
From BPMN Process Models to BPEL Web Services∗

Chun Ouyang, Marlon Dumas, Arthur H.M. ter Hofstede
Faculty of Information Technology

Queensland University of Technology
Brisbane, Australia

{c.ouyang,m.dumas,a.terhofstede}@qut.edu.au

Wil M.P. van der Aalst
Department of Technology Management

Eindhoven University of Technology
Eindhoven, The Netherlands
{w.m.p.v.d.aalst}@tm.tue.nl

Abstract

The Business Process Modelling Notation (BPMN) is a
graph-oriented language in which control and action nodes
can be connected almost arbitrarily. It is supported by
various modelling tools but so far no systems can directly
execute BPMN models. The Business Process Execution
Language for Web Services (BPEL) on the other hand is a
mainly block-structured language supported by several ex-
ecution platforms. In the current setting, mapping BPMN
models to BPEL code is a necessary step towards unified
and standards-based business process development envi-
ronments. It turns out that this mapping is challenging
from a scientific viewpoint as BPMN and BPEL represent
two fundamentally different classes of languages. Existing
methods for mapping BPMN to BPEL impose limitations
on the structure of the source model. This paper proposes
a technique that overcomes these limitations. Beyond its di-
rect relevance in the context of BPMN and BPEL, this tech-
nique addresses difficult problems that arise generally when
translating between flow-based languages with parallelism.

1. Introduction

The Business Process Execution Language for Web Ser-
vices (BPEL) [4] is emerging as a de-facto standard for
implementing business processes on top of web services
technology. Numerous platforms support the execution of
BPEL processes. Some of these platforms also provide
graphical editing tools for defining BPEL processes. How-
ever, these tools directly follow the syntax of BPEL with-
out elevating the level of abstraction to make them usable
during the analysis and design phases of the development
cycle. On the other hand, the Business Process Modelling
Notation (BPMN) [10] has attained some level of adop-
tion among business analysts and system architects as a
language for defining business process blueprints for sub-
sequent implementation. Despite being a recent proposal,
BPMN is already supported by more than 30 tools (see

∗This work is supported by the Australian Research Council under the
Discovery Grant “Expressiveness Comparison and Interchange Facilitation
between Business Process Execution Languages” (DP0451092).

www.bpmn.org). Consistent with the level of abstraction
targeted by BPMN, none of these tools supports the exe-
cution of BPMN models directly. Instead, some of them
support the translation of BPMN to BPEL.

Close inspection of existing translations from BPMN to
BPEL, e.g. the one sketched in [10], shows that these trans-
lations fail to fulfill the following key requirements: (i)
completeness, i.e. applicable to any BPMN model; (ii) au-
tomation, i.e. capable of producing target code without re-
quiring human intervention to identify patterns in the source
model; and (iii) readability, i.e. consistently producing tar-
get code that is understandable by humans. The last require-
ment is important since the BPEL definitions produced by
the translation are likely to require refinement (e.g. to spec-
ify data manipulation expressions) as well as testing and
debugging. If BPEL was only intended as a language for
machine consumption and not for human use, it could be re-
placed by mainstream programming languages or even ma-
chine languages, but this would defeat the purpose of BPEL
as a domain-specific language for service composition.

The limitations of existing BPMN-to-BPEL translations
are not surprising as BPMN and BPEL represent two fun-
damentally different classes of languages. BPMN is graph-
oriented while BPEL is mainly block-structured (albeit pro-
viding graph-oriented constructs with syntactical limita-
tions). Mapping from graph-oriented to block-structured
languages is challenging. In the case of flowcharts, map-
ping unstructured flowcharts to structured ones is a well-
understood problem. However, graph-oriented process def-
inition languages extend flowcharts with parallelism and
other constructs such as deferred choice [1].

This paper proposes a translation from BPMN to BPEL
addressing the above requirements. This is a first step to-
wards model-driven, standards-based tools for developing
process-oriented web services. Beyond its direct relevance
in this context, the proposed technique addresses difficult
problems that arise when translating from graph-oriented
process languages to block-structured ones.

Section 2 gives an overview of BPMN and BPEL and
reviews related work. Section 3 presents an algorithm for
translating BPMN into BPEL. The translation algorithm is
then illustrated through a case study in Section 4. Finally,
Section 5 concludes and outlines future work.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

2. Background and Related Work

2.1. BPEL and BPMN

BPEL [4] is essentially an extension of imperative pro-
gramming languages with constructs specific to web service
implementations. A BPEL process definition relates a num-
ber of activities. An activity is either a basic or a structured
activity. Basic activities correspond to atomic actions such
as: invoke, invoking an operation on a web service; receive,
waiting for a message from a partner; exit, terminating the
entire service instance; empty, doing nothing; and etc. To
enable the presentation of complex structures the following
structured activities are defined: sequence, for defining an
execution order; flow, for parallel routing; switch, for condi-
tional routing; pick, for race conditions based on timing or
external triggers; while, for structured looping; and scope,
for grouping activities into blocks to which event and ex-
ception handlers may be attached. In particular, an event
handler is an event-action rule associated with a scope. It
is enabled when the associated scope is under execution
and may execute concurrently with the main activity of the
scope. When an occurrence of the event associated with an
enabled event handler is registered. The completion of the
scope is delayed until all active event handlers have com-
pleted. Fault and compensation handlers are designed for
exception handling and are not used further in this paper.

