 2χ(J, E) , (3.17)

confirming the non-perturbative relation between scattering angle and periastron advance

in (3.4).

4 . . . to dynamical invariants

The direct connection between χ and ∆Φ allows us to compute one of the key gravitational

observables for bound states, via a simple analytic continuation. In order to obtain all of the

other observables (for non-spinning bodies), we need to reconstruct the radial action. This

can be easily done by integrating the relationship in (3.4), and matching the integration

constant in the J → ∞ limit, as we discuss next.

4.1 Reconstructing the radial action

In paper I we obtained the periastron advance by first computing the radial action, and af-

terwards performing the partial derivative w.r.t. the angular momentum, see (2.10). Armed

with the apsidal precession directly from the scattering angle, we can now proceed in the op-

posite direction, and construct the radial action via integration of the relationship in (2.10)

together with (3.4) and (3.7). We will do this in the PM framework, where we have

Sr

GMµ
= −

(
j +

2

π

∑

n

χ
(2n)
j (E)

∫
dj

j2n

)
+ α(E) , (4.1)

4As expected there is no precession at 1PM from (3.4).
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with α(E) an integration constant. We can easily determine α(E) by matching the above

expression to our derivation in paper I of the radial action,

Sr(J, E) = −
∞∑

n=0

∑

σ∈P(n)

(−1)Σ
ℓ
Γ
(
Σℓ − 1

2

)

2
√
π

S{n+2Σℓ,Σℓ}
(
A,B,C

)∏

ℓ

Dσℓ

σℓ

σℓ!
. (4.2)

The master integrals, S{n+2Σℓ,Σℓ}, can be found in appendix A. The A,B,C,Dn functions

are given by:

−A = −p2∞ ,

2B = p2∞f1GM ,

−C = J2
(
1− p2∞f2(GM)2/J2

)
,

Dn = p2∞fn+2(GM)n+2 .

(4.3)

In general, the radial action takes the form [9, 14]

Sr =

(
B√
−A

−
√
−C

)
+ · · · , (4.4)

with the ellipses including polynomials in Dn whose coefficients are combinations of func-

tions of the type (see appendix A)

Bk

C
1
2
(m+k−1)

, (4.5)

with (m, k) positive integers. Hence, taking the limit J → ∞ in both expressions for the

radial action leaves only the leading order term behind, yielding

lim
J→∞

Sr =
B√
−A

−
√
−C =

p2∞f1GM

2
√

−p2∞
− J = −J +GMµα(E) . (4.6)

The integration constant is then simply given by:

α(E) = p̂2∞√
−p̂2∞

f1
2

= sg(p̂∞)χ
(1)
j , (4.7)

where we introduced

sg(p̂∞) ≡ p̂∞√
−p̂2∞

=
p̂∞
|p̂∞| , (4.8)

and used the 1PM result

χ
(1)
j = p̂∞

f1
2
. (4.9)

From here we obtain the remarkably simple form of the radial action for the bound state,

ir(j, E) ≡
Sr

GMµ
= sg(p̂∞)χ

(1)
j (E)− j

(
1 +

2

π

∑

n=1

χ
(2n)
j (E)

(1− 2n)j2n

)
, (4.10)

directly via analytic continuation to E < 0 in the PM coefficients of the scattering angle.
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We can also write a compact formula in terms of the scattering amplitude to a given

nPM order. Using the expression for the scattering angle in terms of the fn’s derived in

paper I (see (3.12)), we find5

ir(j,E)=
p̂2∞√
−p̂2∞

f1
2
+

j

2
√
π

∞∑

n=0

(
p̂∞
j

)2n

Γ

(
n− 1

2

) ∑

σ∈P(2n)

1

Γ(1+n−Σℓ)

∏

ℓ

fσℓ

σℓ

σℓ!

=
1

2
√
−p2∞

M̃1

Mµ
+

j

2
√
π

∞∑

n=0

(
Γ
(
n− 1

2

)

(µMj)2n

∑

σ∈P(2n)

p
2(n−Σℓ)
∞

Γ(1+n−Σℓ)

∏

ℓ

M̃σℓ

σℓ

σℓ!

)
,

(4.11)

where in the second line we used the impetus formula (3.9) to relate the fn’s to the M̃n’s.

For instance, to 4PM order we obtain

ir(j,E)=−j+
p̂2∞√
−p̂2∞

f1
2
+
p̂2∞
2j

f2+
p̂4∞
8j3

(
f2
2 +2f1f3+2f4

)
+ · · ·

=−j+
1

2
√

−p̂2∞

M̃1

Mµ2
+

1

2j

M̃2

M2µ2
+

1

8j3

(
M̃2

2+2M̃1M̃3+2p2∞M̃4

)

M4µ4
+ · · · .

(4.12)

4.2 One-loop resummation

As for the exact f2 theory in section 3.3, we can also perform a partial PM resummation

of the radial action in (4.10). This is relatively straightforward in terms of the scattering

amplitude. As we demonstrate in appendix A, the PM expansion of the radial action

in terms of master integrals derived in paper I is equivalent to the expansion in (4.10),

or (4.11), reconstructed from the scattering angle. At the same time, as it was observed

also in paper I, the expression in (4.2) naturally resums the one-loop contribution. This

can be easily seen already with the first term. To one-loop order only the leading term

S{q=0,m=0} contributes, and we find the result quoted in (4.4),

ir =
M̃1

2Mµ2
√
−p̂2∞

− j

√

1− M̃2

M2µ2j2
+ · · · , (4.13)

which accounts for many of the one-loop contributions at nPM in the series expansion

of (4.11). As we discussed in paper I, this expression already includes non-perturbative

information, both in the PM and PN expansions. We may now go one step further, and

resum all the contributions from the one-loop term in the radial action.

