
Fundamenta Informaticae XX (2019) 1–32 1

DOI 10.3233/FI-2016-0000

IOS Press

From Box Algebra to Interval Temporal Logic

Hanna Klaudel

IBISC, University of Evry, Université Paris-Saclay

91025, Evry, France

hanna.klaudel@ibisc.univ-evry.fr

Maciej Koutny

School of Computing, Newcastle University

Newcastle upon Tyne, NE4 5TG, United Kingdom

maciej.koutny@ncl.ac.uk

Zhenhua Duan

ICTT and ISN Laboratory, Xidian University

Xi’an, 710071, P.R. China

zhhduan@mail.xidian.edu.cn

Ben Moszkowski

School of Computing, Newcastle University

Newcastle upon Tyne, NE4 5TG, United Kingdom

benmos63@gmail.com

Abstract. In this paper, we further develop a recently introduced semantic link between temporal

logics and Petri nets. We focus on two specific formalisms, Interval Temporal Logic (ITL) and

Box Algebra (BA), which are closely related by their compositional approach to constructing sys-

tem descriptions. The overall goal of our investigation is to translate Petri nets into behaviourally

equivalent logical formulas. As a result, the analysis of system properties can be carried out using

either of the two formalisms, exploiting their respective strengths and powerful tool support.

The contribution of this paper is twofold. First, we extend the existing translation from BA to

ITL, by removing restrictions concerning the way control flow of concurrent system is modelled,

and by allowing a fully general synchronisation operator. Second, we strengthen the notion of

equivalence between a Petri net and the corresponding logical formula by proving such an equiv-

alence at the level of transition-based executions of Petri nets rather than just by looking at their

labels. We also show that the complexity of the proposed translation compares favourably with

the complexity of the translation from BA expressions to Petri nets.

Keywords: Interval Temporal Logic, Petri nets, box algebra, composition, semantics, general

synchronisation, step sequence, equivalence

2 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

1. Introduction

Temporal logics [1, 2, 3, 4] and Petri nets [5, 6] are generally regarded as fundamentally different

approaches to the specification and analysis of concurrent systems. The former allow one to specify

both the system designs and correctness requirements within a single logical framework, and the

verification of correctness can be done by checking the satisfaction of formulas, or model checking.

In contrast, Petri nets are an automata-inspired model with semantics based on actions and local states

which allows one to capture causal relationships in systems’ behaviour. As a result, verification of

behavioural properties can be carried out using invariant techniques [7], based on the graph structure

of nets, or model checking techniques, based on partial order semantics [8, 9].

To establish a semantic link between logics and Petri nets, we focused in [10] on two specific

formalisms, Interval Temporal Logic (ITL) [11, 12] and Box Algebra (BA) [13], which are closely

related by the their compositional approaches to constructing system descriptions. In particular, in

both ITL and BA the control flow of a system is specified by means of commonly used programming

operators, such as sequence, choice, parallelism, and iteration. The synchronisation between concur-

rently executed subsystems is, however, achieved in different ways and therefore needs to be suitably

handled.

Box Algebra [13], and its precursor Petri Box Calculus [14], provided a generic process-algebraic

syntax together with a compositional translation to a class of Petri nets called boxes. This generic

algebra has several concrete incarnations, including CCS [15] and TCSP [16]. BA can also readily

yield a compositional semantics for an imperative concurrent programming language [17]. It has also

been extended to handle, e.g., stochastic aspects of concurrent systems [18].

In contrast to point-based temporal logics (e.g., [2, 3]), where computations are described in terms

of successive system states, interval temporal logics aim at capturing the evolution of a system re-

ferring to its behaviour over time intervals. As pointed out in [19], the concept of time intervals is

both naturally appealing and intuitive, and has been of significant interest to several disciplines, in-

cluding Philosophy, Linguistics, Artificial Intelligence, and Computer Science. For example, interval

temporal logics allow one to easily capture concepts relating to action duration or shared-variable con-

currency (e.g., [20]). The preface [4] of a journal special issue on interval temporal logics identified,

in particular, two categories of temporal logics formalisms for intervals: (i) modal formalisms such

as HS-logics [21] and CDT [22] with interval-based variables and capable of expressing Allen’s rela-

tions [23] (recent developments concerning model checking HS-logics include [24, 25, 26, 27, 28]);

and (ii) Interval Temporal Logic (ITL) of [29, 30, 12] together with its variations and adaptations which

use state-based variables and the sequential composition ‘chop’ operator to a significant extent. In this

paper we focus on ITL which has influenced several research groups and projects, as well as IEEE

standard 1647 ([31]). It is not unusual for researchers to develop their own variants of ITL, often with

quite different names. The Duration Calculus [32], a prominent real-time variant of ITL, is the best

example. A recent instance of this is Multi-Lane Spatial Logic [33], which is intended for modeling

road traffic (e.g, for computer-based assistance of car drivers). ITL lends itself to execution, and can

support abstract specifications and concrete implementations in the same notation, with refinement

mappings between. Moreover, timings of executions can be easily derived by considering interval

lengths.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 3

1.1. About this paper

In [10], we proved the correctness of a translation from a submodel of BA to semantically equivalent

ITL formulas. The submodel we considered disallowed the nesting of the parallel composition oper-

ator. Moreover, synchronisation was binary. In the paper [34], we demonstrated how to extend the

submodel of [10] to handle data variables.

In this paper, which is a full and extended version of a conference publication [35], we provide

a syntax-driven translation for the core BA [13] syntax comprising parallel composition, sequence,

choice, synchronisation, and iteration but without considering data variables (incorporating these using

the technique introduced in [34] would be straightforward but, at the same time, would obscure the key

constructs introduced in the present paper). Crucially, we relax the syntactical constraints preventing

the use of the parallel composition outside the topmost level of process expressions. Moreover, we

consider a fully general synchronisation operator. Finally, we strengthen the notion of equivalence

between a BA net and the corresponding ITL formula by proving such an equivalence at the level of

transition-based executions of Petri nets, rather than just by taking their labels. It is worth noting that

for the purposes of this paper, i.e., the translation of the basic BA, we only need to use propositional

ITL (PITL).

To formalise a semantic link between BA and ITL, for every logical formula we introduce a step

sequence semantics which records variables changing their values at each computational step. This

allows us to compare its behaviour with the step sequences of the corresponding Petri net, and to

conclude their full equivalence in the main result (Theorem 4.3). In essence, the latter states that any

property which can be captured within the step sequence model can be analysed using either of the

two equivalent representations, i.e., a Petri net or a logical formula.

1.2. Paper organisation

The paper is organised as follows. In the next section, we recall the basic notions of Box Algebra.

We start with the definition of box expressions, which are then used to compositionally construct box

nets. We also recall a number of results demonstrating how the execution semantics of a composite

box can be derived from the execution semantics of its components. In Section 3, we similarly recall

the relevant fragment of Interval Temporal Logic, and present some basic semantic properties of ITL

formulas. Section 4 is central to the whole paper as it contains a formal translation from box expres-

sions to ITL formulas as well as the proof of a semantic equivalence between box expressions and the

corresponding formulas. The following section presents examples of this translation, and Section 6

briefly discusses future work.

1.3. An introductory example

In order to outline the main ideas behind the proposed solution, we will now consider a small frag-

ment of an application involving two concurrent processes, a server and a client, following a simple

interactive protocol where: (i) the client process sends a query to a database server, awaits the answer,

and then carries out a local update; and (ii) the server process non-deterministically chooses between

4 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

handling a client request or performing its own local update:

Client Server

...

(send.req ; receive.ans) ; local.upd
...

...

if

case 1 : receive.req ; send.ans

case 2 : local.upd

fi
...

From the above fragment of pseudo-code we can extract in a straightforward way the following

Box Algebra representation, where ; and ✷ respectively denote sequential composition and non-

deterministic choice:

Client = (s.req ; r .ans) ; l .upd Server = (r .req ; s.ans)✷ l .upd .

The box semantics of the above expressions is obtained compositionally, by first associating basic

boxes (single-transition Petri nets) with atomic box expressions, and then by applying Box Algebra

compositions rules. In general, Petri nets are directed graphs with two kind of nodes: places (local

states) represented by circles, and transitions (actions) represented by squares or rectangles. The arcs

connect nodes of different types and indicate direct relationships between places and transitions. In

the box nets, additionally, circles labelled with e are entry places, circles labelled with i are internal

places, and circles labelled with x are exit places, reflecting their intended role in net composition.

The successive construction stages of the box semantics for Server

NServer = N(r .req ; s.ans)✷ l .upd = (Nr .req ;Ns.ans)✷Nl .upd

are shown in Figure 1. First, two basic boxes Nr .req and Ns.ans (the two Petri nets in Figure 1(a)) are

composed sequentially by gluing the exit (or final) place of Nr .req with the entry (or initial) place of

Ns.ans . The resulting box Nr .req ; s.ans (the Petri net in Figure 1(b)) is then composed with the basic

boxNl .upd by applying the non-deterministic choice operation, which glues together their entry places

as well as their exit places (the final Petri net is shown in Figure 1(c)).

The net NServer we have just constructed provides the graph-theoretic (static) representation of

the Server process. To obtain its dynamic (behavioural) representation, we need in addition to specify

the initial marking (or state) of Server , from which one can explore all possible execution paths by

following the standard transition firing rules. In the case of a box net, this is simply done by inserting

a single token in each of its entry places (in this case, just one place). The initial marking can then be

used to investigate the dynamic behaviour of Server , which is basically composed of two execution

paths, both ending at a final marking in which the only exit place contains a token. One such path

executes r .req followed by s.ans , and the other executes a single transition l .upd .

The states of the Server process are all the markings reachable from the initial one, and possible

executions are represented by sequences of executed transitions (or sets of transitions, called steps).

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 5

e

r .req

x e

s.ans

x

(a)

e

r .req

i

s.ans

x

(b)

e

r .req

i

s.ans

x

l .upd

(c)

Figure 1. Compositional derivation of the box NServer = N(r .req ; s.ans)✷ l.upd : (a) basic boxes representing

r .req and s.ans; (b) sequential composition representing r .req ; s.ans; and (c) non-deterministic choice repre-

senting Server . Note that the entry and exit places are respectively labelled by e and x; moreover, i identifies

the internal places. All transitions are labelled by the corresponding atomic expressions occurring in the Server

process.

In the ITL context, however, a state is a mapping which assigns values to a set of (Boolean) variables,

and possible executions are represented by sequences of such assignments, called intervals. Therefore,

we need a method to bridge the gap between these two different ways of representing the states and

executions of concurrent systems. The solution we adopt and develop in this paper is to associate

with each transition t of NServer a distinct Boolean variable, also denoted by t, and then to represent

each firing of transition t by flipping the value of variable t; otherwise, the value of variable t is kept

unchanged. With this idea in mind, the box expression Server can be captured by the following ITL

formula:

itl(Server) = (fs(r .req | s.ans, l .upd) ; fs(s.ans | r .req , l .upd)) ∨ fs(l .upd | r .req , s.ans).

where ; is the ITL “chop” operator1 (sequential composition) and a formula of the form fs(v |w, u)
means that the values of the two variables w and u are kept unchanged while the value of v can be

flipped once within the interval over which the formula is evaluated (if v is never flipped, the interval

must be infinite). The execution path of NServer in which transition r .req is followed by s.ans can

then be matched by a corresponding interval satisfying itl(Server) in which the variables r .req and

s.ans flip their values, as shown below:

executed transitions r .req s .ans

r .req 0 1 1

s.ans 0 0 1

l .upd 0 0 0

1Subsequently adopted, e.g., by the Duration Calculus [32].

