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Abstract

We prove that the class of Brauer graph algebras coincides with the class of indecom-

posable idempotent algebras of biserial weighted surface algebras. These algebras are

associated with triangulated surfaces with arbitrarily oriented triangles, investigated

recently in Erdmann and Skowroński (J Algebra 505:490–558, 2018, Algebras of gen-

eralized dihedral type, Preprint. arXiv:1706.00688, 2017). Moreover, we prove that

Brauer graph algebras are idempotent algebras of periodic weighted surface algebras,

investigated in Erdmann and Skowroński (Algebras of generalized quaternion type,

Preprint. arXiv:1710.09640, 2017).

Keywords Brauer graph algebra · Weighted surface algebra · Biserial weighted

surface algebra · Symmetric algebra · Special biserial algebra · Tame algebra ·
Periodic algebra · Quiver combinatorics

Mathematics Subject Classification 05E99 · 16G20 · 16G70 · 20C20

1 Introduction and themain results

Throughout this paper, K will denote a fixed algebraically closed field. By an algebra,

we mean an associative, finite-dimensional K -algebra with an identity. For an algebra
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A, we denote by mod A the category of finite-dimensional right A-modules and by

D the standard duality HomK (−, K ) on mod A. An algebra A is called self-injective

if AA is an injective module, or equivalently, the projective modules in mod A are

injective. Two self-injective algebras A and B are said to be socle equivalent if the

quotient algebras A/ soc(A) and B/ soc(B) are isomorphic. Symmetric algebras are

an important class of self-injective algebras. An algebra A is symmetric if there exists

an associative, non-degenerate, symmetric, K -bilinear form (−,−) : A × A → K .

Classical examples of symmetric algebras include, in particular, blocks of group alge-

bras of finite groups and Hecke algebras of finite Coxeter groups. In fact, any algebra

A is the quotient algebra of its trivial extension algebra T(A) = A ⋉ D(A), which is

a symmetric algebra. By general theory, if e is an idempotent of a symmetric algebra

A, then the idempotent algebra eAe also is a symmetric algebra.

Brauer graph algebras play a prominent role in the representation theory of tame

symmetric algebras. Originally, R. Brauer introduced the Brauer tree, which led to the

description of blocks of group algebras of finite groups of finite representation type,

and they are the basis for their classification up to Morita equivalence [10,25,29], see

also [2]. Relaxing the condition on the characteristic of the field, one gets Brauer tree

algebras, and these occurred in the Morita equivalence classification of symmetric

algebras of Dynkin type An [22,35]. If one allows arbitrary multiplicities, and also an

arbitrary graph instead of just a tree, one obtains Brauer graph algebras. These occurred

in the classification of symmetric algebras of Euclidean type Ãn [7]. It was shown

in [36] (see also [37]) that the class of Brauer graph algebras coincides with the class

of symmetric special biserial algebras. Symmetric special biserial algebras occurred

also in the Gelfand–Ponomarev classification of singular Harish–Chandra modules

over the Lorentz group [23], and as well in the context of restricted Lie algebras, or

more generally infinitesimal group schemes, [20,21], and in classifications of tame

Hecke algebras [3,4,14]. There are also results on derived equivalence classifications

of Brauer graph algebras, and on the connection to Jacobian algebras of quivers with

potential, we refer to [1,11,26,31,32,34,37].

We recall the definition of a Brauer graph algebra, following [36], see also [37].

A Brauer graph is a finite connected graph Γ , with at least one edge (possibly with

loops and multiple edges) such that for each vertex v of Γ , there is a cyclic ordering

of the edges adjacent to v, and there is a multiplicity e(v) which is a positive integer.

Given a Brauer graph Γ , one defines the associated Brauer quiver QΓ as follows:

• the vertices in QΓ are the edges of Γ ;

• there is an arrow i → j in QΓ if and only if j is the consecutive edge of i in the

cyclic ordering of edges adjacent to a vertex v of Γ .

In this case, we say that the arrow i → j is attached to v. The quiver QΓ is 2-regular

(see Sect. 2). Recall that a quiver is 2-regular if every vertex is the source and target

of exactly two arrows. Any 2-regular quiver has a canonical involution (−) on the

arrows, namely if α is an arrow the ᾱ is the other arrow starting at the same vertex as

α.

The associated Brauer graph algebra BΓ is a quotient algebra of K QΓ . The cyclic

ordering of the edges adjacent to a vertex v of Γ translates to a cyclic permutation

of the arrows in QΓ , and if α is an arrow in this cycle, we denote vertex v by v(α).
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Let Cα be the product of the arrows in the cycle; in the given order, starting with α,

this is an element in K QΓ . The associated Brauer graph algebra BΓ is defined to be

K QΓ /IΓ , where IΓ is the ideal in the path algebra K QΓ generated by the elements:

(1) all paths αβ of length 2 in QΓ which are not subpaths of Cα ,

(2) C
e(v(α))
α − C

e(v(ᾱ))
ᾱ , for all arrows α of QΓ .

In [17] and [18], we introduced and studied biserial weighted surface algebras,

motivated by tame blocks of group algebras of finite groups. Given a triangulation T of

a two-dimensional real compact surface, with or without boundary, and an orientation
�T of triangles in T , there is a natural way to define a quiver Q(S, �T ). We showed

that these quivers have an algebraic description: They are precisely what we called

triangulation quivers. A triangulation quiver is a pair (Q, f ) where Q is a 2-regular

quiver and f is a permutation of arrows of order 3 such that t(α) = s( f (α)) for

each arrow α of Q. A biserial weighted surface algebra B(S, �T , m•) is then explicitly

given by the quiver Q(S, �T ) and relations, depending on a weight function m•, and

if described using the triangulation quiver, we get a biserial weighted triangulation

algebra B(Q, f , m•) (see Sect. 2).

Algebras of generalized dihedral type (see [18, Theorem 1]), which contain blocks

with dihedral defect groups, turned out to be (up to socle deformation) idempotent

algebras of biserial weighted surface algebras, for very specific idempotents. Biserial

weighted surface algebras belong to the class of Brauer graph algebras. It is therefore a

natural question to ask which other Brauer graph algebras occur as idempotent algebras

of biserial weighted surface algebras. This is answered by our first main result.

Theorem 1 Let A be a basic, indecomposable, finite-dimensional K -algebra over an

algebraically closed field K of dimension at least 2. Then, the following statements

are equivalent:

(i) A is a Brauer graph algebra.

(ii) A is isomorphic to the idempotent algebra eBe for a biserial weighted surface

algebra B and an idempotent e of B.

The main ingredient for this is Theorem 4.1. This gives a canonical construction,

which we call ∗-construction. A by-product of the proof of Theorem 1 is the following

fact.

Corollary 2 Let A be a Brauer graph algebra over an algebraically closed field K .

Then, A is isomorphic to the idempotent algebra eBe of a biserial weighted surface

algebra B = B(S, �T , m•), for a surface S without boundary, a triangulation T of S

without self-folded triangles, and an idempotent e of B.

Moreover, we can adapt the ∗-construction to algebras socle equivalent to Brauer

graph algebras and prove an analog for the main part of Theorem 1:

Theorem 3 Let A be a symmetric algebra over an algebraically closed field K , which

is socle equivalent but not isomorphic to a Brauer graph algebra, and assume the

Grothendieck group K0(A) has rank at least 2. Then,

(i) char(K ) = 2, and
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(ii) A is isomorphic to an idempotent algebra ēB̄ē, where B̄ is a socle deformed

biserial weighted surface algebra B̄ = B(S, �T , m•, b•). Here, S is a surface

with boundary, T is a triangulation of S without self-folded triangles, and b• is a

border function.

Recall that an algebra A is called periodic if it is periodic with respect to action

of the syzygy operator ΩAe in the module category mod Ae, where Ae = Aop ⊗K A

is its enveloping algebra. If A is a periodic algebra of period n, then all indecompos-

able non-projective right A-modules are periodic of period dividing n, with respect to

the syzygy operator ΩA in mod A. Periodic algebras are self-injective and have con-

nections with group theory, topology, singularity theory, and cluster algebras. In [17]

and [19], we introduced and studied weighted surface algebras Λ(S, �T , m•, c•), which

are tame, symmetric, and we showed that they are (with one exception) periodic alge-

bras of period 4. They are defined by the quiver Q(S, �T ) and explicitly given relations,

depending on a weight function m• and a parameter function c• (see Sect. 6). Most

biserial weighted surface algebras occur as geometric degenerations of these periodic

weighted surface algebras.

Our third main result connects Brauer graph algebras with a large class of periodic

weighted surface algebras.

Theorem 4 Let A be a Brauer graph algebra over an algebraically closed field K .

Then, A is isomorphic to an idempotent algebra eΛe of a periodic weighted surface

algebra Λ = Λ(S, �T , m•, c•), for a surface S without boundary, a triangulation T of

S without self-folded triangles, and an idempotent e of Λ.

There are many idempotent algebras of weighted surface algebras which are neither

Brauer graph algebras nor periodic algebras. We give an example at the end of Sect. 6.

This paper is organized as follows. In Sect. 2, we recall basic facts on special bise-

rial algebras and show that Brauer graph algebras, symmetric special biserial algebras,

and symmetric algebras associated with weighted biserial quivers are essentially the

same. In Sect. 3, we introduce biserial weighted surface algebras and present their

basic properties. In Sect. 4, we prove Theorem 1. This contains an algorithmic con-

struction which may be of independent interest. Sections 5 and 6 contain the proofs

of Theorems 3 and 4 and related material. In Sect. 7, we present a diagram showing

the relations between the main classes of algebras occurring in the paper.

For general background on the relevant representation theory, we refer to the

books [5,13,38,40], and we refer to [13,15] for the representation theory of arbitrary

self-injective special biserial algebras.

2 Special biserial algebras

A quiver is a quadruple Q = (Q0, Q1, s, t) consisting of a finite set Q0 of vertices, a

finite set Q1 of arrows, and two maps s, t : Q1 → Q0 which associate with each arrow

α ∈ Q1 its source s(α) ∈ Q0 and its target t(α) ∈ Q0. We denote by K Q the path

algebra of Q over K whose underlying K -vector space has as its basis the set of all

paths in Q of length ≥ 0, and by RQ the arrow ideal of K Q generated by all paths in Q
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of length ≥ 1. An ideal I in K Q is said to be admissible if there exists m ≥ 2 such that

Rm
Q ⊆ I ⊆ R2

Q . If I is an admissible ideal in K Q, then the quotient algebra K Q/I is

called a bound quiver algebra and is a finite-dimensional basic K -algebra. Moreover,

K Q/I is indecomposable if and only if Q is connected. Every basic, indecomposable,

finite-dimensional K -algebra A has a bound quiver presentation A ∼= K Q/I , where

Q = Q A is the Gabriel quiver of A and I is an admissible ideal in K Q. For a bound

quiver algebra A = K Q/I , we denote by ei , i ∈ Q0, the associated complete set of

pairwise orthogonal primitive idempotents of A. Then, the modules Si = ei A/ei rad A

(respectively, Pi = ei A), i ∈ Q0, form a complete family of pairwise non-isomorphic

simple modules (respectively, indecomposable projective modules) in mod A.