At higher orders, the radial action involves polynomials in Dn, whose coefficients de-

pend on the combinations shown in (4.5). In terms of the amplitude, these take the form

M̃k
1(

(J/G)2 − M̃2

) 1
2
(m+k−1)

. (4.14)

5We have absorbed the −j into the n = 0 contribution in the sum. This follows after defining
∑

σ∈P(0) # = 1, and noticing j

2
√
π
Γ
(

− 1
2

)

= −j.

– 11 –



J
H
E
P
0
2
(
2
0
2
0
)
1
2
0

Notice this naturally resums all the 1/jn contributions from the one-loop term. For exam-

ple, keeping the leading terms in the ‘D1,2-theory’, but resuming all the one-loop contri-

butions, we arrive at

ir =
M̃1

2Mµ2
√
−p̂2∞

− j

√

1− M̃2

M2µ2j2


1− 1

(
1− M̃2

M2µ2j2

)2

(
M̃1M̃3 + p2∞M̃4

4M4µ4j4

)
+ · · · ,

(4.15)

which recovers the expression in (4.12) after expanding in 1/j. In what follows we show how

all the dynamical invariants of the bound state can be obtained directly from variations of

the radial action, which itself may be obtained directly in terms of the scattering angle as

we have shown here, or the scattering amplitude as discussed in paper I.

4.3 Gravitational observables

We have already shown how the periastron advance follows from the scattering an-

gle in (3.4). Yet, armed with (4.10) we can also obtain, after analytic continuation in

the energy, all the other observables for the two-body problem via differentiation.

Periastron advance. By construction, we have

∆Φ(j, E)
2π

= − ∂

∂j
n(j, E) = 1

π

∑

n=1

2χ
(2n)
j (E)
j2n

=
1

π

χ(J, E) + χ(−J, E)
2

, (4.16)

where n = ir + j is the so-called Delaunay variable, see e.g. [36].

Azimuthal and radial frequencies. The periastron-to-periastron period is given by

Tp

2π
= GM

∂

∂E ir(j, E) = GM

(
∂E

(
sg(p̂∞)χ

(1)
j (E)

)
− 2

π

∑

n=1

∂E χ
(2n)
j (E)

(1− 2n)j2n−1

)

= GE

(
∂γ

(
sg(p̂∞)χ

(1)
j (γ)

)
− 2

π

∑

n=1

∂γ χ
(2n)
j (γ)

(1− 2n)j2n−1

)
,

(4.17)

where in the last line we used ∂γ
∂E = Γ = E/M . From here we can also compute the radial

and periastron frequencies [36]

Ωr(j, E) ≡
2π

Tp
, Ωp(j, E) ≡

∆Φ

Tp
, (4.18)

as well as the azimuthal frequency [36],

Ωφ ≡ Ωr +Ωp =
2π

Tp

(
1 +

∆Φ

2π

)
. (4.19)

Alternatively, it can also be read-off directly from the radial action,

GMΩφ = − 1

Γ

∂ir
∂j

(
∂ir
∂γ

)−1

. (4.20)
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In terms of the scattering angle we find

x = x1PM

(
1 + 2

π

∑
n=1

χ
(2n)
j (γ)

j2n

)2/3

(
1− x

3/2
1PM

2Γ
π

∑
n=1

∂γ χ
(2n)
j (γ)

(1−2n)j2n−1

)2/3
, (4.21)

where we introduced the standard PN parameter x ≡ (GMΩφ)
2/3, and the 1PM contribu-

tion is given by6

x1PM ≡ 1
(
Γ∂γ

(
sg(p̂∞)χ

(1)
j (γ)

))2/3
=

(1− γ2)

(Γ(3γ − 2γ3))2/3
. (4.23)

Orbital frequency for circular orbits. For the case of circular orbits the azimuthal

frequency turns into the orbital frequency, i.e. Ωφ → Ωcirc. However, the derivation as a

function of the binding energy only, still requires knowledge of the function j(E). This can
be obtained by setting ir = 0 and solving for the angular momentum in (4.10). Notice,

however, this is rather cumbersome in general. Alternatively, as we explained in paper I ,

the function j(E) can be derived directly through the determination of the orbital elements,

and the condition of vanishing eccentricity. Furthermore, once j(E) is known, the orbital

frequency also follows from the first law of binary dynamics [37], obtaining [9]

Ωcirc =

(
dj(E)
dE

)−1

=
1

Γ

(
dj(E)
dγ

)−1

. (4.24)

Therefore, while equivalent to setting the radial action to zero, the analysis in paper I

enforcing the vanishing of the eccentricity simplifies the derivation of the orbital frequency

for circular orbits.

