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Abstract

A major goal of cognitive neuroscience is to delineate how brain systems give rise to mental 

function. Here we review the increasingly large role informatics-driven approaches are playing in 

such efforts. We begin by reviewing a number of challenges conventional neuroimaging 

approaches face in trying to delineate brain-cognition mappings—for example, the difficulty in 

establishing the specificity of postulated associations. Next, we demonstrate how these limitations 

can potentially be overcome using complementary approaches that emphasize large-scale analysis

—including meta-analytic methods that synthesize hundreds or thousands of studies at a time; 

latent-variable approaches that seek to extract structure from data in a bottom-up manner; and 

predictive modeling approaches capable of quantitatively inferring mental states from patterns of 

brain activity. We highlight the underappreciated but critical role for formal cognitive ontologies 

in helping to clarify, refine, and test theories of brain and cognitive function. Finally, we conclude 

with a speculative discussion of what future informatics developments may hold for cognitive 

neuroscience.
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1. INTRODUCTION

One of the central goals of cognitive neuroscience is to understand how brain systems give 

rise to cognitive functions, which raises a critical question: What are the cognitive processes 

that we aim to understand? To grasp the importance of this question, consider an analogy 

from the field of molecular biology. A central question for this field is how genes are 

translated into proteins, and answering this question requires a systematic description of the 

genes and the proteins that are being related. Fortunately for molecular biologists, there are a 

number of databases that describe all of the proteins and genes that have been discovered 

across a wide range of species. These databases ground the concepts that researchers in the 
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domain are studying in a set of objective definitions, allowing different researchers to be 

sure that they are talking about the same thing. For example, a researcher may describe the 

object of their study as “DARPP-32”, but by providing an accession number in the UniProt 

database, one could easily ensure that the protein under investigation is the same as one 

named “Protein phosphatase 1 regulatory subunit 1B” in another paper.

By comparison, cognitive neuroscience is awash in a sea of conflicting terms and concepts. 

William Uttal summed up this problem clearly in his well-known critique of neuroimaging, 

“The New Phrenology”:

Unlike lepidopterists, who have the relatively simple task of gathering and 

classifying butterflies, psychologists have few such convenient physical anchors. 

Organizing the myriad proposed psychological components - “butterflies” - of our 

minds has been and is one of the great unfulfilled challenges of our science. Indeed, 

it is not only unfulfilled; it has not, in my opinion, been adequately engaged. 

Rather, hypothetical psychological constructs are invented ad lib and ad hoc 

without adequate consideration of the fundamental issue of the very plausibility of 

precise definition. (p. 90)

In this article we will outline how the field of cognitive neuroscience has begun to address 

this challenge through the use of tools adapted from the field of biomedical informatics. 

First we address two fundamental challenges that face the enterprise of cognitive 

neuroscience. One challenge centers around the difficulty in isolating specific mental 

functions using psychological tasks. Even if this challenge is solved, a second, deeper 

problem arises in the establishment of selective mappings between brain systems and mental 

functions. We argue that the standard approach to neuroimaging is fundamentally unable to 

deliver such selective mappings. Second, we discuss how large-scale databases enable more 

powerful analyses to address these challenges. In addition to reviewing conventional 

benefits of conducting analyses at scale–e.g., aggregating over hundreds or thousands of 

studies at a time allows estimation of associations with a precision that individual studies 

typically cannot–we focus on novel inferences that are only possible using such large-scale 

data. We demonstrate how large-scale databases can help quantify the true specificity of 

hypothesized structure-function associations by “zooming out” from a single brain circuit or 

experimental contrast to survey an entire complex landscape of many-to-many mappings 

between psychological and neural processes. We review data-driven approaches that 

leverage the scale and breadth of such databases to identify latent components of brain 

activity and cognitive function. And we illustrate how predictive modeling techniques can 

combine with large-scale databases to support novel quantitative approaches to the decoding 

of mental states from brain activity.

Finally, we describe how formal ontologies hold an important key to better describing the 

structure of the mind and its relation to the brain. We will describe the Cognitive Atlas 

project, which aims to develop a formal ontology for cognitive neuroscience. We conclude 

by highlighting some of the future directions that we foresee for the field of cognitive 

neuroinformatics.
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2. INFERENTIAL CHALLENGES FOR NEUROIMAGING

The development and widespread application of modern functional neuroimaging methods 

such as fMRI has long offered the tantalizing promise that researchers might one day 

understand how large-scale patterns of brain activity map onto specific mental states or 

processes. This promise has already been partly realized by the discovery of numerous 

brain-cognition associations over the past two decades (e.g., the existence of brain regions 

that preferentially process certain classes of perceptual stimuli, or the increase in activation 

of a “default mode network” when people are engaged in undirected mental activity Raichle 

et al. (2001)). However, it has also become increasingly clear that numerous inferential 

challenges threaten the broad goal of attaining a comprehensive understanding of the joint 

structure of the mind and brain using functional neuroimaging techniques. Many of these 

inferential threats are statistical or methodological in nature (e.g., low statistical power, 

preprocessing and registration problems, etc.), and are outside the scope of this paper. 

However, a number of threats stem from very basic conceptual challenges that we believe 

remain widely under-appreciated within the neuroimaging community. Here we discuss two 

such challenges: first, the difficulty of isolating cognitive functions, and second, the 

difficulty in establishing specific mappings between brain and behavior.

2.1. Isolating cognitive functions

In principle, identifying the neural substrates of specific cognitive functions using functional 

neuroimaging would appear to be conceptually straightforward. According to the classical 

subtraction logic that underlies much of neuroimaging research (Poldrack 2010), it should be 

possible to identify the neural correlates of specific processes by contrasting experimental 

conditions that are carefully selected to vary with respect to only a key process of interest. 

This is sometimes referred to as the assumption of “pure insertion,” in reference to the idea 

(originally attributed to Donders; cf. Sternberg 1969) that one can theoretically add a 

discrete processing step to an existing task without meaningfully altering the remaining set 

of processes. For example, by contrasting a condition in which participants passively view 

visual stimuli with a condition in which participants press a button whenever a new stimulus 

appears (while holding presentation duration constant across both conditions), one might 

perhaps be able to cleanly isolate the neural processes associated with planning and 

executing a motor response.

In practice, of course, things are more complicated. In particular, the logic of cognitive 

subtraction is notoriously fragile in the face of real-world psychological tasks (e.g. Egeth, 

Marcus & Bevan 1972; Friston et al. 1996; Jennings et al. 1997). For one thing, the 

assumption of pure insertion is demonstrably false in many, and perhaps most, cases. Even a 

simple manipulation of motor responding is unlikely to cleanly isolate motor processes as 

intended, because the requirement to make a motor response is all but guaranteed to change 

the way participants deploy attention to the visual stimuli (e.g., it may induce top-down 

biasing of early visual activity in a proactive effort to identify stimulus changes as soon as 

they occur—something that would be unlikely during passive viewing). Consistent with this, 

both behavioral (Egeth, Marcus & Bevan 1972) and neuroimaging (Jennings et al. 1997) 

studies have shown interactions between task performance (response times and activation 
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respectively) and response sets. The same fragility is likely to be true for most other 

experimental approaches as well. For example, parametric designs (in which a single task 

parameter is varied, such as memory load) rely on a similar “pure modulation” assumption 

(Poldrack 2010), i.e., that the only change occurring is that of the specific parameter being 

modulated. Parametric increases in working memory load influence not only WM-related 

circuits but also motivational and attentional circuits (e.g., as the number of encoded items 

in a Sternberg task increases, some participants may begin to experience negative emotion 

due to their inability to perform the task), violating the pure modulation assumption.