Following [39], an algebra A is said to be special biserial if A is isomorphic to a

bound quiver algebra K Q/I , where the bound quiver (Q, I ) satisfies the following

conditions:

(a) each vertex of Q is a source and target of at most two arrows,

(b) for any arrow α in Q, there are at most one arrow β and at most one arrow γ with

αβ /∈ I and γα /∈ I .

Background on special biserial algebras may be found, for example, in [8,13,33,

39,41]. Perhaps most important is the following, which has been proved by Wald and

Waschbüsch in [41] (see also [8,12] for alternative proofs).

Proposition 2.1 Every special biserial algebra is tame.

If a special biserial algebra is in addition symmetric, there is a more convenient

description. We propose the concept of a (weighted) biserial quiver algebra, which we

will now define. Later, in Theorem 2.6 we will show that these algebras are precisely

special biserial symmetric algebras.

Definition 2.2 A biserial quiver is a pair (Q, f ), where Q = (Q0, Q1, s, t) is a finite

connected quiver and f : Q1 → Q1 is a permutation of the arrows of Q satisfying

the following conditions:

(a) Q is 2-regular, that is, every vertex of Q is the source and target of exactly two

arrows,

(b) for each arrow α ∈ Q1, we have s( f (α)) = t(α).

Let (Q, f ) be a biserial quiver. We obtain another permutation g : Q1 → Q1

defined by g(α) = f (α) for any α ∈ Q1, so that f (α) and g(α) are the arrows starting

at t(α). Let O(α) be the g-orbit of an arrow α, and set nα = nO(α) = |O(α)|. We

denote by O(g) the set of all g-orbits in Q1. A function

m• : O(g) → N
∗ = N\{0}

is said to be a weight function of (Q, f ). We write briefly mα = mO(α) for α ∈ Q1.

The weight function m• taking only value 1 is said to be trivial. For any arrow α ∈ Q1,

we single out the oriented cycle

Bα =
(
αg(α) . . . gnα−1(α)

)mα
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of length mαnα . The triple (Q, f , m•) is said to be a (weighted) biserial quiver.

The associated biserial quiver algebra B = B(Q, f , m•) is defined as follows. It

is the quotient algebra

B(Q, f , m•) = K Q/J (Q, f , m•),

where J (Q, f , m•) is the ideal of the path algebra K Q generated by the following

elements:

(1) α f (α), for all arrows α ∈ Q1,

(2) Bα − Bᾱ , for all arrows α ∈ Q1.

We assume that Q is not the quiver with one vertex and two loops α and ᾱ such that

α = Bα and Bᾱ = ᾱ are equal in B, that is, we exclude the two-dimensional algebra

isomorphic to K [X ]/(X2). Assume mαnα = 1, so that α = Bα and Bᾱ are equal in

B. By the above assumption, Bᾱ lies in the square of the radical of the algebra. Then,

α is not an arrow in the Gabriel quiver Q B of B, and we call it a virtual loop.

The following describes basic properties of (weighted) biserial quiver algebras.

Proposition 2.3 Let (Q, f , m•) be a weighted biserial quiver and B = B(Q, f , m•).

Then, B is a basic, indecomposable, finite-dimensional symmetric special biserial

algebra with dimK B =
∑

O∈O(g) mOn2
O

.

Proof It follows from the definition that B is the special biserial bound quiver algebra

K Q B/IB , where Q B is obtained from Q by removing all virtual loops and IB =
J (Q, f , m•) ∩ K Q B . Let i be a vertex of Q and α, ᾱ the two arrows starting at i .

Then, the indecomposable projective B-module Pi = ei B has a basis given by ei

together with all initial proper subwords of Bα and Bᾱ , and Bα(= Bᾱ), and hence

dimK Pi = mαnα + mᾱnᾱ . Note also that the union of these bases gives a basis of B

consisting of paths in Q. We deduce that dimK B =
∑

O∈O(g) mOn2
O

. As well, the

indecomposable projective module Pi has simple socle generated by Bα(= Bᾱ). We

define a symmetrizing K -linear form ϕ : B → K as follows. If u is a path in Q which

belongs to the above basis, we set ϕ(u) = 1 if u = Bα for an arrow α ∈ Q1, and

ϕ(u) = 0 otherwise. Then, ϕ(ab) = ϕ(ba) for all elements a, b ∈ B and Ker ϕ does

not contain any nonzero one-sided ideal of B, and consequently, B is a symmetric

algebra (see [40, Theorem IV.2.2]). ⊓⊔

We wish to compare Brauer graph algebras and biserial quiver algebras. For this,

we start analyzing the combinatorial data. Let Q be a connected 2-regular quiver.

We call a permutation g of the arrows of Q admissible if for every arrow α we have

t(α) = s(g(α)). That is, the arrows along a cycle of g can be concatenated in Q. The

multiplicity function of a Brauer graph Γ taking only value 1 is said to be trivial.

Lemma 2.4 There is a bijection between Brauer graphs Γ with trivial multiplicity

function and pairs (Q, g) where Q is a connected 2-regular quiver and g is an admis-

sible permutation of the arrows of Q.
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Proof (1) Given Γ , we take the quiver Q = QΓ , as defined in “Introduction.”

(1a) We show that QΓ is 2-regular. Take an edge i of Γ , it is adjacent to vertices

v,w (which may be equal). If v 
= w, then the edge i occurs both in the cyclic ordering

around v and of w, so there are two arrows starting at i and there are two arrows ending

at i . If v = w, then the edge i occurs twice in the cyclic ordering of edges adjacent to

v, so again there are two arrows starting at i and two arrows ending at i .

(1b) We define an (admissible) permutation g on the arrows. Given α : i → j ,

let v be the vertex such that α is attached to v, and then there are a unique edge k

adjacent to v such that i, j, k are consecutive edges in the ordering around v, and

hence a unique arrow β : j → k, also ‘attached’ to v, and we set g(α) := β. This

defines an admissible permutation on the arrows. Writing g as a product of disjoint

cycles, gives a bijection between the cycles of g and the vertices of Γ . Namely, let the

cycle of g correspond to v if it consists of the arrows attached to v.

(2) Suppose we are given a connected 2-regular quiver Q and an admissible per-

mutation g, written as a product of disjoint cycles. Define a graph Γ with vertices the

cycles of g and edges the vertices of Q. Each cycle of g defines a cyclic ordering of

the edges adjacent to the vertex corresponding to this cycle. Hence, we get a Brauer

graph.

(3) It is clear that these give a bijection. ⊓⊔

Remark 2.5 In part (1b) of the above proof, we may have i = j . There are two such

cases. If the edge i is adjacent to two distinct vertices of Γ , then i is the only edge

adjacent to a vertex v, and we have g(α) = α. We call α an external loop. Otherwise,

the edge i is a loop of Γ , and then g(α) 
= α. In this case, the cycle of g passes twice

through vertex i of the quiver. We call α an internal loop.

The Brauer graph Γ comes with a multiplicity function e defined on the vertices.

Given (Q, g), we take the same multiplicity function, defined on the cycles of g,

which gives the function m• which we have called a weight function. The permutation

g determines the permutation f of the arrows where f (α) = g(α) for any arrow α.

Clearly f is also admissible, and f and g determine each other.

We have seen that the combinatorial data for BΓ are the same as the combinatorial

data for B(Q, f , m•). Therefore, BΓ is in fact equal to B(Q, f , m•).

In the definition of a biserial quiver we focus on (Q, f ), this is motivated by the

connection to biserial weighted surface algebras, which we will define later.

The following compares various algebras. The equivalence of the statements (i)

and (iii) was already obtained by Roggenkamp in [36, Sections 2 and 3] (see also [1,

Proposition 1.2] and [37, Theorem 1.1]). We include it, for completeness.

Theorem 2.6 Let A be a basic, indecomposable algebra of dimension at least 2, over

an algebraically closed field K . The following are equivalent:

(i) A is a Brauer graph algebra.

(ii) A is isomorphic to an algebra B(Q, f , m•) where (Q, f , m•) is a (weighted)

biserial quiver.

(iii) A is a symmetric special biserial algebra.
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Proof As we have just seen, (i) and (ii) are equivalent. The implication (ii) ⇒ (iii)

follows from Proposition 2.3.

We prove now (iii) ⇒ (ii). Assume that A is a basic symmetric special biserial

algebra, let A = K Q A/I where Q A is the Gabriel quiver of A. We will define a

(weighted) biserial quiver (Q, f , m•) and show that A is isomorphic to B(Q, f , m•).

Since A is special biserial, for each vertex i of Q A, we have |s−1(i)| ≤ 2 and |t−1(i)| ≤
2. The algebra A is symmetric; therefore, for each vertex i ∈ Q0, we have |s−1(i)| =
|t−1(i)|: Namely, if |s−1(i)| = 1, then by the special biserial relations, the projective

module ei A is uniserial. It is isomorphic to the injective hull of the simple module

Si , and hence, |t−1(i)| = 1. If |t−1(i)| = 1, then by the same reasoning, applied to

D(Aei ) ∼= ei A it follows that |s−1(i)| = 1.

Let Δ := {i ∈ (Q A)0 | |s−1(i)| = 1}; to each i ∈ Δ, we adjoin a loop ηi at i to the

quiver Q A, which then gives a 2-regular quiver. Explicitly, let Q := (Q0, Q1, s, t)

with Q0 = (Q A)0 and Q1 is the disjoint union (Q A)1

⋃
{ηi : i ∈ Δ}.

We define a permutation f of Q1. For each i ∈ Δ, there are unique arrows αi and

βi in Q A with t(αi ) = i = s(βi ), and we set f (αi ) = ηi and f (ηi ) = βi . If α is any

arrow of Q A with t(α) not in Δ, we define f (α) to be the unique arrow in (Q A)1 with

α f (α) ∈ I . With this, (Q, f ) is a biserial quiver.

We define now a weight function m• : O(g) → N
∗, where g = f̄ . For each j ∈ Δ,

we have g(η j ) = η j and we set mO(η j ) = 1. Let α be some arrow of Q A starting

at vertex i , and let nα = |O(α)|. Since A is symmetric special biserial, there exists

mα ∈ N
∗ such that

Bα :=
(
αg(α) . . . gnα−1(α)

)mα

is a maximal cyclic path in Q A which does not belong to I , and spans the socle of the

indecomposable projective module ei A. The integer mα is constant on the g-orbit of

α, and we may define mO(α) = mα .

It remains to show that by suitable scaling of arrows one obtains the stated relations

involving paths Bα . Fix a symmetrizing linear form ϕ for A. Fix an orbit of g, say

O(ν), there is a nonzero scalar dν such that for all arrows α in this orbit we have

ϕ(Bα) = dν .

We may assume dν = 1. Namely, we can choose in O(ν) an arrow, α say, and replace

it by λα where λmα = d−1
ν . The cycles are disjoint, and if we do this for each cycle,

then we have ϕ(Bα) = 1 for all arrows α.