There are over 20 execution engines supporting BPEL
(see http://en.wikipedia.org/wiki/BPEL). Many
of them come with an associated graphical editing tool.
However, the notation supported by these tools directly re-
flects the underlying code, thus forcing users to reason in
terms of BPEL constructs (e.g., block-structured activities
and syntactically restricted links). Current practice sug-
gests that the level of abstraction of BPEL is unsuitable for
business process analysts and designers. These user cate-
gories rely on languages perceived as “higher-level” such
as BPMN and UML, thus justifying the need for mapping
languages such as BPMN into BPEL.

BPMN provides a graphical notation for business pro-
cess modelling, with an emphasis on control-flow. It de-
fines a Business Process Diagram (BPD), which is a kind of
flowchart incorporating constructs tailored to business pro-
cess modelling, such as AND-split, AND-join, XOR-split,
XOR-join, and deferred (event-based) choice. We describe
BPMN in more detail when we introduce the mapping.

2.2. Related Work

White [10] informally sketches a translation from BPMN
to BPEL. However, as acknowledged in [10] this translation
is limited, e.g. it excludes diagrams with arbitrary topolo-
gies. Also, several steps in White’s translation require hu-
man input to identify patterns in the source model.

Research into structured programming led to techniques
for translating unstructured flowcharts into structured ones.

However, these techniques are not applicable when AND-
splits and AND-joins are introduced. An identification
of situations where unstructured process diagrams cannot
be translated into equivalent structured ones (under weak
bisimulation equivalence) can be found in [5, 7], while an
approach to overcome some of these limitations for pro-
cesses without parallelism is sketched in [6]. However,
these related work only address a piece of the puzzle of
translating from graph-oriented process languages to BPEL.

This paper combines insights from two of our previous
publications. In [2], we describe a case study where the re-
quirements of a bank system are captured as Colored Work-
flow nets (a subclass of Colored Petri nets) and the system
is then implemented in BPEL. In this study we use a semi-
automated mapping from (Colored) Petri nets to BPEL [3]
that has commonalities with a subset of the translation dis-
cussed in this paper. In [9], we present a mapping from
a graph-oriented language supporting AND-splits, AND-
joins, XOR-splits, and XOR-joins, into BPEL. In the fol-
lowing section, we extend this previous mapping to cover a
broader set of BPMN constructs and to improve the read-
ability of the generated code. Whereas in [9] the generated
code relies heavily on BPEL event handlers, in this paper
we make greater use of BPEL’s block-structured constructs.

3. Mapping BPMN onto BPEL

This section presents a mapping from BPMN to BPEL.
The mapping focuses on the control-flow perspective. First,
we define the syntax of a core subset of BPDs used for map-
ping. Second, we discuss the transformation of a BPD from
a graph structure to a block structure. We use the term
“components” to refer to subsets of a BPD. A component
may be well-structured so that it can be directly mapped
onto BPEL structured activities, whereas a component that
does not preserve such property can be translated into BPEL
via event-action rules. We identify these two categories of
components and introduce the corresponding translation ap-
proaches in two separate subsections. Finally, we propose
the algorithm for mapping an entire BPD onto BPEL.

3.1. Business Process Diagram (BPD)

BPMN uses BPDs to describe business processes. A
BPD is made up of BPMN elements. We consider a core
subset of BPMN elements shown in Figure 1. There are
objects and sequence flow. The sequence flow links two ob-
jects in a BPD and shows the control flow relation (i.e. ex-
ecution order). An object can be an event, a task or a gate-
way. An event may signal the start of a process (start event),
the end of a process (end event), the immediate termination
of a process (end terminate event), a message that arrives or
a specific time-date being reached during a process (inter-
mediate message/timer event). A task is an atomic activity
and stands for work to be performed within a process. A
gateway is a routing construct used to control the divergence

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

and convergence of sequence flow. There are: parallel
fork gateways for creating concurrent sequence flows, par-
allel join gateways for synchronizing concurrent sequence
flows, data/event-based XOR decision gateways for select-
ing one out of a set of mutually exclusive alternative se-
quence flows where the choice is based on either the pro-
cess data (data-based) or external event (event-based), and
XOR merge gateways for joining a set of mutually exclusive
alternative sequence flows into one sequence flow.

Start Event
Intermediate

Message Event
Intermediate
Timer Event

Task Parallel Fork
Gateway

Parallel Join
Gateway

End Terminate EventEnd Event

Sequence
Flow

Event-based
XOR Decision

Gateway

receive

XOR Merge
Gateway

(or)

Data-based
XOR Decision

Gateway

(or)
c

~c

c

~c

Figure 1. A core subset of BPMN elements.

A BPD, which is made up of the above core subset of
BPMN elements, is hereafter referred to as a core BPD.

