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ABSTRACT
We consider the power of objects in the unbounded concur-
rency shared memory model, where there is an infinite set of
processes and the number of processes active concurrently
may increase without bound. By studying this model we
obtain new results and observations that are relevant and
meaningful to the standard bounded concurrency model.

First we resolve an open problem from 2006 and provide,
contrary to what was conjectured, an unbounded concur-
rency wait-free implementation of a swap object from 2-
consensus objects. This construction resolves another puz-
zle that has eluded us for a long time, that of considerably
simplifying a 16 year old complicated bounded concurrency
swap construction.

A further insight to the traditional bounded concurrency
model that we obtain by studying the unbounded concur-
rency model, is a refinement of the top level of the wait-
free hierarchy, the class of infinite-consensus number objects.
First we resolve an open question of Merritt and Tauben-
feld from 2003, showing that having n-consensus objects for
all n does not imply consensus under unbounded concur-
rency. I.e., consensus alone, treated as a black box, cannot
be “boosted” in this way. We continue to show an infinite-
number consensus object that while able to perform consen-
sus for any n-bounded concurrency (n unknown in advance)
cannot solve consensus in the face of unbounded concur-
rency. This divides the infinite-consensus class of objects
into two, those that can solve consensus for unbounded con-
currency, and those that cannot.
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1. INTRODUCTION
We consider the power of objects in the wait-free un-

bounded concurrency model [10,18] that consists of a shared
memory system with an infinite set of processes in which the
number of concurrently active processes may increase with-
out a bound. In addition to broadening our understand-
ing of the limits of distributed computation, our unbounded
concurrency results lead to new insights on the traditional
bounded concurrency shared memory model. Our motiva-
tion is to improve the understanding of shared objects’ wait-
free computational power beyond what is possible with the
classic characterization based on an object’s consensus num-
ber [13,15], since it lumps together all objects with the same
consensus number, providing little insight on the relation-
ship between such objects. Here we use unbounded concur-
rency to provide some distinction between the objects with
infinite consensus number.

In [2], Common2, the class of objects wait-free constructible
from 2-consensus objects, was extended to the unbounded
concurrency model. It was shown there that all previously
known Common2 objects are also in unbounded concur-
rency Common2 with one exception: the swap object, which
was conjectured in [2] to be impossible to implement in un-
bounded concurrency — hinting that swap is inherently more
difficult to implement than, say, fetch-and-add. Here we
show this is not the case, presenting an unbounded concur-
rency wait-free implementation of swap from 2-consensus ob-
jects, thus refuting the conjecture of [2]. This indicates that
bounded concurrency Common2 and unbounded Common2
are possibly the same. Interestingly, despite the harder re-
quirements, our unbounded concurrency swap implementa-
tion is considerably simpler than the previous (16-year old)
n-process (bounded concurrency) algorithm [3, 21]. This
demonstrates an appealing property of the unbounded con-
currency model, which is part of the motivation for studying
this model in the first place: it provides constructions that
deal with the essence of the problem, and not with the ar-
tifacts of n, the a priori bound on the number of active
processes. This yields simpler and cleaner algorithms and
proofs.

A further insight we obtain on the traditional model con-
cerns the nature of infinite-consensus number objects. We
embark by resolving an open problem of Merritt and Tauben-



feld from [19], showing that having n-consensus objects for
all n does not imply consensus under unbounded concur-
rency. Next, we consider a natural extension of the Com-
mon2 question to the top level of the wait-free hierarchy:
Does an infinite-consensus number object, which can solve
consensus for any n, necessarily also solve consensus in the
face of unbounded concurrency (i.e., n =∞)? We show that
there is an infinite-consensus object that while able to per-
form consensus for any n-bounded concurrency (even if n is
unknown in advance) cannot solve consensus in the face of
unbounded concurrency. This divides the infinite-consensus
class of objects into two, those that can solve consensus
for unbounded concurrency, and those that cannot, show-
ing that consensus number alone is not sufficient to fully
characterize object power.

2. RELATED WORK
Power of objects. The possibility that consensus power

alone may not completely characterize the relation between
shared objects was already raised by Herlihy with the in-
troduction of the wait-free hierarchy [13]. This was proved
for atomic registers by Herlihy, who showed a nondetermin-
istic consensus power 1 object that cannot be implemented
in a wait-free manner from registers for 2 processes [12].
Jayanti has considered whether an object hierarchy is ro-
bust, i.e., whether combining different“weak”objects enables
implementations of stronger objects [15]. The exploration
of consensus power 2 objects was initiated by Afek, Weis-
berger and Weisman in [3], where they defined the Common2
class of objects. Subsequently Common2 was shown to con-
tain the stack object [2], various restricted versions of the
FIFO queue [6–8,16,17], and the blurred history object [7].
In [3] Afek, Weisberger and Weisman sketched a wait-free
swap implementation from 2-consensus objects, and the full
construction appears in [21]. Gafni and Rajsbaum recently
demonstrated a simple recursive swap implementation from
2-consensus [11], however it is not linearizable and is wait-
free only under bounded concurrency.

Unbounded concurrency. The unbounded concurrency
model was introduced by Merritt and Taubenfeld in [18],
which focused on models with objects stronger than reg-
isters but not on wait-free computation. In [10], Gafni,
Merritt and Taubenfeld explored unbounded concurrency
wait-free computation using only read/write registers. They
showed that increasing the allowed concurrency level leads
to a weaker read/write computational model. Unbounded
concurrency is the weakest level in this concurrency hier-
archy, yet still many problems (such as snapshot and re-
naming) are solvable in this model. In [19], Merritt and
Taubenfeld investigated consensus in the unbounded con-
currency model. They focused on models where consensus
is available as a base object, however it is constrained in the
number of processes allowed to access it or the number of
faults tolerated. Common2 was extended to the unbounded
concurrency model in [2], where it was shown that except for
the swap object all previously known Common2 objects had
unbounded concurrency implementations from 2-consensus.
Additional work on the unbounded concurrency model in-
cludes Aspnes, Shah and Shah’s randomized unbounded con-
currency consensus algorithms from registers [4] and Chock-
ler and Malkhi’s active disk paxos protocol for infinitely
many processes [5].