Let i be a vertex of Q A with |s−1(i)| = 2, and let α, ᾱ be the two arrows starting

at i . Then, there are nonzero scalars cα and cᾱ such that cα Bα = cᾱ Bᾱ in A. Then, we

have

cα = cαϕ(Bα) = ϕ(cα Bα) = ϕ(cᾱ Bᾱ) = cᾱϕ(Bᾱ) = cᾱ.

Hence, we can cancel these scalars and obtain the required relations. With this, there

is a canonical isomorphism of K -algebras A = K Q A/I → B(Q, f , m•). ⊓⊔
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We will from now suppress the word ’weighted,’ in analogy to the convention for

Brauer graph algebras, where the multiplicity function is part of the definition but is

not explicitly mentioned.

We will study idempotent algebras, and it is important that any idempotent algebra

of a special biserial symmetric algebra is again special biserial symmetric.

Proposition 2.7 Let A be a symmetric special biserial algebra. Assume e is an idem-

potent of A which is a sum of some of the ei associated with vertices of Q A. Then,

eAe also is a symmetric special biserial algebra.

Proof We may assume that A = B(Q, f , m•) for a weighted biserial quiver

(Q, f , m•) and eAe is indecomposable, and let Q = (Q0, Q1, s, t). We will show that

eAe = (Q̃, f̃ , m̃•) = K Q̃/J (Q̃, f̃ , m̃•) for a weighted biserial quiver (Q̃, f̃ , m̃•).

We define Q̃0 to be the set of all vertices i ∈ Q0 such that e is the sum of the

primitive idempotents ei . For each arrow α ∈ Q1 with s(α) ∈ Q̃0, we denote by α̃

the shortest path in Q of the form αg(α) . . . g p(α) with p ∈ {0, 1, . . . , nα − 1} and

t(g p(α)) ∈ Q̃0. Such a path exists because αg(α) . . . gnα−1(α) is a cycle around vertex

s(α) = t(gnα−1(α)) in Q̃0. Then, we define Q̃1 to be set of paths α̃ in Q for all arrows

α ∈ Q1 with s(α) ∈ Q̃0. Moreover, for α̃ = αg(α) . . . g p(α), we set s̃(α̃) = s(α) and

t̃(α̃) = t(g p(α)). This defines a 2-regular quiver Q̃ = (Q̃0, Q̃1, s̃, t̃). Further, for each

arrow α̃ = αg(α) . . . g p(α) in Q̃1, there is exactly one arrow β̃ = βg(β) . . . gr (β) in

Q̃1 such that t̃(α̃) = t(g p(α)) = s(β) = s̃(β̃) and f (α) = β, and we set f̃ (α̃) = β̃.

This defines a biserial quiver (Q̃, f̃ ). Let g̃ be the permutation of Q̃1 associated

with f̃ , and O(g̃) the set of g̃-orbits in Q̃1. Then, we define the weight function

m̃• : O(g̃) → N
∗ of (Q̃, f̃ ) by setting m̃O(α̃) = mO(α) for each arrow α̃ ∈ Q̃1. With

these, the biserial quiver algebra B(Q̃, f̃ , m̃•) = K Q̃/J (Q̃, f̃ , m̃•) is isomorphic to

eAe. ⊓⊔

We end this section with an example illustrating Theorem 2.6. This also shows

that an idempotent algebra of a Brauer graph algebra need not be indecomposable, by

taking e = 1BΓ − e4.

Example 2.8 Let Γ be the Brauer graph

•a •
b

•
c

•
p

•d
76

2

1

8 4

5

3
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where we take the clockwise ordering of the edges around each vertex. Then, BΓ is

the symmetric algebra B(Q, f , m•) with biserial quiver (Q, f )

1

β α8
ϕ

a 7
ψ

ξ

6
η

μ
4

δ

̺

3

σ

d

5

ν

p

2

ω γ

where the f -orbits are (α ω ̺ p ν μ δ β γ d σ), (η ξ), (a ϕ ψ). Then, the g-orbits

are O(a) = (a), O(d) = (d), O(p) = (p),

O(α) = (α γ σ β ω δ), O(̺) = (̺ ν η ψ ϕ ξ μ).

The weight function m• : O(g) → N
∗ is as before given by the multiplicity function

of the Brauer graph Γ . We note that Cα = αγσβωδ and Cᾱ = Cβ = βωδαγ σ , and

v(α) = c = v(β).

3 Biserial weighted surface algebras

In this section, we introduce biserial weighted surface algebras and describe their basic

properties.

In this paper, by a surface we mean a connected, compact, two-dimensional real

manifold S, orientable or non-orientable, with boundary or without boundary. It is well

known that every surface S admits an additional structure of a finite two-dimensional

triangular cell complex and hence a triangulation (by the deep Triangulation Theorem

(see, e.g., [9, Section 2.3])).

For a positive natural number n, we denote by Dn the unit disk in the n-dimensional

Euclidean space R
n , formed by all points of distance ≤ 1 from the origin. Then, the

boundary ∂ Dn of Dn is the unit sphere Sn−1 in R
n , formed by all points of distance

1 from the origin. Further, by an n-cell we mean a topological space homeomorphic

to the open disk int Dn = Dn\∂ Dn . In particular, S0 = ∂ D1 consists of two points.

Moreover, we define D0 = int D0 to be a point.

We refer to [24, Appendix] for some basic topological facts about cell complexes.

Let S be a surface. In the paper, by a finite two-dimensional triangular cell complex

structure on S we mean a finite family of continuous maps ϕn
i : Dn

i → S, with

n ∈ {0, 1, 2} and Dn
i = Dn , satisfying the following conditions:

(1) Each ϕn
i restricts to a homeomorphism from int Dn

i to the n-cell en
i = ϕn

i (int Dn
i )

of S, and these cells are all disjoint and their union is S.

(2) For each two-dimensional cell e2
i , ϕ2

i (∂ D2
i ) is the union of k 1-cells and m 0-cells,

with k ∈ {2, 3} and m ∈ {1, 2, 3}.
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Then, the closures ϕ2
i (D2

i ) of all 2-cells e2
i are called triangles of S, and the closures

ϕ1
i (D1

i ) of all 1-cells e1
i are called edges of S. The collection T of all triangles ϕ2

i (D2
i )

is said to be a triangulation of S. We assume that such a triangulation T of S has

at least two different edges, or equivalently, there are at least two different 1-cells in

the considered triangular cell complex structure on S. Then, T is a finite collection

T1, . . . , Tn of triangles of the form

b

c

a

•

• •

or

b

a a

•

• •

=
a

b

••

a, b, c pairwise different a, b different (self-folded triangle)

such that every edge of such a triangle in T is either the edge of exactly two triangles, is

the self-folded edge, or lies on the boundary. We note that a given surface S admits many

finite two-dimensional triangular cell complex structures and hence triangulations. We

refer to [9,27,28] for general background on surfaces and constructions of surfaces

from plane models.

Let S be a surface and T a triangulation S. To each triangle Δ in T , we may associate

an orientation

b

c

a

•

• •

= (abc) or
b

c

a

•

• •

= (cba),

if Δ has pairwise different edges a, b, c, and

a

b

••
= (aab) = (aba),

if Δ is self-folded, with the self-folded edge a, and the other edge b. Fix an orientation

of each triangle Δ of T , and denote this choice by �T . Then, the pair (S, �T ) is said to

be a directed triangulated surface. To each directed triangulated surface (S, �T ), we

associate the quiver Q(S, �T ) whose vertices are the edges of T and the arrows are

defined as follows:
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(1) for any oriented triangle Δ = (abc) in �T with pairwise different edges a, b, c, we

have the cycle

a b

c ,

(2) for any self-folded triangle Δ = (aab) in �T , we have the quiver

a b ,

(3) for any boundary edge a in T , we have the loop

a .

Then, Q = Q(S, �T ) is a triangulation quiver in the following sense (introduced

independently by Ladkani in [30]).

A triangulation quiver is a pair (Q, f ), where Q = (Q0, Q1, s, t) is a finite

connected quiver and f : Q1 → Q1 is a permutation on the set Q1 of arrows of Q

satisfying the following conditions:

(a) every vertex i ∈ Q0 is the source and target of exactly two arrows in Q1,

(b) for each arrow α ∈ Q1, we have s( f (α)) = t(α),

(c) f 3 is the identity on Q1.

Hence, a triangulation quiver (Q, f ) is a biserial quiver (Q, f ) such that f 3 is the

identity.

For the quiver Q = Q(S, �T ) of a directed triangulated surface (S, �T ), the permu-

tation f on its set of arrows is defined as follows:

(1)
a

α
b

β

c

γ
f (α) = β, f (β) = γ , f (γ ) = α,

for an oriented triangle Δ = (abc) in �T , with pairwise different edges a, b, c,

(2) aα

β

b
γ

f (α) = β, f (β) = γ , f (γ ) = α,

for a self-folded triangle Δ = (aab) in �T ,

(3) aα f (α) = α,

for a boundary edge a of T .

If (Q, f ) is a triangulation quiver, then the quiver Q is 2-regular. We will consider

only the triangulation quivers with at least two vertices. Note that different directed

triangulated surfaces (even of different genus) may lead to the same triangulation

quiver (see [17, Example 4.4]).
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The following theorem is a slightly stronger version of [17, Theorem 4.11] (see

also [18, Example 8.2] for the case with two vertices).

Theorem 3.1 Let (Q, f ) be a triangulation quiver with at least two vertices. Then,

there exists a directed triangulated surface (S, �T ) such that S is orientable, �T is a

coherent orientation of triangles in T , and (Q, f ) = (Q(S, �T ), f ).

Proof This is a minor adjustment of the proof of Theorem 4.11 in [17] which we will

now present. We denote by n(Q, f ) the number of f -orbits in Q1 of length 3. Note that

n(Q, f ) ≥ 1 because Q has at least two vertices. There is exactly one triangulation

quiver with two vertices, namely

aα

β

b
γ

σ

with f (α) = β, f (β) = γ , f (γ ) = α, f (σ ) = σ , and it is the triangulation quiver

associated with the self-folded triangulation of the disk

a

b

••

with b a boundary edge. It is also known that the theorem holds for all triangula-

tion quivers with three vertices (see [18, Examples 4.3 and 4.4] and Example 4.6).

Therefore, we may assume that n(Q, f ) ≥ 2 and Q has at least four vertices.

Now our induction assumption is: For any triangulation quiver (Q′, f ′) with at least

two vertices and n(Q′, f ′) < n(Q, f ), there exists a directed triangulated surface

(S′, �T ′) such that S′ is orientable, �T ′ is a coherent orientation of triangles in T ′, and

(Q′, f ′) = (Q(S′, �T ′), f ′). Then, we proceed as in the reconstruction steps (1) and

(2) of the proof of [17, Theorem 4.11], with the following adjustments. In step (1),

we replace the projective plane P by the disk with self-folded triangulation, described

above. In step (2), we glue the oriented triangle

b

c

a

•

• •

with pairwise different edges, in a coherent way with the corresponding triangles of

the directed triangulated surface (S′, �T ′), constructed in this step. ⊓⊔

123



64 Journal of Algebraic Combinatorics (2020) 51:51–88

Remark 3.2 There is an alternative proof of Theorem 3.1. According to Lemma 2.4

and Theorem 2.6, we may associate with a triangulation quiver (Q, f ) a Brauer graph

Γ with trivial multiplicity function such that BΓ
∼= B(Q, f ,1), where 1 is the trivial

weight function of (Q, f ). In the Brauer graph Γ , the vertices correspond to the g-

orbits in Q1 and the edges to the vertices of Q. Thickening the edges of Γ , we obtain

an oriented surface S whose border is given by the faces of Γ , corresponding to the

f -orbits in Q1. Since (Q, f ) is a triangulation quiver, the faces are either triangles or

(internal) loops. Capping now all triangle faces of S by disks D2, we obtain a directed

triangulated surface ((T , T)) such that (Q, f ) = (Q(T , �T ), f ).