Definition 1 (Core BPD) A core BPD is a tuple BPD =
(O, T , E , G, T R, ES , EI , EE , EI

M , EI
T , EE

T , GF , GJ , GD,
GM , GV , F , Cond) where:

• O is a set of objects which can be partitioned into
disjoint sets of tasks T , events E and gateways G,

• T R ⊆ T is a set of receive tasks,
• E can be partitioned into disjoint sets of start events
ES , intermediate events EI and end events EE ,

• EI can be further partitioned into disjoint sets of in-
termediate message events EI

M and timer events EI
T ,

• EE
T ⊆ EE is a set of end terminate events,

• G can be partitioned into disjoint sets of parallel fork
gateways GF , parallel join gateways GJ , data-based
XOR decision gateways GD, event-based XOR deci-
sion gateways GV , and XOR merge gateways GM ,

• F ⊆ O × O is the control flow relation, i.e., a set of
sequence flows connecting objects,

• Cond: F � C is a function mapping sequence flows
within dom(Cond) = F ∩ (GD ×O) to conditions.1

The relation F defines a directed graph with nodes (ob-
jects) O and arcs (sequence flows) F . For a given node
x ∈ O, input nodes of x are given by in(x) = {y ∈ O | yFx}
and output nodes of x are given by out(x) = {y ∈ O | xFy}.

Definition 1 allows for graphs which are unconnected,
not having start or end events, containing objects without
any input and output, etc. Therefore we need to restrict the
definition to well-formed core BPDs.

1A condition is a boolean function operating over a set of propositional
variables that can be abstracted out of the control flow definition. The
condition may evaluate to true or false, which determines whether or not
the associated sequence flow is taken during the process execution.

Definition 2 (Well-formed core BPD) A core BPD is well
formed if relation F satisfies the following requirements:

• ∀ s ∈ ES , in(s) = ∅ ∧ |out(s)| = 1, i.e., start events
have an indegree of zero and an outdegree of one,

• ∀ e ∈ EE , out(e) = ∅ ∧ |in(e)| = 1, i.e., end events
have an outdegree of zero and an indegree of one,

• ∀ x ∈ T ∪EI , |in(x)| = 1 and |out(x)| = 1, i.e., tasks
and intermediate events have an indegree of one and
an outdegree of one,

• ∀ g ∈ GF ∪ GD ∪ GV : |in(g)| = 1 ∧ |out(g)| > 1,
i.e., fork or decision gateways have an indegree of
one and an outdegree of more than one,

• ∀ g ∈ GJ ∪ GM , |out(g)| = 1 ∧ |in(g)| > 1, i.e., join
or merge gateways have an outdegree of one and an
indegree of more than one,

• ∀ g ∈ GV , out(g) ⊆ EI ∪ T R, i.e., event-based XOR
decision gateways must be followed by intermediate
events or receive tasks,

• ∀g∈GD, ∃x∈out(g), Cond((g, x))=¬
∧

y∈out(g)\{x}

Cond((g, y)), i.e., (g, x) is the default flow among all
the outgoing flows from g,

• ∀ x∈O, ∃ (s, e) ∈ ES×EE , sF∗x ∧ xF∗e, i.e., every
object is on a path from a start event to an end event.

In the remainder we only consider well-formed core
BPDs, and will use a simplified notation BPD = (O, F ,
Cond) for their representation. Moreover, without losing
generality we assume that both ES and EE are singletons,
i.e., ES = {s} and EE = {e}.

3.2. Decomposing a BPD into components

We would like to achieve two goals when mapping
BPMN onto BPEL. One is to define an algorithm which
allows us to translate each well-formed core BPD into a
valid BPEL process, the other is to generate readable and
compact BPEL code. To map a BPD onto (readable) BPEL
code, we need to transform a graph structure into a block
structure. For this purpose, we decompose a BPD into com-
ponents. A component is a subset of the BPD that has one
entry point and one exit point. We then try to map compo-
nents onto suitable “BPEL blocks”. For example, a compo-
nent holding a purely sequential structure should be mapped
onto a BPEL sequence construct while a component holding
a parallel structure should be mapped onto a flow construct.

The next two subsections describe how to map compo-
nents of a BPD onto BPEL constructs. Before describing
the mapping, this section first formalizes the notion of com-
ponents in a BPD. To facilitate the definitions, we specify
an auxiliary function elt over a domain of singletons, i.e., if
X = {x}, then elt(X) = x.

Definition 3 (Component) Let BPD = (O, F , Cond) be
a well-formed core BPD. C = (Oc, Fc, Condc) is a compo-
nent of BPD if and only if:

• Oc ⊆ O\(ES ∪ EE), i.e., a component does not con-
tain any start or end event;

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

• |(
⋃

x∈Oc
in(x))\Oc| = 1, i.e., there is a single entry

point outside the component, which can be denoted
as entry(C) = elt((

⋃
x∈Oc

in(x))\Oc),
• |(

⋃
x∈Oc

out(x))\Oc| = 1, i.e., there is a single exit
point outside the component, which can be denoted
as exit(C) = elt((

⋃
x∈Oc

out(x))\Oc),
• there exists a unique source object ic ∈ Oc and a

unique sink object oc ∈ Oc and ic
= oc, such that
entry(C) ∈ in(ic) and exit(C) ∈ out(oc),

• Fc = F ∩ (Oc ×Oc),
• Condc = Cond[Fc], i.e. the Cond function where the

domain is restricted to Fc.

Note that all event objects in a component are intermedi-
ate events. Also, a component contains at least two objects:
the source object and the sink object. A BPD without any
component, which is referred to as a trivial BPD, has only
a single task or intermediate event between the start event
and the end event. Translating a trivial BPD into BPEL is
straightforward and will be included in the final translation
algorithm in Section 3.5.