6 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

Having seen how Server = (r .req ; s.ans)✷ l .upd can be represented by an ITL formula, one

might attempt to do exactly the same for a concurrent composition of both processes:

(
(fs(s.req | . . .) ; fs(r .ans | . . .)) ; fs(l .upd | . . .)

)

∧(
(fs(r .req | . . .) ; fs(s.ans | . . .)) ∨ fs(l .upd | . . .)

)

Such a naive translation exhibits two serious problems. The first is that it does not provide any means

to synchronise the communication actions between the two processes. We address this issue by identi-

fying some of the variables in different processes, such as s.req and r .req . The other problem is quite

an opposite one, namely, the formula specifies that two different local updates must happen simulta-

neously as they are represented by the same ITL Boolean variable l .upd . We address this problem by

introducing two different variables which are allowed to flip their values independently of each other.

Before illustrating how both solutions work, we will complete the presentation of the net model for

the example system.

The whole synchronised system comprising a client and a server is captured by the following

box expression, where ‖ is the parallel composition operator, and sco (for scoping) is an operator

specifying all interprocess synchronisations [13]. For example, s.req , r .req 7→ req means that the

simultaneously executed actions s.req and r .req can be synchronised, and replaced by a single new

action req , while l .upd 7→ upd indicates that each action l .upd is simply maintained, after being

renamed. Here is the resulting system expressed in Box Algebra, where the upper line represents

server and the lower receiver:

System =




(s.req ; r .ans) ; l .upd

‖

(r .req ; s.ans)✷ l .upd


 sco





s.req , r .req 7→ req

s.ans, r .ans 7→ ans

l .upd 7→ upd





The box NSystem generated from the above expression is depicted in Figure 2. A crucial point is that

during its generation each action (and then the corresponding transition) is made unique by anno-

tating it with the path(s) reflecting its position in the parse tree of the System expression. (Note that

the construction stages shown in Figure 1 would also be amended to include appropriate annotations.)

For example, r .req
qR ✷L ;L

means that r .req is reachable in the parse tree through the following path:

from the root, labelled with ‖ , go to its right child (R) corresponding to the second operand, labelled

with ✷ , and from there visit its left child (L) corresponding to the first operand, labelled with ; and,

in turn, from here visit the left child (L) corresponding to the first operand, which is the node labelled

with r .req .

Thanks to annotating the individual actions with unique syntax paths, one can avoid unwanted

synchronisations of independent actions, and then obtain an ITL translation of the whole synchronised

system expression:

itl(System) =
(
(fs(ξ |α, γ) ; fs(α | ξ, γ)) ; fs(γ | ξ, α)

)

∧(
(fs(ξ |α, δ) ; fs(α | ξ, δ)) ∨ fs(δ | ξ, α)

)

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 7

e

s.req
qL ;L ;L

i

r .ansqL ;L ;R

i

l .upd
qL ;R

x

e

r .req
qR ✷L ;L

i

s.ansqR ✷L ;R

x

l .upd
qR ✷R

(a)

e

ξ = req
qL ;L ;L,qR ✷L ;L

i

α = ansqL ;L ;R,qR ✷L ;R

i

γ = upd
qL ;R

x

e

i

x

δ = upd
qR ✷R

(b)

Figure 2. Boxes of Client ‖Server (a), and System (b).

where ξ = req
qL ;L ;L,qR ✷L ;L

, α = ansqL ;L ;R,qR ✷L ;R
, γ = upd

qL ;R
, and δ = upd

qR ✷R
. In this paper,

we show that the executions of the box shown in Figure 2 are consistent with the intervals satisfying

the ITL formula itl(System) as, for example, in the following execution scenario:

executed transitions ξ α γ

ξ 0 1 1 1

α 0 0 1 1

γ 0 0 0 1

δ 0 0 0 0

1.4. Notation

The concatenation operator for sequences will be denoted by “·”. For a finite sequence δ and a set of

sequences ∆, δ·∆ = {δ·δ′ | δ′ ∈ ∆}, and for a set of finite sequences ∆ and a set of sequences ∆′,

∆·∆′ = {δ·δ′ | δ ∈ ∆ ∧ δ′ ∈ ∆′}. The k-th element of a sequence δ will be denoted by δ(k) and

its length by |δ| (|δ| = ω if δ is infinite). We will use the following notations involving sequences

of empty sets: ∅
∗ = {ǫ,∅,∅∅, . . . } is the infinite set of all finite sequences of empty sets, and

∅
ω = {∅∅ . . . } is the set containing a single infinite sequence of empty sets.

8 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

2. Box Algebra

Let A be a finite set of atomic actions. A synchronisation relation ρ is a finite set of tuples of actions

(a1, . . . , an, a) with n ≥ 1. Intuitively, a1, . . . , an represent n concurrent actions which can be syn-

chronised to yield a single composite action with the label a. To reflect this intuition, we will often

denote (a1, . . . , an, a) by a1 . . . an 7→ a.

The syntax given below defines two kinds of box expressions, namely, non-synchronised expres-

sions E capturing the control flow in a concurrent system, and synchronised expressions F (below a

is an action and ρ a synchronisation relation):

E ::= stop | a | E ;E | E✷E | E ‖E | JE ⊛ E ⊛ EK

F ::= E sco ρ

The intuition behind the above syntax is that: (i) stop denotes a blocked process; (ii) a denotes a

process which can execute an action a ∈ A and terminate; (iii)E ;E′ denotes sequential composition;

(iv) E✷E′ denotes non-deterministic choice composition; (v) E ‖E′ denotes parallel composition;

(vi) JE ⊛ E′
⊛ E′′K denotes a loop with an initial part E, iterated part E′, and terminal part E′′;

and (vii) E sco ρ denotes scoping, which first creates all the synchronisations specified by ρ and then

deletes all the actions of E.

2.1. Box nets

The semantics of box expressions is given through a mapping into Petri nets called boxes.

A box is a tuple N = (P, T, F, ℓ), where: (i) P and T are disjoint finite sets of respectively places

(representing local states) and transitions (representing actions); (ii) F ⊆ (P × T) ∪ (T × P) is a

flow relation; and (iii) ℓ is a labelling function for places and transitions such that ℓ(p) ∈ {e, i, x}
associates an entry, internal, or exit status with every place p, and an atomic action ℓ(t) ∈ A, with

every transition t.

The sets of entry, internal and exit places of N are given respectively by N e = ℓ−1(e), N i =
ℓ−1(i), and N x = ℓ−1(x). Moreover, we set N ei = N e ∪ N i and N ix = N i ∪ N x, and will use NP,

NT, and NF to respectively denote the places, transitions, and the flow relation (arcs) of N . We also

adopt the standard rules about representing nets as directed graphs.

2.2. Semantics of box nets

The global states of a box N are called markings, each marking being a mapping M assigning a non-

negative integer to every place in NP. The default initial (or entry) and final (or exit) markings of N ,

denoted respectively by M e
N and M x

N , are defined, for every p ∈ NP, as follows:

M e
N (p) =

{
1 if p ∈ N e

0 otherwise
and M x

N (p) =

{
1 if p ∈ N x

0 otherwise.

The change of a marking of N results from a simultaneous execution of a (possibly empty) set of

transitions, called a step. Formally, a step of N is any set of transitions U ⊆ NT. It is enabled at a

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 9

marking M if, for every place p ∈ NP:

M(p) ≥ |{t ∈ U | (p, t) ∈ F}|.

We denote this by M [U〉. An enabled step U can be executed leading to a marking M ′ given, for

every place p ∈ NP, by:

M ′(p) =M(p)− |{t ∈ U | (p, t) ∈ F}|+ |{t ∈ U | (t, p) ∈ F}|.

We denote this by M [U〉M ′.

The semantics of N is given through its infinite step sequences starting from the default initial

marking M e
N . In addition, we single out a set of finite step sequences which lead from the default

initial marking M e
N to the default final marking M x

N . Intuitively, each such step sequence will be

interpreted as a successfully terminating execution of N .

A step sequence of N is an infinite sequence θ = U1U2 . . . of steps such that there exist markings

M1,M2, . . . of N satisfying

M e
N [U1〉M1 M1[U2〉M2 M2[U3〉M3 . . .

Moreover, we define a terminating step sequence of N as a finite sequence θ = U1 . . . Um (m ≥ 0) of

steps such that there exist markings M1, . . . ,Mm−1 of N satisfying

M e
N [U1〉M1 M1[U2〉M2 M2[U3〉M3 . . . Mm−1[Um〉M x

N .

The sets of (infinite) step sequences and terminating step sequences of N are respectively denoted by

infsts(N) and finsts(N).2

2.3. Composite boxes

The above definition of a box net is too general for our purposes, as we are interested in nets derived

compositionally from box expressions. The labelling of places will provide the necessary device for

composing boxes along the entry and exit interfaces, i.e., the sets of entry places N e and exit places

N x.

The nets we are going to construct will have a very specific form of places and transitions, making

it easier to establish connections between boxes and ITL formulas. Intuitively, we will use the syntax of

a non-synchronised box expressionE to construct concrete places and transitions of the corresponding

box N by embedding paths from the root of the parse tree of E in the definitions of places and

transitions. In what follows, finite sequences in the set

Π = { ;L, ;R, ✷L, ✷R, qL, qR, ⊛L, ⊛M , ⊛R}
∗

will be called syntax paths. Note that symbols appearing in syntax paths correspond to the arguments

of operators used in box expressions (with ‘L’ indicating the left operand, ⊛M the middle operand,

2Note that a deadlock corresponds to a step sequence θ ∈ infsts(N) such that it can be decomposed as θ = θ
′·∅∅ . . . and

{θ′′ | θ′·θ′′ ∈ infsts(N)} = ∅
ω .

10 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

etc). For two syntax paths, π1 and π2, we use π1|π2 to denote that {π1, π2} = {π· qL ·π′, π· qR ·π′′},

for some π, π′, and π′′. Intuitively, two actions of a non-synchronised box expression are concurrent

iff their positions π1 and π2 in the syntax (or parse) tree are such that π1|π2.

The form of each place in composite boxes will be pZ , where p ∈ {e, i, x} and Z ⊆ Π·{e, x},

while each transition will be of the form aW , where a ∈ A and W ⊆ Π. Moreover, for brevity, the

sets Z and W will be written as comma-separated lists without brackets.

For a syntax path π ∈ Π and a transition aW , we denote π·aW = aπ·W . This prefix notation

extends in the usual way to sets of transitions and sequences of sets of transitions as well as (sets of)

places.