3. PRELIMINARIES
System model. The system consists of a set of sequential

processes and a set of atomic base objects that the processes
use to implement high-level objects.

Objects. An object is defined by its sequential specifica-
tion, which is a state machine consisting of a set of possible
states, a set of operations used to transition between the
states, and the possible transitions between the states. For
every pair (s, op) of state and operation, there is a transi-
tion T (s, op) = (s′, r), such that invoking operation op when
the object is in state s elicits the response r, and moves the
object to state s′.

Implementations. An implementation of a high-level
object O is a protocol specifying the base object operations
that each process needs to perform when invoking the high-
level operations of O in order to complete and return a re-
sponse. The system’s state consists of the state of all pro-
cesses and base objects. An execution of the system is a
(possibly infinite) sequence of events. Each event consists of
a process invoking an operation on a base object and imme-
diately receiving a response (since the base object is atomic),
thereby moving the system to a new state.

Concurrency levels. As in [10,18], we assume the num-
ber of processes in the system is infinite. However, the con-
currency level can be bounded: In an n-bounded model, at
most n processes may be active concurrently. (This is essen-
tially the standard n-process model where processes repeat-
edly arrive to invoke new operations [13]; we think of each
new invocation as coming from a new process.) In a bounded
concurrency model, the concurrency in every execution has
some finite limit, however it is not known a priori and can
differ between executions. Finally, in an unbounded concur-
rency model the concurrency may increase without bound
as more and more processes join the execution.

Correctness. We require implementations to be wait-
free and linearizable [14]. In a wait-free implementation the
protocol guarantees that a process completes any operation
in a finite number of its own steps, regardless of how other
processes are scheduled in the execution. An implementa-
tion is linearizable if the high-level operations appear to take
effect atomically during the invoking process’ execution.

Object specifications. Consensus objects support a sin-
gle propose(v) operation satisfying two properties: all pro-
pose() invocations return the same response (agreement),
and this value is the input of some invocation (validity). We
consider binary consensus, where only 0 or 1 can be pro-
posed. A c-consensus object is a consensus object that can
be accessed by at most c processes. A swap object holds a
value (initially ⊥) as its state, and supports a swap(v) op-
eration. In state x, a swap(y) changes the state to y and
returns x. A test-and-set (T&S) object supports a single T&S

operation. Its state is a bit, initially TRUE. The T&S opera-
tion sets the bit to FALSE and returns the previous value of
the bit. The first process to invoke T&S therefore receives
the response TRUE and is said to win the T&S. All other T&S

invocations lose and receive a response of FALSE. A fetch-
and-add (F&A) object holds a natural number. A F&A op-
eration takes a natural number x as input and adds x to
the number stored in the F&A object, returning the original
value in the response. A fetch-and-inc object is a F&A that
is only used for increments and reads (by adding zero). An
(unbounded concurrency) snapshot object [1, 10] holds an
infinite array of registers. It supports two types of opera-



tions: updatei(v), which writes v to cell i of the array, and
scan(), which returns the (finite) prefix of the array written
to before the scan(). That is, if the highest cell updated
before a scan() is cell i, the scan() will return the sequence
with the contents of cells 1, . . . , i.

4. SWAP IMPLEMENTATION
To gain some intuition on the difficulty of implement-

ing swap from 2-consensus (even in the standard n-bounded
model), consider that a process returning from a swap must
know who is immediately before it in the linearization order
so it can return its input. Yet the implementation must be
such that the process cannot apply this knowledge transi-
tively, or it would be able to determine the first process in
the linearization order and solve consensus for arbitrary n.
Obtaining this balance without compromising wait-freedom
is not trivial. To demonstrate this, we sketch a natural idea
for implementing swap that is flawed even in the n-bounded
model. We then explain our new ideas for fixing the flaws
in a way that is independent of the concurrency level.

Straw man algorithm. We use an array of test-and-
set objects and a fetch-and-inc object. An arriving pro-
cess obtains a unique array index using the F&I and then
tries to capture that cell in the array. If it succeeds, it works
its way backwards looking for another captured cell whose
value it can return. Otherwise, it obtains another cell to
compete in using the F&I and tries again. The linearization
order is thus established based on the order in the array:
the process that captures cell i is linearized after any pro-
cess that captures a cell j < i. To avoid having two processes
return the same value, process Pi must block any other pro-
cess from capturing a cell in the range between capi (the
cell Pi captures) and reti = capj (the cell whose value Pi

eventually returns). To do this, Pi searches for reti by com-
peting in each cell < capi in descending order until it loses
some T&S (or falls off the bottom and returns ⊥). Losing the
T&S at cell c means that c = capj for some Pj and Pi can
return Pj ’s input, after it has ensured that no process can
capture any cell between capj and capi.

Unfortunately, this straw man algorithm is not wait free.
A process Q can starve: each time Q tries to capture some
cell c, a new arriving process might capture a cell c′ > c
and proceed to block c during its descent. Q must then try
to capture a new cell larger than c′, and this scenario may
repeat forever1. To avoid this starvation, we would like to
guarantee that only a finite number of competing processes
can cause Q to lose at a cell and move to another one. This
can be achieved if, beyond some point in the execution of an
existing process Q, newly arriving processes will “move out
of Q’s way” and only try to capture cells smaller than the
cell that Q is trying to capture. As a result, a newly arriving
process Pi will never block Q while it descends from capi to
reti, and so Q could lose only to the finite set of already
active processes, achieving wait-freedom. To allow this our
data structure must support ordering an unbounded number
of cells between each two cells. This is because during the
interval between Q failing to capture cell c0 and competing
in another cell c1, an unbounded number of new processes
may arrive with each one returning from a distinct cell c
such that c0 < c < c1.