Remark 3.3 We would like to stress that the setting of directed triangulated surfaces is

natural for the purposes of a self-contained representation theory of symmetric tame

algebras of non-polynomial growth which we are currently developing. In particular,

this gives the option of changing orientation of any triangle independently, keeping

the same surface and triangulation.

Let (Q, f ) be a triangulation quiver, and this is in particular a biserial quiver as

introduced in Definition 2.2. With the same notation, for a weight function m• :
O(g) → N

∗, the associated weighted biserial quiver algebra

B(Q, f , m•) = K Q/J (Q, f , m•)

is said to be a biserial weighted triangulation algebra. Moreover, if (Q, f ) =
(Q(S, �T ), f ) for a directed triangulation surface (S, �T ), then B(Q(S, �T ), f , m•) is

called a biserial weighted surface algebra and denoted by B(S, �T , m•) (see [17]

and [18]).

Biserial weighted surface algebras belong to the class of algebras of generalized

dihedral type, which generalize blocks of group algebras with dihedral defect groups.

They are introduced and studied in [18]. We end this section by giving two examples

of biserial weighted surface algebras.

Example 3.4 Consider the disk D = D2 with the triangulation T and orientation �T of

triangles in T as follows

3

4

1 2•

•

•
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Then, the associated triangulation quiver (Q(D, �T ), f ) is of the form

3

β

ω

1

α

ξ 2

σ

η

4

γ

δ

with f -orbits (α β γ ), (σ δ ω), (ξ), (η). Then, the g-orbits are O(α) = (α ω η σ γ ξ)

and O(β) = (β δ). Hence, a weight function m• : O(g) → N
∗ is given by two positive

integers mO(α) = m and mO(β) = n. Then, the associated biserial weighted surface

algebra B(D, �T , m•) is given by the above quiver and the relations:

(αωησγ ξ)m = (ξαωησγ )m, ξ2 = 0, αβ = 0, σ δ = 0,

(σγ ξαωη)m = (ησγ ξαω)m, η2 = 0, βγ = 0, δω = 0,

(ωησγ ξα)m = (βδ)n, (γ ξαωησ)m = (δβ)n, γ α = 0, ωσ = 0.

Example 3.5 Consider the torus T with the triangulation T and orientation �T of trian-

gles in T as follows

2

12

1

3

•

• •

•

Then, the associated triangulation quiver (Q(T, �T ), f ) is of the form

1
α1

β1

2

α2

β2

3

α3

β3

with f -orbits (α1 α2 α3) and (β1 β2 β3). Then, g has only one orbit which is

(α1 β2 α3 β1 α2 β3), and hence a weight function m• : O(g) → N
∗ is given by a posi-

tive integer m. Then, the associated biserial weighted surface algebra B(T, �T , m•) is

given by the above quiver and the relations:
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α1α2 = 0, β1β2 = 0, (α1β2α3β1α2β3)
m = (β1α2β3α1β2α3)

m,

α2α3 = 0, β2β3 = 0, (α2β3α1β2α3β1)
m = (β2α3β1α2β3α1)

m,

α3α1 = 0, β3β1 = 0, (α3β1α2β3α1β2)
m = (β3α1β2α3β1α2)

m .

The triangulation quiver (Q(T, �T ), f ) is called the ‘Markov quiver’ (see [18] for a

motivation).

4 Proof of Theorem 1

To prove the implication (ii) ⇒ (i), let B be a biserial weighted surface algebra.

Then, by Theorem 3.1 we may assume B = B(Q, f , m•) where (Q, f ) is a biserial

quiver and f 3 is the identity. Then, in particular B is a biserial quiver algebra, and by

Theorem 2.6, we see that B is a Brauer graph algebra. Now it follows from Theorem 2.6

and Proposition 2.7 that also eBe is a Brauer graph algebra, and (i) holds.

We consider the implication (i)⇒ (ii). Assume A is a Brauer graph algebra, by

Theorem 2.6 we may assume A = B(Q, f , m•) where (Q, f ) is a biserial quiver.

To obtain (ii), we must find a biserial quiver (Q∗, f ∗) with ( f ∗)3 = 1 such that

A = e∗ B∗e∗ where B∗ = B(Q∗, f ∗, m∗
•) and e∗ an idempotent of B∗.

The following shows that this can be done in a canonical way the construction

gives an algorithm. Furthermore, applying the construction twice gives an interesting

consequence.

Theorem 4.1 Let B = B(Q, f , m•) be a biserial quiver algebra. Then, there is a

canonically defined weighted triangulation quiver (Q∗, f ∗, m∗
•) such that the follow-

ing statements hold.

(i) B is isomorphic to the idempotent algebra e∗ B∗e∗ of the biserial triangulation

algebra B∗ = B(Q∗, f ∗, m∗
•) with respect to a canonically defined idempotent

e∗ of B∗.

(ii) The triangulation quiver (Q∗, f ∗) has no loops fixed by f ∗.

(iii) The triangulation quiver (Q∗∗, f ∗∗) has no loops and self-folded triangles.

(iv) B is isomorphic to the idempotent algebra e∗∗ B∗∗e∗∗ of the biserial triangu-

lation algebra B∗∗ = B(Q∗∗, f ∗∗, m∗∗
• ) with respect to a canonically defined

idempotent e∗∗ of B∗∗.

Proof Let Q = (Q0, Q1, s, t), and let g be the permutation of Q1 associated with f .

We define a triangulation quiver (Q∗, f ∗) as follows. We take Q∗ = (Q∗
0, Q∗

1, s∗, t∗)

with

Q∗
0 := Q0 ∪ {xα}α∈Q1 , Q∗

1 := {α′, α′′, εα}α∈Q1

and s∗(α′) = s(α), t∗(α′) = xα , s∗(α′′) = xα , t∗(α′′) = t(α), s∗(εα) = x f (α),

t∗(εα) = xα . Moreover, we set f ∗(α′′) = f (α)′, f ∗( f (α)′) = εα , f ∗(εα) = α′′.

We observe that (Q∗, f ∗) is a triangulation quiver. Let g∗ be the permutation of Q∗
1

associated with f ∗. We notice that, for any arrow α of Q, we have g∗(α′) = α′′,
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g∗(α′′) = g(α)′, and g∗(εα) = ε f −1(α). For each arrow β ∈ Q∗
1, we denote by O∗(β)

the g∗-orbit of β. Then, the g∗-orbits in Q∗
1 are

O
∗(α′) =

(
α′ α′′ g(α)′ g(α)′′ . . . gnα−1(α)′ gnα−1(α)′′

)
,

O
∗(εα) =

(
ε f rα−1(α) ε f rα−2(α) . . . ε f (α) εα

)
,

for α ∈ Q1, where nα is the length of the g-orbit of α and rα is the length of the f -orbit

of α in Q1. We define the weight function m∗
• by m∗

O∗(α′)
= mα and m∗

O∗(εα)
= 1 for

all α ∈ Q1.

Let B∗ = B(Q∗, f ∗, m∗
•) be the biserial triangulation algebra associated with

(Q∗, f ∗, m∗
•) and let e∗ be the sum of the primitive idempotents e∗

i in B∗ associated

with all vertices i ∈ Q0. Using the proof of Proposition 2.7, we see directly that the

idempotent algebra e∗ B∗e∗ is isomorphic to B. It follows also from the definition of

f ∗ that Q∗ has no loops fixed by f ∗, and (ii) holds. In particular, we conclude that

f ∗(εα) 
= εα for any arrow α ∈ Q1. Hence, the triangulation quiver (Q∗∗, f ∗∗) has no

loops, and consequently, it has also no self-folded triangles, and (iii) follows. Finally,

by (i), B∗ is isomorphic to an idempotent algebra êB∗∗ê of B∗∗ = B(Q∗∗, f ∗∗, m∗∗
• )

for the corresponding idempotent ê of B∗∗. Taking e∗∗ = e∗ê, we obtain that B is

isomorphic to the idempotent algebra e∗∗ B∗∗e∗∗, and hence (iv) also holds. ⊓⊔

We give some illustrations for the ∗-construction.

(1) A loop α in Q fixed by f is replaced in Q∗ by the subquiver

xαεα

α′′

s(α)

α′

with the f ∗-orbit (α′ εα α′′).

(2) A subquiver of Q of the form

aα

β

b
γ

where (α β γ ) is an f -orbit, is replaced in Q∗ by the quiver

xβ

β ′′

εα

xα

α′′

εγ

a

α′

β ′

b

γ ′

xγ

γ ′′

εβ

with f ∗-orbits (α′′ β ′ εα), (γ ′′ α′ εγ ), and (β ′′ γ ′ εβ).
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(3) A subquiver of Q of the form

a
α

b

β

c

γ

where (α β γ ) is an f -orbit, is replaced in Q∗ by the quiver of the form

a
α′

xα
α′′

εγ

b

β ′

xγ

εβ
γ ′′

xβ

β ′′

εα

c

γ ′

with f ∗-orbits (α′′ β ′ εα), (β ′′ γ ′ εβ), and (γ ′′ α′ εγ ).

Remark 4.2 The statement (i) of the above theorem also holds if we replace the canon-

ically defined weight function m∗
• by a weight function m̄∗

• such that m̄O∗(α′) = mα

and m̄O∗(εα) is an arbitrary positive integer, for any arrow α ∈ Q1.

Remark 4.3 The construction of the triangulation quiver (Q∗, f ∗) associated with

(Q, f ) is canonical, though a quiver with fewer vertices may often be sufficient. In

fact, it would be enough to apply the construction only to the arrows in f -orbits of

length different from 1 and 3. An algebra B(Q, f , m•) may have many presentations

as an idempotent algebra of some biserial triangulation algebra, even for a triangulation

quiver (Q′, f ′) with fewer f ′-orbits than the number of f ∗-orbits in the triangulation

quiver (Q∗, f ∗) (see Example 4.7).

Remark 4.4 The ∗-construction described in Theorem 4.1 provides a special class of

triangulation quivers. Namely, let (Q, f ) be a biserial quiver, g the permutation of

Q1 associated with (Q, f ), and g∗ the permutation of Q∗
1 associated with (Q∗, f ∗).

Then, for every arrow α ∈ Q1, we have in Q∗
1 the g∗-orbit O∗(α′) of even length

2|O(α)| and the g∗-orbit O∗(εα) whose length is the length of the f -orbit of α in Q1.