The specific form of places and transitions, together with the systematic way in which boxes are

manipulated below, will mean that for a compositional box N = (P, T, F, ℓ) it will be the case that,

for all pZ ∈ P and aW ∈ T , ℓ(pZ) = p and ℓ(aW) = a, as well as:

(pZ , aW) ∈ F ⇐⇒ ∃π ∈W : π·e ∈ Z

(aW , pZ) ∈ F ⇐⇒ ∃π ∈W : π·x ∈ Z.
(1)

Thus both the flow relation and labelling function are implicit, and we will represent such a box simply

by N = (P, T).

We will now present a systematic way of constructing composite boxes from box expressions,

i.e., for each constant expression we define a box and, for each operator used in box expressions, a

corresponding operator on boxes.

Constants With the blocking expression stop and a single-action expression a ∈ A, we respectively

associate the following boxes:

Nstop = ({ee, xx},∅) and Na = ({ee, xx}, {aǫ}). (2)

Their diagrams are depicted in Figure 3 with labels shown inside the nodes. Nstop consists of one

entry place, one exit place, and nothing else. Na contains, in addition, a single transition. The way it

is connected with the two places is determined by the formula (1). For example, (ee, aǫ) ∈ F since

π = ǫ is an annotation of aǫ and π·e = e is an annotation of ee.

Sequence N ;K combines the exit interface of N with the entry interface of K. The entry interface

of the resulting box is that of N , and the exit interface is that of K. For an example see the diagram

of Na ;Nb in Figure 3.

N ;K =
(
PL ∪ PR ∪ X , TL ∪ TR

)

where





TL = ;L·N
T TR = ;R·K

T

PL = ;L·N
ei PR = ;R·K

ix

X = {i ;L·Z ∪ ;R·W | xZ ∈ N x ∧ eW ∈ Ke}.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 11

e

x

ee

xx

e

a

x

ee

xx

aǫ

e

a

i

b

x

e ;Le

a ;L

i ;Lx, ;Re

b ;R

x ;Rx

e

a

i

b

x

c

e✷Le,✷R ;Le

a✷R ;L

i✷R ;Lx,✷R ;Re

b✷R ;R

x✷Lx,✷R ;Rx

c✷L

Figure 3. From the left to right: diagrams of Nstop and Na and Na ;Nb and Nc ✷ (Na ;Nb). The last two

boxes correspond to the box expressions a ; b and c✷ (a ; b).

Non-deterministic choice N ✷K combines together the entry interfaces of the two boxes creating

a new entry interface, as well as their exit interfaces creating a new exit interface. For an example, see

the diagram of Nc✷ (Na ;Nb) in Figure 3.

N ✷K =
(
PL ∪ PR ∪ X ∪ Y , TL ∪ TR

)

where





TL = ✷L·N
T TR = ✷R·K

T

PL = ✷L·N
i PR = ✷R·K

i

X = {e✷L·Z ∪ ✷R·W | eZ ∈ N e ∧ eW ∈ Ke}

Y = {x✷L·Z ∪ ✷R·W | xZ ∈ N x ∧ xW ∈ Kx}.

Parallelism N ‖K simply puts the boxes N and K next to each other. The new entry (resp., exit)

interface is the union of the entry (resp., exit) interfaces of the composed boxes.

N ‖K =
(
PL ∪ PR , TL ∪ TR

)

where

{
TL = qL ·NT TR = qR ·KT

PL = qL ·NP PR = qR ·KP

Iteration JN ⊛ K ⊛ JK combines the exit interfaces of N and K with the entry interfaces of K

and J , respectively. For an example see the diagram of JNa ⊛ (Nb ‖Nc) ⊛ NdK in Figure 4(a). The

12 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

(a)

e

a

i i i i

b c

d

x

e⊛Le

x⊛Rx

a⊛L

d⊛R

b⊛M qL
c⊛M qR

iV iW iY iZ

e

g

i i i i

a c

x

e⊛Le

x⊛Rx

g⊛L

a⊛M qL,⊛M qR
c⊛M qR

iV iW iY iZ

(b)

iV = i⊛Lx,⊛M qLe,⊛M qLx,⊛Re iW = i⊛Lx,⊛M qLe,⊛M qRx,⊛Re

iY = i⊛Lx,⊛M qRe,⊛M qLx,⊛Re iZ = i⊛Lx,⊛M qRe,⊛M qRx,⊛Re.

Figure 4. Diagrams of two boxes involving parallel composition and iteration: JNa ⊛ (Nb ‖Nc) ⊛ NdK (a),

and (JNa ⊛ (Nb ‖Nc) ⊛ NdK) sco {a 7→ g, bc 7→ a, c 7→ c} (b). The four internal places are defined below

the diagrams.

new entry interface is that of N , and the exit interface is that of J .

JN ⊛ K ⊛ JK =
(
PL ∪ PM ∪ PR ∪ X , TL ∪ TM ∪ TR

)

where





TL = ⊛L·N
T TM = ⊛M ·KT TR = ⊛R·J

T

PL = ⊛L·N
ei PM = ⊛M ·K i PR = ⊛R·J

ix

X = {i⊛L·Z ∪ ⊛M ·W ∪ ⊛M ·V ∪ ⊛R·Y |

xZ ∈ N x ∧ eW ∈ Ke ∧ xV ∈ Kx ∧ eY ∈ Je}.

At this point it is possible to formulate a useful result which holds for all boxes which can be

constructed using the rules defined so far (clearly, any net constructed in this way is a box).

Proposition 2.1. Let N be any net constructed from boxes corresponding to the constant box expres-

sions as well as the operators for sequence, choice, parallelism, and iteration. Then, the set of steps

appearing in the step sequences of N is included in the following set:

Npsteps =
{
{a1π1

, . . . , anπn
} ⊆ NT | ∀i < j : πi|πj

}
.

Moreover, if the net Nstop defined in (2) is not used in the construction, then Npsteps is exactly the set

of steps appearing in the step sequences of N .

Proof:

Follows by structural induction from the general results proved, e.g., in [13] for Box Algebra models.

⊓⊔

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 13

The last result states that the valid steps of N (i.e., those occurring in the step sequences of N) do

not contain conflicting or causally dependent transitions, i.e., transitions whose syntactic paths π and

π′ do not satisfy π|π′. Henceforth we will call Npsteps the set of potential steps of N . Moreover, for

every synchronisation relation ρ, we define:

ρN = {(U, aπ1,...,πn) | U = {a1π1
, . . . , anπn

} ∈ Npsteps ∧ (a1, . . . , an, a) ∈ ρ}.

Each pair (U, aW) ∈ ρN comprises a set of transitions U which in principle might occur simultane-

ously in a valid step of N and, under the synchronisation specified by ρ in N sco ρ, would give rise to

a compound transition aW . For example, if we take the box N in Figure 4(a) with the synchronisation

relation ρ = {a 7→ g, bc 7→ a, c 7→ c}, then we have:

Npsteps = {∅, {a⊛L
}, {b⊛M qL

}, {c⊛M qR
}, {d⊛R

}, {b⊛M qL
, c⊛M qR

}}

ρN = {({a⊛L
}, g⊛L

), ({c⊛M qR
}, c⊛M qR

), ({b⊛M qL
, c⊛M qR

}, a⊛M qL,⊛M qR
)} .

Scoping N sco ρ has the same places as N and, for each potential step of N , one creates a new

transition representing a synchronisation of two or more actions of N , if the potential step is not a

singleton. After that, all the transitions of N are removed. Formally,

N sco ρ = (NP , Z)

where Z = {t | ∃ U : (U, t) ∈ ρN}.

As an example, the diagram of JNa ⊛ (Nb ‖Nc) ⊛ NdK sco {a 7→ g, bc 7→ a, c 7→ c} is depicted in

Figure 4(b).

As argued in [13], suitable synchronisation relations can capture a wide range of synchronisation

schemes of two or more actions (e.g., bc 7→ a above), as well as action relabelling (e.g., a 7→ g and

c 7→ c) and action restriction (as with d).

2.4. From expressions to boxes

We can now define the semantics of box expressions by transforming them compositionally into the

corresponding box nets, and then adopting the execution semantics of the latter. Formally, we define

a mapping box(.) from expressions to boxes, in the following way:

box(stop) = Nstop

box(a) = Na

box(E ;E′) = box(E) ; box(E′)

box(E✷E′) = box(E)✷ box(E′)

box(E ‖E′) = box(E)‖ box(E′)

box(JE ⊛ E′
⊛ E′′K) = Jbox(E) ⊛ box(E′) ⊛ box(E′′)K

box(E sco ρ) = box(E) sco ρ

(3)

14 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

From now on, by a box we will mean a composite box constructed using (3). According to the BA

theory, such boxes enjoy a number of interesting behavioural properties when we consider executions

starting from their initial markings as follows (the facts listed below follow from the general results

proved in [13] for more Box Algebra models):

• The number of tokens on any place for any reachable marking is bounded; more precisely, the

number of tokens on any internal place is never greater than two (i.e., the internal places are

2-bounded), and an entry or exit place never holds more than one token (i.e., the entry and exit

places are 1-bounded).

• Each box is clean, which means that when all the exit places contain tokens, there is no token

left elsewhere in the net.

• Boxes do not allow auto-concurrency, which means that there is no transition enabled ‘twice’

for any reachable marking. As a consequence, steps can be represented by sets rather than by

multiset of transitions.

The complexity of semantical representations of box expressions provided by the box(.) mapping

is in the worst case exponential. To show this, let us consider a synchronised expression F = E sco ρ.

We define its size |F | as |E| + |ρ|, where |E| is the size of E taken to be the total number of oc-

currences of the stop’s and a’s within E, and |ρ| to be the total number of action occurrences within

|ρ|. Moreover, we define the size of a box N as |N | = |NP| + |NT| + |NF|. We first observe that

|box(E)P|, |box(E)T|, and |box(E)F| all belong to O(2|E|). Hence |box(E)| ∈ O(2|E|). As far as

F is concerned, we observe that |box(F)P| = |box(E)P| ∈ O(2|E|), |box(F)T| ∈ O(2|E| · |ρ|), and

so |box(F)F| also belongs to O(2|E| · |ρ|). Hence |box(F)| ∈ O(2|E| · |ρ|). These estimates can-

not be much improved which can be shown by taking a sequence of synchronised box expressions

Fn = En sco ρn where, for every n ≥ 1:

En = ((b‖ b)✷ . . . ✷ (b‖ b)︸ ︷︷ ︸
n times

)‖ (a‖ . . . ‖ a︸ ︷︷ ︸
n times

) and ρn = {b 7→ b} ∪ {a . . . a︸ ︷︷ ︸
k times

7→ a | 1 ≤ k ≤ n}.

We first observe that |En| = 3 · n, |ρn| = 2+ 1
2 · n · (n+3), and |Fn| = 4 · n+1. On the other hand:

|box(En)
P| = 2n+1 + 2 · n |box(En)

P| = 2n+1 + 2 · n

|box(En)
T| = 2 · n + n |box(Fn)

T| = 2 · n + 2n − 1

|box(En)
F| = n · 2n+1 + 2 · n |box(Fn)

F| = n · 2n+1 +
∑n

k=1 k ·
(
n
k

)
.

2.5. Behavioural properties of composite boxes

Step sequences of composite boxes exhibit compositional properties [13], i.e., one can (easily) derive

the semantics of a composite box from the semantics of the boxes being composed. This is demon-

strated by a series of results which follow from the general properties of boxes [13].