1This is possible with only two concurrent processes, so this
problem is not unique to the unbounded concurrency setting.

Such a data structure was constructed in [3, 21] for the
n-bounded model. The construction is a complicated infi-
nite tree with unbounded node degree that guarantees wait-
freedom only by inherently relying on having a fixed con-
currency bound, n. In our new swap implementation we
obtain a considerably simpler infinite tree structure that al-
lows ordering an unbounded number of nodes between any
two nodes. We exploit the structure of an infinite binary tree
(Figure 1), where the in-order order on the nodes defines
exactly the desired structure: each node is larger than its
left subtree and smaller than its right subtree, so there is an
unbounded number of nodes that can be ordered between
any two nodes. Figure 1 depicts an example of this.

x

<y

>x<x

y

>y

<x

Figure 1: Infinite binary tree: Each triangle is an infinite
binary tree. For each z in y’s (infinite) right subtree, y <
z < x.

Our algorithm (like the straw man algorithm) consists of
a capturing phase and a returning phase. A process Pi ini-
tially obtains a unique depth (distance from the root) depthi

using a fetch-and-inc object. It then enters the capturing
phase, where it loops trying to capture the smallest node
at depthi that is larger than any previously accessed node.
Pi determines which nodes in the tree have been accessed
by scanning a snapshot object in which each process an-
nounces the nodes it has accessed. Thus, after trying to
capture some node v, Pi announces that it has accessed v in
the snapshot. Once Pi captures a node, capi, it enters the
returning phase, in which it looks for the largest captured
node smaller than capi whose value it can return. Where
can this node be? New processes observe that capi has been
accessed and therefore move to the right in the tree and
compete in nodes larger than capi. The only uncertainty is
about existing processes: have they observed capi accessed
and moved on to larger nodes, or are they about to cap-
ture some cell < capi? Pi must therefore block all nodes
where another process might still be active. To do this, Pi

reads the fetch-and-inc object and obtains maxdepthi, the
maximum possible depth a process in the capturing phase
may still be in. It then iterates over all nodes with depth
≤ maxdepthi and that are < capi in descending order, at-
tempting to block each one, until it loses some T&S (or wins
them all and returns ⊥). Notice that the number of nodes
with depth ≤ maxdepthi and that are < capi is bounded
(they are all contained in a finite binary tree). Figure 2
depicts an example execution.
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(a) P0, P1 and P2 arrive. P1 captures its
node and returns ⊥.

p0
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(b) P0 captures its node, blocks P2

and returns P1.

p
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p2

(c) P2 moves to root’s right subtree.
New process P3 enters this subtree and
captures its node. The node P3 cap-
tures is the smallest accessed node in
the right subtree, so P3 returns P0. P2

captures its node and returns P3.

Figure 2: Example execution of Algorithm 1. Black nodes are captured. Crossed nodes are blocked.

To see how wait-freedom is obtained, consider process P0

that obtained depth = 0. As long as P0 is delayed and does
not access the root, the root node will not appear in the
snapshot. Every other process will therefore only “play” in
the root’s left subtree TL. This is because such a process
tries to capture the smallest node at its depth that is larger
than any previously accessed node, and nodes in the left sub-
tree are smaller than those in the right subtree. In addition,
a process capturing a node in TL never attempts to block
the root node, since it only tries to block nodes smaller than
its captured node. It is therefore guaranteed that once P0

moves it captures the root node and announces the root has
been accessed in the snapshot. From this point, TL becomes
“closed” to new arriving processes who all go into the root’s
right subtree TR, since they need to capture a node larger
than the root. Furthermore, a process Q that captures a
node in TR will never try to block a node in TL. Because
Q attempts to block nodes in descending order, it will al-
ways try the root and stop there before going into TL. Thus,
only P0 and processes that already captured a node in TL

can block the nodes in TL — this is a finite number of pro-
cesses. Working recursively, similar intuition applies to P1

with depth = 1. The only difference is that P1 might fail to
capture its first node if it is slower than P0. In this case P1

moves to TR, where all other processes are “playing” in P1’s
left subtree, TRL , and cannot block P1. In general, a pro-
cess Pi can lose a competition on a node only to a process
with depth < depthi, of which there is only a finite num-
ber, thus achieving wait-freedom. We capture this intuition
more formally in Section 4.2.

4.1 Detailed algorithm description
We now explain our unbounded concurrency swap imple-

mentation (Algorithm 1) in detail. Each node in the infi-
nite binary tree has two fields: a read/write register, reg,
and a test-and-set object, tst. (We prove later in Lemma
3 that these test-and-set objects can be accessed by at
most two processes, and can therefore simply be 2-consensus
objects.) An unbounded concurrency snapshot object [10],
called accessed, is used to record all the nodes that the pro-
cesses try to capture. A process trying to capture nodes at

Algorithm 1 Wait-free, linearizable, unbounded concur-
rency swap

Shared variables:
max depth: unbounded concurrency fetch-and-add

object initialized to 1
tree: infinite binary tree, each node with the fields:

reg: atomic register
tst: test-and-set object

accessed : unbounded concurrency snapshot object
procedure Swap(value)