Redshift. The first law of black hole dynamics states [37], in our language,

δSr(J,E,ma) = −
(
1 +

∆Φ

2π

)
δJ +

1

Ωr
δE −

∑

a=1,2

〈za〉
Ωr

δma , (4.25)

where 〈za〉 is the averaged redshift. For constant mass, δma = 0, the derivative with respect

the total and binding energy coincide (see (2.2)). However, when we allow for variations

of the masses, the first law becomes

δSr(J, E ,ma) = −
(
1 +

∆Φ

2π

)
δJ +

µ

Ωr
δE −

∑

a

1

Ωr

(
〈za〉 −

∂E(E ,ma)

∂ma

)
δma . (4.26)

6Notice that in the PN expansion we have, with ǫ = −2E ,

x1PM = ǫ

(

1 +
1

12
(−15 + ν) ǫ+

1

72
(180 + 15ν + 4ν2)ǫ2 + · · ·

)

. (4.22)

As we already showed in paper I, the compact expression in (4.23) incorporates the exact O(νnǫn) contri-

butions to all PN orders. (This is not surprising, since f1 controls the 1PM theory.) We can also see from

here why the higher powers of ν are protected. This is simply due to the scaling 1/j2 ∼ ǫ, as well as the

smoothness of the ν → 0 limit.
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The derivatives with respect to J and E gave us the periastron advance and radial frequency,

while the remaining one yields

〈za〉−〈z(0)a 〉=−Ωr
∂Sr

∂ma
=−µ

(
∂Sr

∂E

)−1 ∂Sr

∂ma

=− 1

M

(
∂E

(
sg(p̂∞)χ

(1)
j (E)

)
− 2

π

∑

n=1

∂E χ
(2n)
j (E)

(1−2n)j2n−1

)−1

× (4.27)

× ∂

∂ma

[
m1m2

(
p̂∞√
−p̂2∞

χ
(1)
j (E ,ma)−

2

π

∑

n=1

χ
(2n)
j (E ,ma)

(1−2n)

(
Gm1m2

J

)2n−1
)]

for the shift in the average redshift, with

〈z(0)a 〉 ≡ ∂E(E ,ma)

∂ma
= 1 +

∂µ

∂ma
E . (4.28)

4.4 {∆Φ,Ωr,Ωφ, z1} to two-loops

Using the general formulas in (4.10) and (4.11) we can now construct all dynamical invari-

ants using the state-of-the-art knowledge of the scattering angle to two-loops. The relevant

scattering amplitude was computed in [17, 18], leading to the PM coefficients

M̃1 = 2Mµ2

(
2γ2 − 1

Γ

)

M̃2 =
3M2µ2

2

(
5γ2 − 1

Γ

)

M̃3 = −M3µ2

6Γ

(
3− 54γ2 − 48ν(3 + 12γ2 − 4γ4)

arcsin
√

1−γ
2√

1− γ2

+ ν

(
−6 + 206γ + 108γ2 + 4γ3 − 18Γ(1− 2γ2)(1− 5γ2)

(1 + Γ)(1 + γ)

)

 .

(4.29)

We can also perform a partial PM resummation of one-loop effects, as shown in (4.15).

However, as we shall see below, the power counting is subtle. As we noticed already

in paper I with the derivation of the scattering angle and periastron advance from the

amplitude, the different loop orders are mixed in the 1/j expansion. Therefore, we will

only keep terms up to two-loops, which is a consistent truncation in the PN expansion

due to the factor of p2∞ ∼ E in front of the three-loop amplitude in (4.11). Nevertheless,

the structure of the expansion for the radial action strongly encourages the need of the

three-loop contribution, in order to complete the 1/j4 term to all orders in velocity.
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Radial action

The radial action follows directly form (4.11), using (4.29) we have

i(L=2)
r (j,E)=−j+

2γ2−1√
1−γ2

+
3

4j

5γ2−1

Γ
+

9

32j3
(5γ2−1)2

Γ2
− 1

12j3
2γ2−1

Γ2

(
3−54γ2

+ν

(
−6+206γ+108γ2+4γ3− 18Γ(1−2γ2)(1−5γ2)

(1+Γ)(1+γ)

)

−48ν(3+12γ2−4γ4)
arcsin

√
1−γ
2√

1−γ2




(4.30)

From here it is straightforward to derive the gravitational observables for bound states, as

discussed above.

Periastron advance.

∆Φ(L=2)

2π
=−

∂n(L=2)

∂j
=

3

4j2
5γ2−1

Γ
+

27

32j4
(5γ2−1)2

Γ2
− 1

4j4
2γ2−1

Γ2

(
3−54γ2

+ν

(
−6+206γ+108γ2+4γ3− 18Γ(1−2γ2)(1−5γ2)

(1+Γ)(1+γ)

)

−48ν(3+12γ2−4γ4)
arcsin

√
1−γ
2√

1−γ2


 ,

(4.31)

with n(L=2) = i
(L=2)
r + j, is the Delaunay variable to two-loops. Needless to say, this

recovers the original expression derived in paper I.