For boxes modelling the blocking expression and a single-action expression, the semantics capture

is straightforward.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 15

Proposition 2.2. (basic boxes)

The following hold, where a ∈ A:

infsts(Nstop) = ∅
ω infsts(Na) = ∅

ω ∪ ∅
∗·{{aǫ}}·∅

ω

finsts(Nstop) = ∅ finsts(Na) = ∅
∗·{{aǫ}}·∅

∗.

Proof:

Follows from the general results proved, e.g., in [13]. ⊓⊔

For choice and parallelism, the semantics of a composite box can easily be expressed in terms of

the semantics of the composed boxes. We need, however, a notion of parallel composition of step

sequences.

For two step sequences, θ and δ, of equal length, θ ‖ δ is a step sequence of the same length as θ

and δ, and (θ ‖ δ)(k) = θ(k) ∪ δ(k), for all k ≤ |δ| = |θ|. Moreover, for two sets of step sequences, Θ
and ∆, Θ‖∆ = {θ ‖ δ | θ ∈ Θ ∧ δ ∈ ∆ ∧ |δ| = |θ|}.

Proposition 2.3. (choice and parallelism)

The following hold, where sts = infsts or sts = finsts:

sts(N ✷K) = ✷L·sts(N) ∪ ✷R·sts(N)

sts(N ‖K) = qL ·sts(N) ‖ qR ·sts(N).

Proof:

Follows from the general results proved, e.g., in [13]. ⊓⊔

Proposition 2.4. (sequence)

The following hold:

infsts(N ;K) = ;L·finsts(N)· ;R·infsts(K) ∪ ;L·infsts(N)

finsts(N ;K) = ;L·finsts(N)· ;R·finsts(K).

Proof:

Follows from the general results proved, e.g., in [13]. ⊓⊔

Proposition 2.5. (iteration)

The following hold:

infsts(JN ⊛ K ⊛ JK) = ⊛L·infsts(N) ∪

⊛L·finsts(N)·(⊛M ·finsts(K))∗· ⊛M ·infsts(K) ∪

⊛L·finsts(N)·(⊛M ·finsts(K))∗· ⊛R·infsts(J)

finsts(JN ⊛ K ⊛ JK) = ⊛L·finsts(N)·(⊛M ·finsts(K))∗· ⊛R·finsts(J).

Proof:

Follows from the general results proved, e.g., in [13]. ⊓⊔

16 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

Finally, we consider a box N sco ρ, where N is constructed from some non-synchronised box

expression. In this case, relating step sequences of N sco ρ and N is more involved.

First, we define a relation ρ̃N comprising all pairs (U, {t1, . . . , tk}) (k ≥ 0), where U ∈ Npsteps

and {t1, . . . , tk} ⊆ box(N sco ρ)T are such that there is a partition U1, . . . , Uk of U satisfying

(Uj , tj) ∈ ρN , for each j ≤ k. Moreover, for two equal length sequences of sets of transitions, τ

and θ, we denote (τ, θ) ∈ ρ̃N if (τ(j), θ(j)) ∈ ρ̃N , for all j.

Proposition 2.6. (scoping)

sts(N sco ρ) = {θ | ∃ τ ∈ sts(N) : (τ, θ) ∈ ρ̃N}, where sts = infsts or sts = finsts.

Proof:

Follows from the general results proved, e.g., in [13]. ⊓⊔

2.6. Streamlined box expressions

The translation from BA to ITL, that will be described in Section 4, is particularly simple for the class

of streamlined synchronised expressions.

We first observe that each transition aW in the box associated with a non-synchronized box ex-

pression is such that W is a singleton. Thus, aW is represented as aπ for a syntax path π.

We call a box expression E sco ρ streamlined if for each transition aπ ∈ box(E)T there is exactly

one transition bW ∈ box(E sco ρ)T such that π ∈ W . That is, any pre-synchronisation action in a

streamlined box expression contributes to exactly one action after applying the synchronisation.3

We will now demonstrate that each synchronised box expression F = E sco ρ can be transformed

into a semantically equivalent4 streamlined expression stl(F) = F ′ = E′ sco ρ′. First, for every

aπ ∈ box(E)T, let

trans(aπ) = {bW ∈ box(F)T | π ∈W} = {t | ∃(U, t) ∈ ρbox(E) : aπ ∈ U}.

In other words, trans(aπ) comprises all post-synchronisation transitions in which aπ has been in-

volved. For example, if we take Ja ⊛ (b‖ c) ⊛ dK sco {a 7→ g, bc 7→ a, c 7→ c} with the corresponding

box depicted in Figure 4(b), we have:

trans(a⊛L
) = {g⊛L

}

trans(d⊛R
) = ∅

trans(b⊛M qL
) = {a⊛M qL,⊛M qR

}

trans(c⊛M qR
) = {a⊛M qL,⊛M qR

, c⊛M qR
}

Then, a suitable E′ is obtained by replacing each occurrence of an action a ∈ A in E corresponding

to transition aπ in box(E)5 by:

• stop if we have trans(aπ) = ∅,

• bW if we have trans(aπ) = {bW }, and

• b1W1
✷ (. . . ✷ (bm−1

Wm−1
✷ bmWm

) . . .) if we have trans(aπ) = {b1W1
, . . . , bmWm

} and m ≥ 26.

3As a result, each pre-synchronisation action can be represented by a single variable in the corresponding ITL formula.
4In the sense of generating isomorphic box net with ‘isomorphic’ step sequences, see Proposition 2.7.
5Such an occurrence of a is identified by the path in the syntax tree of the non-synchronised expression E which corresponds

to π.
6We assume a fixed ordering on the transitions of box(F) so that the enumeration of trans(aπ) is unique.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 17

Furthermore, we modify the scoping part reflecting changes affecting the set of actions:

ρ′ = {bW . . . bW︸ ︷︷ ︸
|W | times

7→ bW | bW ∈ box(F)T}

The bW . . . bW 7→ bW above reflects the fact that bW is constructed as a synchronisation of |W | actions

in box(E), each such action being now replaced by a copy of bW in E′.

Continuing the last example, we obtain F ′ = E′ sco ρ′, with

E′ = (Jγ ⊛ (α‖ (α✷ ζ)) ⊛ stopK) and ρ′ = {γ 7→ γ, αα 7→ α, ζ 7→ ζ},

where γ = g⊛L
, α = a⊛M qL,⊛M qR

, and ζ = c⊛M qR
.

Each transition of box(F ′) is of the form (bW)Y , where bW ∈ box(E sco ρ)T,7 and we then define

a bijection λ : box(F ′)T → box(F)T by setting λ((bW)Y) = bW . Such a λ can be applied in the

standard way to the subsets of box(F ′)T and their sequences.

Proposition 2.7. (streamlined expression)

The nets box(F) and box(stl(F)) are isomorphic after replacing each transition label bW in box(stl(F))
by b. Moreover, sts(box(F)) = λ(sts(box(stl(F)))), where sts = infsts or sts = finsts.

Proof:

We observe that the sets of places in box(F) and box(stl(F)) are in a one-to-one correspondence since

the subexpressions of the form stop or bW or b1W1
✷ (. . . ✷ (bm−1

Wm−1
✷ bmWm

) . . .) produce boxes with

exactly one entry place, one exit place, and no internal places.

The first part of the result follows from the fact that the result of synchronising |W | transitions in

box(E) to yield a transition bW is the same w.r.t. connections with the (corresponding) places as the

result of synchronising |W | transitions labelled bW in box(E′) yielding a transition (bW)Y .

The second part follows from the first part and the fact that λ is a part of isomorphism between

box(F) and box(stl(F)). ⊓⊔

Streamlined expressions will prove their usefulness in the translation of box expressions to be-

haviourally equivalent ITL formulas. Intuitively, they allow one to separate the roles that a single

variable can play in different synchronisation contexts.

In terms of complexity, the transformation of F = E sco ρ into a streamlined stl(F) = E′ sco ρ′

will usually result in a larger expression. This increase is a result of inserting sub-expressions of the

form b1W1
✷ (. . . ✷ (bm−1

Wm−1
✷ bmWm

) . . .) and modifying the scoping relation. It is straightforward to

check that |E′| ∈ O(|E|+ |box(E)F|) and |ρ′| = |box(E)F|. Hence |stl(F)| ∈ O(|E|+ |box(E)F|),
and so |stl(F)| ∈ O(|E| + |box(E)). Since it can be argued that, for the purpose of behavioural

analyses within the domain of Petri nets, the problem size is |F | + |box(F)|, the transformation to

streamlined expressions is efficient.

It is also important to stress that it is not necessary to derive box(F) in order to derive stl(F).

7In general, W 6= Y since the syntax tree of E is not isomorphic to the syntax tree of E
′ due to the introduction of

sub-expressions of the form b
1
W1

✷ (. . . ✷ (bm−1

W
m−1

✷ b
m
Wm

) . . .).

18 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

3. Interval Temporal Logic

We now provide the syntax and semantics of a small fragment of ITL, including only those constructs

(basic and derived) which are used in the translation of box expressions. In particular, we assume that

Var is a countable set of Boolean variables, all such variables being the transitions of boxes created

using the box mapping.

The formulas of the fragment of the ITL logic we need are defined by:

ϕ ::= true | flip(v) | skipstbl(v) | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ ;ϕ | ϕ∗ | inf

where v ∈ Var . Intuitively, flip(v) inverts the value of a Boolean variable v over a unit interval,

skipstbl(v) keeps unchanged the value of v over a unit interval, “ ; ” is a sequential composition op-

erator (called chop), “∗” is an iterative version of chop (called chop-star), and inf indicates an infinite

interval. The set of variables occurring in a formula ϕ is denoted by var(ϕ). and its size |ϕ| is the total

number of occurrences of the v’s, stop’s, and inf’s within ϕ.

Remark 3.1. The logic syntax introduced above has been tailored to smooth the translation from box

expression to logical formulas. However, all the non-standard constructs used (i.e., true, flip, skipstbl

and inf) can be expressed in the standard ITL logic, in the following way:

true = v ∨ ¬v flip(v) = (©¬© true) ∧ (v = ©¬v)

inf = true ;¬true skipstbl(v) = (©¬© true) ∧ (v = ©v)

where © is the temporal operator ‘next’. Hence it is possible to formulate and analyse behavioural

properties of any translated formula using proof techniques and tools of ITL (e.g., [11] gives a com-

plete axiomatisation of both finite and infinite time). ♦

A state s is a mapping which assigns values to the Boolean variables Var , and an interval σ is

a non-empty sequence of states. The meaning of formulas is given by the satisfaction relation |=
involving intervals and formulas, defined as follows (below s, s′ are states, and σ, σ′, σ′′ are intervals):

• σ |= true,

• σ |= flip(v) if σ = s·s′ and s(v) 6= s′(v),

• σ |= skipstbl(v) if σ = s·s′ and s(v) = s′(v),

• σ |= ϕ ∨ ϕ′ if σ |= ϕ or σ |= ϕ′,

• σ |= ϕ ∧ ϕ′ if σ |= ϕ and σ |= ϕ′,

• σ |= ϕ ;ϕ′ if σ is infinite and σ |= ϕ, or σ can be decomposed as σ = σ′·s·σ′′ so that σ′·s |= ϕ

and s·σ′′ |= ϕ′,

• σ |= ϕ∗ if |σ| = 1, or σ can be decomposed as σ = σ′·s·σ′′ so that σ′·s |= ϕ and s·σ′′ |= ϕ∗,

and

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 19

• σ |= inf if σ is infinite.