1: depth := F&A(max depth, 1) // Capture phase
repeat

2: cap := NextUnaccessedNodeAtDepth(depth)
3: cap.reg := value
4: win := T&S(cap.tst)
5: updatedepth(accessed, cap)
6: until win
7: max depth := F&A(max depth, 0) // Return phase
8: ret := cap

repeat

9: ret := GetPrevNodeMaxDepth(ret, max depth)
10: if ret = ⊥ then return ⊥
11: until !T&S(ret.tst)
12: return ret.reg

end Swap

procedure NextUnaccessedNodeAtDepth(depth)
S := {v | v ∈ tree with depth depth such that

v > a ∀a ∈ scan(accessed)}
return the smallest node from S

end NextUnaccessedNodeAtDepth

procedure GetPrevNodeMaxDepth(cur, max depth)
S := {v | v ∈ tree with depth ≤ max depth and

v < cur}
if S = φ then return ⊥
return the largest node from S

end GetPrevNodeMaxDepth



depth i of the tree posts the largest node it has accessed to
cell i of the snapshot. Finally, an unbounded concurrency
fetch-and-inc (F&I) object [2], max depth, maintains the
maximum depth accessed thus far. We use this F&I to sim-
plify the presentation of the algorithm. Later we describe
how to do without it.

Performing a swap(value) operation consists of two phases.
The invoking process, Pi, begins the capturing phase (Lines
1-6) by obtaining a unique depth, depthi, in which it tries
to capture a node (Line 1). Pi then snapshots accessed and
uses it to compute cap, the smallest node at depthi that
is larger (in the in-order order) than all previously accessed
nodes (Line 2). Then P tries to capture cap by writing value
into its reg field and trying to win its tst field (Lines 3-4).
Regardless of the outcome, Pi then marks cap as accessed
in the accessed snapshot object (Line 5). This repeats until
Pi captures some node denoted capi.

Once the capturing phase is over, Pi enters the returning
phase. Here Pi first reads the F&I object max depth to ob-
tain maxdepthi, the maximum depth accessible in the tree
at this time (Line 7). From this point Pi tries to return from
each of the accessible nodes starting from capi (Line 8). In
each iteration Pi computes the next largest accessed node of
depth ≤ depthi that is smaller than capi (Line 9) and tries
to return from it (or block it) by performing a test-and-set

at that node (Line 11-12). If Pi wins all these T&Ses then Pi

is the first process in the linearization order and returns ⊥
(Line 10).

Reducing reliance on Common2 objects. To gain
insight on where the ability to perform consensus is cru-
cial for implementing unbounded concurrency swap, we now
show that the F&I object max depth can be removed from
Algorithm 1. The max depth object serves two purposes: to
obtain a unique depth for capturing nodes at the beginning
of the capture phase, and to bound the maximum depth that
an old process may try to capture a node in during the return
phase. We can therefore replace it with a combination of a
snapshot and the unbounded concurrency (2k−1)-renaming
algorithm of [10] as follows. Each process starts its capture
phase by writing its id into a new ids snapshot. It then
renames itself and proceeds to use the new id as its unique
depth (i.e., depthi is Pi’s new name). In the returning phase,
the process first scans the ids snapshot. The number of ids
written in the snapshot cannot be smaller than the number
of processes that completed the renaming. Hence, the max-
imum depth accessible to such processes (i.e., maxdepthi)
can be bounded by 2 |ids| − 1.

4.2 Wait-freedom proof
We proceed to prove that Algorithm 1 is wait-free. We

denote by capi the node captured by process Pi (i.e., the
value held by cap when winning the T&S in Line 4). We
use reti to denote the node from which process Pi returns a
value, or ⊥ if Pi returns ⊥. Finally, depthi and maxdepthi

denote the values obtained by Pi from max depth in Line 1
and Line 7 respectively.

The return phase of the algorithm is clearly wait-free,
since during it a process Pi accesses a finite number of nodes
with depth ≤ maxdepthi. The core of the wait-freedom
proof is thus showing that the capturing phase is wait-free,
i.e., that given enough steps a process always manages to
capture a node. To show this we require the following:

Lemma 1. A process in the capturing phase cannot try to
capture nodes in the right subtree of a node v before v itself
has been recorded in accessed.

Proof. Consider towards a contradiction an execution
of Algorithm 1 violating the lemma, and let the capture
attempt of node vr by some process Pi be the first such
violating access. That is, vr is in the right subtree of some
node v at depth d, but an updated(v) has not been executed
by the time Pi tries to capture vr. Denote by vl the largest
node in v’s left subtree at the same depth as vr (i.e., depthi).
Figure 3 depicts this scenario.

v

vl vr

v right subtreevl right subtree

Figure 3: State of tree violating Lemma 1: Pi tries to cap-
ture vr without v being written to accessed beforehand.

There are two cases to consider. Suppose Pi fails to cap-
ture vl. Then some process Pj blocked vl. Thus capj > vl.
In addition, since Pi eventually accesses vr it follows that
capj < vr. Otherwise, because Pj (who tries to return from
cells < capj in descending order) reaches vl it must block
vr first. But then after failing to capture vl, Pi would ob-
serve capj in accessed (since Pj does no further updates
to accessed after capturing a cell) and Pi would therefore
not try to capture vr at all, a contradiction. Therefore,
vl < capj < vr. We now proceed to show that capj itself is
captured before vl is first written to accessed. By Lemma
3 below, only Pi can write vl to accessed. This occurs after
Pi fails to capture vl. Thus, Pj is the first to access vl, and
Pj captures capj before that.

The remaining case is that Pi does not try to capture vl.
Thus P must observe some node u ∈ accessed such that
vl < u < vr causing P to skip vl, i.e. some process tried to
capture u before vl is written to accessed.