Although these problems with the isolation of specific processes using subtractive designs 

are widely known, it remains common in the neuroimaging literature to conflate 

experimental manipulations with the specific cognitive functions that are putatively 

manipulated. The cautions of Cronbach and Meehl (Chronbach & Meehl 1955) against 

conflating latent constructs with operational measures appear to have been largely forgotten. 

For example, a search of PubMed reveals more than 1,800 papers whose title or abstract 

includes the phrase “working memory task.” It may not register to most of those authors that 

in using this term (rather than a more descriptive term such as “Sternberg item recognition 

task” or “delayed response task”), they are making a theoretical claim, i.e. that the task in 

question provides a way to isolate a specific mental process called “working memory.” This 

becomes particularly problematic when the mappings between constructs and tasks come 

into question. For example, there are 99 abstracts in PubMed that include the phrase “N-

back working memory task,” even though the construct validity of the N-back task as a 

measure of “working memory” has come into serious question Kane et al. (2007). As we 

discuss further below, this is a perfect recipe for conceptual confusion.

2.2. Establishing specificity

Even if we suppose, for the sake of argument, that it were possible to employ manipulations 

in neuroimaging experiments that completely upheld the subtractive assumptions, we would 

still face the equally daunting problem of establishing the specificity of brain-behavior 

associations. Suppose we found a 100% pure task of working memory that reliably activated 

lateral prefrontal brain regions when scanned with fMRI. Would we be entitled to conclude 

that we have established the cognitive function of lateral PFC? No. What such a finding 

would establish is only that working memory engagement is a sufficient condition for 

activation of LPFC. It would not support the opposite inference—namely, that if LPFC is 

active, working memory processes must be engaged. The latter inference is invalid because 

there could in principle be many other psychological processes that also activate LPFC but 

have little to do with working memory. This difficulty in probabilistically inferring mental 

function from observed brain activity has been dubbed the problem of reverse inference in 

the cognitive neuroscience literature (Poldrack 2006, 2011). Formally, the reverse inference 

problem involves inferring the likelihood of engagement of a particular mental process MP 

from a particular activation A (which could be a single region or pattern across regions). 

This can be obtained using Bayes’ rule (Poldrack 2006):
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given some prior P (MP) on the likelihood of the mental process being engaged, and a base 

rate P (A) for the activation in question. The utility of framing the reverse inference problem 

in terms of Bayesian inference is that it makes clear that the added value of any activation in 

identifying the underlying mental process (i.e. the difference between the prior and the 

posterior probability) is a function of the likelihood of activation in the specific condition 

relative to the base rate of activation in that region. Regions that are more active across all 

psychological functions will provide less support for any specific reverse inference.

Alternatively, one can describe these inferential challenges in terms of necessary and 

sufficient conditions. The reason that randomized, controlled experimentation is widely 

hailed as the gold standard in science is that it can support strong conclusions about causal 

sufficiency. For example, suppose we experimentally manipulate the nature of the stimuli 

during a working memory task—presenting, say, faces in one condition and words in 

another—and observe that the face condition is associated with widespread changes in 

inferotemporal and frontal brain activity, and also with longer behavioral reaction times. We 

would be able to definitively conclude that the experimental manipulation we introduced is 

causally sufficient to produce both the neural and the behavioral changes we observed. 

However, we cannot conclude the opposite, viz. that engagement of those specific cognitive 

processes is necessary to produce that specific activation or behavioral response.

To see this, consider an example from psychology. Suppose subjects perform a working 

memory task with two conditions that vary in putative working memory load, and tend to 

respond more slowly in the high-load condition. It might be natural in such a case to say that 

increased working memory processing is the cause of subjects’ slowed responses. But now 

suppose that the same subjects also perform a visual discrimination task involving two 

conditions that differ only in the physical size of the on-screen stimuli. Further, suppose that 

the subjects tend to respond more slowly in the small-stimulus condition. Surely, in this 

case, few psychologists would want to conclude that slowed responses to smaller visual 

stimuli must at least partly reflect increased working memory load! What this example 

illustrates is that claims that seem perfectly reasonable in one context—e.g., that increased 

reaction time in a WM task reflects increased WM load – often depend critically on tacit 

background assumptions that are not part of the formal inference. If the context changes, one 

may then have to invoke a completely different set of putative causes for the same 

observable outcome. Unless the background conditions thought to differentiate between 

different contexts can be explicitly modeled, it is not clear how one might quantitatively 

infer which particular set of causes were responsible for a given outcome.

Relatedly, we also cannot easily draw causal conclusions about the relationship between 

brain activity changes and behavioral changes. When one observes correlated neural and 

behavioral changes that make intuitive sense, it can be tempting to interpret the former as 

the cause of the latter. However, the fact that all behavioral changes must derive from some 

neural changes does not mean that they must derive from the particular neural changes one 

happens to observe in any given study. For example, the fact that increases in frontal activity 

are consistently associated with longer reaction times does not entail that the former cause 

the latter. It is conceivable that frontal increases are the result rather than the cause of 

variations in reaction time, simply reflecting the fact that participants are processing 
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information for a longer period of time on trials when they take longer to respond (cf. 

Yarkoni et al. 2009). Indeed, one under-appreciated implication of the fact that the BOLD 

signal sums approximately linearly over time (Dale & Buckner 1997) is that any increase in 

the duration of local processing in a region—no matter what its cause may be—is likely to 

produce a corresponding increase in observed brain activity. Such examples underscore a 

major challenge to efforts to map the structure of human cognition using neuroimaging, 

because many of the brain-behavior mappings researchers have drawn in the literature are 

based largely on observation of concomitant neural and behavioral changes.

3. THE BENEFITS OF LARGE-SCALE INFORMATICS APPROACHES

Importantly, the inferential challenges discussed in the previous section are not intrinsic to 

cognitive neuroscience or functional neuroimaging, but simply reflect pragmatic constraints 

on what one can expect to achieve in any single study. The problem of reverse inference, for 

instance, arises not because it is fundamentally impossible to infer mental states from brain 

states, but because it is very difficult to contrast a sufficient number of experimental 

conditions to justify strong claims about the specificity of any individual mapping. It may be 

feasible to make much more circumscribed claims that are conditioned on specific 

background conditions (cf. Hutzler 2014; Klein 2012; Machery 2014) — e.g., that, 

conditional on doing a reading task, some pattern of activity implies orthographic decoding. 

Similarly, the uncertainty surrounding which cognitive process deserves credit for the effect 

of a particular experimental task on brain activity is attributable to the impracticality of 

using dozens of different tasks in every study in order to isolate a specific process by 

converging operations (Garner, Hake & Eriksen 1956). Fortunately, both of these limitations 

can be ameliorated by scaling up one’s investigation to simultaneously consider the results 

of many different studies. In this section we discuss a number of ways that existing and 

emerging informatics platforms can help map the structure of human cognition in novel 

ways and on an unprecedented scale.