To capture the relationship between the semantics of a box expression and a corresponding for-

mula, with each ITL formula ϕ and interval σ satisfying σ |= ϕ, we associate a sequence of sets

µσ = Γ1Γ2 . . . , where, for each j < |σ|, Γj is given by:

Γj = var(ϕ) ∩ {v ∈ var(ϕ) | σ(j)(v) 6= σ(j+1)(v)}.

Since each Γj records all the variables which flipped their values at the point of entering the state

σ(j+1), the sequence µσ provides a direct interpretation of σ in terms of sequences of steps of transi-

tions of box nets. Then, for any ITL formula ϕ, we define:

infsts(ϕ) = {µσ | σ |= ϕ ∧ |σ| = ω} and finsts(ϕ) = {µσ | σ |= ϕ ∧ |σ| < ω}.

Below we present a number of semantrical properties of ITL formulas considered in this paper.

Proposition 3.2. Let ϕ and ϕ′ be two formulas with disjoint sets of variables, i.e., var(ϕ)∩var(ϕ′) =
∅. Then, the following hold, where ψ = skipstbl(var(ϕ))∗, ψ′ = skipstbl(var(ϕ′))∗, and sts = infsts

or sts = finsts:

sts((ϕ ∧ ψ′) ∨ (ϕ′ ∧ ψ)) = sts(ϕ) ∪ sts(ϕ′)

sts(ϕ ∧ ϕ′) = sts(ϕ)‖ sts(ϕ′)

infsts((ϕ ∧ ψ′) ; (ϕ′ ∧ ψ)) = infsts(ϕ) ∪ finsts(ϕ)·infsts(ϕ′)

finsts((ϕ ∧ ψ′) ; (ϕ′ ∧ ψ)) = finsts(ϕ)·finsts(ϕ′).

Proof:

Follows directly from the basic properties of logic operators. ⊓⊔

Proposition 3.3. Let ϕi, for i = 1, 2, 3, be formulas with mutually disjoint sets of variables. Then,

the following hold, where ψi,j = skipstbl(var(ϕi) ∪ var(ϕj))
∗, for i, j ∈ {1, 2, 3}:

finsts((ϕ1 ∧ ψ2,3) ; ((ϕ2 ∧ ψ1,3)
∗ ; (ϕ3 ∧ ψ1,2))) = finsts(ϕ1)·finsts(ϕ2)

∗·finsts(ϕ3)

infsts((ϕ1 ∧ ψ2,3) ; ((ϕ2 ∧ ψ1,3)
∗ ; (ϕ3 ∧ ψ1,2))) = infsts(ϕ1) ∪

finsts(ϕ1)·finsts(ϕ2)
∗·(infsts(ϕ2) ∪ infsts(ϕ3)).

Proof:

We obtain the following, after noting that var(ϕ∗
2) = var(ϕ2) and twice using Proposition 3.2:

finsts((ϕ1 ∧ ψ2,3) ; ((ϕ2 ∧ ψ1,3)
∗ ; (ϕ3 ∧ ψ1,2))

= finsts((ϕ1 ∧ ψ2,3) ; (((ϕ2 ∧ ψ3,3)
∗ ; (ϕ3 ∧ ψ2,2)) ∧ ψ1,1)

= finsts(ϕ1)·finsts((ϕ2 ∧ ψ3,3)
∗ ; (ϕ3 ∧ ψ2,2))

= finsts(ϕ1)·finsts((ϕ
∗
2 ∧ ψ3,3) ; (ϕ3 ∧ skipstbl(var(ϕ∗

2))
∗))

= finsts(ϕ1)·finsts(ϕ
∗
2)·finsts(ϕ3)

= finsts(ϕ1)·finsts(ϕ2)
∗·finsts(ϕ3).

The second part of the proof is similar. ⊓⊔

20 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

Proposition 3.4. Let ϕ′ be a formula obtained from an ITL formula ϕ by a consistent renaming of

Boolean variables given by a bijection λ. Then sts(ϕ′) = λ(sts(ϕ)), for sts = infsts or sts = finsts.

Proof:

Follows from the insensitivity of |= to the identities of logic variables. ⊓⊔

For a formula ϕ and π ∈ Π, we will denote by π·ϕ the formula obtained from ϕ by replacing each

variable aπ′ with aπ·π′ .

Proposition 3.5. If π ∈ Π then sts(π·ϕ) = π·sts(ϕ), where sts = infsts or sts = finsts.

Proof:

This follows from Proposition 3.4 and the fact that the transformation given by π·ϕ is a consistent

renaming of variables. ⊓⊔

3.1. Derived formulas

and we will use the following derived formulas, for finite sets of variables V, V ′ ⊆ Var :

skipstbl(V) =

{ ∧
v∈V skipstbl(v) if V 6= ∅

true otherwise

infstbl(V) = inf ∧ skipstbl(V)∗

flip(V) =

{ ∨
v∈V flip(v) ∧ skipstbl(V \ {v}) if V 6= ∅

inf otherwise

fs(V |V ′) = skipstbl(V ∪ V ′)∗ ; (flip(V) ∧ skipstbl(V ′)) ; skipstbl(V ∪ V ′)∗.

(4)

Intuitively, skipstbl(V) and infstbl(V) keep unchanged the values of the variables in V respectively

over a unit and infinite interval, flip(V) inverts the value of exactly one of the Boolean variables in V

over a unit interval, and fs(V |V ′) keeps unchanged the values of the variables in V and V ′ over an

interval except that it inverts the value of exactly one variable in V over a unit sub-interval. We can

drop the set parenthesis when writing down the above formulas.

Using the derived syntax, we call an ITL logical formula an infstbl/fs-formula if it constructed

using infstbl(V)’s, fs(V |V ′)’s and the four logical operators of the syntax. The translation we will

introduce in the next section will translate box expressions into infstbl/fs-formulas.

It is easily checked that the following hold for any finite sets of variables V, V ′, V ′′ ⊆ Var satisfy-

ing V ∩V ′′ = ∅, where ≡ denotes the standard equivalence of formulas w.r.t. the satisfaction relation

|=:

fs(∅ |V) ≡ infstbl(V) infstbl(V) ∧ skipstbl(V ′)∗ ≡ infstbl(V ∪ V ′)

fs(V |V) ≡ infstbl(V) fs(V |V ′) ∧ skipstbl(V ′′)∗ ≡ fs(V |V ′ ∪ V ′′).
(5)

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 21

Moreover, skipstbl(V) distributes over the logical operators as we have the following, for all formulas

ϕ,ϕ′ and finite sets of variables V :

(ϕ ∧ ϕ′) ∧ skipstbl(V) ≡ (ϕ ;ϕ′) ∧ skipstbl(V)

(ϕ ∧ ϕ′) ∨ skipstbl(V) ≡ (ϕ ∧ skipstbl(V)) ∨ (ϕ′ ∧ skipstbl(V))

(ϕ ∧ ϕ′) ; skipstbl(V) ≡ (ϕ ∧ skipstbl(V)) ; (ϕ′ ∧ skipstbl(V)).

(6)

For every infstbl/fs-formula ϕ and a finite set of variables V , we will denote by V ◮ ϕ the

formula obtained by replacing each sub-formula infstbl(V ′) by infstbl(V ∪V ′), and each sub-formula

fs(V ′ |V ′′) by fs(V ′ |V ∪ V ′′). By (5) and (6), we immediately obtain that:

V ◮ ϕ ≡ ϕ ∧ skipstbl(V)∗. (7)

4. From box expressions to logical formulas

To make the presentation more accessible, we will first show how to translate non-synchronised box

expressions. After that, we will extend the translation to the streamlined synchronised expressions,

and, finally, we will deal with the case of general synchronised expressions.

4.1. Translating non-synchronised expressions

The translation for non-synchronised expressions yields infstbl/fs-formulas, and is defined composi-

tionally in the following way:

itl(stop) = infstbl(∅)

itl(a) = fs(aǫ |∅)

itl(E ;F) = ((;R·var(itl(F))) ◮ (;L·itl(E))) ; ((;L·var(itl(E))) ◮ (;R·itl(F)))

itl(E✷F) = ((✷R·var(itl(F))) ◮ (✷L·itl(E))) ∨ ((✷L·var(itl(E))) ∨ (✷R·itl(F)))

itl(E ‖F) = qL ·itl(E) ∧ qR ·itl(F)

itl(JE ⊛ F ⊛ GK) = (((⊛M ·var(itl(F))) ∪ (⊛R·var(itl(G)))) ◮ (⊛L·itl(E))) ;

(((⊛L·var(itl(E))) ∪ (⊛R·var(itl(G)))) ◮ (⊛M ·itl(F)))∗ ;

(((⊛L·var(itl(E))) ∪ (⊛M ·var(itl(F)))) ◮ (⊛R·itl(G))).

As an example, for the expressions generating the boxes in Figure 3, we obtain:

itl(a ; b) = fs(a ;L
| b ;R) ; fs(b ;R | a ;L

)

itl(c✷ (a ; b)) =
(
fs(c✷L

| a✷R ;L
, b✷R ;R

)
)
∨
(
fs(a✷R ;L

| b✷R ;R
, c✷L

) ; fs(b✷R ;R
| a✷R ;L

, c✷L
)
)
.

As far as the complexity of the translation is concerned, |itl(E)| ∈ O(|E|2). This compares very

favourably with the size of the original semantical representation of E since |box(E)| ∈ O(2|E|).
Crucially, the step semantics of a non-synchronised box expression and the corresponding ITL

formula coincide.

22 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

Theorem 4.1. (non-synchronised expression)

If H is a non-synchronised box expression then sts(itl(H)) = sts(box(H)), where sts = infsts or

sts = finsts.

Proof:

Let ψ = itl(H) and N = box(H). The proof proceeds by induction on the structure of H .

Case 1: H = stop. Then ψ = inf ≡ infstbl(∅) and N = Nstop. Hence we have:

infsts(ψ) = ∅
ω = infsts(N) and finsts(ψ) = ∅ = finsts(N).

Case 2: H = a. Then, ψ = fs(aǫ |∅) = skipstbl(aǫ)
∗ ; flip(aǫ) ; skipstbl(aǫ)

∗ and N = Na. Hence

we have:

infsts(ψ) = ∅
ω ∪ ∅

∗·{{aǫ}}·∅
ω = infsts(N)

finsts(ψ) = ∅
∗·{{aǫ}}·∅

∗ = finsts(N).

Case 3: H = E✷F . Then, by the equivalence (7), we have:

ψ ≡ ✷L·itl(E) ∧ skipstbl(✷R·var(itl(F)))
∗ ∨ ✷R·itl(F) ∧ skipstbl(✷L·var(itl(E)))∗.