In particular, all triangulation quivers (Q′, f ′) having only g′-orbits of odd length do

not belong to this class of triangulation quivers. For example, it is the case for the

tetrahedral quiver considered in Sect. 6. We refer also to [17, Example 4.9] for an

example of triangulation quiver (Q′′, f ′′) for which all arrows in Q′′
1 belong to one

g′′-orbit of length 18.

Example 4.5 Let Γ be the Brauer tree

•
1

a • b

123



Journal of Algebraic Combinatorics (2020) 51:51–88 69

with multiplicity function e(a) = m and e(b) = n. Then, the associated Brauer graph

algebra BΓ is the algebra B(Q, f , m•) associated with the biserial quiver (Q, f , m•)

where Q is of the form

1α β

with f (α) = β, f (β) = α, g(α) = α, g(β) = β, and mO(α) = m, and mO(β) = n.

If m = 1, then BΓ is the truncated polynomial algebra K [x]/(xn+1). The associated

triangulation quiver (Q∗, f ∗) is of the form

1

α′ β ′

xα

α′′

εβ

xβ

εα

β ′′

and the f ∗-orbits are (α′′ β ′ εα) and (β ′′ α′ εβ). Further, the g∗-orbits are O∗(α′) =
(α′ α′′), O∗(β ′) = (β ′ β ′′), O∗(εα) = (εα εβ) and the weight function is m∗

O∗(α′)
= m,

m∗
O∗(β ′)

= n, m∗
O∗(εα)

= 1. We also note that (Q∗, f ∗) is the triangulation quiver

(Q(T, �T ), f ) associated with the torus T with triangulation T and orientation �T of

triangles in T as follows

2

12

1

3

•

• •

•

(compare with Example 3.5).

Example 4.6 Let Γ be the Brauer graph

•

1

a

with multiplicity e(a) = m for some m ∈ N
∗. Then, the associated Brauer graph

algebra BΓ is the algebra B(Q, f , m•) where the quiver Q is of the form

1α β
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with f (α) = α, f (β) = β, g(α) = β, g(β) = α, and mO(α) = m. The associated

triangulation quiver (Q∗, f ∗) is

xαεα

α′′

1

α′

β ′

xβ

β ′′

εβ

with f ∗-orbits (α′′ α′ εα) and (β ′′ β ′ εβ). Further, the g∗-orbits are O∗(α′) =
(α′ α′′ β ′ β ′′), O∗(εα) = (εα), O∗(εβ) = (εβ), and m∗

O∗(α′)
= m, m∗

O∗(εα)
= 1,

m∗
O∗(εβ )

= 1. Note that (Q∗, f ∗) is the triangulation quiver (Q(S, �T ), f ) associated

with the sphere S with triangulation T given by two self-folded triangles

2 3
1 •• •

where �T is canonically defined.

Example 4.7 Let (Q, f , m•) be the weighted biserial quiver considered in Exam-

ple 2.8. Then, the triangulation quiver (Q∗, f ∗) is of the form

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

• •

1

2 3

4

5

6

7

8

xa

xd

x p

xα

xβ

xγ

xδ

x̺

xσ

xω

xν

xμ

xξ xη

xψ xϕ

α′

εσ

σ ′′

β ′
εδ

δ′′

γ ′

εβ

β ′′

ω′

εα

α′′

̺′

εω

ω′′

δ′

εμ

μ′′

μ′

εν
ν′′

ψ ′

εϕ

ϕ′′

d ′

εγ

γ ′′
σ ′

εd

d ′′

η′εξξ ′′

ξ ′ εη η′′

ϕ′

εaa′′a′εψ

ψ ′′

p′

ε̺

̺′′

ν′

εp

p′′
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where the shaded triangles describe the f ∗-orbits in Q∗
1. Then, we have the following

g∗-orbits in Q∗
1:

O
∗(α′) = (α′ α′′ γ ′ γ ′′ σ ′ σ ′′ β ′ β ′′ ω′ ω′′ δ′ δ′′), O

∗(d ′) = (d ′ d ′′),

O
∗(μ′) = (μ′ μ′′ ̺′ ̺′′ ν′ ν′′ η′ η′′ ψ ′ ψ ′′ ϕ′ ϕ′′ ξ ′ ξ ′′), O

∗(p′) = (p′ p′′),

O
∗(εα) = (εα εσ εd εγ εβ εδ εμ εν εp ε̺ εω), O

∗(a′) = (a′ a′′),

O
∗(εa) = (εa εψ εϕ), O

∗(εη) = (εη εξ ).

Moreover, the weight function m∗
• : O(g∗) → N

∗ is given by

m∗
O∗(d ′) = mO(d) = e(d), m∗

O∗(α′) = mO(α) = e(c), m∗
O∗(εα) = 1,

m∗
O∗(p′) = mO(p) = e(p), m∗

O∗(μ′) = mO(μ) = e(b), m∗
O∗(εη) = 1,

m∗
O∗(a′) = mO(a) = e(a).

Finally, e∗ = e∗
1 + e∗

2 + e∗
3 + e∗

4 + e∗
5 + e∗

6 + e∗
7 + e∗

8 . We note that (Q∗, f ∗) has 16

f ∗-orbits, all of length three.

The Brauer graph algebra BΓ = B(Q, f , m•) is also isomorphic to the idem-

potent algebra e′ B ′e′ of a biserial triangulation algebra B ′ = B(Q′, f ′, m′
•) for the

triangulation quiver (Q′, f ′) shown below

p

a

d

1 2

3

4

5

678

• •

• •

•

• •

• •

• •

•

•

•

β

α

with 14 f ′-orbits described by the shaded triangles (all of length three), a weight

function m′
• of (Q′, f ′), and where the idempotent e′ is the sum of the primitive

idempotents in B ′ associated with the vertices 1, 2, 3, 4, 5, 6, 7, 8.

We finish this section with a combinatorial interpretation of the ∗-construction in

terms of Brauer graphs.

4.1 Barycentric division of Brauer graphs

Let Γ be the Brauer graph so that BΓ = B(Q, f , m•), and then the algebra

B(Q∗, f ∗, m∗
•) as in the ∗-construction of Theorem 4.1 is again a Brauer graph alge-

bra, BΓ ∗ say, by Theorem 2.6. The proof of Lemma 2.4 shows how to construct Γ ∗: Its

vertices are in bijection with the cycles of g∗. First, each cycle of g is ‘augmented,’by
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replacing an arrow α by α′, α′′, and this gives a cycle of g∗; we call a corresponding

vertex of Γ ∗ an augmented vertex. Second, any other cycle of g∗ consists of ε-arrows,

and these cycles correspond to f -cycles of Q, as described in Theorem 4.1. Let F(α)

be the f -orbit of α in Q, then we write vF(α) for the corresponding vertex of Γ ∗, and

then the arrows attached to this vertex are precisely the ε f t (α).

The edges of Γ ∗ are labeled by the vertices of Q∗, that is, by the vertices of Q

together with the set {xα | α ∈ Q1}. The cyclic order around an augmented vertex is

obtained by replacing i
α

−→ j by

i
α′

−→ xα
α′′

−→ j

in Γ ∗. A vertex vF(α) has attached arrows precisely the ε f t (α) : x f t+1(α) → x f t (α).

This specifies the edges adjacent, with cyclic order given by the inverse of the f -cycle

of α. We may view Γ ∗ as a ‘triangular’ graph:

(1) Assume that |F(α)| = 1. Then, xα is the unique edge in Γ ∗ adjacent to vF(α),

and xα is its own successor in the cyclic order of edges in Γ ∗ around vF(α). Hence we

have in Γ ∗ a self-folded triangle

v
xα

vF(α)i ••

which corresponds to a subquiver of (Q∗, f ∗) of the form

xαεα

α′′

i

α′

with f ∗-orbit (α′′ α′ εα).

(2) Assume that |F(α)| ≥ 2, and let β = f (α) starting at vertex j . Let v,w be

the vertices in Γ such that α is attached to v and β is attached to w. Then, Γ ∗ has

edges xα and xβ connecting vertices v and w to vertex vF(β)(= vF(α)). Then, xα is

the successor of xβ in the cyclic order of edges in Γ ∗ around vF(α). Hence we have

in Γ ∗ a triangle

•
xα xβ

vF(β)

•v
j

• w
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which corresponds to a subquiver of (Q∗, f ∗) of the form

xα

α′′

xβ
εα

j

β ′

with f ∗-orbit (α′′ β ′ εα). The multiplicity function e∗ of Γ ∗ is given by e∗(v) = e(v)

for any vertex v of Γ (where e is the multiplicity function for Γ ), and e∗(vF(α)) = 1

for any f -orbit F(α).

The Brauer graph Γ ∗ can be considered as a barycentric division of the Brauer

graph Γ and has a triangular structure. Namely, every vF(α) is the vertex of |F(α)|
triangles in Γ ∗ whose edges opposite to vF(α) are the edges of Γ corresponding to

the vertices in Q along F(α).

In this way, we obtain an orientable surface S∗ without boundary, the triangulation

T ∗ of S∗ indexed by the set of edges of Γ , and the orientation �T ∗ of triangles in T ∗

such that the associated triangulation quiver (Q(S∗, �T ∗), f ) is the quiver (Q∗, f ∗).

The triangulated surface (S∗, T ∗) can be considered as a completion of the Brauer

graph Γ to a canonically defined triangulated surface, by a finite number of pyramids

whose peaks are the f -orbits and bases are given by the edges of Γ . We also note that

the surface S∗ (without triangulation T ∗) can be obtained as follows. We may embed

the Brauer graph Γ into a surface S with boundary given by thickening the edges of

Γ . The components of the border ∂S of S are given by the ‘Green walks’ around Γ

on S, corresponding to the f -orbits in Q1. Then, the surface S∗ is obtained from S by

capping all the boundary components of S by the disks D2.

Example 4.8 Let Γ be the Brauer graph

a
3 b 2 c

4 1•• •

where we take the clockwise ordering of edges around each vertex. Assume the mul-

tiplicity function takes only value 1. Then, the associated biserial quiver (Q, f ) is of

the form

3α

β

4
γ

σ

2

δ

̺

1
ω

η

with f -orbits

F(α) = (α β γ ), F(σ ) = (σ ̺ ω δ), F(η) = (η),
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and O(g) consisting of

O(α) = (α), O(β) = (β σ δ γ ), O(ω) = (ω ̺ η).

Then, the barycentric division Γ ∗ of Γ is the Brauer graph

• • •

•

•

•
3

xα 2

xβ

xδ

xη

xω

xσ

wa
b c

u

v

x̺4 1

xγ

with u = vF(α), v = vF(σ ) and w = vF(η). The ordering of the edges around each

vertex is clockwise. The multiplicity function of Γ ∗ takes only the value 1.

The Brauer graph Γ admits a canonical embedding into the surface S of the form

a
3

b

2

c
4 1•• •

obtained from Γ by thickening the edges of Γ , whose border ∂S has three compo-

nents given by three different ‘Green walks’ around Γ on S. The triangulated surface

(S∗, T ∗) associated with the Brauer graph Γ ∗ can be viewed as a canonical completion

of S to a triangulated surface.