3.1. Large-scale meta-analytic structure-to-function mapping

One of the first informatics-driven advances in researchers’ ability to map brain-cognition 

relationships was the development of new statistical methods and software packages for 

fMRI meta-analysis, and the creation of associated coordinate databases such as BrainMap 

(Laird, Lancaster & Fox 2005), Brede (Nielsen, Hansen & Balslev 2004), and SumsDB 

(Dickson, Drury & Van Essen 2001). The BrainMap database, for example, currently 

contains over 100,000 activation coordinates from over 2,600 fMRI studies that span diverse 

cognitive domains. All experimental contrasts are annotated with key metadata (e.g., sample 

size, clinical population(s), etc.) and coded along key dimensions (e.g., stimulus modality, 

task type, etc.). Drawing on such databases and tools, researchers have conducted hundreds 

of fMRI meta-analyses on topics ranging from single-word reading (Turkeltaub et al. 2002) 

to rectal distension in irritable bowel syndrome (Tillisch, Mayer & Labus 2011). By 

aggregating across dozens, and in some cases hundreds, of fMRI studies, such meta-analyses 

have been able to overcome the sensitivity limitations associated with many primary fMRI 

studies (Wager, Lindquist & Kaplan 2007) and provide highly robust estimates of the neural 

correlates of relatively specific cognitive tasks.
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Despite their enormous impact on the field, however, conventional meta-analytic approaches 

also have important limitations. One is their lack of scalability: because manual annotation 

and verification of published articles is a time-consuming process, existing coordinate 

databases such as BrainMap are no longer able to keep up with the growth of the primary 

literature (cf. Derrfuss & Mar 2009). Thus, as time goes on, it becomes increasingly difficult 

for investigators to conduct comprehensive meta-analysis of the literature, even in relatively 

circumscribed domains. A second problem is that conventional meta-analysis approaches, 

which focus on identifying the brain regions consistently activated by particular cognitive 

tasks or processes, do not help address the long-standing problem of reverse inference. 

Consider, for example, the challenge of determining what cognitive function(s) the human 

anterior insula supports. Individual fMRI studies have implicated this region in the 

processing of pain (Wager et al. 2004), interoceptive awareness (Critchley et al. 2004), error 

monitoring (Klein et al. 2007), sustained attention (Dosenbach et al. 2006), phonological 

processing (Wise et al. 1999), salience (Wiech et al. 2010) and numerous other processes—

and this variety is recapitulated in an equally broad range of meta-analyses that also report 

anterior insula activation, including studies of empathy (Fan et al. 2011), subsequent 

memory (Kim 2011), and working memory (Owen et al. 2005), among others. While such 

findings convincingly demonstrate that many different kinds of tasks reliably activate the 

anterior insula, they provide relatively little insight into what the specific function of the 

anterior insula (or any other region) might be.

In work that addresses both the scalability and inferential limitations of conventional meta-

analysis, we recently introduced a novel framework called Neurosynth that supports large-

scale synthesis of fMRI data using a fundamentally different approach (Yarkoni et al. 2011). 

Instead of relying on careful manual annotation of studies, our approach emphasizes 

automation and scale—effectively trading quality for quantity. Neurosynth uses relatively 

simple text mining and computational linguistics methods to automatically extract both 

reported activations and semantic annotations from published articles (see Figure 1). While 

the data extracted from any individual study are highly susceptible to error, and lack 

corresponding metadata (e.g., one cannot even reliably determine whether a particular 

activation represents an increase or decrease in blood flow), the high degree of automation 

enables Neurosynth to grow in stride with the primary literature at virtually no cost. 

Consequently, the Neurosynth database has now eclipsed BrainMap in size, with over 

10,000 studies and 360,000 discrete activations represented. In keeping with a philosophy of 

data sharing, reproducibility, and open science, the entire database is made freely available 

to the community without any use restrictions or requirements of coauthorship.

The relatively comprehensive coverage of the Neurosynth database opens the door to novel 

kinds of inference—particularly those focused on quantifying the specificity of brain-

cognition associations. In an emblematic recent study, Chang and colleagues used 

Neurosynth to quantitatively “decode” the psychological processes associated with different 

sectors of the human insula, including the aforementioned anterior sector (Chang et al. 

2013). The availability of a relatively comprehensive cross-section of the fMRI literature 

enabled the authors to quantify not only which kinds of tasks tend to consistently produce 

anterior insula activity (nearly all of them), but also which processes were most likely to 
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activate the region—thereby providing a measure of specificity that individual fMRI studies 

or meta-analysis studies focused on experimental comparisons could not (Figure 2). Chang 

et al. demonstrated that the anterior insula is maximally associated with higher cognitive 

processes such as task-switching and response inhibition, suggesting that its frequent 

presence in other kinds of tasks may reflect a fundamental role in basic goal-directed 

cognitive processes necessary for all kinds of complex cognition (for further discussion, see 

(Chang et al. 2013)).

To facilitate community adoption of such methods, we have publicly released the entire 

Neurosynth codebase under a permissive software license, and have developed an 

interactive web portal (http://neurosynth.org). The Neurosynth website makes it possible, for 

example, to obtain whole brain reverse inference maps for concepts like reward, episodic 

memory, or response inhibition, or to generate a rank-ordered list of the psychological 

concepts most strongly associated with activation at any location in the brain (http://

neurosynth.org/locations). Most recently, we have introduced a real-time web interface that 

supports the kind of open-ended decoding functionality employed in (Chang et al. 2013), 

enabling other researchers to perform near-instantaneous quantitative reverse inference on 

uploaded whole-brain statistical maps. Although the results of such analyses have a number 

of important limitations (discussed below), we believe they nevertheless represent a 

significant advance over the largely qualitative interpretations that have historically 

dominated Discussion sections in fMRI articles (cf.(Poldrack 2006)). Notably, they support 

inferences that are based on interpretation of whole-brain patterns of activity rather than 

isolated brain regions, and, in virtue of relying on automated analysis of the literature as a 

whole, they are less susceptible to various cognitive biases known to affect research results 

(e.g., the tendency to preferentially focus on studies that converge with one’s preferred 

theoretical position).

3.2. Functional parcellation and the search for latent structure

A second, and very different, way of approaching the search for mental structure is to ask 

whether and how the brain carves the joints of mental function, through an analysis of the 

latent structure of the neuroimaging data. There is a long history of using statistical methods 

to try to parcellate the brain into functional units based on correlated activity or connectivity 

patterns. Early reports that widely-distributed networks of brain regions often modulate in 

concert (e.g., (Biswal et al. 1995)) quickly led to a diversity of large-scale efforts aimed at 

extracting a comprehensive set of networks, parcels, or components that capture the 

dynamics of brain activity—e.g., by using clustering techniques to identify locally-

homogeneous sets of voxels (Craddock et al. 2012; Gordon et al. 2014), or matrix 

factorization methods such as independent components analysis [ICA] (Beckmann & Smith 

2004)) to find low-rank approximations to high-dimensional connectivity data (for review, 

see (Varoquaux & Craddock 2013)). Although such efforts were initially focused solely on 

the neurobiological level of analysis, researchers soon recognized their potential utility as 

bridges between brain-based network analysis and cognitive function. In an influential 

example, Smith et al. (Smith et al. 2009) mapped a set of ICA components extracted from 

activation coordinates in the BrainMap database onto the domains of tasks used in the 

associated studies, uncovering a set of plausible mappings between neural networks and 
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psychological functions. Figure 3 presents a similar analysis performed on the Neurosynth 

database.