Hence, by var(ψ) = ✷L·var(itl(E)) ∪ ✷R·var(itl(F)) as well as (applied in this order) Proposi-

tion 3.2, Proposition 3.5, the induction hypothesis, and Proposition 2.3, we obtain:

sts(ψ) = sts(✷L·itl(E)) ∪ sts(✷R·itl(F))

= ✷L·sts(itl(E)) ∪ ✷R·sts(itl(F))

= ✷L·sts(box(E)) ∪ ✷R·sts(box(F)) = sts(H).

Case 4: H = E ‖F . Then, by Proposition 3.2, Proposition 3.5, the induction hypothesis, and Propo-

sition 2.3, we have:

sts(ψ) = sts(qL ·itl(E)) ‖ sts(qL ·itl(F))

= qL ·sts(itl(E)) ‖ qL ·sts(itl(F))

= qL ·sts(box(E)) ‖ qL ·sts(box(F)) = sts(H).

Case 5: H = E ;F . Then, by the equivalence (7), we have:

ψ = ;L·itl(E) ∧ skipstbl(;R·var(itl(F)))
∗ ; ;R·itl(F) ∧ skipstbl(;L·var(itl(E)))∗.

Hence we obtain, by var(ψ) = ;L·var(itl(E)) ∪ ;R·var(itl(F)) as well as (applied in this order)

Proposition 3.2, Proposition 3.5, the induction hypothesis, and Proposition 2.4:

finsts(ψ) = finsts(;L·itl(E)) · finsts(;R·itl(F))

= ;L·finsts(itl(E)) · ;R·finsts(itl(F))

= ;L·finsts(box(E)) · ;R·finsts(box(F)) = finsts(H).

The second part of the proof for sequence is similar.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 23

Case 6: H = JE ⊛ F ⊛ GK. Then, by the equivalence (7), we have:

ψ = ⊛L·itl(E) ∧ skipstbl(⊛M ·var(F) ∪ ⊛R·var(G))∗ ;

(⊛M ·itl(F) ∧ skipstbl(⊛L·var(E) ∪ ⊛R·var(G))∗)∗ ;

⊛R·itl(G) ∧ skipstbl(⊛L·var(E) ∪ ⊛M ·var(F))∗

Hence we obtain, by var(ψ) = ⊛L·var(itl(E))∪ ⊛M ·var(itl(F))∪ ⊛R·var(itl(G)) as well as (applied

in this order) Proposition 3.3, Proposition 3.5, the induction hypothesis, and Proposition 2.5:

finsts(ψ) = finsts(⊛L·itl(E)) · finsts(⊛R·itl(F))
∗ · finsts(⊛M ·itl(G))

= ⊛L·finsts(itl(E)) · (⊛R·finsts(itl(F)))
∗ · ⊛M ·finsts(itl(G))

= ⊛L·finsts(box(E)) · (⊛R·finsts(box(F)))
∗ · ⊛M ·finsts(box(G)) = finsts(H).

The second part of the proof for iteration is similar. ⊓⊔

4.2. Translating streamlined expressions

The result captured by Theorem 4.1 is strong as it means that the behavioural properties of non-syn-

chronised box expressions related to the sequencing of executed actions can be re-interpreted as prop-

erties of the translated formulas, assuming that an execution of a transition is ‘simulated’ by a flipping

of the corresponding Boolean variable. Extending such a result to streamlined expressions highlights

the way in which the box expression synchronisation mechanism (through merging transitions) and

the ITL synchronisation mechanism (through flipping variables in different parts of a formula) can be

made to match each other.

Let F = E sco ρ be a streamlined box expression. Then, itl(F) is obtained from itl(E) by replac-

ing each occurrence of each variable v by the unique variable in trans(v)8.

It is also important to stress that it is not necessary to derive box(F) in order to derive the trans(v)’s.

Theorem 4.2. (streamlined expression)

Let F = E sco ρ be a streamlined box expression. Then, sts(itl(F)) = sts(box(F)), for sts = infsts

or sts = finsts.

Proof:

By the definition of the itl mapping, flipping the value of any variable v in itl(E) is due to the (unique

within itl(E)) sub-formula flip(v) as otherwise v keeps the same value due to the presence of the

skipstbl(v)∗ sub-formulas.

Suppose now that aW is a variable in itl(F) and that a1π1
, . . . , akπk

are the variables in itl(E) which

in itl(F) are replaced by aW . Then, by definition, πi|πj for all i 6= j. Hence, there is a sub-formula

ϕ ∧ ϕ′ of itl(E) such that var(ϕ) ∩ var(ϕ′) = ∅ and, without loss of generality, aiπi
∈ var(ϕ) and

a
j
πj ∈ var(ϕ′). As this observation holds for all distinct i and j, it follows that flipping of aW in

itl(F) must be ‘agreed upon’ by all the sub-formulas flip(aW), each resulting from a replacement of

some aiπj
by aW . The result then follows from sts(itl(E)) = sts(box(E)) (see Theorem 4.1) and

Proposition 2.6. ⊓⊔

8Recall trans(t) was introduced in Section 2.6.

24 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

In terms of complexity, the size of itl(F) is of the same order as that itl(E), and so |itl(F)| ∈
O(|F |2) which, again, compares very favourably with |box(F)| as |box(F)T| ∈ O(2|E|). Moreover,

the number variables in itl(F) is the same as the number of transitions in box(F).

4.3. Translating general expressions

Suppose now that F = E sco ρ is an arbitrary synchronised expression. Given Proposition 2.7, we

could now simply take the streamlined expression stl(F) defined in Section 2.6 and, after consistently

renaming variables according to the bijection λ defined in Section 2.6, derive itl(stl(F)) and obtain a

generalised version of Theorem 4.2.

Applying our previous complexity estimates, we would get |itl(stl(F))| ∈ O((|E|+ |box(E)|F)2).
Therefore, itl(stl(F)) would be of similar size as box(E). This, however, changes radically if we

assumed that, e.g., only binary synchronisations are allowed and a given pair of synchronised actions

always yields the same action label,9 and so |box(E)|F ∈ O(|E|2). Then we would have |itl(stl(F))| ∈
O(|E|4) whereas |box(E)| would belong to O(2|E|).10 Moreover, as we already argued, it is not

necessary to construct box(F) in order to derive itl(stl(F)).
As an alternative, we may proceed without pre-processing and conservatively extend the trans-

lation defined for non-synchronised expressions. More precisely, for any synchronised expression

F = E sco ρ, we construct itl(F) directly from itl(E) by replacing each flip(t) by flip(trans(t)), and

each skipstbl(V) by skipstbl(
⋃
trans(V)). The size of itl(F) would be similar as that of itl(stl(F)).

Theorem 4.3. (synchronised expression)

Let F = E sco ρ be a synchronised box expression. Then, sts(itl(F)) = sts(box(F)), where sts =
infsts or sts = finsts.

Proof:

Let us consider the streamlined expression stl(E sco ρ) = E′ sco ρ′, as defined in Section 2.6, and

ϕ = itl(E′ sco ρ′) as defined for streamlined expression. Then itl(E sco ρ) and ϕ are equivalent after

applying a consistent renaming of variables given by the bijection λ defined in Section 2.6. Now, we

observe that if trans(aπ) = {b1W1
, . . . , bmWm

} and m ≥ 2, then the sub-formula fs(aπ |∅) in itl(E) is

transformed into fs(trans(aπ) |∅) within itl(F). This is equivalent to

∨

1≤i≤m

fs(biWi
| b1W1

, . . . , bi−1
Wi−1

, bi+1
Wi+1

, . . . , bmWm
),

which in turn can be shown to be equivalent (after taking into account the correspondence given by λ)

to itl(b1W1
✷ . . . ✷ bmWm

). Hence, the result follows from Theorem 4.2 and Propositions 2.7 and 3.4.

⊓⊔

To conclude, we have demonstrated that it is possible to associate in a computationally efficient

way a semantically equivalent ITL formula with any box expression considered in this paper.

9Such an assumption is usually made, e.g., by process algebras.
10Take, for every n ≥ 1, Fn = (stop‖ stop)✷ . . . ✷ (stop‖ stop)

︸ ︷︷ ︸

n times

) sco∅. Then |Fn| = 2 · n and |box(Fn)| = 2n+1.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 25

5. Examples

We will now present examples illustrating the translation of box expressions into logical formulas.

5.1. Synchronisation and restriction

e e e

a a b

i i i

b c

x x

e e e

d

e

i i i

x x

Figure 5. Boxes of E = ((a‖ a) ; b)‖ (b ; c) and F = E sco {aa 7→ d, bb 7→ e}.

To illustrate action restriction as well as internal and external synchronisations, we consider a

streamlined expression F = E sco ρ, where

E = ((a‖ a) ; b)‖ (b ; c) and ρ = {aa 7→ d, bb 7→ e}.

The corresponding boxes are shown in Figure 5. In the translation, we first derive:

itl(E) =
(
(fs(aqL ;LqL

| bqL ;R
) ∧ fs(aqL ;LqR

| bqL ;R
)) ; fs(bqL ;R

| aqL ;LqL
, aqL ;LqR

)
)

∧
(
fs(bqR ;L

| cqR ;R
) ; fs(cqR ;R

| bqR ;L
)
)
.

To prepare for applying scoping, we derive

trans(aqL ;LqL
) = trans(aqL ;LqR

) = {dqL ;LqL,qL ;LqR
} = {α}

trans(bqL ;R
) = trans(bqR ;L

) = {eqL ;R,qR ;L
} = {β}

trans(cqR ;R
) = ∅

which after simplifications leads to

itl(F) = ((fs(α |β) ∧ fs(α |β)) ; fs(β |α)) ∧ (fs(β |∅) ; infstbl(β))

= (fs(α |β) ; fs(β |α)) ∧ (fs(β |∅) ; infstbl(β))

= fs(α |β) ; fs(β |α) ; infstbl(α, β).

Thus itl(F) is satisfied over an interval provided that the latter can be split into three successive sub-

intervals (the first two being finite and the third one infinite) overlapping on single states so that the

26 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

variables α and β are kept unchanged, except for one flipping of α within the first interval, and one

flipping of β in the second interval (see (4) for the definitions of fs(α |β), fs(β |α), and infstbl(α, β)).
Note that finsts(F) = ∅ and infsts(F) = ∅

ω ∪ ∅
∗·{{α}}·∅ω ∪ ∅

∗·{{α}}·∅∗·{{β}}·∅ω.

5.2. Parallel composition and choice

To illustrate choice and parallel composition, we consider a streamlined expression F = E sco ρ,

where

E = (a✷ b)‖ b and ρ = {a 7→ a, bb 7→ b}.

The corresponding boxes are shown in Figure 6. In the translation, we first derive

itl(E) = (fs(aqL ✷L
| bqL ✷R

) ∨ fs(bqL ✷R
| aqL ✷L

)) ∧ fs(bqR |∅).

To prepare for applying scoping, we derive:

trans(aqL ✷L
) = {aqL ✷L

} = {α}

trans(bqL ✷R
) = trans(bqR) = {bqL ✷R,qR} = {β}

which (after eliminating true in conjunctions) leads to

itl(F) = (fs(α |β) ∨ fs(β |α)) ∧ fs(β |∅) ≡ (fs(α |β) ; infstbl(α, β)) ∨ fs(β |α).