Either way, we find there is a node u that is accessed
before both v and vl are written to accessed, and satisfies
vl < u < vr. Because vl is the largest node in v’s left sub-
tree at depth depthi, u must either be in v’s right subtree or
vl’s right subtree. This means the access to u violates the
lemma, contradicting the assumption that the access to vr
is the first such event.

Lemma 1 implies wait-freedom of the capturing phase.
This holds because a process can fail its capturing phase
either due to losing at v, the right-most node of its level,
or because it cannot find a node to access (i.e., it finds v
smaller than some node in accessed). In any case this im-
plies that some node in v’s right subtree was accessed prior
to v being accessed, contradicting Lemma 1. It remains to
prove Lemma 3, which is implied by the following:



Lemma 2. If capi > capj then maxdepthi > depthj.

Proof. Suppose this is false. Then Pi obtainsmaxdepthi

from max depth before Pj performs its initial F&I in its cap-
ture phase. Thus Pj in its capture phase observes capi in
accessed and always tries to capture cells > capi, a contra-
diction.

Lemma 3. For any node v, at most one process tries to
capture it and at most one process tries to return from it.

Proof. By the code, it is clear that each process captures
a node in a unique depth. Let us assume to the contrary
that two processes, Pi and Pj , try to return the same node
v. Say capi > capj . If v > capj , Pj will not try to return
from it, a contradiction. Thus v < capj < capi. By Lemma
2, maxdepthi > depthj , and so, since Pi tries to return from
v and Pi tries to return from cells in descending order, it
must have tried to return from capj before that. As capj
is captured by Pj , Pi must lose the test-and-set at capj ,
implying that Pi returns from capj and never accesses v, a
contradiction.

4.3 Linearizability proof
Here we prove that Algorithm 1 yields linearizable swap

executions. This amounts to showing two things. First, that
the swap specification is not violated. In other words, that
the processes can be ordered so that the first process returns
⊥, and subsequent processes each return the input value of
the previous process. We refer to this as establishing a chain
relation between the processes. The second task is showing
that the chain relation respects the real-time ordering of
processes: if Pi arrives after Pj returns, then Pi must be
ordered after Pj .

We begin by proving the chain relationship. Given that
Algorithm 1 is wait-free we consider only finite executions in
which all of the processes finish their operations. This im-
plies the theorem for unbounded concurrency as well, since
any counter-example to linearizability occurs at a finite point
in time, where our proof applies.

Definition 1. The relation ; is defined as follows: Pi ;

Pj if Pi returns the value of Pj .

To show that the chain is well-formed we need the follow-
ing lemmas:

Lemma 4. There is precisely one process that returns ⊥.

Proof. Consider a process, Psmall who captures the small-
est node capsmall. This process will not be able to lose in
any node and will return ⊥ (Line 10). Now suppose two pro-
cesses, Pi and Pj , both return ⊥. Say capi > capj . From
Lemma 2 we have maxdepthi > depthj and so Pi must try
and succeed to return from capj , otherwise Pj fails to cap-
ture it. This contradicts Pi returning ⊥. Since Pj is able to
capture that node, Pi is able to return capj and thus does
not return ⊥.

Lemma 5. In a finite executions in which all of the pro-
cesses finish their operations, there is exactly one process
whose input is not returned by any process.

Proof. Pbig will be the process who captured the largest
node, capbig. By the code, ∀i reti < capi. By definition
of Pbig, ∀i capi ≤ capbig. Therefore no process can return
Pbig’s value.

Lemma 6. Each process returns precisely one value.

Lemma 7. Each process’s value can be returned by at most
one process.

Proof. Process Pi can store its value in several nodes.
However, in every node v but the last one it fails to capture
the node, implying that another process Pv wins the the
test-and-set at v. By Lemma 3, Pv must be a process
trying to return from v who will not return from v (because
it won the test-and-set). By Lemma 3, no process but Pv

will try to return from v. Finally, for the final node that
Pi captures, only one process can try to return that value
(again by Lemma 3).

Combining the above, we obtain:

Lemma 8. The relation ; is acyclic.

Proof. We know that Pi ; Pj implies that reti = capj
and capi > reti. From this we know that Pi ; Pj ⇒ capi >
capj . Thus a cycle Pi ; Pj ; · · · ; Pk ; Pi implies
capi > capj > · · · > capk > capi, which is impossible.

We are now ready to prove:

Theorem 9. Algorithm 1 is linearizable.

Proof. Combing Lemmas 4-8 we have that the ; rela-
tion constructs a chain between the processes. We can now
proceed to linearize the processes based on the total order
established by the transitive closure of ;. It remains only
to show that this order respects the real-time order of pro-
cess execution. Suppose this is not the case and some Pi

that returns before Pj starts is ordered before Pj . Then
Pi ; P1 ; P2 ; · · · ; Pj . Therefore capi > capj . But if
Pi terminates before Pj starts then when Pj starts its cap-
ture phase, capi is written to accessed, so Pj always tries to
capture nodes > capi. This contradicts the assumption that
capi > capj .

5. UNBOUNDED CONCURRENCY APPLIED
TO INFINITE CONSENSUS

In this section we explore consensus in the unbounded
concurrency model. We first consider systems that have n-
consensus base objects for all n (i.e., the number of processes
allowed to access each consensus base object is finite). This
model was first explored by Merritt and Taubenfeld in [19]
and they showed that a system with n-consensus objects for
all n ≥ 2 can solve consensus in the face of bounded con-
currency, where there are infinitely many processes, but the
concurrency in every execution has some finite limit that is
not known a priori and can differ between executions. Their
consensus implementation fundamentally relies on the fact
that some finite concurrency bound exists. Our first result
in this section (Theorem 10 below) is that this is a fun-
damental limitation. Base objects capable of solving finite
consensus for any finite set cannot solve unbounded concur-
rency consensus.