Radial and azimuthal frequencies. Up to two loops, expanding in ǫ = −2E , we find

GMΩ
(L=2)
r

ǫ
3
2

=1− (15−ν)

8
ǫ+

555+30ν+11ν2

128
ǫ2

+

(
3(2ν−5)

2j
−194−184ν+23ν2

4j3

)
ǫ
3
2 (4.32)

+

(
15(17−9ν+2ν2)

8j
+
21620−28592ν+8765ν2−865ν3

80j3

)
ǫ
5
2 + · · · ,

GMΩ
(L=2)
φ

ǫ
3
2

=1+
3

j2
− 15(2ν−7)

4j4
+

(
1

8
(ν−15)+

15(ν−5)

8j2
−3(1301−921ν+102ν2)

32j4

)
ǫ

+

(
3(2ν−5)

2j
+
−284+220ν−23ν2

4j3
+
3(913−728ν+106ν2)

j5

)
ǫ
3
2

+

(
1

128
(555+30ν+11ν2)+

3(895−150ν+51ν2)

128j2
(4.33)

− 3(−270085+251236ν−70545ν2+7470ν3)

2560j4

)
ǫ2

+

(
15(17−9ν+2ν2)

8j
+
31520−34442ν+10025ν2−865ν3

80j3

)
ǫ
5
2 .
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The color coding indicates the terms that agree with known results to 3PN order (blue)

obtained in [37], disagree at 3PN (red), and are higher order in velocity (cyan). The

disagreement is expected given the 3PM level of accuracy for the amplitude. Note however,

as we explained in paper I, that certain terms at 3PN are also recovered from the 3PM

scattering angle, e.g. at O(ǫ2/j2). This is due to the fact that these are controlled by the

one-loop term, and are not ‘renormalized’ by higher order PM contributions [9].

Redshift. Using the two-loop results, we obtain for the redshift function

〈z(L=2)
2 〉 = 1 +

1

4
(2ν − 3∆− 3)ǫ+

(
−3(1 + ∆)

j
+

5((5ν − 14)(1 + ∆)− 4ν2)

4j3

)
ǫ
3
2

+
1

16
(3(10− ν)(1 + ∆) + 4ν2)ǫ2 +

(
−3(11ν − 35)(∆ + 1)− 8ν2)

8j

+
(3378− 3021ν)(∆ + 1) + 2165ν2 + 393∆ν2 − 388ν3

32j3

)
ǫ
5
2

×
(

1

32
(−(3ν2 + 130)(∆ + 1) + 4ν3)− 9(1 + ∆)(2ν − 5)

2j2

+
3((738− 633ν)(∆ + 1) + 196ν2 + 96∆ν2 − 4ν3)

8j4

)
ǫ3 ,

(4.34)

where ∆ ≡
√
1− 4ν, assuming without loss of generality that m1 ≥ m2. This factor

accounts for the mass difference (recall ν = 1/4 for equal mass). The value for 〈z1〉 is

obtained by the replacement ∆ → −∆. We have used the same color coding as in (4.33).

Notice the redshift function matches up to O(ǫ3) the value in [37]. That is expected, since

the Newtonian 0PN result starts at O(ǫ).

5 Aligned-spins

The inclusion of spin effects introduces several subtleties, most notably the precession of the

angular momentum. Subsequently the motion is not restricted to a plane. One can assume,

however, that the spin and angular momentum are aligned throughout the evolution of the

binary system. This condition also requires the individual spins to be aligned. Under these

circumstances the dynamics of the bodies remains in a plane. As we shall see, and much

as we did for non-rotating bodies, the contribution from aligned-spin terms entering in

the scattering angle for hyperbolic motion can be directly mapped to contributions to the

periastron advance for bound states.

In this section we will denote as L the canonical orbital angular momentum, to dis-

tinguish it from J , which in this section we will reserve for the total angular momentum,

including the spin. We will denote the canonical linear momentum as P , as opposite to

p, which we use for the physical momentum, see e.g. [13]. To avoid introducing too many

new variables, we will keep r as the position coordinate associated with the canonical mo-

mentum, unless otherwise noted. For the spin parameters we will use the standard vector

ai (with unit of length) such that Si = miai (in c = 1 units). Moreover, we will present

results as a function of ã± ≡ a±/(GM), with a± = a1 ± a2 projected onto the spin axis,
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which coincides with that of the angular momentum. As before, we will quote PN results

in terms of ǫ = −2E ∼ v2.

5.1 Scattering angle to periastron advance

Let us return to the contour integral defined in (3.1), but now shift the sign of the total

angular momentum, namely L → −L and ai → −ai, such that

J = L+m1a1 +m2a2 → −L−m1a1 −m2a2 . (5.1)

Hence, the same routing of the radial action we performed for the non-spinning case yields

in this case

1+
χ(L,ai,E)+χ(−L,−ai,E)

2π
=

1

π

∫ rΛ

r̃−(J,E)

dr

2
√
P 2
r (L,ai,E , r)

∂P 2
r

∂L
(L,ai,E , r) (5.2)

+
1

π

∫ rΛ

r̃−(−J,E)

dr

2
√
P 2
r (−L,−ai,E , r)

∂P 2
r

∂L
(−L,−ai,E , r) ,

written in terms of P , the canonical linear momentum. Inhere the rΛ is an (infrared) cutoff

that can be taken to infinity at the end of the process. Hence, provided

P 2
r (L,ai, E , r) = P 2

r (−L,−ai, E , r) , (5.3)

and
∂P 2

r

∂L
(L,ai, E , r) = −∂P 2

r

∂L
(−L,−ai, E , r) , (5.4)

we have

1 +
χ(J, E) + χ(−J, E)

2π
=

1

π

∫ r̃−(−J,E)

r̃−(J,E)

1

2
√
P 2
r (L,ai, E , r)

∂P 2
r

∂L
(L,ai, E , r)dr , (5.5)

and we can safely take rΛ → ∞.