It is also possible to work in the opposite direction, starting with a decomposition of the 

psychological space and assessing its relationship to brain activity. Poldrack et al. (Poldrack 

et al. 2012) first performed topic modeling on the text from the Neurosynth database using a 

technique known as latent Dirichlet allocation (Blei, Ng & Jordan 2003). This method 

defines a probabilistic generative model for text which involves first sampling from a set of 

topics, and then sampling words according to their probability under the selected topic. 

Given a set of documents, the latent topics are inferred using Bayesian estimation, which 

provides a set of weights for each term and each document in relation to each of the topics. 

Separate analyses were performed limiting the text to terms related to either psychological 

functions or brain disorders. These weights were then used to generate maps showing which 

regions were statistically associated with loading on each topic (referred to as “topic maps”). 

The topics identified using this technique generated plausible sets of cognitive terms and 

related maps (e.g, one topic has as its top terms “narrative”, “discourse”,“comprehension”,

“memory”,and “discourse processing”, and was associated with activation across the left 

hemisphere language network; another had top terms “auditory”,“perception”,“hearing”,

“attention”, and “listening” and was associated with activation in bilateral auditory cortices). 

More recently, Yeo and colleagues (Yeo et al. 2014) used a more sophisticated hierarchical 

topic model to extract a set of “cognitive components” that jointly explain the covariance 

structure between both cognitive tasks and brain activity—thus attempting to formalize the 

intuitive idea that the mapping between neural activity in individual brain regions and 

cognitive tasks may be best described hierarchically (i.e., lower-level units are repeatedly 

configured into higher-level circuits).

3.3. Decoding mental structure

A third way to approach the challenge of inferring mental structure from neurobiological 

data is in terms of prediction: Given a neuroimaging dataset, we wish to make the most 

accurate prediction possible regarding which mental processes are engaged. The coordinate-

based approaches described above have been surprisingly successful at making predictions 

about broad categories, but they generally lack the detailed process-level annotation or the 

subject-level neuroimaging data necessary to make much more specific predictions. An 

alternative approach has been to apply machine learning classification and decoding 

techniques (Haynes & Rees 2006; Norman et al. 2006) to smaller datasets—e.g., to try to 

determine which of several classes of pictures or words a subject is currently viewing (e.g., 

(Mitchell et al. 2003; Cox & Savoy 2003)). The earliest work in this domain focused 

primarily on decoding of specific stimulus or task features within a single individual, but 

subsequent work has shown that one can decode large-scale psychological functions from 

fMRI data in a way that generalizes across individuals Mourão-Miranda et al. (2005); 

Shinkareva et al. (2008); Wager et al. (2013). However, the high decoding accuracies 

frequently reported in such studies also belie their highly-constrained nature: it is much 

easier to correctly classify subjects’ mental states when there are only a handful of possible 

candidates (e.g,, discriminating faces versus houses, as opposed to discriminating all 

possible classes of objects) (cf. Hutzler 2014; Klein 2012; Machery 2014). Thus, the major 
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open challenge is to combine the respective strengths of these two decoding approaches, 

with the goal of eventually generating highly accurate, yet relatively unconstrained, 

predictions about people’s mental states.

Although unconstrained decoding of mental states currently lies more in the realm of fiction 

than of science, there are promising incipient efforts. One recent line of work focuses on 

reconstructing subjects’ experience of a broad range of stimuli under relatively naturalistic 

conditions—often including identification of previously unseen stimuli. For example, Kay 

and colleagues use novel encoding models to accurately identify which of 120 natural 

images subjects were viewing Kay et al. (2008). More recent studies have used similar 

approaches to reconstruct movie clips from visual cortex activation Nishimoto et al. (2011) 

or apply semantic labels to thousands of objects and actions Huth et al. (2012). Related work 

has used large-scale models of semantic structure to decode the identity of words and 

pictures from brain images Mitchell et al. (2008). Although such studies remain constrained 

to one particular modality, their use of generative encoding models that can identify entirely 

new objects represents an important advance over older approaches that discriminate 

between a small, fixed set of alternatives.

In a different line of work using subject-level data from eight different tasks, we (Poldrack, 

Halchenko & Hanson 2009) examined whether it was possible to decode which task an 

individual was engaged in from their brain activity pattern, using a neural network classifier 

trained on other individuals. We found that it was possible to decode these tasks with greater 

than 80% accuracy, and that the underlying structure of the trained neural network provided 

insights into the clusters of tasks that engaged similar neural patterns. In subsequent work 

using the OpenfMRI database we have shown that it is possible to decode a much larger 

number of tasks; for example, in (Poldrack et al. 2013) we found that it was possible to 

obtain greater than 50% accuracy at classifying between 26 different task contrasts from this 

database. Interestingly, this classification accuracy could be obtained even when the 

dimensionality was greatly reduced using independent components analysis (reaching 

asymptote around 100 dimensions), suggesting that it primarily reflects the balance between 

large-scale neural systems rather than fine-grained patterns of activity. Further analysis of 

the confusion matrix showed that in many cases similar tasks from different studies were 

systematically confused by the classifier, suggesting that it was tapping into general 

cognitive features of those tasks rather than specifics of the particular design.

A more demanding question is whether it is possible to predict the psychological processes 

underlying the task rather than the task identity. This question has also been addressed in a 

number of recent studies. Koyejo and Poldrack (Koyejo & Poldrack 2013) used data from 

the OpenfMRI database that had been annotated manually to specify the putative 

psychological processes engaged by each of the 26 task contrasts, with the goal of predicting 

psychological processes rather than task labels. Because many of the contrasts were thought 

to isolate multiple psychological functions, we used “multilabel” classifiers that have the 

ability to predict the presence of multiple processes for any particular dataset. We found that 

it was possible to predict many of the psychological processes with relatively high accuracy, 

particularly for those processes that occurred relatively often within the database (and thus 

had more data available for training). In similar work, Schwartz and colleagues (Schwartz, 
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Thirion & Varoquaux 2013) used the OpenfMRI database to decode task features (such as 

the stimulus modality and nature of the response), showing similarly strong classification for 

these features. These studies provide the proof of concept that it should be possible to 

accurately decode the psychological building blocks of a task from its associated activation 

patterns.

3.4. Limitations of large-scale, brain-based approaches

The results described above highlight the utility of large-scale, brain-based approaches in 

discovering interesting relations between psychological functions and brain systems. 

However, such approaches also have important limitations. Some of these limitations are 

primarily technical in nature, and reflect current methodological weaknesses that are likely 

to be overcome in the future via introduction of other novel approaches and informatics 

platforms. For example, one general problem for virtually all extant meta-analytic databases 

is the lack of psychologically detailed annotations. This weakness is most prominent in the 

case of Neurosynth, where data are automatically extracted using relatively simple heuristics 

that cannot readily identify key metadata fields (e.g., sample size, direction of experimental 

contrast, etc.); however, even when neuroimaging studies are manually curated, as in the 

BrainMap database, annotations are largely focused on task-level descriptions rather than 

underlying psychological processes (e.g., knowing that an N-back paradigm with face 

stimuli was used in an experiment does not directly convey whether psychological processes 

such as active maintenance of information, familiarity detection, phonological rehearsal, and 

so on, are involved in carrying out the task). We discuss potential solutions to this problem 

in the next section.