5 Proof of Theorem 3

This theorem describes algebras socle equivalent to Brauer graph algebras. By The-

orem 2.6, this is the same as describing algebras socle equivalent to a biserial quiver

algebra A = B(Q, f , m•) where (Q, f ) is a biserial quiver. We show that such alge-

bras can be described using the methods of [18, Section 6]. Then, we show that the

∗-construction for the biserial quiver algebras can be extended.
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Let (Q, f ) be a biserial quiver. A vertex i ∈ Q0 is said to be a border vertex

of (Q, f ) if there is a loop α at i with f (α) = α. We denote by ∂(Q, f ) the set

of all border vertices of (Q, f ), and call it the border of (Q, f ). The terminology

is motivated by the connection with surfaces: If (Q, f ) is the triangulation quiver

(Q(S, �T ), f ) associated with a directed triangulated surface (S, �T ), then the border

vertices of (Q, f ) correspond bijectively to the boundary edges of the triangulation T

of S. If (Q, f ) is the biserial quiver associated with a Brauer graph Γ , then the border

vertices of (Q, f ) correspond bijectively to the internal loops of Γ (see Sect. 2).

Definition 5.1 Assume (Q, f , m•) is a biserial quiver with ∂(Q, f ) not empty. A

function

b• : ∂(Q, f ) → K

is said to be a border function of (Q, f ). We have the quotient algebra

B(Q, f , m•, b•) = K Q/J (Q, f , m•, b•),

where J (Q, f , m•, b•) is the ideal in the path algebra K Q generated by the elements:

(1) α f (α), for all arrows α ∈ Q1 which are not border loops,

(2) α2 − bs(α) Bα , for all border loops α ∈ Q1,

(3) Bα − Bᾱ , for all arrows α ∈ Q1.

We call such an algebra a biserial quiver algebra with border. Note that if b• is the

zero function, then B(Q, f , m•, b•) = B(Q, f , m•).

We summarize the basic properties of these algebras.

Proposition 5.2 Let (Q, f ) be a biserial quiver such that ∂(Q, f ) is not empty, and

let B̄ = B(Q, f , m•, b•), and B = B(Q, f , m•) where m• and b• are weight and

border functions. Then, the following statements hold.

(i) B̄ is a basic, indecomposable, finite-dimensional, symmetric, biserial algebra

with dimK B̄ =
∑

O∈O(g) mOn2
O

.

(ii) B̄ is socle equivalent to B.

(iii) If K is of characteristic different from 2, then B̄ is isomorphic to B.

Proof Part (ii) is clear from the definition and then part (i) follows from Proposition 2.3.

For the last part, see arguments in the proof of Proposition 6.3 in [18]. ⊓⊔

The following theorem gives a complete description of symmetric algebras socle

equivalent to a biserial quiver algebra.

Theorem 5.3 Let A be a basic, indecomposable, symmetric algebra with Grothendieck

group K0(A) of rank at least 2. Assume that A is socle equivalent to a biserial quiver

algebra B(Q, f , m•).

(i) If ∂(Q, f ) is empty, then A is isomorphic to B(Q, f , m•).
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(ii) Otherwise, A is isomorphic to B(Q, f , m•, b•) for some border function b• of

(Q, f ).

Proof Let B = B(Q, f , m•) = K Q/J where J = J (Q, f , m•). Since A/ soc(A) is

isomorphic to B/ soc(B), we can assume that these are equal, using an isomorphism

as identification. We assume A is symmetric; therefore, for each i ∈ Q0, the module

ei A has a one-dimensional socle which is spanned by some ωi ∈ ei Aei , and we fix

such an element. Then, let ϕ be a symmetrizing linear form for A, and then ϕ(ωi ) is

nonzero. We may assume that ϕ(ωi ) = 1.

We claim that soc(A) ⊂ (rad A)2(⊂ rad A). If not, then for some j we have

ω j /∈ (rad A)2. This means that e j A = e j Ae j , which is not possible since A is

indecomposable with at least two simple modules. It follows that A and B have the

same Gabriel quiver. Recall that the quiver Q is the disjoint union of the Gabriel quiver

of B with virtual loops. Any virtual loop of Q is then in the socle of B, and it is zero

in B/ soc(B) and is therefore zero in A/ soc(A). We may therefore take A of the form

A = K Q/I for the same quiver Q, and some ideal I of K Q such that any virtual loop

lies in the socle of A.

In the algebra B, we define monomials Aα in the arrows by setting Bα = Aαg−1(α)

when α is not a virtual loop, and then as well Bα = αAg(α). Note that if α is a

virtual loop, then Aα is not defined. With this, the elements Aα belong to the socle

of B/ soc(B) and hence also to the socle of A/ soc(A). Therefore, they cannot lie

in the socle of A (because if so, then they would be zero in A/ soc(A)). Then, 0 
=
Aα rad(A) = soc(ei A) where i = s(α). We have that Aα rad(A) is spanned by

Aαβ, Aαγ

where β = g−1(α) and γ = f (g−2(α)).

(I) We may assume that Aαβ = Bα in A (and hence is equal to Bα in K Q).

If not, then we have Aαβ = 0, and then Aαγ 
= 0. We will show that we may

interchange β and γ .

Since Aαγ 
= 0, in particular g−2(α)γ 
= 0 and also t(γ ) = i = s(α). Since

γ = f (g−2(α)), we know that g−2(α)γ belongs to the socle of A. It is nonzero,

which implies that Aα = g−2(α) (and mα = 1), and therefore, α = g−2(α), and

γ = f (α). We claim that g(α) 
= α. Namely, if we had g(α) = α, then both α and

f (α) would be loops at vertex i and |Q0| = 1, which contradicts our assumption.

Hence, the cycle of g containing α is (α g(α)), of length two. We claim that also the

f -cycle of α (in B) has length two. Namely, if ᾱ is the other arrow starting at i and ρ

is the other arrow ending at j = t(α), then we must have by the properties of f and

g that f (ρ) = β and f (β) = ᾱ. This implies that f (γ ) = α and hence f has a cycle

(α γ ).

It follows that there is an algebra isomorphism from B to the biserial quiver algebra

B ′ given by the weighted biserial quiver obtained from (Q, f , m•) by interchanging

β and γ (which form a pair of double arrows) and fixing all other arrows of Q. We

replace B by B ′ and the claim follows.

(II) We show that relation (1) holds in A. If α is a virtual loop of B, then α f (α) = 0

since α ∈ soc(A). We consider now an arrow α which is not a virtual loop. Suppose
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α is not fixed by f , then α f (α) belongs to the socle of A. We can write α f (α) =
aα Bα = aααAg(α) for some aα ∈ K (here g(α) is not a virtual loop).

(a) If s(α) 
= t( f (α)), then α f (α) = α f (α)es(α) = 0; in fact, this holds for any

choice of α, f (α).

(b) Otherwise, we set

f (α)′ := f (α) − aα Ag(α)

and we replace f (α) by f (α)′. (If a cycle of f has a virtual loop, then α f (α) and

f −1(α)α are not cyclic paths, so they are zero and do not need adjusting.) These

modifications must be iterated. Take a cycle of f , say it has length r , so that r ≥ 2.

Assume first this cycle contains an arrow α such that f r−1(α)α is not a cyclic path.

We may start with α and adjust f (α), f 2(α), . . . , f r−1(α) as described above. Then,

f r−1(α)′ · α = 0, by (a) above.

Otherwise, for any α in the cycle, f r−1(α)α is cyclic, and then, we must have r = 2

or r = 4. Assume that r = 2. We adjust f (α) as described in (b) and have α f (α)′ = 0

in A, and we must show that as well f (α)′α = 0. By the assumption, f (α)′α = cωi

for some c ∈ K . We have

c = ϕ(cωi ) = ϕ( f (α)′α) = ϕ(α f (α)′) = ϕ(0) = 0.

Assume now that r = 4. Since Q is 2-regular, Q is of the form

1
α1

α3

2α2

α4

with f -orbit (α1 α2 α3 α4) and g-orbit (α1 α4 α3 α2). We adjust α2, α3, α4 as in

(b) to have α1α2 = 0, α2α3 = 0, α3α4 = 0. By assumption we have α4α1 =
aBα4 = a(α4α3α2α1)

m for some a ∈ K and m ∈ N
∗. We replace α1 by α′

1 = α1 −
aα3α2α1(α4α3α2α1)

m−1 and obtain α4α
′
1 = 0. Observe that we have also α′

1α2 = 0,

because α1α2 = 0.

(III) We show that relation (3) holds in A. For each arrow α ∈ Q1, we have

Bα = cαωs(α) for some cα ∈ K ∗. We claim that cσ = cα for any arrow σ in the

g-orbit O(α) of α. Indeed, if σ belongs to O(α), then

cσ = cσ ϕ
(
ωs(σ )) = ϕ

(
cσ ωs(σ )) = ϕ(Bσ ) = ϕ(Bα)

= ϕ
(
cαωs(α)) = cαϕ

(
ωs(α)) = cα.

Since K is algebraically closed, we may choose dα ∈ K ∗ such that d
mαnα
α = c−1

α .

Replacing now the representative of each arrow α ∈ Q1 in A by its product with dα , we

obtain a new presentation A ∼= K Q/I ′ such that Bα = ωs(α) for any arrow α ∈ Q1.

This does not change relation (1) obtained above. Therefore, we may assume that if

i ∈ Q is any vertex and α and ᾱ are the arrows in Q with source i , then Bα = ωi = Bᾱ

in A.
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(IV) We show that relation (2) holds in A. When the border ∂(Q, f ) of (Q, f ) is

empty, there is nothing to do (and A is isomorphic to B). Assume now that ∂(Q, f )

is not empty. Then, for any loop α with i = s(α) ∈ ∂(Q, f ), we have α2 = α f (α) =
biωi = bi Bα for some bi ∈ K . Hence, we have a border function b• : ∂(Q, f ) → K ,

and A is isomorphic to the algebra B(Q, f , m•, b•). ⊓⊔

Recall that a self-injective algebra A is biserial if the radical of any indecomposable

non-uniserial projective, left or right, A-module is a sum of two uniserial modules

whose intersection is simple.

Theorem 3 follows from Theorems 2.6, 3.1, 5.3 and the following relative version

of Theorem 4.1 (see Remark 4.3).

Theorem 5.4 Let B = B(Q, f , m•) where Q has at least two vertices, and where the

border ∂(Q, f ) is not empty. Then, there is a canonically defined weighted triangu-

lation quiver (Q#, f #, m#
•) such that the following statements hold.

(i) |∂(Q, f )| = |∂(Q#, f #)|.
(ii) B is isomorphic to the idempotent algebra e# B#e# of the biserial weighted tri-

angulation algebra B# = B(Q#, f #, m#
•) with respect to a canonically defined

idempotent e# of B#.

(iii) For any border function b• of (Q, f ) and the induced border function b#
• of

(Q#, f #), the algebras B(Q, f , m•, b•) and e# B(Q#, f #, m#
•, b#

•)e
# are iso-

morphic.