The conditions in (5.3)–(5.4) may not be satisfied in general. However, as it was

demonstrated in [13], the existence of a quasi-isotropic gauge guarantees that the aligned-

spin Hamiltonian, H(r,P ,S1,S2), only depends on the momentum via the combination

P 2 = P 2
r +

L2

r2
, (5.6)

except for odd-spin terms, where one has single factors of L · a± = La±. Moreover, since

both spin-spin and spin-orbit contributions are invariant under J → −J ,7 the conditions

in (5.3)–(5.4) obeyed.

At the same time, the analysis in paper I of the orbital elements can be easily ex-

trapolated to the case of aligned-spins, provided we use the canonical impact parameter

bcan ≡ L/p∞. The existence of a quasi-isotropic gauge implies that, in the PM framework,

P 2
r (E , L, a1, a2) = p2∞

(
1 +

∑

i

fi(E , a2−, a2−, La+, La−)
(GM)i

ri
− b2can

r2

)
, (5.7)

7This is guaranteed by time-reversal invariance, which holds as long as we work in the conservative

sector. Notice that this in principle may also include radiation-reaction terms, see e.g. [8, 38–43].
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where we used that P∞ = p∞.8 Hence, we can now follow the same steps as in paper I. For

the first root, it is straightforward to show

r−(J, E) = r̃−(J, E) , E < 0 , (5.8)

since this solves Pr = 0, with E < 0 the condition for bound states. The tricky part is to

find the other solution, once spin is included. However, it is also easy to see that

r+(J, E) = r̃−(−J, E) , (5.9)

remains valid. That is clearly the case for even-spin terms, since the a2± contributions go

for the ride. For the odd- and aligned-spin corrections, we notice that L · a → La remains

invariant under L → −L and a → −a, and therefore we can follow the steps in paper I,

with bcan as an independent variable in (5.7), and La serving as a spectator inside the fi’s,

much like spin-spin terms. We will return to the study of the orbital elements with spin

term elsewhere.

We are now in a position to show that the expression in (5.5) yields, in the conservative

sector,

∆Φ(J, E)
2π

=
χ(J, E) + χ(−J, E)

2π
, E < 0 , (5.10)

with J the total angular momentum, as advertised. In what follows we confirm its validity

in the framework of the PN expansion.

5.2 Post-Newtonian expansion

The scattering angle for aligned-spins was computed in [13] as a function of the energy and

impact parameter, using the conservative PN Hamiltonian up to 3.5PN order with spin-

orbit and spin-spin couplings [8, 34, 44, 45]. The results in [13] are given as a function of

the (covariant) impact parameter b, and relative velocity defined through γ = 1/
√
1− v2.

In order to re-write the scattering angle as a function of the canonical orbital angular

momentum, L, one uses [13]

L = p∞b+M
Γ− 1

2

(
a+ − ∆

Γ
a−

)
, (5.11)

8Notice that the canonical momentum, P , in general differs from the physical momentum, p, other than

at infinity, see [13].
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which introduces spin-dependent terms also in the spin-independent contributions.9

Putting it all together, we arrive at:

χ(ℓ,a,ǫ)

2π
=

[
1

π
(−ǫ)−

1
2 − (ν−15)

8π
(−ǫ)

1
2 +

35+30ν+3ν2

128π
(−ǫ)

3
2

]
1

ℓ

+

[
3+

3(2ν−5)

4
ǫ+

3(5−5ν+4ν2)

16
ǫ2− 7ã++∆ã−

2π
ǫ−

1
2

+
5∆(ν−3)ã−+(23ν−25)ã+

16π
(−ǫ)

3
2

]
1

2ℓ2

+

[
−7ã++∆ã−

2
− (ν−6)∆ã−+(7ν−18)ã+

2
ǫ

−3
(
(15−14ν+2ν2)∆ã−+(25−38ν+14ν2)ã+

)

16
ǫ2

− 2

3π
(−ǫ)−

3
2 +

33+ν

4π
(−ǫ)−

1
2 +

3003−1090ν−5ν2+128ã2+
64π

(−ǫ)
1
2

]
1

2ℓ3

+

[
3(35+2ã2+−10ν)

4
− 10080−13952ν+123π2ν+1440ν2

128
ǫ

−624∆ã−ã++24(1−8ν)ã2−−24(12ν−61)ã2+
128

ǫ+ · · ·
]

1

2ℓ4
+ · · · .

(5.12)

where we introduced the reduced canonical orbital angular momentum as ℓ ≡ L/(GMµ)

(as opposed to j, to avoid confusion with the total angular momentum), and we dropped

some terms in half-integer powers in ǫ which do not contribute to the map.