Another technical limitation is that virtually all existing meta-analytic approaches rely on 

analysis of discrete coordinates reported in published articles rather than continuous whole-

brain statistical maps. Coordinate-based meta-analysis (CBMA) is demonstrably inferior to 

image-based meta-analysis (IBMA), as it unnecessarily discards the vast majority of usable 

information in the original maps, thereby reducing sensitivity and typically precluding the 

estimation of continuous effect sizes (Salimi-Khorshidi et al. 2009). In the hopes of 

facilitating a shift to image-based approaches, we and colleagues are currently working to 

address this limitation by creating a centralized online repository of whole-brain statistical 

maps. NeuroVault (http://neurovault.org) is a new platform that allows researchers to 

quickly upload and annotate their images, facilitating rapid dissemination and interactive 

visualization of statistical maps, and eventually supporting more powerful meta-analytic 

syntheses (Gorgolewski et al. 2014).

Finally, there are limitations inherent in fMRI as an imaging methodology. In particular, the 

temporal resolution of fMRI limits the ability to identify dynamic changes in the millisecond 

time scale, whereas this is exactly the time scale over which most psychological processes 

occur. Thus, fMRI maps should be viewed as a composite of all activity occurring during a 

particular episode of mental activity. To the degree that different psychological functions are 

distinguished by different dynamic combinations of a common set of processing functions 

on this short time scale, then it may not be possible to disentangle these using fMRI.
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In contrast to these purely technical challenges, other limitations of the approaches discussed 

above are inherent to any effort to approach mind-brain mapping from a purely 

neurobiological perspective—i.e., by seeking to first identify the “right” functional units at 

the level of the brain, and then map the revealed structures onto psychological processes. 

Perhaps the most pressing problem is that a model developed to achieve statistical or 

theoretical parsimony strictly at a single level of description (e.g., to find the optimal 

parcellation of functional brain networks given some fixed statistical loss criterion) is not 

guaranteed to map cleanly onto other levels of description (e.g., cognitive processes). In 

fact, it almost assuredly will not. For instance, it is exceedingly unlikely that there is any 

single brain region, cluster, or network that corresponds neatly to high-level psychological 

concepts like episodic recall, working memory, or phonological rehearsal (in much the same 

way that one would not expect to find a single gene, protein, or neuron type that 

isomorphically maps onto such high-level concepts). The central question that then arises is 

what one ought to do in cases where well-established psychological and biological structures 

do not seem to map well onto one another. For instance, if there is no obvious biological 

entity that maps cleanly onto the psychological concept of working memory, should we 

jettison WM from our psychological models in favor of other psychological constructs?

The answer to this question is neither straightforward nor unequivocal. On the one hand, all 

else being equal, we believe that a model of psychological processes that also maps 

systematically onto known biological structures is strongly preferable over one that does not

—often even when there are other grounds to prefer the latter. For example, suppose that a 

psychological model with one free parameter captures 92% of the variance in some target 

behavior while a different model with eight free parameters captures 93%. In such a case, it 

would seem both theoretically and statistically advisable to favor the simpler model over the 

more complex, because the additional seven parameters add little incremental value to the 

behavioral prediction. Yet if the parameters of the more complex model were to each map 

very cleanly onto well-delineated biological variables, while the single-parameter model 

correlated very diffusely and non-specifically with brain activity (as it almost certainly 

must), we would argue that the more complex model is probably more scientifically useful. 

In this sense, biological discoveries can and should inform the continual revision of 

psychological theories.

At the same time, we recognize that there may be many cases where there just isn’t any 

psychologically tractable model available that simultaneously respects theoretical 

constraints from both psychology and biology. For example, there is no guarantee that there 

is any viable replacement for the concept of “working memory” that would both (a) map 

cleanly onto underlying biological structures and (b) remain sufficiently compact and 

psychologically interpretable to be useful in practice. Would it be advantageous to eliminate 

a high-level term like “working memory” from our scientific lexicon if the only way to 

cover approximately the same territory with a biologically-detailed model is to introduce a 

large disjunctive set of of separate mechanisms? This question largely echoes earlier 

criticisms of reductionism (Fodor 1974) —i.e., the mere fact that a “fuzzy” higher-level 

description can in principle be replaced by a lower-level description does not mean that the 

lower-level description will necessarily be more useful in practice. Ultimately the question 
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will rest on whether such a new framework is more scientifically productive than the current 

framework, which is unanswerable until the new framework is proposed and tested.

Unfortunately, we know of no algorithmic way to distinguish cases where a psychological 

concept has outlived its utility from those where a concept simply lacks any viable 

biologically-inspired replacement but remains useful. In practice, this is a problem that 

researchers may always have to navigate on a case-by-case basis—and disagreements 

between researchers will certainly arise in the process. We would argue strongly, however, 

that informatics-driven methodologies can make it much easier to navigate this problem. In 

the next section, we discuss ongoing efforts to develop formal cognitive ontologies that can 

help clarify conceptual definitions, distinguish genuine substantive disagreements from 

pointless terminological disputes, and generate new ways of studying and thinking about 

causal relationships within and between different levels of description.

4. TOWARDS A COGNITIVE ONTOLOGY

4.1. The need for formal representations

We have argued above that the question “what are the parts of the mind?” cannot be 

successfully addressed strictly through a bottom-up perspective that first asks “what are the 

functional units of the brain?” and only then seeks to map the resulting components onto the 

psychological space (cf. Price & Friston 2005). But we have also suggested that simply 

inverting this process and adopting a purely top-down approach—i.e., taking well-

established psychological constructs such as working memory and seeking their underlying 

neural substrates—is not likely to prove much more fruitful. Aside from the methodological 

and conceptual problems with such an approach discussed in the previous sections (e.g., the 

problem of reverse inference), there is an arguably even more fundamental problem, which 

is that psychologists rarely agree on the meaning of the constructs under investigation. For 

example, the term “working memory” has been defined as:

• “the manipulation and use of information [in short-term memory] to guide 

behavior.” Larocque, Lewis-Peacock & Postle (2014)

• “working memory involves the process of active maintenance of a limited amount 

of information” Jeneson & Squire (2012)

• “a hypothetical cognitive system responsible for providing access to information 

required for ongoing cognitive processes” Wilhelm, Hildebrandt & Oberauer 

(2013)

• “Working memory subsumes the capability to memorize, retrieve and utilize 

information for a limited period of time” Rottschy et al. (2012)

This diversity of views may reflect what Walter Mischel has called the “toothbrush 

problem” in psychology: “Psychologists treat other peoples’ theories like toothbrushes — no 

self-respecting person wants to use anyone else’s” (Mischel 2008). With such divergent 

definitions of constructs (and equally divergent tasks used to measure them), how can we 

expect to find consistent mappings between mental constructs and brain systems?
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Of course, it is hardly surprising that disagreements should arise over how to delineate and 

describe an organ as complex as the human mind. And there is nothing intrinsically wrong 

with having a diversity of opinions. The concern, however, is that psychologists do not seem 

to have well-established procedures for effectively resolving such differences. For instance, 

how should we determine whether working memory is best defined in terms of maintenance 

and manipulation of information in a short-term memory buffer, or in terms of the ability to 

flexibly recruit other cognitive resources in support of current goals? Should the label 

‘working memory’ apply solely to a central executive mechanism, or also encompass slave 

systems such as the phonological loop and visuospatial sketchpad, as in Baddeley’s 

influential model (Baddeley 1992)?. The textbook approach to such disputes is to devise a 

“critical experiment” that can offer definitive evidence in favor of one theory over another. 