Hence finsts(F) = ∅
∗·{{β}}·∅∗ and infsts(F) = ∅

ω ∪∅
∗·{{α}, {β}}·∅ω.

e e

a b b

x x

e e

a b

x x

Figure 6. Boxes of E = (a✷ b)‖ b and F = E sco {a 7→ a, bb 7→ b}.

5.3. Iteration and scoping

To illustrate synchronisation inside iteration, we consider a non-streamlined expression F = E sco ρ,

where

E = Ja ⊛ (b‖ c) ⊛ dK and ρ = {a 7→ a, bc 7→ a, c 7→ e}.

The boxes corresponding to E and F are shown in Figure 4. We first derive

itl(E) = fs(a⊛L
| b⊛M qL

, c⊛M qR
, d⊛R

) ;




fs(b⊛M qL
| a⊛L

, d⊛R
)

∧

fs(c⊛M qR
| a⊛L

, d⊛R
)




∗

; fs(d⊛R
| a⊛L

, b⊛M qL
, c⊛M qR

).

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 27

To prepare for applying scoping, we derive

trans(a⊛L
) = {a⊛L

} = {γ}

trans(d⊛R
) = ∅

trans(b⊛M qL
) = {a⊛M qL,⊛M qR

} = {α}

trans(c⊛M qR
) = {a⊛M qL,⊛M qR

, e⊛M qR
} = {α, ζ}

which leads to

itl(F) = fs(γ |α, ζ) ;
(
fs(α | γ) ∧ fs(α, ζ | γ)

)∗
; infstbl(γ, α, ζ)

≡ fs(γ |α, ζ) ;
(
(fs(α | γ) ∧ fs(α | γ, ζ)) ∨ (fs(α | γ) ∧ fs(ζ | γ, α))

)∗
; infstbl(γ, α, ζ)

≡ fs(γ |α, ζ) ;
(
fs(α | γ, ζ) ∨ (fs(ζ | γ, α) ; infstbl(γ, α, ζ))

)∗
; infstbl(γ, α, ζ).

Hence infsts(F) = ∅
ω ∪ ∅

∗·{{γ}}·
{
∅

ω ∪ (∅∗·{{α}})∗·∅ω ∪ (∅∗·{{α}})∗·∅∗·{{ζ}}·∅ω
}

and

finsts(F) = ∅.

5.4. Producer/consumers system

Consider BA expressions Gn (n ≥ 1), modelling a producer Pn working in parallel with n consumer

processesC1, . . . , Cn. After starting up using action a, the producer repeatedly performs a local action

b followed by a parallel execution of communication actions c1, . . . , cn, each cycle being finished by

the execution of action d, and then a new cycle is started by executing action e. A consumer process

Ci, after a start up action ai, also executes an indefinite loop executing action ci and ending each cycle

with fi. The definitions of these expressions are as follows:

Ci = Jai ⊛ ci ; fi ⊛ stopK (i = 1, . . . , n)

Pn = Ja ⊛ b ; (c1 ‖ . . . ‖ cn) ; d ; e ⊛ stopK

PC n = (C1 ‖ . . . ‖Cn ‖Pn) sco ρ

where

ρ =





c1c1 7→ τ1 . . . cncn 7→ τn a 7→ a

a1 7→ a1 . . . an 7→ an d 7→ d b 7→ b

f1 7→ f1 . . . fn 7→ fn e 7→ e





Figure 7 depicts the boxes of Ci and Pn. Moreover, Figure 8 shows the box corresponding to PC 2

together with the initial marking. The corresponding ITL formula is shown below (for brevity, we only

indicate variables which flip their values, but even then we omit the subscripts, and show only the

labels of transitions corresponding to these variables):

itl(PC n) =
(
fs(a1 |) ; (fs(τ1 |) ; fs(f1 |))

∗ ; infstbl()
)

∧ · · · ∧(
fs(an |) ; (fs(τn |) ; fs(fn |))

∗ ; infstbl()
)
∧(

fs(a |) ;
(
fs(b |) ; (fs(τ1 |) ∧ · · · ∧ fs(τn |)) ; fs(d |) ; fs(e |)

)∗
; infstbl()

)
.

28 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

e

ai

i

ci

i

fi

x

qi1

qi2

qi3

qi4

ea

ib

i

c1

i

· · ·

· · ·

· · ·

i

cn

i

d i

e

x

p1

p2

p13

p14

pn3

pn4
p5

p6

Figure 7. The boxes of the consumers Ci and the producer Pn.

6. Conclusions

In the past, logics have been mainly used for expressing correctness properties of systems specified

using Petri nets [36]. When it comes to the intrinsic semantic relationship between logics and Petri

nets, we feel that the work on the connections between linear logic [37] and Place Transition nets has

been the closest one. However, the main concern there was the handling of multiple token occurrences

in net places whereas here nets can hold at most two tokens in a single place. Another way in which

logics and Petri nets are related is reported in [38], which provided a characterisation of Petri net

languages in terms of second-order logical formulas.

The results presented in this paper demonstrate that one can define a translation from box expres-

sions to ITL with equivalent behaviour. We also show that the complexity of the proposed translation

compares favourably with the complexity of the translation from box expressions to boxes.

It is therefore important to further investigate the extent to which the established connection be-

tween BA and ITL could be generalised and exploited. In particular, we plan to investigate what is the

subset of ITL which can be translated into BA. We do not expect that such a translation will be easy for

the full ITL for at least two reasons. The first is that the projection operator prj of ITL does not have an

equivalent in BA and so incorporating it would call for new constructs at the syntactical and semantical

levels. The second reason is that ITL allows one to specify actions happening simultaneously, e.g., ,

as in flip(v)∧ flip(w). This is akin to executing the step {v, w} without being able to execute {v}{w}
or {w}{v}, i.e., v and w must be executed synchronously and without delay. Such a behaviour cannot

be reproduced in the standard Petri nets (and also boxes) as they are inherently asynchronous models.

The required effect could perhaps be achieved by using the maximally concurrent execution rule, but

this would fundamentally change the net model. In fact, we feel that in logical formulas translatable

to box expressions all actions should be fully asynchronous, using fs(v |∅) rather than v in ITL syn-

tax. However, more investigation needs to be conducted in order, in particular, to generate a suitable

scoping set from a give ITL formula.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 29

• a1

τ1f1

e

q11 q12

q13q14 x

•a2

τ2 f2

e

q21q22

q23 q24 x

•a

b

d

e

e

x

p1

p2

p13

p14

p23

p24
p5

p6

Figure 8. Initially marked box of PC 2.

A long-term goal is the development of a hybrid verification methodology combining ITL and BA

techniques. For example, sequential algorithms and infinite data structures could be treated by ITL

techniques [39, 40, 41, 30], while intensive parallel or communicating aspects of systems could be

treated by net unfoldings [42, 43] or other Petri net techniques [44].

Acknowledgement

This research was supported by the 973 Program Grant 2010CB328102, NSFC Grant 61133001, ANR

SYNBIOTIC and EPSRC UNCOVER project.

References

[1] Goranko V, Montanari A, Sciavicco G. A Road Map of Interval Temporal Logics and Duration Cal-

culi. Journal of Applied Non-Classical Logics, 2004. 14(1-2):9–54. doi:10.3166/jancl.14.9-54. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✸✶✻✻✴❥❛♥❝❧✳✶✹✳✾✲✺✹.

[2] Emerson EA. Temporal and Modal Logic. In: Handbook of Theoretical Computer Science, Volume B:

Formal Models and Sematics (B), pp. 995–1072. MIT Press Cambridge, 1990.

[3] Manna Z, Pnueli A. Verification of Concurrent Programs: Temporal Proof Principles. In: Kozen D

(ed.), Logics of Programs, Workshop, Yorktown Heights, New York, USA, May 1981, volume 131

of Lecture Notes in Computer Science. Springer. ISBN 3-540-11212-X, 1981 pp. 200–252. doi:

10.1007/BFb0025785. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴❇❋❜✵✵✷✺✼✽✺.

[4] Moszkowski BC, Guelev DP, Leucker M. Guest editors’ preface to special issue on interval tem-

poral logics. Ann. Math. Artif. Intell., 2014. 71(1-3):1–9. doi:10.1007/s10472-014-9417-7. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✶✵✹✼✷✲✵✶✹✲✾✹✶✼✲✼.

[5] Desel J, Juhás G. ”What Is a Petri Net?”. In: Ehrig H, Juhás G, Padberg J, Rozenberg G

(eds.), Unifying Petri Nets, Advances in Petri Nets, volume 2128 of Lecture Notes in Computer

30 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

Science. Springer. ISBN 3-540-43067-9, 2001 pp. 1–25. doi:10.1007/3-540-45541-8_1. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✹✺✺✹✶✲✽❴✶.

[6] Peterka G, Murata T. Proof Procedure and Answer Extraction in Petri Net Model of Logic

Programs. IEEE Trans. Software Eng., 1989. 15(2):209–217. doi:10.1109/32.21746. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴✸✷✳✷✶✼✹✻.

[7] Suárez MS, Teruel E, Colom JM. Linear Algebraic and Linear Programming Techniques for the

Analysis of Place or Transition Net Systems. In: Reisig W, Rozenberg G (eds.), Lectures on Petri

Nets I: Basic Models, Advances in Petri Nets, the volumes are based on the Advanced Course on

Petri Nets, held in Dagstuhl, September 1996, volume 1491 of Lecture Notes in Computer Sci-

ence. Springer. ISBN 3-540-65306-6, 1996 pp. 309–373. doi:10.1007/3-540-65306-6_19. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✻✺✸✵✻✲✻❴✶✾.

[8] McMillan KL. A Technique of State Space Search Based on Unfolding. Formal Methods in System

Design, 1995. 6(1):45–65. doi:10.1007/BF01384314. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴❇❋✵✶✸✽✹✸✶✹.

[9] Valmari A. Stubborn sets for reduced state space generation. In: Rozenberg G (ed.), Advances in Petri Nets

1990 [10th International Conference on Applications and Theory of Petri Nets, Bonn, Germany, June 1989,

Proceedings], volume 483 of Lecture Notes in Computer Science. Springer. ISBN 3-540-53863-1, 1989

pp. 491–515. doi:10.1007/3-540-53863-1_36. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✺✸✽✻✸✲✶❴✸✻.

[10] Duan Z, Klaudel H, Koutny M. ITL semantics of composite Petri nets. J.

Log. Algebr. Program., 2013. 82(2):95–110. doi:10.1016/j.jlap.2012.12.001. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴❥✳❥❧❛♣✳✷✵✶✷✳✶✷✳✵✵✶.

[11] Moszkowski BC. Compositional reasoning about projected and infinite time. In: 1st IEEE Interna-

tional Conference on Engineering of Complex Computer Systems (ICECCS ’95), November 6-10, 1995,

Fort Lauderdale, Florida, USA. IEEE Computer Society. ISBN 0-8186-7123-8, 1995 pp. 238–245. doi:

10.1109/ICECCS.1995.479336. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴■❈❊❈❈❙✳✶✾✾✺✳✹✼✾✸✸✻.