From the above expression we can then use,

χ(J, E) + χ(−J, E)
2π

=
∆Φ(J, E)

2π
, (5.13)

with J the total angular momentum, to compute the periastron advance. We colored in

blue the terms which are symmetric under (L, a±) → (−L,−a±), and therefore contribute

(notice we factored a factor of 1/2 in each one of them already), while the others cancel

out. The result reads

∆Φ(ℓ, a, ǫ)

2π
=

[
3 +

3(2ν − 5)

4
ǫ+

3(5− 5ν + 4ν2)

16
ǫ2
]
1

ℓ2

+

[
−7ã+ +∆ã−

2
− (ν − 6)∆ã− + (7ν − 18)ã+

2
ǫ

−3
(
(15− 14ν + 2ν2)∆ã− + (25− 38ν + 14ν2)ã+

)

16
ǫ2
]
1

ℓ3

+

[
3(35 + 2ã2+ − 10ν)

4
− 10080− 13952ν + 123π2ν + 1440ν2

128
ǫ

−624∆ã−ã+ + 24(1− 8ν)ã2− − 24(12ν − 61)ã2+
128

ǫ+ · · ·
]
1

ℓ4
+ · · · .

(5.14)

9Notice that, for aligned-spins, the two spin supplementarity conditions (covariant and canonical) [8],

lead to the same spin components orthogonal to the plane. Therefore, only the orbital part is shifted by

the change of variables, see [13].

– 19 –



J
H
E
P
0
2
(
2
0
2
0
)
1
2
0

which neatly reproduces the value for the periastron advance derived in [35] to 3.5PN

order.10

5.3 Periastron advance to one-loop

Following [13], we can also use the map between test-body and two-body dynamics, to

compute the periastron advance through (5.10) to 2PM, and to all orders in velocity.

Using the expressions in [13], we first reconstruct the two-body scattering angle via

χ(m1, a1,m2, a2, v, b) =
E

M

(m1

M
χt(M,a1, a2, v, b) +

m2

M
χt(M,a2, a1, v, b)

)
+ · · · . (5.15)

Hence, using our map,

∆Φ(L, ai)

2π
=

χ(L, ai) + χ(−L,−ai)

2π
, (5.16)

together with the knowledge of the scattering angle in the test-body limit, we can compute

the periastron advance to 2PM order. It is somewhat convenient to write the result either

in terms of b or L̂cov = Lcov/µ, the covariant variables. These are related by L̂cov = p̂∞b,

and to the canonical variables via (5.11). The periastron advance thus reads

∆Φ(L)

2πG2M2
=

3(5γ2 − 1)

4L̂2
covΓ

− γ(5γ2 − 3)(7a+ +∆a−)

4L̂3
covΓ

2

+
3
(
(1− 6γ2 + 5γ4)(14∆a−a+ − a2−) + (47− 330γ2 + 315γ4)a2+

)

64L̂4
covΓ

3

=
3(4 + v2)

4L̂2
cov(1− v2)Γ

− (2 + 3v2)(7a+ +∆a−)

4L̂3
cov(1− v2)

3
2Γ2

+
3
(
v2(4 + v2)(14∆a−a+ − a2−) + (32 + 236v2 + 47v4)a2+

)

64L̂4
cov(1− v2)2Γ3

(5.17)

in terms of γ or the relative velocity, respectively. We found this representation much

more simple, however, notice that there are spin-dependent terms hidden in the relation-

ship (5.11), if written in terms of canonical variables. This expression reproduces our

previous results in the overlapping regime of validity.

10We believe, however, there is a typo in the CQ-independent contributions at O(|E|/L4) in [35]. The

term
(

6− 87
4
ν + 3ν2

)

should be replaced by
(

6− 273
8
ν + 3ν2

)

, which readily gives a perfect match.
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6 Discussion

M

χ

∆Φ Sr

Ωr, Ωp,

Ωφ, 〈za〉

χ(n) ↔ fi

p2 + M̃

p2 + M̃
master
integrals

E < 0

χ(J) + χ(−J)

∂J , ( E > 0)

∫
dJ

∂J , ( E < 0)

∂E∂ma

Conclusions. In this paper we have developed further the boundary-to-bound dictionary

introduced in paper I, relating scattering data to gravitational observables for bound states.

Our main result in this paper is the existence of a remarkably simple relationship between

the scattering angle and periastron advance in the conservative sector,

∆Φ(J, E) = χ(J, E) + χ(−J, E) , E < 0 , (6.1)

obtained via analytic continuation in the angular momentum and binding energy. The

above relationship allows us to reconstruct the (reduced) radial action directly from the

scattering angle in the PM framework, yielding (for non-rotating bodies)

ir(j, E) = sg(p̂∞)χ
(1)
j (E)− j

(
1 +

2

π

∑

n=1

χ
(2n)
j (E)

(1− 2n)j2n

)
, (6.2)

with j = GMµJ , the reduced orbital angular momentum, via analytic continuation to

E < 0. Using the expressions for the scattering angle as a function of the fn’s to all orders

derived in paper I, see (3.12), we have shown the equivalence of the above expression for

the radial action with the one obtained in paper I in terms of master integrals, see (4.2).

This confirms the validity of the map between deflection angle and periastron advance to

all PM orders. Moreover, the equivalence of representations allowed us to write a compact

expression for the coefficients of the radial action,

ir(j, E) =
p̂2∞√
−p̂2∞

f1
2

+
j

2
√
π

∞∑

n=0

(
p̂∞
j

)2n

Γ

(
n− 1

2

) ∑

σ∈P(2n)

1

Γ (1 + n− Σℓ)

∏

ℓ

fσℓ

σℓ

σℓ!