Theorem 10. There is no unbounded concurrency wait-
free implementation of consensus from read/write registers
and n-consensus objects for all n.

Proof. Assume that such an implementation exists. We
construct an execution of the algorithm in which processes



take an infinite number of steps but do not reach a decision,
thereby contradicting wait-freedom. We say a state s of
the system is P -bivalent for a set of processes P , if s can
be extended with steps of processes in P to yield different
decision values. Otherwise s is called P -univalent. A state is
P -critical if it is P -bivalent and the next step of any process
from P moves the system to a P -univalent state.

Our inductive construction follows. In each step we move
the system from a P -critical state to a P ′-critical state, for
some P ′ ⊃ P . During this move all processes of P take a
step. Thus, continuing this forever leads to an execution
in which processes take an infinite number of steps without
deciding and contradicts wait-freedom. The base case of the
construction is simple: pick two processes p1, p2 with dis-
tinct inputs and execute them until a {p1, p2}-critical state
is reached [9,13].

Now assume we have a P -critical state s for some finite set
P of size k. The standard FLP valency arguments applied
to the k processes of P [9, 13] show that in s all processes
of P are poised to access the same c-consensus object O for
some c ≥ k. However, consider what happens if we next
schedule a process not from P (this would be the first step
for such a process). While the next step of each process from
P moves the system to a univalent state, we will show that
there exists a new process whose next step from s will move
the system to another bivalent state. Specifically, consider
the set P ′ = P ∪ {pk+1, . . . , pc, pc+1} of size c+ 1, that is P
with c − k + 1 new processes added. Because P ⊂ P ′, s is
P ′-bivalent. It cannot, however, be P ′-critical as there can
be at most c processes from P ′ poised to access O, leaving
at least one process about to access a different object, which
is impossible [9, 13]. The standard valency arguments show
that from s there is an execution α, consisting of steps by
processes from P ′, that leads to a P ′-critical state s′. As
before, in this state all processes from P ′ are poised to access
a c′-consensus object O′ for some c′ ≥ c + 1. Hence all
processes from P took a step in α (in s they were about to
access a different object O).

This result implies that consensus is not interesting as
a base object in the unbounded concurrency model: solv-
ing unbounded concurrency consensus cannot be done using
n-consensus objects (for all n), so we would need a consen-
sus object accessible to an unbounded number of processes,
making the solution vacuous. Therefore, what can we say
about infinite power consensus objects, those that can solve
consensus for any n? Do all of them admit unbounded con-
currency consensus implementations? Some infinite power
consensus objects (such as compare-and-swap or Plotkin’s
sticky-bit [20]) have consensus algorithms that do not de-
pend on the concurrency bound and work even in the face of
unbounded concurrency. However, for other objects — like
Jayanti’s weak-sticky object [15] — the implementation de-
pends on a known concurrency bound n. It is thus plausible
that the unbounded concurrency model exposes a gap in the
strength of infinite power consensus objects: some may not
be strong enough to solve consensus in the unbounded con-
currency model. Our main result in this section is that this
is indeed the case.

Theorem 11. There exists an object O with infinite con-
sensus number that cannot solve consensus in a wait-free
manner in the unbounded concurrency model.

In the following we prove Theorem 11. Section 5.1 in-
troduces a new infinite power consensus object, the iterator
stack. In Section 5.2 we show the iterator stack can solve
consensus for any concurrency bound n, even if n is not
known in advance. Yet it cannot solve unbounded concur-
rency consensus (Section 5.3).

5.1 The iterator stack
A state of the iterator stack consists of two (unbounded)

sequences: V , a sequence of values that functions as a write-
only stack (initially empty), and I, a sequence of non-negative
integers called iterators (initially, I is all zeroes). The iter-
ator stack provides two operations, write() and read(). A
write(v) has two effects: (1) the value v is prepended to V
(shifting previous values one place to the right), and (2) the
first iterator with value 0 is set to 1 and its index is returned.
The effect of a read(i) operation depends on whether itera-
tor i points to an element of V . If 0 < I[i] ≤ |V |, then V [I[i]]
(the value iterator i points to) is returned. Otherwise, if it-
erator i is uninitialized (I[i] = 0) or is invalid (I[i] > |V |),
then ⊥ is returned. In any case, if I[i] > 0 then I[i] is in-
cremented (reading an invalid iterator does not stop it from
being incremented). Figure 4 shows an example of an iter-
ator’s stack execution. Notice that an initialized iterator i
can switch from returning ⊥ to returning values from V if
enough writes are performed in between the reads, increas-
ing the size of V to the point where i is valid again.

Iterator stack examples
Each row consists of an operation applied to a given
state, leading the object to the the state in the next row.

State
Operation leading
to next state

〈V = [v2, v1], I = [3, 4, 0, 0, . . . ]〉
read(3)
returns ⊥ (iterator
3 is uninitialized)

〈V = [v2, v1], I = [3, 4, 0, 0, . . . ]〉
read(1)
returns ⊥ (iterator
1 is invalid)

〈V = [v2, v1], I = [4, 4, 0, 0, . . . ]〉 write(x)
returns 3

〈V = [x, v2, v1], I = [4, 4, 1, 0, . . . ]〉 write(y)
returns 4

〈V = [y, x, v2, v1], I = [4, 4, 1, 1, . . . ]〉 read(1)
returns v1

Figure 4: Example state transitions of the iterator stack.