Proof The construction of (Q#, f #, m#
•) is analogous to the ∗-construction in Theo-

rem 4.1. We take the notation as in Theorem 4.1, and in addition, we denote by Qb
1

the set of all border loops of the quiver. We define a triangulation quiver (Q#, f #) as

follows. We take Q# = (Q#
0, Q#

1, s#, t#) with

Q#
0 := Q0 ∪ {xα}α∈Q1\Qb

1
, Q#

1 := Qb
1 ∪ {α′, α′′, εα}α∈Q1\Qb

1
,

s#(β) = s(β) = t(β) = t#(β) for all loops β ∈ Qb
1, and s#(α′) = s(α), t#(α′) = xα ,

s#(α′′) = xα , t#(α′′) = t(α), s#(εα) = x f (α), t#(εα) = xα , for any arrow α ∈
Q1\Qb

1. Moreover, we set f #(η) = η for any loop η ∈ Qb
1, and f #(α′′) = f (α)′,

f #( f (α)′) = εα , f #(εα) = α′′, for any arrow α ∈ Q1\Qb
1. We observe that (Q#, f #)

is a triangulation quiver with ∂(Q#, f #) = ∂(Q, f ). Let g# be the permutation of Q#
1

associated with f #. For each arrow β in Q#
1, we denote by O#(β) the g#-orbit of β in

Q#
1. Then, the g#-orbits in Q#

1 are

O
#(η) =

(
η g(η)′ g(η)′′ . . . gnη−1(η)′ gnη−1(η)′′

)
,

for any loop η ∈ Qb
1, and

O
#(α′) =

(
α′ α′′ g(α)′ g(α)′′ . . . gnα−1(α)′ gnα−1(α)′′

)
,

O
#(εα) =

(
ε f rα−1(α) ε f rα−2(α) . . . ε f (α) εα

)
,
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for any arrow α ∈ Q1\Qb
1 (where rα is the length of the f -orbit of α). We define

the weight function m#
• : O(g#) → N

∗ by m#
O#(η)

= mη for any loop η ∈ Qb
1, and

m#
O#(α′)

= mα and m#
O#(εα)

= 1 for any arrow α ∈ Q1\Qb
1.

Let B# = B(Q#, f #, m#
•) be the biserial weighted triangulation algebra associated

with (Q#, f #, m#
•) and e# the sum of the primitive idempotents e#

i in B# associated

with the vertices i ∈ Q0. Then, it follows from the arguments as in the proof of

Proposition 2.7 that B is isomorphic to the idempotent algebra e# B#e#. Moreover, let

b• be a border function of (Q, f ) and b#
• be the induced border function of (Q#, f #),

that is, b#
i = bi for any border vertex i . Then, it follows from the description of

g#-orbits in Q#
1 and the definition of the weight function m#

• that B(Q, f , m•, b•) is

isomorphic to the idempotent algebra e# B(Q#, f #, m#
•, b#

•)e
#. ⊓⊔

Example 5.5 This illustrates the #-construction in Theorem 5.4. Let (Q, f ) be the

biserial quiver

1
α

̺

2

β

η

4

σ

ξ

3
γ

μ

with f -orbits (α β γ σ), (̺), (η), (μ), (ξ). Then, the border ∂(Q, f ) of (Q, f ) is

the set Q0 = {1, 2, 3, 4} of all vertices of Q, and ̺, η, μ, ξ are the border loops.

Further, g has only one orbit, O(α) = (α η β μ γ ξ σ ̺). We take the weight function

m• : O(g) → N
∗ with mO(α) = 1. Moreover, let b• : ∂(Q, f ) → K be a border

function. Then, we describe the associated algebra B(Q, f , m•, b•). It has quiver Q,

and to simplify the notation for the relations, we use the notion of Bα for an arrow α,

as it has appeared throughout,

̺2 = b1 Bρ, Bρ = Bα, αβ = 0,

η2 = b2 Bη, Bη = Bβ , βγ = 0,

μ2 = b3 Bμ, Bμ = Bγ , γ σ = 0,

ξ2 = b4 Bξ , Bξ = Bσ , σα = 0.

Note that the algebra B(Q, f , m•) is given by the quiver Q and the above relations such

that all bi are zero. By the arguments as in [18, Example 6.5], if K has characteristic

2 and b• is nonzero, then the algebras B(Q, f , m•, b•) and B(Q, f , m•) are not

isomorphic.
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The triangulation quiver (Q#, f #) is of the form

1 2

34

xα

xγ

xβxσ

1

̺

2

η

3
μ

4
ξ

α′ α′′

β ′

β ′′

γ ′γ ′′

σ ′

σ ′′
εα

εβεγ

εσ

with f #-orbits (̺), (η), (μ), (ξ), (α′ εσ σ ′′), (β ′ εα α′′), (γ ′ εβ β ′′), (σ ′ εγ γ ′′).

Further, there are two g#-orbits:

O
#(α′) = (α′ α′′ η β ′ β ′′ μ γ ′ γ ′′ ξ σ ′ σ ′′ ̺),

O
#(εα) = (εα εσ εγ εβ).

The weight function m#
• takes only value 1, and the border function b#

• is b#
1 = b1,

b#
2 = b2, b#

3 = b3, b#
4 = b4.

(a) The relations from vertex 1 are

ρ2 = b1 Bρ, Bρ = Bα′ .

There are analogous relations from each of the vertices 2, 3, 4.

(b) The relations from vertex xα are

Bεσ = Bα′′ , α′′β ′ = 0, εσ σ ′′ = 0.

There are analogous relations from each of the vertices xβ , xγ , xσ .

We observe now that B(Q, f , m•, b•) is isomorphic to the idempotent alge-

bra e# B(Q#, f #, m#
•, b#

•)e
# where the idempotent e# is the sum of the primitive

idempotents at the vertices 1, 2, 3, 4. Moreover, the algebras B(Q, f , m•) and

e# B(Q#, f #, m#
•)e

# are also isomorphic. Finally, we note that if K has characteristic

2 and b#
• = b• is nonzero, then the algebras B(Q#, f #, m#

•, b#
•) and B(Q#, f #, m#

•)

are not isomorphic.

6 Proof of Theorem 4

We recall the definition of a weighted triangulation algebra. Let (Q, f ) be a triangu-

lation quiver with at least two vertices, and let g, n• and m• be defined as for biserial

quiver algebras. The additional datum is a function
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c• : O(g) → K ∗ = K\{0}

which we call a parameter function of (Q, f ). We write briefly mα = mO(α) and

cα = cO(α) for α ∈ Q1. The parameter function c• taking only value 1 is said to be

trivial. We assume that mαnα ≥ 3 for any arrow α ∈ Q1. For any arrow α ∈ Q1,

define the path

Aα =
(
αg(α) . . . gnα−1(α)

)mα−1
αg(α) . . . gnα−2(α), if nα ≥ 2,

Aα = αmα−1, if nα = 1,

in Q of length mαnα − 1. Then, we have

Aαgnα−1(α) = Bα =
(
αg(α) . . . gnα−1(α)

)mα

of length mαnα . Then, following [17], we define the bound quiver algebra

Λ(Q, f , m•, c•) = K Q/I (Q, f , m•, c•),

where I (Q, f , m•, c•) is the admissible ideal in the path algebra K Q of Q over K

generated by the elements:

(1) α f (α) − cᾱ Aᾱ , for all arrows α ∈ Q1,

(2) β f (β)g( f (β)), for all arrows β ∈ Q1.

The algebra Λ := Λ(Q, f , m•, c•) is called a weighted triangulation algebra of

(Q, f ). Moreover, if (Q, f ) = (Q(S, �T ), f ) for a directed triangulated surface (S, �T ),

then Λ is called a weighted surface algebra, and if the surface and triangulation are

important, we denote the algebra by Λ(S, �T , m•, c•).

We note that the Gabriel quiver of Λ is equal to Q, and this holds because we

assume mαnα ≥ 3 for all arrows α ∈ Q1.

We have the following proposition (see [17, Proposition 5.8]).

Proposition 6.1 Let (Q, f ) be a triangulation quiver, m• and c• weight and param-

eter functions of (Q, f ). Then, Λ = Λ(Q, f , m•, c•) is a finite-dimensional tame

symmetric algebra of dimension
∑

O∈O(g) mOn2
O

.

We have also the following theorem proved in [17, Theorem 1.2] (see also [6,

Proposition 7.1] and [16, Theorem 5.9] for the case of two vertices).

Theorem 6.2 Let Λ = Λ(S, �T , m•, c•) be a weighted surface algebra over an alge-

braically closed field K . Then, the following statements are equivalent:

(i) All simple modules in mod Λ are periodic of period 4.

(ii) Λ is a periodic algebra of period 4.

(iii) Λ is not isomorphic to a singular tetrahedral algebra.
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Following [17], a singular tetrahedral algebra is the weighted surface algebra given

by a coherent orientation of four triangles of the tetrahedron and the weight and

parameter functions taking only value 1. The triangulation quiver of such algebra is

the tetrahedral quiver of the form

1

2 3

4 5

6

1

2 3

4 5

6

ν

μ

α
δ

ε

̺ σ

γ

β ξ

η

ω

where the shaded triangles denote f -orbits and white triangles denote g-orbits.

The following theorem is an essential ingredient for the proof of Theorem 4.

Theorem 6.3 Let B = B(Q, f , m•) be a biserial weighted triangulation algebra

where Q has no loops, and Λ∗ = Λ(Q∗, f ∗, m∗
•, c∗

•) the weighted triangulation

algebra associated with the weighted triangulation quiver (Q∗, f ∗, m∗
•) and the trivial

parameter function c∗
• of (Q∗, f ∗). Then, the following statements hold:

(i) Λ∗ is a periodic algebra of period 4.

(ii) B is isomorphic to the idempotent algebra e∗Λ∗e∗ for an idempotent e∗ of Λ∗.

Proof For each arrow ̺ in Q∗
1, we set m∗

̺ = m∗
O(̺)

and n∗
̺ = |O∗(̺)|. We observe

first that n∗
̺ ≥ 3, and hence m∗

̺n∗
̺ ≥ 3, for any arrow ̺ in Q∗

1, and consequently

Λ(Q∗, f ∗, m∗
•, c∗

•) is a well-defined weighted triangulation algebra. Indeed, it follows

from Theorem 4.1(iii) that the triangulation quiver (Q∗, f ∗) has neither loops nor self-

folded triangles. Moreover, the f -orbits in Q1 have length 3, and the g-orbits in Q1 are

of length at least 2. Then, it follows from the proof of Theorem 4.1 that the g∗-orbits

in Q∗
1 are

O
∗(α′) =

(
α′ α′′ g(α)′ g(α)′′ . . . gnα−1(α)′ gnα−1(α)′′

)
,

O
∗(εα) =

(
ε f 2(α) ε f (α) εα

)
,

for all arrows α ∈ Q1. Then, the required inequalities hold. Further, it follows from

Remark 4.4 that (Q∗, f ∗) is not the tetrahedral quiver. Then, applying Theorem 6.2,

we conclude that Λ∗ is a periodic algebra of period 4.