=
1

2
√
−p2∞

M̃1

Mµ
+

j

2
√
π

∞∑

n=0

(
Γ
(
n− 1

2

)

(µMj)2n

∑

σ∈P(2n)

p
2(n−Σℓ)
∞

Γ (1 + n− Σℓ)

∏

ℓ

M̃σℓ

σℓ

σℓ!

)
,

(6.3)

to all PM orders, in terms of integer partitions of 2n = σℓσ
ℓ, with Σℓ =

∑
ℓ σ

ℓ. A partial

resummation of one-loop terms can also be performed in closed-form, see section 4.2. All
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of the gravitational observables for bound states follow from the above action via differen-

tiation. As an example we computed, in addition to the periastron advance, the azimuthal

and radial frequency and redshift variable to two-loops, see section 4.4. Agreement is

found in the overlapping regime of validity of the PM and PN frameworks. Yet, as dis-

cussed in paper I, the tree-level and one-loop results also incorporate a series of exact-PN

contributions, to all orders. Moreover, as we argued here, the amplitude to three-loops

will complete the knowledge of the 1/j4 corrections, e.g. to the periastron advance, to all

orders in velocity.

Finally, via analytic continuation in the orbital angular momentum and spin, as well

as the binding energy, we have shown that the relationship in (6.1) applies also once we

include spin effects, provided we restricted the dynamics to aligned-spins in the direction

of the angular momentum. In that case, the periastron advance may be obtained from the

deflection angle using (6.1), with J the canonical total angular momentum. This implies

that, in practice, we must flip the sign of the orbital angular momentum, L → −L, as

well as the spins, ai → −ai. Notice this implies the periastron advance is invariant under

J → −J , which is expected in the conservative sector. As an example, using the results

obtained in [13] for the scattering angle to 3.5PN order, including spin effects, we have

derived the periastron advance directly from (6.1), and shown the agreement with the

result obtained earlier in [35]. Finally, we have used the map between test- and two-body

dynamics of [13] to compute the periastron advance, including spin to one-loop order, to all

orders in velocity. We have also checked that the expression agrees with all the known limits.

There are, once again, many directions to continue exploring our dictionary further.

More pressing, perhaps, is the possibility to extend the impetus formula in (3.9) to spinning

bodies. There is also the intriguing connection between elementary particles and black

holes, e.g. [19–26]. We conclude our paper with a few words on these issues.

Impetus formula & black holes as elementary particles. The above manipulations

strongly suggest that the impetus formula must remain valid, at least under some simplified

conditions. For starters, it is clear that for aligned-spins, the even-spin terms are spectators

in the solution for P 2 from the Hamiltonian. All we needed in paper I to demonstrate the

impetus formula was the canonical representation of the linear momentum, together with

the map to a non-relativistic quantum mechanical system [9]. Therefore, we expect the

impetus formula to hold in such case. Following the same steps, we conclude that the

canonical momentum is related to the scattering amplitude as in (3.8),

P 2(R, E , a1, a2) = p2∞ + M̃S2k(
R, p∞, a1, a2

)
. (6.4)

where we denote the canonical position variable as R here, to emphasize it’s the coordinate

associated with the canonical momentum. As before,

M̃S2k
(R, p∞, a1, a2) ≡

1

2E

∫
d3q

(2π)3
MS2k

(q,P , a1, a2)e
iq·R , (6.5)

is the Fourier transform of the scattering amplitude normalized as in (3.9), but involving

— in addition to spin-independent terms — the even- and aligned-spins only. Notice that,
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unlike before, the Fourier transform may produce a series of 1/Rα terms at a given PM

order, due to the coupling between spin and transfer momentum.

For example, let us consider the 1PM amplitude including only one of the particles

carrying spin a, which reads (recall µM = m1m2) [23]

MS
1PM(q,p,a) = 8π

Gµ2M2

q2
γ2

∑

±

(1± v)2e±iq·a . (6.6)

From this amplitude we only want to keep terms even in the spin, which means that the

two factors of the velocity add up. Therefore, taking the Fourier transform and expanding,

we find

M̃S2k

1PM(r, E ,a) = 2µ2(2γ2 − 1)

Γ

even∑

ℓ

1

ℓ!
((ia) ·∇)ℓ

GM

R

=
2µ2(2γ2 − 1)

Γ
cos (a ·∇)

GM

R
=

2µ2(2γ2 − 1)

Γ

GMr

r2 + a2 cos2 θ
.

(6.7)

In the last step we followed the analysis in [32] to re-write the answer in terms of new

oblate spheroidal coordinates (r, θ) defined as

R cosΘ = r cos θ , R sinΘ =
√
a2 + r2 sin θ . (6.8)

From here we obtain,

P 2

µ2
(r, E ,a) = p̂2∞(E) + 2(2γ2 − 1)

Γ

GMr

r2 + a2 cos2 θ
. (6.9)

In the non-relativistic limit this becomes

E =
P 2

2µ
+ V + · · · , (6.10)

with

V = − GMµr

r2 + a2 cos2 θ
. (6.11)

The reader will immediately recognized the motion of a test-particle, µ, in the potential

produced by an object of mass M with spin a, at linear order in G. This is — yet another

— piece of evidence of the ‘elementary’ nature of Kerr Black Holes.
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A Scattering angle to periastron advance to all PM orders

In the following we show the (perturbative) equivalence of the radial action Sr(J, E), as
obtained in paper I in terms of master integrals, see (4.2),

ir(J, E) = −
∞∑

n=0

∑

σ∈P(n)