5.2 Iterator stack implements bounded con-
currency consensus

Here we present Algorithm 2, a bounded concurrency con-
sensus algorithm from registers and a single iterator stack.
This shows that the iterator’s stack consensus number is
infinite. The idea behind Algorithm 2 is that participating
processes write to the iterator stack, with the first process to
write winning and its value becoming the decision value. To
discover the decision value, a process traverses the iterator
stack using the iterator it received when writing. When it
reads the value ⊥, it knows the previous read value was the
first to be written, hence it is the decision value. However,
notice that new processes can keep arriving and writing new



values to the iterator stack, causing an iterating process to
never reach the end of the sequence. This is due to the
fact that while the concurrency is bounded, arrivals are not
— so processes may continuously leave and enter the algo-
rithm. To avoid such starvation, a process that determines
the winner announces the winner in a result register. A
new process will only write to the iterator stack if result is
empty, adopting the value in result otherwise. This ensures
the iterator stack is only written to a finite number of times.

Algorithm 2 Iterator stack bounded concurrency consen-
sus protocol

Shared variables:
result : atomic register, initialized to ⊥
IteratorStack : iterator stack object

Local variables:
last, itr, cur : atomic registers, initialized to ⊥

procedure propose(value)
1: if result 6=⊥ then return result
2: itr := IteratorStack.write(value)

repeat

3: last := cur
4: cur := IteratorStack.read(itr)

until cur = ⊥
5: result := last
6: return result

end propose

Theorem 12. Algorithm 2 is a wait-free bounded concur-
rency consensus implementation.

Proof. Validity is immediate. Similarly, we show agree-
ment by proving that all writes to result write the same
value. To see this, note that when a process first reads ⊥,
then the last value it read is the first value written to the
iterator stack, and this is the value it writes to result. Wait-
freedom follows from the fact that before result is written,
only a finite number of processes can participate, due to the
bound on concurrency. Therefore only a finite number of
values can be written to the iterator stack, and so all itera-
tions must terminate.

5.3 Iterator stack cannot implement unbounded
concurrency consensus

In this section we show that the iterator stack object is
too weak to solve unbounded concurrency consensus. We
assume towards a contradiction that such a consensus algo-
rithm A exists. We derive the contradiction by adapting
Fischer, Lynch and Paterson’s valency argument [9] to the
unbounded concurrency model. We call a state s of A biva-
lent if s can be extended to yield different decision values.
Otherwise s is called univalent. All executions continuing
from a univalent state s return the same value v, which is
called s’s valency. We also say that s is v-valent.

If we were in the n-bounded model, we could start with a
bivalent state and execute each process until just before it
moves the algorithm to a univalent state, ultimately reaching
a bivalent state from which any next step leads to a univalent
state. From this bounded critical state a contradiction can be
derived by showing the different univalent states reachable

from it are indistinguishable. However, this fails in the face
of unbounded concurrency. There may always be a new
process leading to a bivalent state, so we could end up with
an execution in which infinitely many processes each take a
single step, not violating wait-freedom. Instead, our notion
of a critical state (below) is weaker, requiring two steps of
certain processes to reach states with distinct valency.

Definition 2. A state s is critical if and only if s is biva-
lent, and there exist two processes, P and Q, such that: (1)
from s, a single step of P leads to a p-valent state, (2) from
s, a single step of Q followed by a single step of P leads to
a q-valent state, (3) p 6= q.

Lemma 13. A critical state of A exists.

Proof. We construct an execution E leading to a critical
state scrit. We start with a bivalent state s0. We let process
P run solo from s0 until the system reaches a state s1, from
which P ’s next step takes the system to a p-valent state.
The state s1 satisfies the following: (1) it is bivalent, (2) P
moving at s1 leads to a univalent state. Since s1 is bivalent,
there is an execution L1 from s1 that brings the system to
a q-valent state, q 6= p. Notice that each step in L1 but the
last keeps the system in a bivalent state.

We now execute L1 one step at a time until it is no longer
the case that if P takes the next step, then the system moves
to a p-valent state. This eventually happens, since the last
step of L1 leads to a q-valent state. When P ’s next step does
not lead to a p-valent state, one of the following must hold:
either (1) if P performs the next step the system moves to a
bivalent state, or (2) if P performs the next step the system
moves to a q-valent state. Note that condition (2) holds
when L1 ends at a q-valent state.

If (1) is the first condition to occur, we switch back to
running P solo until we reach a state s2 where, if P takes
the next step, the system moves to some p2-valent state (it
could be that p2 6= p). The state s2 satisfies the same two
properties as s1: both are bivalent and in both states P ’s
next step brings the system to a univalent state. This means
we can repeat the same procedure as done on s1, executing
a different extension L2 leading from s2 to a q2-valent state
(q2 6= p2) one step at a time, until P ’s next step no longer
leads to a p2-valent state. If at this point P ’s next step
moves the system to a bivalent state we run P solo again
until its next step will take the system to a p3-valent state,
at which point we start scheduling an execution L3, and so
on. Eventually, during the execution of some Li we must
reach a state x where condition (2) holds, i.e., scheduling
P next moves the system to a qi-valent state. Otherwise,
we would keep scheduling P forever without it completing,
contradicting wait-freedom.

We denote each scheduling step of Li by l1, . . . , lk, so x
is the state after the execution of l1, . . . , lk. We claim the
state s after the execution of l1, . . . , lk−1 is a critical state.
By construction, the next step of P at s moves the system
to a pi-valent state, for pi 6= qi. Therefore, the process Q
performing the step leading from s to x cannot be P , since
x is not pi-valent. As condition (2) is true at x, P ’s next
move from x leads to a qi-valent state, and so a single step
of Q at s (leading to x) followed by a single step of P leads
to a qi-valent state. The state s is thus indeed a critical
state.