The decomposition of a BPD helps to define an itera-
tive approach which allows us to incrementally transform a
“componentized” BPD to a block-structured BPEL process.
Below, we define function Fold that replaces a component
by a single task object in a BPD. This function can be used
to perform iterative reduction of a componentized BPD un-
til no component is left in the BPD. The function will play
a crucial role in the final translation algorithm where we in-
crementally replace BPD components by BPEL constructs.

Definition 4 (Fold) Let BPD=(O,F , Cond) be a well-
formed core BPD and C=(Oc,Fc, Condc) be a component
of BPD. Function Fold replaces C in BPD by a task object
tc /∈ O, i.e. Fold(BPD, C, tc) = (O′, F ′, Cond′) with:

• O′ = (O\Oc) ∪ {tc},
• if T c denotes the set of tasks in C and T ′ denotes

the set of tasks in Fold(BPD, C, tc), then T c ⊆ Oc,
T ′ ⊆ O′, and T ′ = (T \T c) ∪ {tc},

• F ′ = (F ∩ (O\Oc ×O\Oc)) ∪
F ′ = {(entry(C), tc), (tc, exit(C)},

• Cond’ =⎧⎨
⎩

Cond[F ′] if entry(C) /∈ GD

Cond[F ′] ∪ {((entry(C), tc), (entry(C), ic))}
otherwise

3.3. Structured activity-based translation

As mentioned before, one of our goals for mapping
BPMN onto BPEL is to generate readable BPEL code.
For this purpose, BPEL structured activities comprising se-
quence, flow, switch, pick and while, have the first pref-
erence if the corresponding structures appear in the BPD.
Components that can be suitably mapped onto one of these
five structured constructs are considered well-structured.
Below, we classify different types of well-structured com-
ponents resembling these five structured constructs.

Definition 5 (Well-structured components) Let BPD =
(O,F , Cond) be a well-formed core BPD and C = (Oc, Fc,
Condc) be a component of BPD. ic is the source object of
C and oc is the sink object of C. The following components
are well-structured:

(a) C is a SEQUENCE-component if Oc ⊆ T ∪ EI (i.e.
∀ x ∈ Oc, |in(x)|=|out(x)|=1) and entry(C) /∈ GV .
Also, C is a maximal SEQUENCE-component if C
is a SEQUENCE-component and there is no other
SEQUENCE-component C′ such that Oc⊂O′

c where
O′

c is the set of objects in C′,
(b) C is a FLOW-component if

– ic ∈ GF ∧ oc ∈ GJ ,
– Oc ⊆ T ∪ EI ∪ {ic, oc},
– ∀ x∈Oc\{ic, oc}, in(x)={ic} ∧ out(x)={oc}.

(c) C is a SWITCH-component if
– ic ∈ GD ∧ oc ∈ GM ,
– Oc ⊆ T ∪ EI ∪ {ic, oc},
– ∀ x∈Oc\{ic, oc}, in(x)={ic} ∧ out(x)={oc}.

(d) C is a PICK-component if
– ic ∈ GV ∧ oc ∈ GM ,
– Oc ⊆ T ∪ EI ∪ {ic, oc},
– ∀ x ∈ out(ic), ∃ y ∈ Oc\({ic} ∪ out(ic)),

in(y) = {x} ∧ out(y) = {oc},
– ∀ y′∈Oc\({ic, oc} ∪ out(ic)), out(y′)={oc}.

(e) C is a WHILE-component if
– ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,
– Oc = {ic, oc, x},
– Fc = {(ic, oc), (oc, x), (x, ic)}.

(f) C is a REPEAT-component if
– ic ∈ GM ∧ oc ∈ GD ∧ x ∈ T ∪ EI ,
– Oc = {ic, oc, x},
– Fc = {(ic, x), (x, oc), (oc, ic)}.

(g) C is a REPEAT+WHILE-component if
– ic∈ GM ∧ oc∈ GD ∧ x1, x2∈T ∪EI ∧ x1
=x2,
– Oc = {ic, oc, x1, x2},
– Fc = {(ic, x1), (x1, oc), (oc, x2), (x2, ic)}.

Figure 2 depicts examples of mapping each of the com-
ponents mentioned above onto the corresponding BPEL
structured activities. Using function Fold in Definition 4,
a component C is replaced by a single task tc attached with
the corresponding BPEL translation of C. For simplicity, we
assume that an initial task object (t1, ..., or tn) in component
C is mapped onto an invoke activity. However, it should be
noted that based on the nature of these task objects they may
be mapped onto any types of BPEL activities.

In Figure 2(a) to (e), the mappings of the five compo-
nents, SEQUENCE, FLOW, SWITCH, PICK and WHILE,
are straightforward. In a PICK-component (Figure 2(d), an
event-based XOR decision gateway must be followed by re-
ceive tasks or intermediate message or timer events. For this
reason, a SEQUENCE-component (Figure 2(a)) cannot be
preceded by an event-based XOR decision gateway.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