Let e∗ be the sum of all primitive idempotents in Λ∗ corresponding to the vertices

of Q. We claim that e∗Λ∗e∗ is isomorphic to B. Observe that every f -orbit (α β γ ) in

Q1 creates in (Q∗, f ∗) the subquiver as in the illustration (3) following Theorem 4.1.

123



Journal of Algebraic Combinatorics (2020) 51:51–88 83

The algebra e∗Λ∗e∗ has arrows α = α′α′′, β = β ′β ′′, γ = γ ′γ ′′, and it follows that

in e∗Λ∗e∗ we have

αβ = α′α′′β ′β ′′ = α′α′′ f ∗(α′′)g∗
(

f ∗(α′′)
)

= 0,

βγ = β ′β ′′γ ′γ ′′ = β ′β ′′ f ∗(β ′′)g∗
(

f ∗(β ′′)
)

= 0,

γ α = γ ′γ ′′α′α′′ = γ ′γ ′′ f ∗(γ ′′)g∗
(

f ∗(γ ′′)
)

= 0.

Further, let i be a vertex of Q, and let α and σ = ᾱ the two arrows in Q1 with source

i . By the proof of Theorem 4.1, the g∗-orbits are

O
∗(α′) =

(
α′ α′′ g(α)′ g(α)′′ . . . gnα−1(α)′ gnα−1(α)′′

)
,

O
∗(σ ′) =

(
σ ′ σ ′′ g(σ )′ g(σ )′′ . . . gnσ −1(σ )′ gnσ −1(σ )′′

)
.

Moreover, m∗
α′ = m∗

O∗(α′)
= mO(α) = mα and m∗

σ ′ = m∗
O∗(σ ′)

= mO(σ ) = mσ .

Hence we have in Q∗ the cycles

Bα′ =
(
α′α′′g(α)′g(α)′′ . . . gnα−1(α)′gnα−1(α)′′

)mα ,

Bσ ′ =
(
σ ′σ ′′g(σ )′ g(σ )′′ . . . gnσ −1(σ )′gnσ −1(σ )′′

)mσ ,

and Bα′ = Bσ ′ in Λ∗ (see [17, Lemma 5.3]), and this gives the equality Bα = Bσ = Bᾱ

in e∗Λ∗e∗. Therefore, e∗Λ∗e∗ is isomorphic to B. ⊓⊔

We may now complete the proof of Theorem 4. Let B = B(Q, f , m•) be a biserial

quiver algebra. Then, it follows from Theorem 4.1 that B is isomorphic to the idempo-

tent algebra e∗∗ B∗∗e∗∗ of the biserial triangulation algebra B∗∗ = B(Q∗∗, f ∗∗, m∗∗
• )

for some idempotent e∗∗ of B∗, and Q∗∗ has no loops. Applying now Theorem 6.3, we

conclude that B∗∗ is isomorphic to the idempotent algebra eΛe of a periodic weighted

triangulation algebra, for an idempotent e of Λ. Since e∗∗ is a summand of e, we

have B ∼= e∗∗ B∗∗e∗∗ ∼= e∗∗(eΛe)e∗∗ = e∗∗Λe∗∗. Then, Theorem 4 follows from

Theorems 2.6 and 3.1.

Remark 6.4 Let Λ = Λ(Q, f , m•, c•) be a weighted triangulation algebra. Then, the

biserial triangulation algebra B = B(Q, f , m•) is not an idempotent algebra eΛe

of Λ. On the other hand, if Λ is not a tetrahedral algebra, then B is a geometric

degeneration of Λ (see [17, Proposition 5.8]).

Example 6.5 Let (Q, f ) be the Markov quiver in Example 3.5 and m a positive integer

associated with the unique g-orbit (α1 β2 α3 β1 α2 β3) in Q1. Then, the associated

weighted triangulation algebra Λ = Λ(Q, f , m•, c•) with trivial parameter function

c∗
• is given by the quiver Q and the following relations (we write the indices modulo

3):

αiαi+1 = (βiαi+1βi+2αiβi+1αi+2)
m−1βiαi+1βi+2αiβi+1, αiαi+1βi+2 = 0,

βiβi+1 = (αiβi+1αi+2βiαi+1βi+2)
m−1αiβi+1αi+2βiαi+1, βiβi+1αi+2 = 0.
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The idempotent algebra e1Λe1 of Λ with respect to the primitive idempotent e1 at

vertex 1 is isomorphic to the Brauer graph algebra BΓ given by the Brauer graph Γ

in Example 4.6.

According to Theorem 4.1, we have the triangulation quiver (Q∗, f ∗)

xα1

xα2xα3

xβ1

3 xβ2

1 2

xβ3

εβ3

εβ2

εβ1

β ′′
1

β ′
3 β ′′

2

β ′
1

β ′
2β ′′

3

εα3

εα2

εα1

α′
1 α′′

1

α′
2

α′′
2α′

3

α′′
3

where the shaded triangles denote the f ∗-orbits in Q∗
1. The g∗-orbits in Q∗

1 are

O
∗(α′

1) = (α′
1 α′′

1 β ′
2 β ′′

2 α′
3 α′′

3 β ′
1 β ′′

1 α′
2 α′′

2 β ′
3 β ′′

3 ),

O
∗(εα1) = (εα3 εα2 εα1), O

∗(εβ1) = (εβ3 εβ2 εβ1).

The weight function m∗
• : O(g∗) → N

∗ is given by m∗
O∗(α′

1)
= m, m∗

O∗(εα1
)

= 1,

m∗
O∗(εβ1

)
= 1. We define the parameter function c∗

• : O(g∗) → K ∗ to be the constant

function with value 1. The weighted triangulation algebra Λ∗ = Λ(Q∗, f ∗, m∗
•, c∗

•)

is given by the above quiver Q∗ and with 18 commutativity relations and 18 zero

relations, corresponding to the six f ∗-orbits in Q∗
1. For example, we have the relations

given by the f ∗-orbit (α′
1 εα3 α′

2):

α′
1εα3 = (β ′

1β
′′
1 α′

2α
′′
2β ′

3 β ′′
3 α′

1α
′′
1β ′

2β
′′
2 α′

3α
′′
3 )m−1β ′

1β
′′
1 α′

2α
′′
2β ′

3 β ′′
3 α′

1α
′′
1β ′

2β
′′
2 α′

3,

εα3α
′′
3 = (α′′

1β ′
2β

′′
2 α′

3α
′′
3β ′

1β
′′
1 α′

2α
′′
2β ′

3 β ′′
3 α′

1)
m−1α′′

1β ′
2β

′′
2 α′

3α
′′
3β ′

1β
′′
1 α′

2α
′′
2β ′

3 β ′′
3 ,

α′′
3α′

1 = εα2εα1 , α′
1εα3εα2 = 0, εα3α

′′
3β ′

1 = 0, α′′
3α′

1α
′′
1 = 0.
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The biserial weighted triangulation algebra B = B(Q, f , m•) is then isomorphic to

the idempotent algebra e∗Λ∗e∗, where e∗ is the sum of the primitive idempotents

e∗
1, e∗

2, e∗
3 in Λ∗ corresponding to the vertices 1, 2, 3.

We present now an example of an idempotent algebra of a periodic weighted surface

algebra which is neither a Brauer graph algebra nor a weighted surface algebra.

Example 6.6 Let S be a triangle with one puncture, T the triangulation of S

• •

•

•

1 2

6 5

4

3

such that the edges 1, 2, 3 are on the boundary, and let �T be the orientation of triangles

of T : (1 2 4), (4 5 6), (5 3 6). Then, the triangulation quiver (Q(S, �T ), f ) is of the

form

1

2

34

5

6

1

ξ

2
η

3

μ

̺ θα

β ω

γ δ σ

ν

with f -orbits (ξ), (η), (μ), (α β γ ), (δ ̺ ν), (σ ω θ). Hence we have two g-orbits:

O(α) = (α η β δ σ μ ω ν γ ξ) and O(̺) = (̺ θ).

Take the weight function m• : O(g) → N
∗ given by mO(α) = 1 and mO(̺) = 2.

Moreover, let c• : O(g) → K ∗ be the trivial parameter function. Then, the associated

weighted surface algebra Λ = Λ(S, �T , m•, c•) is given by the quiver Q(S, �T ) and

the relations:

ξ2 = αηβδσμωνγ, ξ2α = 0, αβ = ξαηβδσμων, αβδ = 0, νδ = θ̺θ,

η2 = βδσμωνγ ξα, η2β = 0, βγ = ηβδσμωνγ ξ, βγ ξ = 0, νδσ = 0,

μ2 = ωνγ ξαηβδσ, μ2ω = 0, γ α = δσμωνγ ξαη, γ αη = 0, σω = ̺θ̺,
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δ̺ = γ ξαηβδσμω, δ̺θ = 0, ωθ = μωνγ ξαηβδ, ωθ̺ = 0, σων = 0,

̺ν = σμωνγ ξαηβ, ̺νγ = 0, θσ = νγ ξαηβδσμ, θσμ = 0.

Let e = e1 + e2 + e3 + e4 be the sum of primitive idempotents of Λ at the vertices

1, 2, 3, 4, and B = eΛe the associated idempotent algebra. Then, B is given by the

quiver Δ of the form

1

α

ξ

4

γ

ϕ

3
ψ

μ

2
β

η

with the arrows ϕ = δσ and ψ = ων, and the induced relations:

ξ2 = αηβϕμψγ, ξ2α = 0, αβ = ξαηβϕμψ, αβδ = 0, ϕψ = 0,

η2 = βϕμψγ ξα, η2β = 0, βγ = ηβϕμψγ ξ, βγ ξ = 0, ψϕ = 0,

μ2 = ψγ ξαηβϕ, μ2ψ = 0, γ α = ϕμψγ ξαη, γ αη = 0.

Then, B is not a special biserial algebra, and therefore, it is not a Brauer graph algebra.

Further, B is not a weighted surface algebra, because we have zero relations ϕψ = 0

and ψϕ = 0 of length 2. On the other hand, by general theory, the algebra B = eΛe

is tame and symmetric.

7 Diagram of algebras

The following diagram shows the relations between the main classes of algebras occur-

ring in the paper.

biserial weighted
surface algebras

e(−)e
all indecomposable

idempotents e

biserial weighted
triangulation algebras

Brauer graph
algebras

basic, indecomposable
symmetric special
biserial algebras

weighted biserial
quiver algebras

⋂
∗

Λ∗∗∗

periodic weighted
surface algebras

e(−)e
some indecomposable

idempotents e

periodic weighted
triangulation algebras

123



Journal of Algebraic Combinatorics (2020) 51:51–88 87

where, for a weighted biserial quiver algebra B = B(Q, f , m•), B∗ = B(Q∗, f ∗, m∗
•),

and Λ∗∗∗ = Λ(Q∗∗∗, f ∗∗∗, m∗∗∗
• ,1), with 1 denoting the trivial weight function of

(Q∗∗∗, f ∗∗∗).
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38. Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras 3:

Representation-Infinite Tilted Algebras. London Mathematical Society Student Texts, vol. 72. Cam-

bridge University Press, Cambridge (2007)
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