We have established the existence of a critical state, scrit.
Let P be the process whose next step, oP , at scrit leads to a



univalent state p-valent state, and Q the process whose next
step, oQ, at scrit, followed by oP , leads to a q-valent state,
q 6= p. Let sP be the p-valent state resulting from oP , oQ be-
ing scheduled at scrit, and sQ be the q-valent state reached
by scheduling oQ, oP . We proceed to derive a contradiction
by examining the different operations oP and oQ might be
and ruling out each one. Due to our weaker definition of a
critical state, sP and sQ will turn out to be distinguishable,
differing in the state of an iterator stack object O. We will
therefore prevent some victim process R from observing this
difference by constantly adding new processes that write to
O, preventing R from observing the difference in O’s state.
In doing so, these processes may themselves distinguish be-
tween sP and sQ and hence we do not allow them to perform
any further operations on the shared memory. Here we use
the unbounded concurrency requirement — we need an end-
less supply of new processes to induce an infinite execution
of process R.

Let us first consider the types of operation oP and oQ can
be (i.e., atomic register read or write, or iterator stack read

or write). It is easy to see that oP and oQ may not commute
since then sP and sQ would be indistinguishable states —
all objects would have the same state in both. Therefore, oP
and oQ must be operations on the same object O, and O can-
not be an atomic register. To see this, recall that scheduling
oP at scrit leads to a p-valent state, su. Thus oP must be a
write [13]. But then, sQ and su would be indistinguishable
to P , but with different valency — a contradiction. Addi-
tionally, oP and oQ cannot both be read operations on an
iterator stack. This is because the only state change such
a read affects is an increment of an iterator, a commuta-
tive operation. We now show that both operations must be
iterator stack writes.

Lemma 14. Both oP and oQ are writes to the same it-
erator stack O.

Proof. Assume, w.l.o.g., that oP is a write and oQ is a
read of iterator j. Let O’s state at scrit be

〈V = [vm, . . . , v1], I = [i1, i2, . . . , im, 0, 0, . . . ]〉 .

oP and oQ commute in their effect on the shared mem-
ory state unless j = m + 1, i.e., j is the iterator that the
next write to O receives as a response. In this case, when
scheduling oQ first, iterator m+1 is uninitialized and so O’s
state does not change. Scheduling the write oP after oQ
thus causes I[m+1] to take the value 1. In contrast, schedul-
ing oQ after P ’s write causes an increment of I[m+ 1] from
1 to 2. Thus, states sP and sQ differ only in the value of
iterator m+1. Consider the solo executions of a new process
R starting at each of these states, eP and eQ. Since sP and
sQ are of different valency, R must distinguish between them
by applying an operation that returns a different response
in eP than in eQ. This can only be a read of O with iterator
m+ 1. In eQ (where I[m+ 1] is initially 1) we stop R imme-
diately after its first read of O with iterator m+ 1 (causing
I[m+ 1] to become 2). In eP (where I[m+ 1] is initially 1)
we stop R immediately before its first such read of O. The
state of all objects after these executions is identical, yet
these are states with different valency, a contradiction.

We are left only with the possibility that both oP and oQ
are writes to the iterator stack O. To conclude the proof,
we rule this out as well, reaching a contradiction.

Lemma 15. Both oP and oQ cannot be writes to the same
iterator stack O.

Proof. Assume oP = write(vP ) and oP = write(vQ).
Let O’s state at scrit be

〈V = [vm, . . . , v1], I = [i1, i2, . . . , im, 0, 0, . . . ]〉 .

Then in sP , V = [vQ, vP , vm, . . . , v1] and in sQ it is [vP , vQ,
vm, . . . , v1]. The state of I is identical. We introduce a new
victim process R, which must be able to distinguish between
sP and sQ, and construct executions in which R takes in-
finitely many steps without completing, contradicting wait-
freedom of A. Consider two executions, eP and eQ, starting
at sP and sQ respectively. We run R until it is about to
perform a read of O using iterator i which will return vP
or vQ, i.e., I[i] = k and V [k] = vP or V [k] = vQ. (Note
the executions are identical up to these points.) Let T be
the set of initialized iterators in O at this point. Note that,
assuming no new value is written to O from here on, each
i ∈ T can be read only a finite number of times (perhaps
0) before it can no longer return vP or vQ. We thus repeat
the following: introduce a new process and execute it until
either (1) it reads from O using an iterator i ∈ T , or (2)
it is about to write to O. No process can distinguish eP
from eQ without applying an operation to O, so either (1)
or (2) must occur. If only (1) occurs, then eventually all
iterators in T become invalid and so any further read of O
returns the same response in both executions, resulting in a
contradiction. Thus we must eventually have two processes
poised to write to O. We let each of them execute their
write — this “shifts” V down two place, making V [k] not
point to vP or vQ. Notice that by construction, the writing
processes cannot distinguish between eP and eQ since they
did not read from O using an iterator from T , and so the
values they write to O are the same in both executions. Fi-
nally, we schedule R’s read of O using i, which returns the
value in V [k]. Therefore in both eP and eQ this read returns
the same value. We can indefinitely repeat the above pro-
cess: go back to running R solo until it is about to read vP
or vQ from O, then prevent it from doing this by using new
processes.

6. CONCLUSION
We have used unbounded concurrency to distinguish be-

tween different infinite power consensus objects. This ex-
tends Gafni, Merritt and Taubenfeld’s work that used un-
bounded concurrency to present a hierarchy of concurrency
levels within the class of read/write objects [10]. They show
that there are read/write solvable problems that are solv-
able with a certain concurrency level but not with higher
concurrency. Thus we have shown that also in the higher
levels, the unbounded wait-free hierarchy does not look the
same as the bounded wait-free hierarchy. Few of the remain-
ing open questions are: Can these results be extended to
sub-consensus objects? Can we provide a clean and simple
characterization of unbounded concurrency infinite consen-
sus objects?
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