(e) WHILE-component

(g) REPEAT+WHILE-component

(a) SEQUENCE-component

(b) FLOW-component

(c) SWITCH-component

(d) PICK-component

(f) REPEAT-component

<sequence>
 <invoke name="t1"/>
 <receive name=" e 1"/>
 . . .
 <invoke name="tn"/>
</sequence>

tc

<flow>
 <invoke name="t1"/>
 <wait name="e2"/>
 . . .
 <invoke name="tn"/>
</flow>

tc

<switch>
 <case condition="c1">
 <invoke name="t1"/>
 </case>
 <case condition="c2">
 <receive name="e1"/>
 </case>
 . . .
 <otherwise>
 <empty/>
 </otherwise>
</switch>

tc

tc

<pick>
 <onMessage name="e1"/>
 <invoke name="t1"/>
 </onMessage>
 <onAlarm name="e2">
 <empty/>
 </onAlarm>
 . . .
 <onMessage name="tr">
 <invoke name="tn"/>
 </onMessage>
</pick>

<while condition="c1">
 <invoke name="t1"/>
</while>

tc

<sequence>
 <invoke name="t1"/>
 <while condition="c1">
 <invoke name="t1"/>
 </while>
</sequence>

tc

<sequence>
 <invoke name="t1"/>
 <while condition="c1">
 <sequence>
 <invoke name="t2"/>
 <invoke name="t1"/>
 </sequence>
 </while>
</sequence>

tc

t1

e1

tn

t1

tn

e2

tn

t1

tr
(receive)

e1

e2

c1

~c1

t1

C

C

C

C

c1

~c1
t1

C

c1

~c1
t1

t2
C

t1

c2

default

c1

e1

C

Figure 2. Examples of folding a well-structured
component C into a single task object tc attached
with the corresponding BPEL translation of C.

In Figure 2(f) and (g), the two components, REPEAT and
REPEAT+WHILE, represent repeat loops as the opposite of
while loops. A while loop (Figure 2(e)) evaluates the loop
condition before the body of the loop is executed, so that the
loop is never executed if the condition is initially false. In
a repeat loop, the condition is checked after the body of the
loop is executed, so that the loop is always executed at least
once. In Figure 2(f), a repeat loop of task t1 is equivalent
to a single execution of t1 followed by a while loop of t1.
In Figure 2(g), a repeat loop of task t1 is combined with a
while loop of task t2, and both loops share one loop condi-
tion. In this case, task t1 is always executed once before the
initial evaluation of the condition, which is then followed
by a while loop of sequential execution of t2 and t1.

3.4. Event-action rule-based translation

A well-formed core BPD may contain components that
are not well-structured, e.g. components capturing multi-
merge patterns [1] or unstructured loops. To map these
components onto BPEL, the structured activity-based ap-
proach mentioned above is no longer applicable.

Definition 6 (Non-well-structured components) Let C =
(Oc,Fc,Condc) be a component of a well-formed core BPD.
C is not well structured if it does not match any of the
“patterns” given in Definition 5. C is a minimal non-well-
structured component if C is not well structured and there is
no other component C′=(O′

c,F ′
c,Cond′c) such that O′

c⊂Oc.

We present an approach that can be used to translate a
non-well-structured component into a scope activity by ex-
ploiting the “event handler” construct in BPEL. An event
handler is an event-action rule associated with a scope, and
the corresponding translation approach is based on event-
action rules. This event-action rule-based approach can be
applied to translating any component to BPEL. However,
this approach produces less readable BPEL code and hence
we resort only to this approach when there are only non-
well-structured components left in the BPD.

First, we generate a set of preconditions for each object
within a component. The term “precondition” is used to
capture one possible way that leads to the execution of an
object, and thus a set of preconditions associated with the
object encodes all possible ways of reaching that object.

Figure 3 shows an algorithm for generating all precondi-
tion sets for a component. The algorithm is sketched using a
functional programming notation. It defines three functions.
The first one, namely AllPreCondSets, generates a set of
precondition sets for all objects (given by the set Objects(C))
in component C by relying on a second function named
PreCondSet. This function computes the set of precondi-
tions for an object by relying on a third function named
EventOnFlow. This function takes as input a sequence flow f
and produces a single event2 resulting from the execution of
the source object of the flow (denoted as Source(f)). If the
flow’s source object xs is outside the component to which
the flow’s target object (Target(f)) belongs, it implies that the
flow’s target object x is the source object of the above com-
ponent (Component(x)). In this case, the function returns an
event (Start(Component(x))) signaling to start the execution
of this component. Otherwise, the function operates based
on the type of xs (ObjectType(xs)). If xs is one of the objects
(tasks, events, or join or merge gateways) that have only one
outgoing flow, an event (end(xs)) is returned indicating the
end of the execution of xs. Otherwise, xs could be one of
the objects (fork or decision gateways) with multiple out-
going flows. Assume that x is an output object of xs. If xs
is a fork gateway, an event (flow(xs,x)) is returned indicat-
ing the control flow is splitting from xs to x. Next, if xs is

2Note that these are events within the context of event-action rules, and
are different from BPMN event objects.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

AllPreCondSets(C: Component):
Al let {x1, ..., xn} = Objects(C) in
Alllet return {PreCondSet(x1), ..., PreCondSet(xn)}

PreCondSet(x: Object):
Pre if ObjectType(x) ∈ {“task”, “event”, “data-based decision”,
Preif ObjectType(x) ∈ { “event-based decision”, “fork”}
Preif return {EventOnFlow(InFlow(x))}
Pre else if ObjectType(x) = “merge”
Preif let {f1, ..., fn} = InFlows(x) in
Preif let return {EventOnFlow(f1), ..., EventOnFlow(fn)}
Pre else if ObjectType(x) = “join”
Preif let {f1, ..., fn} = InFlows(x) in
Preif let return {EventOnFlow(f1) ∧ ... ∧ EventOnFlow(fn)}