[12] and Zohar Manna. Reasoning in Interval Temporal Logic. In: Clarke EM, Kozen D (eds.), Logics of

Programs, Workshop, Carnegie Mellon University, Pittsburgh, PA, USA, June 6-8, 1983, Proceedings,

volume 164 of Lecture Notes in Computer Science. Springer. ISBN 3-540-12896-4, 1983 pp. 371–382.

doi:10.1007/3-540-12896-4_374. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✶✷✽✾✻✲✹❴✸✼✹.

[13] Best E, Devillers R, Koutny M. Petri Net Algebra. Monographs in Theoretical Computer Science.

Springer, 2001.

[14] Best E, Devillers RR, Hall JG. The box calculus: a new causal algebra with multi-label communication.

In: Rozenberg G (ed.), Advances in Petri Nets 1992, The DEMON Project, volume 609 of Lecture Notes

in Computer Science, pp. 21–69. Springer. ISBN 3-540-55610-9, 1992. doi:10.1007/3-540-55610-9_167.

URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✺✺✻✶✵✲✾❴✶✻✼.

[15] Milner R. A Calculus of Communicating Systems. Springer, 1980.

[16] CARHoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[17] Best E, Fraczak W, Hopkins RP, Klaudel H, Pelz E. M-Nets: An Algebra of High-Level Petri Nets, with an

Application to the Semantics of Concurrent Programming Languages. Acta Inf., 1998. 35(10):813–857.

doi:10.1007/s002360050144. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✷✸✻✵✵✺✵✶✹✹.

[18] Macià H, Ruiz VV, Cuartero F, de Frutos-Escrig D. A congruence relation for sPBC. For-

mal Methods in System Design, 2008. 32(2):85–128. doi:10.1007/s10703-007-0045-2. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✶✵✼✵✸✲✵✵✼✲✵✵✹✺✲✷.

H.Klaudel et. al / From Box Algebra to Interval Temporal Logic 31

[19] Goranko V, Montanari A. Foreword to Special Issue on Interval Temporal Logics and Duration Calculi.

Journal of Applied Non-Classical Logics, 2004. 14(1-2):7–8.

[20] Bäumler S, Schellhorn G, Tofan B, Reif W. Proving linearizability with temporal logic.

Formal Asp. Comput., 2011. 23(1):91–112. doi:10.1007/s00165-009-0130-y. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✶✻✺✲✵✵✾✲✵✶✸✵✲②.

[21] Halpern JY, Shoham Y. A Propositional Modal Logic of Time Intervals. J. ACM, 1991. 38(4):935–962.

doi:10.1145/115234.115351. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✶✶✺✷✸✹✳✶✶✺✸✺✶.

[22] Venema Y. A Modal Logic for Chopping Intervals. J. Log. Comput., 1991. 1(4):453–476. doi:

10.1093/logcom/1.4.453. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✸✴❧♦❣❝♦♠✴✶✳✹✳✹✺✸.

[23] Allen JF. Maintaining Knowledge about Temporal Intervals. Commun. ACM, 1983. 26(11):832–843.

doi:10.1145/182.358434. URL ❤tt♣✿✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✽✷✳✸✺✽✹✸✹.

[24] Bozzelli L, Molinari A, Montanari A, Peron A, Sala P. Interval vs. Point Temporal Logic Model Checking:

An Expressiveness Comparison. ACM Trans. Comput. Log., 2019. 20(1):4:1–4:31. doi:10.1145/3281028.

URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✹✺✴✸✷✽✶✵✷✽.

[25] Lomuscio A, Michaliszyn J. An Epistemic Halpern-Shoham Logic. In: Rossi F (ed.), IJCAI

2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing,

China, August 3-9, 2013. IJCAI/AAAI. ISBN 978-1-57735-633-2, 2013 pp. 1010–1016. URL

❤tt♣✿✴✴✇✇✇✳❛❛❛✐✳♦r❣✴♦❝s✴✐♥❞❡①✳♣❤♣✴■❏❈❆■✴■❏❈❆■✶✸✴♣❛♣❡r✴✈✐❡✇✴✻✻✸✷.

[26] Lomuscio AR, Michaliszyn J. Decidability of model checking multi-agent systems against a class of EHS

specifications. In: Schaub T, Friedrich G, O’Sullivan B (eds.), ECAI 2014 - 21st European Conference on

Artificial Intelligence, 18-22 August 2014, Prague, Czech Republic - Including Prestigious Applications

of Intelligent Systems (PAIS 2014), volume 263 of Frontiers in Artificial Intelligence and Applications.

IOS Press. ISBN 978-1-61499-418-3, 2014 pp. 543–548. doi:10.3233/978-1-61499-419-0-543. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✸✷✸✸✴✾✼✽✲✶✲✻✶✹✾✾✲✹✶✾✲✵✲✺✹✸.

[27] Montanari A, Murano A, Perelli G, Peron A. Checking Interval Properties of Computations. In: Cesta A,

Combi C, Laroussinie F (eds.), 21st International Symposium on Temporal Representation and Reasoning,

TIME 2014, Verona, Italy, September 8-10, 2014. IEEE Computer Society. ISBN 978-1-4799-4228-2,

2014 pp. 59–68. doi:10.1109/TIME.2014.24. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❚■▼❊✳✷✵✶✹✳✷✹.

[28] Molinari A, Montanari A, Murano A, Perelli G, Peron A. Checking interval properties of

computations. Acta Inf., 2016. 53(6-8):587–619. doi:10.1007/s00236-015-0250-1. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✵✵✷✸✻✲✵✶✺✲✵✷✺✵✲✶.

[29] ❤tt♣✿✴✴✇✇✇✳❛♥t♦♥✐♦✲❝❛✉✳❝♦✳✉❦✴■❚▲✴.

[30] Moszkowski BC. Executing Temporal Logic Programs. Cambridge University Press, 1986.

[31] IEEE: Standard for the Functional Verification Language e, Standard 1647-2011. ANSI/IEEE, New York,

2011.

[32] Chaochen Z, Hoare CAR, Ravn AP. A Calculus of Durations. Inf. Process. Lett., 1991. 40(5):269–276.

doi:10.1016/0020-0190(91)90122-X. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴✵✵✷✵✲✵✶✾✵✭✾✶✮✾✵✶✷✷✲❳.

[33] Linker S, Hilscher M. Proof Theory of a Multi-Lane Spatial Logic. Logical Methods in Computer Science,

2015. 11(3). doi:10.2168/LMCS-11(3:4)2015. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✷✶✻✽✴▲▼❈❙✲✶✶✭✸✿✹✮✷✵✶✺.

32 H.Klaudel et. al / From Box Algebra to Interval Temporal Logic

[34] Klaudel H, Koutny M, Moszkowski BC. From Petri Nets with Shared Variables to ITL. In: Desel J,

Yakovlev A (eds.), 16th International Conference on Application of Concurrency to System Design, ACSD

2016, Torun, Poland, June 19-24, 2016. IEEE Computer Society. ISBN 978-1-5090-2589-3, 2016 pp. 11–

18. doi:10.1109/ACSD.2016.12. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❆❈❙❉✳✷✵✶✻✳✶✷.

[35] Klaudel H, Koutny M, Duan Z. Interval Temporal Logic Semantics of Box Algebra. In: Dediu A,

Martín-Vide C, Sierra-Rodríguez JL, Truthe B (eds.), Language and Automata Theory and Applications

- 8th International Conference, LATA 2014, Madrid, Spain, March 10-14, 2014. Proceedings, volume

8370 of Lecture Notes in Computer Science. Springer. ISBN 978-3-319-04920-5, 2014 pp. 441–452.

doi:10.1007/978-3-319-04921-2_36. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✾✼✽✲✸✲✸✶✾✲✵✹✾✷✶✲✷❴✸✻.

[36] Esparza J, Nielsen M. Decidability Issues for Petri Nets - a survey. Elektronische Informationsverar-

beitung und Kybernetik, 1994. 30(3):143–160.

[37] Girard J. Linear Logic. Theor. Comput. Sci., 1987. 50:1–102. doi:10.1016/0304-3975(87)90045-4. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴✵✸✵✹✲✸✾✼✺✭✽✼✮✾✵✵✹✺✲✹.

[38] Parigot M, Pelz E. A Logical Approach of Petri Net Languages. Theor. Comput. Sci., 1985. 39:155–169.

doi:10.1016/0304-3975(85)90136-7. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✶✻✴✵✸✵✹✲✸✾✼✺✭✽✺✮✾✵✶✸✻✲✼.

[39] Cau A, Janicke H, Moszkowski BC. Verification and enforcement of access control policies. For-

mal Methods in System Design, 2013. 43(3):450–492. doi:10.1007/s10703-013-0187-3. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✶✵✼✵✸✲✵✶✸✲✵✶✽✼✲✸.

[40] Cau A, Zedan H. Refining Interval Temporal Logic Specifications. In: Bertran M, Rus T (eds.),

Transformation-Based Reactive Systems Development, 4th International AMAST Workshop on Real-

Time Systems and Concurrent and Distributed Software, ARTS’97, Palma, Mallorca, Spain, May 21-23,

1997, Proceedings, volume 1231 of Lecture Notes in Computer Science. Springer. ISBN 3-540-63010-4,

1997 pp. 79–94. doi:10.1007/3-540-63010-4_6. URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✻✸✵✶✵✲✹❴✻.

[41] Janicke H, Cau A, Siewe F, Zedan H. Dynamic Access Control Policies: Specification

and Verification. Comput. J., 2013. 56(4):440–463. doi:10.1093/comjnl/bxs102. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✾✸✴❝♦♠❥♥❧✴❜①s✶✵✷.

[42] Esparza J, Römer S, Vogler W. An Improvement of McMillan’s Unfolding Algorithm. In: Margaria T,

Steffen B (eds.), Tools and Algorithms for Construction and Analysis of Systems, Second International

Workshop, TACAS ’96, Passau, Germany, March 27-29, 1996, Proceedings, volume 1055 of Lecture Notes

in Computer Science. Springer. ISBN 3-540-61042-1, 1996 pp. 87–106. doi:10.1007/3-540-61042-1_40.

URL ❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✻✶✵✹✷✲✶❴✹✵.

[43] Khomenko V, Koutny M. Towards an Efficient Algorithm for Unfolding Petri Nets. In: Larsen

KG, Nielsen M (eds.), CONCUR 2001 - Concurrency Theory, 12th International Conference, Aal-

borg, Denmark, August 20-25, 2001, Proceedings, volume 2154 of Lecture Notes in Computer Sci-

ence. Springer. ISBN 3-540-42497-0, 2001 pp. 366–380. doi:10.1007/3-540-44685-0_25. URL

❤tt♣s✿✴✴❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴✸✲✺✹✵✲✹✹✻✽✺✲✵❴✷✺.

[44] ❤tt♣✿✴✴✇✇✇✳✐♥❢♦r♠❛t✐❦✳✉♥✐✲❤❛♠❜✉r❣✳❞❡✴❚●■✴P❡tr✐◆❡ts✴t♦♦❧s✴.