But in practice, it is exceedingly difficult to identify real-world cases where a critical 

experiment has actually prompted the abandonment of a theory (cf. (Greenwald 2012)).

We suggest that much of the difficulty resolving theoretical differences is due to the 

informal nature of most theoretical claims. At present, there is no unifying framework that 

allows researchers to represent their theories and definitions in a structured, formal way; 

while formalization will not resolve differences on its own, it makes differences clearer and 

thus more amenable to testing. Until recently there was no resource we know of that allowed 

one to easily determine which cognitive processes the Sternberg task invokes, what clinical 

conditions are associated with impairments of grammar learning, or what set of mental states 

can be considered instances of emotion. We believe the development of a formal framework 

for specifying relationships between psychological concepts and tasks would substantially 

advance our ability to map the structure of human cognition and its underlying 

neurobiological bases. Notably, there is considerable precedent for such a development in 

other biomedical fields, where formal ontologies have played a critical role in facilitating 

hypothesis testing and scientific exploration alike.

4.2. Formal ontologies as a potential solution

One of the most basic questions that is raised by cognitive neuroscience (and that one might 

reasonably expect psychologists to be able to answer) is: “What are the parts of the mind?” 

If one had asked this question of a psychologist in the eighteenth century, an answer would 

have been quickly forthcoming in the form of a list of mental faculties, which were adopted 

by the earliest “brain mapping” researchers (i.e. phrenologists) as the basis for their 

structure-function mapping. However, today virtually no psychologists would have an 

answer to this question. The closest that one might come would be to examine the index of a 

cognitive psychology textbook, but one would quickly find that there is no systematic 

description of how psychologists currently characterize the structure of the mind. Given that 

the goal of cognitive neuroscience is to map mental functions onto brain systems, this poses 

a fundamental problem.

Compare this situation to a similar question in biology: “What are all of the biological 

functions that occur within a cell?” As recently as the 1990’s, one would have been similarly 

challenged to find a systematic answer to this question. However, in the late 1990’s a group 

of biologists and informatics experts developed a consortium (called the Gene Ontology 
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Consortium) that began to develop a formal knowledge base (or ontology) to represent the 

state of current knowledge regarding the structure and function of biological systems 

Ashburner et al. (2000). Today, one can visit the Gene Ontology web site (http://

www.geneonotology.org) and obtain a comprehensive formal description of cellular 

components, biological processes, and molecular functions.

4.3. What is an ontology?

The term “ontology” is used here to refer to an “explicit specification of a 

conceptualization” Gruber (1993), or more generally as a formal description of a knowledge 

structure; this usage of the term, which arises from computer science, is related but distinct 

from the usage of the term in philosophy, where it often refers to the entities that are 

postulated by a particular theory Quine (1948) or more generally to the nature of existence. 

At its base, a formal ontology specifies the entities that exist within a domain along with the 

relations between those entities Bard & Rhee (2004). For example, within the Gene 

Ontology, the entity “rough endoplasmic reticulum” has the relation is-a to the entity 

“endoplasmic reticulum” (Figure 4), meaning that the former is agreed upon to be a 

particular kind of the latter.

The Gene Ontology currently has entries for more than 26,000 biological processes, almost 

10,000 molecular functions, and more than 3600 cellular components (and it is only one of 

many ontologies that have been developed within the bioinformatics community to describe 

various levels of biological function and structure). Given that each of these entries was 

manually curated, this represents a massive investment of human time. Why would 

researchers put so much time and effort into doing this? We will review several important 

benefits (for others, see Bard & Rhee (2004); Bodenreider & Stevens (2006); Rubin, Shah& 

Noy (2008)).

Controlled vocabulary with unique identifiers—The establishment of an agreed-

upon ontology provides researchers in the field with a controlled vocabulary for description 

of biological entities, each of which has a unique identifier (e.g., the identifier for 

“endoplasmic reticulum” is GO:0005789). This provides a machine-readable way to 

describe each entity, which can remain consistent even if the field decides to change the 

name of the entity. It also provides a means to link between different databases, which has 

proven remarkably powerful in biomedical informatics (Bard & Rhee 2004).

Framework for annotation—One of the most important aspects of the ontology is that it 

provides a framework through which to relate the ontology entities to other types of data, 

which in the context of bioinformatics is referred to as annotation. Gene Ontology entities 

are annotated by associating them with specific gene products (proteins or RNAs). The Gene 

Ontology annotation database currently has over two million annotation entries, which 

reflect many different types of evidence relating specific entities to specific gene products. 

For example, a search for annotations of the entity “endoplasmic reticulum” identified 

119,040 entries involving 74,239 proteins across all species. The availability of a database 

of these annotations has enabled a number of new tools for understanding biological data. 

Most important, it has provided the ability to assess, for any specific set of genes, which 
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entities in the ontology are likely to be “enriched” for that set of genes, thus providing 

insights into the larger biological context for the experiment (Rhee et al. 2008).

Inferring relations—Ontologies are generally specified using formal knowledge 

representation systems, or ontology languages, such as the Ontology Web Language (OWL). 

Once specified this way, formal reasoning systems can be used to infer relations between 

entities that are not explicitly specified in the ontology. For example, if we know that “rough 

endoplasmic reticulum” is a kind of “endoplasmic reticulum”, and that “endoplasmic 

reticulum” is a kind of “cytoplasmic part”, we can infer that “rough endoplasmic reticulum” 

is a kind of “cytoplasmic part”.

4.4. A pragmatic approach to ontology building

An important consideration when developing a formal ontology of mental processes is that 

psychological processes are inherently “fuzzier”, or less structured, than biological 

processes. In many biomedical domains, the basic units of analysis correspond to well-

defined physical entities, and are not up for serious debate. For example, it’s highly unlikely 

that ten or twenty years hence, geneticists will decide that they were wrong all along about 

the nucleotide bases that make up the human genome, and will move to eliminate all talk of 

cytosine, guanine, adenine, and thymine from the lexicon. In contrast, major psychological 

concepts appear to fall in and out of favor with some regularity—typically without having 

been demonstrably refuted by any critical experiment (Greenwald 2012). More generally, it 

is not clear that a question like what are the fundamental building blocks of human 

cognition? admits of a clear-cut answer in the same way that one can unambiguously 

identify the letters of the human genome. Is working memory a more basic concept than 

executive control or cognitive control? Does it make sense to speak of perception as a basic 

concept, or is that a purely extensional definition that is best ignored in favor of individual 

sensory systems like vision and audition? Will concepts like love and hate find their place in 

a formal ontology of the mind, or are they merely folk psychological abstractions to be 

abolished as science progresses, in the way that some philosophers once envisioned 

(Churchland 1981)?