EventOnFlow(f: Flow):
Pre let xs = Source(f) and x = Target(f)
Prelet if xs /∈ Objects(Component(x))
Prelet if return Start(Component(x))
Prelet else if ObjectType(xs) ∈ {“task”, “event”, “join”, “merge”}
Prelet else if return end(xs)
Prelet else if ObjectType(xs) = “fork”
Prelet else if return flow(xs, x)
Prelet else if ObjectType(xs) = “data-based decision”
Prelet else if let c = Cond(f) in
Prelet else if let return switch(xs, x, c)
Prelet else if ObjectType(x) = “event-based decision”
Prelet else if return pick(xs, x)

Figure 3. Algorithm for deriving precondition sets
from a component of a well-formed core BPD.

a data-based decision gateway, an event (switch(xs,x,c)) is
returned indicating the control flow is leaving from xs to x
given that condition c holds. Finally, if xs is an event-based
decision gateway, an event (pick(xs,x)) is returned indicat-
ing the control flow is leaving from xs to x on the occur-
rence of a trigger that leads to the execution of x. Now we
come back to the second function PreCondSet. It operates
based on the object type of the input parameter x. If x is
one of the objects (tasks, events, decision or fork gateways)
that have a single incoming flow (InFlow(x)), the function
returns a precondition set comprising just one precondition
capturing a single event. Otherwise, if x is a merge gateway
(resp. a join gateway), there exist multiple incoming flows
(given by the set InFlows(x)), and the resulting precondition
set contains a number of single events (resp. a conjunction
of single events) from these incoming flows, to capture that
when any (resp. all) of these events occurs (resp. occur) the
corresponding merge (resp. join) gateway may be executed.

Second, we transform the above precondition sets with
their associated objects into a set of event-action rules. An
event-action rule can be written in the form of E{A}: E is
a single event or a conjunction of single events (namely a
composite event) causing the rule to be triggered, and A is
a list of actions being executed when the rule is triggered.
The list of actions can be executed in sequence (a1; a2) or
in parallel (a1||a2). If an event-action rule allows the use
of single events only, it is called a simple event-action rule;
otherwise, it is a composite event-action rule.

Figure 4 lists the event-action rules translated from the
precondition sets related to different types of objects. There
are three new notations: Flow(fg), Switch(dg) and Pick(eg).
Let out(fg) = {x1, ..., xn}, out(dg) = {y1, ..., yn} and ci =
Cond((dg,yi)) (i = 1, ..., n), and out(eg) = {z1, ..., zn}, then

- Flow(fg) = {flow(fg, x1), ..., flow(fg, xn)},
- Switch(dg) = {switch(dg, y1, c1), ..., switch(dg, yn, cn)},
- Pick(eg) = {pick(eg, z1), ..., pick(eg, zn)}.

In Figure 4, most of the translations are straightforward ex-
cept the following issue that is worth mentioning. The pre-
condition set for a join gateway comprises just one precon-
dition capturing a composite event, and in the general case,
this leads to a composite event-action rule. However, BPEL
only supports simple event-action rules. To address this is-
sue, we translate the above composite event-action rule to a
simple event-action rule, by separating the first single event
(e1) from the rest in the initial composite event. Although
the resulting rule can be triggered by event e1, the action
“invoke end(jg)” will not be performed until occurrences of
all the remaining events e2 to en have been registered.

task/event (a)

Event-Action RuleObject

fork gateway (fg)

data-based decision
gateway (d g)

Precondition Set

{ e }

event-based decision
gateway (e g)

{ e }

{ e }

{ e }

merge gateway (mg)

join gateway (j g) { e 1 . . . e n }v v

{ e 1, . . ., en }

e { do a ; invoke end(a) }

e { execute Flow(fg) }

e { execute Switch(dg) }

e { execute Pick(eg) }

e1 { invoke end(mg) }
. . .

en { invoke end(mg) }

e1 { on e 2 || . . . || on e n ;
invoke end (jg) }

Figure 4. Event-action rules translated from the
precondition sets for different types of objects.

As the last step, we translate event-action rules to BPEL.
A simple event-action rule e{A} can be realised by a BPEL
event handler (onEvent) encoded as:

<onEvent e>
<!-- BPEL translation of A -->

</onEvent>

The list of actions A can be mapped to BPEL as shown in
Figure 5. Based on this, we translate the set of event-action
rules derived from a component C to a BPEL scope. Let
m+1 be the number of event-action rules derived from C,
{Start(C), e1, ..., em} be the set of events for triggering each
of these rules, C can be mapped onto a scope encoded as:

<scope name="tc">
<onEvent e1> . . . </onEvent>
. . .
<onEvent em> . . . </onEvent>
<invoke Start(C)/>

</scope>

The main activity of the scope is to invoke event Start(C).
The occurrence of Start(C) triggers the execution of the
source object of C, and the entire scope completes after its
main activity and all active event handlers have completed.