(−1)Σ
ℓ
Γ
(
Σℓ − 1

2

)

2
√
πGMµ

S{n+2Σℓ,Σℓ}(J, E)
∏

ℓ

Dσℓ

σℓ
(E)

σℓ!
, (A.1)

and the expression obtained in this paper in (4.11), reconstructed from the relationship

between periastron advance and scattering angle,

ir(j, E) =
p̂2∞√
−p̂2∞

f1
2
+

j

2
√
π

∞∑

n=0

(
p̂∞
j

)2n

Γ

(
n− 1

2

) ∑

σ∈P(2n)

1

Γ (1 + n− Σℓ)

∏

ℓ

fσℓ

σℓ

σℓ!
, (A.2)

both re-written here for the reader’s convenience. The equivalence between the two guar-

antees that the PM expansion of the periastron advance, obtained via (2.10), is related via

∆Φ(2n)

2π
=

2

π
χ
(2n)
j , (A.3)

to the PM coefficients of the deflection angle, see (3.5) and (3.6). At the same time, the

representation in (A.2) provides a compact expression that can be used to derive all the

gravitational observables for two-body bound states to any desired PM order.

Let us start by staring at the master integrals, S{m,q} in (A.1), which can be written

in terms of Hypergeometric functions:

S{2m,q} = −i δm,0(2q − 1)B(E)A(E)−q− 1
2 (A.4)

+ i
(−1)m+qA(E)m−qΓ

(
m− 1

2

)

C(J, E)m− 1
2Γ(m− q + 1)Γ

(
q − 1

2

)2F1

(
m− 1

2
, q −m;

1

2
;

B2(E)
A(E)C(J, E)

)
,

S{2m+1,q} = i δm,0A(E)
1
2
−q (A.5)

− 2i
(−1)m+qA(E)m−qB(E)Γ

(
m+ 1

2

)

C(J, E)m+ 1
2Γ(m− q + 1)Γ

(
q − 1

2

)2F1

(
m+

1

2
, q −m,

3

2
;

B2(E)
A(E)C(J, E)

)
,
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where A,B,C,Dn are defined in (4.3). Notice that the angular momentum dependence en-

ters only through C(J, E). Using the power sum expansion of the Hypergeometric function,

we can show that these can be re-expressed as

S{m,q} = −i δm,0(2q − 1)B(E)A(E)−q− 1
2 (A.6)

+
∑

k even

(−1)qik+m+12kΓ
(
1
2(m+ k − 1)

)

Γ(k + 1)Γ
(
1
2(2 +m− k − 2q)

)
Γ
(
q − 1

2

)A(E)
1
2
(m−k−2q)B(E)k

C(J, E) 1
2
(m+k−1)

S{m,q} = i δm,1A(E)
1
2
−q (A.7)

+
∑

k odd

(−1)qik+m+12kΓ
(
1
2(m+ k − 1)

)

Γ(k + 1)Γ
(
1
2(2 +m− k − 2q)

)
Γ
(
q − 1

2

)A(E)
1
2
(m−k−2q)B(E)k

C(J, E) 1
2
(m+k−1)

for m even and odd respectively. We note that the summands are the same, but the

corresponding sum goes over even and odd k respectively. In order to match the series

expansion in G/J of (4.11), we expand the denominator involving C(J, E) as follows
1

C(E) 1
2
(m+k−1)

=
1

(J2 −G2M2p2∞f2)
m+k−1

2

=
∞∑

s=0

Γ
(
1
2(2s+m+ k − 1)

)

Γ(s+ 1)Γ
(
1
2(m+ k − 1)

)
(
(GM)2p2∞f2

)s

J2s+m+k−1
.

(A.8)

Plugging this expansion into eq. (A.1) we can (non-trivially) massage the radial action into

the form

ir = i(∞)
r −

∞∑

n=0

∑

σ∈P(n)

∑

k

∞∑

s=0

i2n−2k+2

2
√
π

Γ
(
1
2(n+ k + 2s+ 2Σℓ − 1)

)

Γ
(
1
2(2 + n− k)

)

× (p̂2∞)Σ
ℓ+s+ 1

2
(n+k)

j2s+k+n+2Σj−1

fk
1

k!

fs
2

s!

∏

ℓ

fσℓ

2+σℓ

σℓ!
,

(A.9)

where the third sum is over even k if n is even and odd k if n is odd. The leading term i
(∞)
r

represents the residue at ∞ in the contour integrals, see paper I. The proof continues by

shifting σℓ → σℓ − 2 (and re-labeling ℓ → ℓ + 2) while identifying k → σ1 and s → σ2,

such that we land the expression in (4.11), except for the first terms in both series.11 It is

now a simple exercise to show the equality of i
(∞)
r with the leading term in (A.2), almost

by construction (see section 4.1). This concludes the proof that the expression in (A.2)

coincides with the PM expansion of (A.1), to all orders.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

11Note that, in an intermediate step, the sums in eq. (4.11) can be rewritten as
∑

n

∑

σ∈P(2n)

→
∑

σℓ

, (A.10)

with the condition that σℓσ
ℓ is even. This condition is most easily implemented by demanding that k = σ1

is even or odd depending on the rest of the partition, leading to exactly the sum in (A.9).
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