The critical point here is not just that there is presently no consensus on such questions; it is 

that they very likely admit of no single right answer. There is little reason to suppose that the 

extremely complex and high-dimensional structure of human cognition can be neatly 

reduced to a much lower-dimensional, “human-readable” description without substantial 

loss of fidelity. Nor is it clear what criteria one could use to unambiguously distinguish 

between good and bad models. Should researchers privilege theoretical parsimony, such that 

a good model is one that maps well onto theoretical entities identified by prior scientific 

investigation (e.g., nodes in a cognitive ontology should strive to attain a one-toone mapping 

with neurobiological structures)? Or should they favor statistical parsimony, such that if two 

models explain the same amount of behavioral variance, the simpler one is to be preferred, 

even if the more complex one maps more sensibly onto underlying biological entities? The 

answer will undoubtedly depend on individual researchers’ goals and preferences.
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Importantly, however, the principled absence of a single unassailable description of the 

structure of human cognition does not diminish the need for a formal ontology of 

psychological processes. If anything, the contrary is true. Many of the theoretical disputes 

that arise in psychology are, we submit, driven to a large extent by tacit differences in 

terminology that ramify as substantive disagreements. For example, in the personality 

literature, researchers have long debated whether the “fundamental feature” of Extraversion 

is reward sensitivity, positive affect, or sociability (Ashton, Lee & Paunonen 2002; Lucas & 

Diener 2001; Lucas et al. 2000; Lucas, Le & Dyrenforth 2008; Smillie et al. 2012). In our 

view, it is not clear that there is a definitive answer to this question. It may well be that 

different research communities are simply applying the label Extraversion to different 

(though partly overlapping) behaviors—in which case there would be no more utility in 

trying to determine what the ‘true’ definition of Extraversion is than in trying to arbitrate 

between two formal color standards that disagree as to whether aquamarine is a shade of 

blue or of green. The ability to formally clarify and translate between different lexica would 

thus be a major boon to theoreticians.

From a purely pragmatic standpoint, one can think of a good ontology as a kind of universal 

language that dramatically reduces the likelihood of miscommunication between researchers 

by enabling statements to be defined in more formal and less ambiguous terms—even when 

the mapping between terms and their referents is still not perfect. At their best, good 

ontologies can serve as sophisticated inference engines capable of informing and even 

answering certain kinds of questions that the unaided human mind is known to have trouble 

with—for example, by identifying when two terms are being used interchangeably; when a 

single term is being used in multiple conflicting ways; when a relationship between two 

concepts is likely to exist even though one has not yet been reported; when the putative 

nomological network (Chronbach & Meehl 1955) of a given concept contains internal 

inconsistencies; and so on.

4.5. The Cognitive Atlas

The success and broad utility of biomedical ontologies such as the Gene Ontology inspired 

one of us (RP) to ask whether it would be possible to address these problems by developing 

a formal ontology of mental processes and tasks, which led to the establishment of the 

Cognitive Atlas (http://www.cognitiveatlas.org/ Poldrack et al. (2011). The broad goal of the 

Cognitive Atlas is to serve as an open collaborative knowledge base for psychological 

science. It is meant to capture two primary forms of knowledge. First, it aims to define 

psychological constructs in order to provide consensus definitions that can serve as the basis 

for accurate scientific communication and discussion. A fundamental distinction made 

within the Cognitive Atlas is between mental concepts, which refer to putative but 

unobservable psychological processes or structures, and mental tasks, which are the 

objective operations used to measure those putative constructs (see Figure 5). This 

distinction follows the previously noted admonition by Chronbach and Meehl (Chronbach & 

Meehl 1955) regarding the separation of latent constructs and the operations used to measure 

them. Second, the project aims to establish a knowledge base of the relations within and 

between mental tasks and mental concepts. In a sense, it is these relations that form a major 

part of the basis for psychological theories. For example, Baddeley’s theory of working 
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memory could be specified in terms of a set of concepts (e.g., “phonological loop”, 

“acoustic store”, and “central executive”), a set of relations between these concepts (e.g., 

“acoustic store is part of phonological loop”), and relations to tasks (e.g, “the acoustic store 

is measured by the comparison of acoustically similar versus dissimilar words on a short-

term memory task”).

Within the Cognitive Atlas, mental tasks are described in terms of three primary features: 

conditions (which specify different conditions of measurement), contrasts (which specify 

either comparisons between conditions or relationships with continuous variables), and 

indicators (which specify variables that are measured within the task; these could reflect 

behavioral, neural, or other physiological measurements). In order to capture the relations 

between tasks and concepts, we defined a novel ontological relationship (measured-by) that 

denotes the fact that a specific concept is measured by a specific task. Importantly, concepts 

are not related to the overall representation of a task, but rather to specific contrasts. This 

design decision recognizes the subtractive/contrastive logic of psychological measurement: 

researchers are typically interested in comparisons between conditions that vary in some 

specific set of putative mental processes, rather than in the value of a specific indicator. For 

example, the concept of the phonological loop might be measured by the contrast of 

phonologically similar versus dissimilar items on the Sternberg delayed recognition task. 

Other contrasts within the task could be related to other mental concepts; e.g., the contrast 

between target-present versus target-absent probe trials might be thought to reflect some 

aspect of decisional processes, rather than measuring working memory.

The description of tasks within the Cognitive Atlas is relatively abstract, and does not 

describe specific aspects of the stimuli, responses, or instructions for the task. A parallel 

effort, known as the Cognitive Paradigm Ontology (or CogPO) (Turner & Laird 2012), is 

developing the means to describe tasks in more detail. Ultimately it should be possible to 

link these two ontologies, in order to span directly from psychological processes outlined in 

the Cognitive Atlas to detailed operational descriptions of tasks. This would allow the 

proper annotation of cases where specific task implementation details are critical 

determinants of the psychological processes that are engaged (e.g., changes in the 

architecture of task switching in relation to the amount of time available for preparation 

prior to switching (Rogers & Monsell 1995)).

5. FUTURE DEVELOPMENTS

The projects outlined above represent the first steps in the development of a cognitive 

neuroinformatics that can support strong inferences regarding the relation between brain 

systems and psychological functions. What new advances will the next few years bring? In a 

short review several years ago (Yarkoni et al. 2010), we briefly considered the question: 

What will cognitive neuroscience look like 10 years from now? Some of the developments 

we anticipated at the time included: fully automated quantitative mapping between cognitive 

and neural states; intelligent preprocessing and analysis pipelines that evaluate local data in 

relation to global databases; integration of neuroimaging databases with other kinds of data

—e.g., functional genomic repositories; introduction of centralized neuroimaging data 

repositories; and integration of formal ontologies and formal method descriptions into fMRI 
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analysis software. Now, five years on (and halfway through our earlier forecast horizon), we 

are more optimistic than ever about the prospects for a cumulative, integrative, informatics-

driven science of the human mind/brain. A number of the developments we anticipated five 

years ago already have realized implementations that we discuss above (e.g., centralized 

data repositories like OpenFMRI and NeuroVault, and the ability to instantly decode maps 

uploaded to NeuroVault using Neurosynth). Others are in very early stages of development. 

And then, of course, there are other important emerging projects that we did not anticipate at 

all five years ago. Here we outline a few recent developments of particular interest.

Towards open, standardized, and centralized data sharing

The benefits of cognitive ontologies to scientific discovery become most apparent when 

applied at scale. A critical component of ongoing and future efforts will therefore be the 

centralized aggregation and organization of neuroimaging and psychology data. Currently, 

major ongoing efforts are directed at developing machine-readable standards for 

representing neuroimaging data (e.g., the Neuroimaging Data Model; http://

nidm.nidash.org/); creating reproducible, shareable, open-source analysis pipelines (e.g., the 

Nipype framework; (Gorgolewski et al. 2011)); and the establishment of open resources for 

the sharing of both raw fMRI datasets (e.g., OpenFMRI; (Poldrack et al. 2013)) and 

statistical images (e.g., NeuroVault; http://www.neurovault.org). Some work has started to 

combine these datasets with ontologies of psychological processes (e.g., (Poldrack et al. 