Finally, it should be mentioned that the above events for
triggering event-action rules are performed by a BPEL in-
voke activity via a local partner link between the final BPEL
process (i.e. the mapping of the BPD to which the compo-
nent C belongs) and itself. The interested reader may refer
to [9] for definitions of a local partner link and an event
being invoked or consumed via a local partner link.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

 <invoke end(x)/>

 <flow name="fg">
 <invoke flow(fg, x1)/>
 ...
 <invoke flow(fg, xn)/>
 </flow>

 <switch name="dg ">
 <case condition=" c 1">
 <invoke switch(dg, y1, c1)/>
 </case>
 ...
 <case condition= " c n">
 <invoke switch(dg, yn, cn)/>
 </case>
 </switch>

 <pick name="eg ">
 <onEvent name="z1" >
 <invoke pick(eg, z1)/>
 </onEvent>
 ...
 <onEvent name="zn" >
 <invoke pick(eg, zn)/>
 </onEvent>
 </pick>

 invoke end(x)

Action BPEL Translation

execute Flow(fg)

execute Switch(dg)

execute Pick(eg)

 do a an appropriate activity named "a"
 on e <receive e/>

; <sequence > ... </sequence>

|| <flow > ... </flow>

Figure 5. BPEL translation of actions.

3.5. Translation algorithm

Based on the mapping of each of the components afore-
mentioned, we now define the algorithm to translate a well-
formed core BPD into BPEL. The basic idea behind this
algorithm is to select a component in the BPD, provide its
BPEL translation, and fold the component. This is repeated
until no component is left in the BPD. In the following, the
set of components of a BPD named X is denoted as [X]c.

Definition 7 (Algorithm) Let BPD be a well-formed core
BPD with one start event and one end event.

(1) X := BPD

(2) if [X]c = ∅ (i.e., X is initially a trivial BPD), output
the BPEL translation of the single task or event object
between the start and end events in X , and goto (5).

(3) while [X]c
= ∅ (i.e., X is a non-trivial BPD)
(3-a) if there is a maximal SEQUENCE-component

C ∈ [X]c, selected it and goto (3-d).
(3-b) if there is a well-structured (non-sequence)

component C ∈ [X]c, select it and goto (3-d).
(3-c) if there is a minimal non-well-structured com-

ponent C ∈ [X]c, select it.
(3-d) Attach BPEL translation of C to task object tc.
(3-e) X := Fold(X, C, tc) and return to (3).

(4) Output the BPEL code attached to the task object tc.
(5) Start event and end event are translated into a pair of

<process> and </process> tags to enclose the BPEL
code generated in steps (2) or (4). In addition, for an
end terminate event, add <exit/> activity after the
above BPEL code (and before </process>).

In the above algorithm, the translation of components is
done in step (3-d) followed by the folding in step (3-e). The
component to be translated is selected in steps (3-a) to (3-
c). To keep the translation as compact as possible, the selec-
tion always starts from a maximal SEQUENCE-component
after each folding. Only if no sequences are left in the BPD,
other well-structured components are considered. Since all
well-structured non-sequence components are disjoint, the
order of selecting them is irrelevant. Finally, the minimal
non-well-structured components are considered.

4. Case Study

Consider the complaint handling process model shown
in Figure 6. It is described as a well-formed core BPD.
First the complaint is registered (task register), then in par-
allel a questionnaire is sent to the complainant (task send
questionnaire) and the complaint is processed (task process
complaint). If the complainant returns the questionnaire
within two weeks (event returned-questionnaire), task pro-
cess questionnaire is executed. Otherwise, the result of the
questionnaire is discarded (event time-out). In parallel the
complaint is evaluated (task evaluate). Based on the evalua-
tion result, the processing is either done or continues to task
check processing. If the check result is not ok, the com-
plaint requires re-processing. Finally task archive is exe-
cuted. Note that labels DONE, CONT, OK and NOK on the
outgoing flows of each data-based XOR decision gateway,
are abstract representations of conditions on these flows.

register

 send
questionnaire

 process
questionnaire

evaluate
 check
processing

archive

OK

NOK

process
complaint

DONEtime-out

returned-questionnaire

CONT

Figure 6. A complaint handling process model.

Following the algorithm presented in Section 3, we now
translate the above BPD to a BPEL specification. Figure 7
sketches the translation procedure which shows how this
BPD can be reduced to a trivial BPD. Each component is
named Ci where i specifies in what order the components
are processed, and Ci is folded into a task object named tic.
Also, we assign an identifier ai to each task or intermediate
event in the initial BPD, and use these identifiers to refer to
the corresponding objects in the following translation.

In Figure 7, six components are identified. All these
components except C4 are well-structured. C1, C3 and
C6 are SEQUENCE-components and are folded into se-
quence activities t1c , t3c and t6c , respectively; C2 is a PICK-
component and is folded into a pick activity t2c ; and C5 is a
FLOW-component and is folded into a flow activity t5c . C4

exhibits an unstructured loop, so it is not well structured.
C4 is also a minimal non-well-structured component after
C1 has been folded into t1c . Hence, C4 is folded into a scope
t4c with event handlers. Note that gi is used to identify each

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

tc
6

register archive

a1 a9
tc

3

tc
4

C5

register archive

a1 a9

tc
5

C6

register

 send
questionnaire

 process
questionnaire

evaluate
 check
processing

archive

OK

NOK

process
complaint

DONE

a1

a2

a5

a6 a7

a8

a9

time-out

a4

a3

C2

returned-questionnaire

C1 CONT

register

 send
questionnaire

 check
processing

archive

OK

NOK

DONE

a1

a2

a8

a9

tc
1

tc
2

C3

C4
CONT

g1 g2
g3 g4

Figure 7. Translating the complaint handling pro-
cess model in Figure 6 into BPEL.

of the gateways in C4. Figure 8 sketches the structure of the
generated BPEL code. The detailed translation procedure
and the full BPEL code are given in [8].

process
sequence t6c :

do a1;
flow t5c : sequence t3c : do a2;
flow tc: sequence tc: pick t2c : onMessage a3: do a5

flow tc: sequence tc: pick tc: onAlarm a4: empty
flow t5c : scope t4c :
flow tc: onEvent Start(C4): invoke end(g1)
flow tc: onEvent switch(g3, g1, NOK): invoke end(g1)
flow tc: onEvent end(g1): sequence t1c : do a6; do a7;
flow tc: onEvent end(g1): invoke end(t1c)
flow tc: onEvent end(t1c): execute Switch(g2)
flow tc: onEvent switch(g2, a8, CONT): do a8;
flow tc: onEvent switch(g2, a8, CONT): invoke end(a8)
flow tc: onEvent end(a8): execute Switch(g3)
flow tc: onEvent switch(g2, g4, DONE): invoke end(g4)
flow tc: onEvent switch(g3, g4, OK): invoke end(g4)
flow tc: mainActivity: invoke Start(C4)
do a9

end process

Figure 8. Sketch of BPEL code generated from the
complaint handling process model in Figure 6.

5. Conclusions

In this paper, we presented an algorithm to translate
models captured in a core subset of BPMN into BPEL.
The translation algorithm is capable of generating readable
BPEL code by discovering “patterns” in the BPMN mod-
els that can be mapped onto BPEL structured constructs.
The algorithm also exploits BPEL event handlers for un-
structured subsets of the BPMN models. As a result, the
algorithm can handle any BPMN model composed of tasks,
events, parallel gateways, and XOR gateways (both data-
based and event-based) connected in arbitrary topologies.

Implementation of the algorithm is ongoing. A first ver-
sion of the implementation supports the translation of a
subset of BPMN models (called Standard Process Models)

into BPEL event handlers and is available at http://www.
bpm.fit.qut.edu.au/projects/babel/tools. We
are now extending this tool with the ability to detect pat-
terns in the BPMN models and to map these onto BPEL
structured constructs.

Other ongoing work aims at exploring the use of BPEL’s
non-structured constructs called control links in the trans-
lation. Our previous work [3] shows that a larger class of
“patterns” could be mapped onto BPEL’s flow construct by
making greater use of control links. However, since control
links enable dead path elimination, such an extension, if not
performed carefully, may hide errors such as deadlocks and
livelocks in the source model during the translation, thus
requiring verification technology for detection.

References

[1] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kie-
puszewski, and A. P. Barros. Workflow Patterns. Distributed
and Parallel Databases, 14(3):5–51, July 2003.

[2] W.M.P. van der Aalst, J. Jørgensen, and K. Lassen. Let’s
Go All the Way: From Requirements via Colored Workflow
Nets to a BPEL Implementation of a New Bank System.
In OTM Confederated International Conferences, CoopIS,
DOA, and ODBASE 2005, volume 3760 of Lecture Notes in
Computer Science, pages 22–39. Springer, 2005.

[3] W.M.P. van der Aalst and K. Lassen. Translating Workflow
Nets to BPEL. BETA Working Paper Series, WP 145, Eind-
hoven University of Technology, Eindhoven, 2005.

[4] A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland,
N. Kartha, C. Liu, S. Thatte, P. Yendluri, and A. Yiu, editors.
Web Services Business Process Execution Language Version
2.0. Working Draft. WS-BPEL TC OASIS, May 2005.

[5] B. Kiepuszewski, A.H.M. ter Hofstede, and C. Bussler. On
Structured Workflow Modelling. In Proceedings of 12th In-
ternational Conference on Advanced Information Systems
Engineering (CAiSE 2000), volume 1789 of Lecture Notes
in Computer Science, pages 431–445. Springer, 2000.

[6] J. Koehler and R. Hauser. Untangling Unstructured Cyclic
Flows - A Solution Based on Continuations. In OTM
Confederated International Conferences, CoopIS, DOA, and
ODBASE 2004, volume 3290 of Lecture Notes in Computer
Science, pages 121–138. Springer, 2004.

[7] R. Liu and A. Kumar. An Analysis and Taxonomy of Un-
structured Workflows. In Proceedings of the International
Conference on Business Process Management (BPM2005),
volume 3649 of Lecture Notes in Computer Science, pages
268–284. Springer, 2005.

[8] C. Ouyang, W.M.P. van der Aalst, M. Dumas, and
A.H.M. ter Hofstede. Translating BPMN to BPEL. Tech-
nical Report BPM-06-02, BPMcenter.org, 2006. Available
at http://tinyurl.com/bbvb7.

[9] C. Ouyang, M. Dumas, S. Breutel, and A.H.M. ter Hofst-
ede. Translating Standard Process Models to BPEL. To
appear in Proceedings of 18th International Conference on
Advanced Information Systems Engineering (CAiSE 2006),
June 2000. An extended version as a technical report is
available at http://tinyurl.com/asu9q.

[10] S. A. White. Business Process Modeling Notation (BPMN)
Version 1.0. Business Process Management Initiative,
BPMI.org, May 2004.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