2012)), but the rapid development and growth of these databases will likely enable much 

more powerful analyses in the future.

Crowdsourced annotation

Despite the recent successes of automated meta-analysis approaches discussed above, it is 

clear that careful human consideration and annotation of neuroimaging data remains a 

critical component of most investigations, and is unlikely to be replaced by machine 

learning approaches in the near future. We suggest that the next wave of advances in the 

area of neuroimaging meta-analysis may result from successful hybridization of manual and 

automated approaches—and particularly from development of user-friendly crowdsourcing 

interfaces that allow researchers to easily apply their expertise to manual curation of 

communal databases. A promising prototype is BrainSpell (http://brainspell.org), a website 

that allows users to manually validate, annotate, and tag all data presently in Neurosynth—

potentially providing all of the benefits of manual curation for substantially less effort than 

full manual entry would require. An ongoing challenge, however, is to develop effective 

incentives for participation in such efforts. One largely unexplored approach in this area is 

the kind of “gamification” successfully achieved in other domains using platforms such as 

FoldIt (Khatib et al. 2011) and EyeWire (http://eyewire.org).

Using ontologies to resolve psychological debates

One of the greatest promises of a comprehensive formal ontology of cognitive processes lies 

in the potential to develop a kind of formal inferential engine that enables researchers to 

compute well-defined operations over its nodes and relationships, thereby informing, and in 

some cases even resolving, ongoing theoretical debates. For example, within the Cognitive 

Atlas we define a measured-by relationship that indicates that a given task contrast (e.g., the 
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high versus low load conditions on the Sternberg item recognition task) depends critically on 

a particular psychological concept (e.g., working memory). In the future, we could define a 

comparison operation that takes two concepts as input and returns separate lists of all known 

task contrasts that (a) tap both constructs, and (b) tap only one of the constructs. Further, we 

could define additional operations like similarity or difference that take two lists of contrasts 

(or concepts) and return either quantitative metrics of similarity (e.g., based on computing 

the similarity of two nodes’ local neighborhood or network structure parameters), or a list of 

concepts (or tasks) that maximally distinguishes the two inputs. Given such a platform, it 

could conceivably turn out, for example, that whether the episodic buffer is or is not a 

central part of working memory is largely a definitional matter: two researchers might each 

feed in a list of what they consider to be critical working memory tasks, only to find that 

they are talking past each other, inasmuch as the disagreement is purely extensional (i.e., 

there is no implied contradiction in which other latent concepts ‘working memory’ is linked 

to, but only in how broadly the label is applied to individual tasks).

Similarly, in cases where there are genuine substantive disagreements between theories, a 

formal ontology of cognition could help focus attention appropriately. For example, there is 

debate in the executive function literature over whether performance on tasks requiring 

suppression of a prepotent or ongoing response in favor of a different response requires an 

active inhibitory process or whether it instead can rely solely on competitive inhibition 

within a network (Munakata et al. 2011; Aron, Robbins & Poldrack 2004). Each of these 

theories makes different predictions regarding the similarity (i.e. covariance) of both 

behavioral and neural activation patterns across a large number of tasks. Given an 

appropriate annotation of a sufficiently large dataset, one could directly assess which of 

these theories provides a better fit to the observed data (e.g., using analogs to structural 

equation modeling), and also potentially demonstrate which specific set of concepts needs to 

be experimentally compared in order to most powerfully assess the specific theoretical 

debate.

A unified, interoperable ecosystem

Perhaps the most promising development of the coming years will be the increasing 

convergence and interoperability between diverse resources for informatics-driven 

investigation of the human mind/brain. We anticipate the relatively near-term emergence of 

a unified, interoperable ecosystem made up of dozens of individual services that all loosely 

follow the same standards and protocols, enabling researchers to construct automated 

pipelines that easily integrate currently disparate resources. Optimistically, we predict that 

within a few years, researchers will be able to easily (i.e., without requiring advanced 

technical skills) upload raw data they have acquired and annotated to centralized platforms 

that run state-of-the-art cloud-based processing and analysis pipelines; interactively explore 

the results of such analyses via rich, user-friendly web interfaces that include extensive 

literature-based quantitative interpretation and allow easy piping to other third-party 

services; and use ontology-driven inference engines to conduct sophisticated, highly 

customized meta-analyses that draw on thousands of datasets acquired and deposited using 

similar platforms.
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6. CONCLUSION

The field of cognitive neuroscience faces a number of daunting challenges in its attempt to 

understand the relation between brain systems and psychological functions. We have argued 

that the most commonly used approaches in cognitive neuroscience are fundamentally 

unable to identify the kind of selective associations between neural structure and 

psychological function that are the presumed goal of the field, but that this question can be 

profitably addressed using informatics approaches that employ large-scale databases and 

formal ontologies. We predict that such approaches will become increasingly common in 

psychology as they have in biology, and that this will provide a new pathway towards 

discoveries regarding how neural computations give rise to mental life.
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GLOSSARY

Annotation The description of relationships between a dataset and other concepts or 

datasets.

Classifier A statistical tool used to classify a new observation into one of a set of 

discrete classes.

Decoding The use of neuroimaging data to classify mental activity.

Ontology A formal description of the concepts assumed to exist within a particular 

domain, and their relationships.
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Figure 1. 
An overview of the Neurosynth project (reprinted from (Yarkoni et al. 2011)). A) 

Neurosynth involves the automated extraction of activation coordinates from published 

papers, which can be used to perform a meta-analysis to identify regions associated with the 

presence of specific terms in publications. B) Forward inference involves estimation of the 

likelihood of activation given presence of a term, whereas reverse inference involves 

estimation of the likelihood of presence of a term given activation in each voxel. C) 

Neurosynth can be used to predict which of a set of terms is most likely to be present in a 

paper given a particular activation pattern.
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Figure 2. 
Results of large-scale forward-inference and reverse-inference analyses of insula function in 

the Neurosynth database (reproduced from Chang et al. (Chang et al. 2013)). Whereas the 

dorsal anterior insula (blue) is consistently activated by a broad range of tasks in the forward 

inference analysis, the reverse inference analysis reveals it to be preferentially associated 

with higher cognitive functions.
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Figure 3. 
Multivariate meta-analysis identifies mappings between neural activation and psychological 

function. Probabilistic independent components analysis (ICA) was performed on 9,721 

images from the Neurosynth database, using MELODIC (Beckmann & Smith 2004). The 

slice maps show voxels that were significantly associated with each of the top six 

components (red-orange: positive association, blue:negative association). Polar plots show 

the relative association between each component and selected latent topics from the database 

(cf. (Poldrack et al. 2012)), demonstrating that most ICA components showed relatively 

selective associations with cognitive topics.
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Figure 4. 
An example of entities and relations within the Gene Ontology. This chart (generated using 

the QuickGO browser: http://www.ebi.ac.uk/QuickGO) shows the relations of the term 

“endoplasmic reticulum”; different possible relations between entities are denoted using 

different line styles.
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Figure 5. 
A schematic example of the Cognitive Atlas representation of Baddeley’s working memory 

theory. The top panel shows a representation of the concepts underlying the theory, whereas 

the bottom panel shows an example of a task measuring one of these concepts.
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