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Abstract

This paper presents a novel approach for automatically

generating image descriptions: visual detectors, language

models, and multimodal similarity models learnt directly

from a dataset of image captions. We use multiple instance

learning to train visual detectors for words that commonly

occur in captions, including many different parts of speech

such as nouns, verbs, and adjectives. The word detector

outputs serve as conditional inputs to a maximum-entropy

language model. The language model learns from a set of

over 400,000 image descriptions to capture the statistics

of word usage. We capture global semantics by re-ranking

caption candidates using sentence-level features and a deep

multimodal similarity model. Our system is state-of-the-art

on the official Microsoft COCO benchmark, producing a

BLEU-4 score of 29.1%. When human judges compare the

system captions to ones written by other people on our held-

out test set, the system captions have equal or better quality

34% of the time.

1. Introduction

When does a machine “understand” an image? One def-

inition is when it can generate a novel caption that summa-

rizes the salient content within an image. This content may

include objects that are present, their attributes, or their re-

lations with each other. Determining the salient content re-

quires not only knowing the contents of an image, but also

deducing which aspects of the scene may be interesting or

novel through commonsense knowledge [51, 5, 8].

This paper describes a novel approach for generating im-

age captions from samples. We train our caption generator
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Figure 1. An illustrative example of our pipeline.

from a dataset of images and corresponding image descrip-

tions. Previous approaches to generating image captions re-

lied on object, attribute, and relation detectors learned from

separate hand-labeled training data [47, 22].

The direct use of captions in training has three distinct

advantages. First, captions only contain information that is

inherently salient. For example, a dog detector trained from

images with captions containing the word dog will be bi-

ased towards detecting dogs that are salient and not those

that are in the background. Image descriptions also contain

variety of word types, including nouns, verbs, and adjec-

tives. As a result, we can learn detectors for a wide vari-

ety of concepts. While some concepts, such as riding or

beautiful, may be difficult to learn in the abstract, these
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terms may be highly correlated to specific visual patterns

(such as a person on a horse or mountains at sunset).

Second, training a language model (LM) on image cap-

tions captures commonsense knowledge about a scene. A

language model can learn that a person is more likely to

sit on a chair than to stand on it. This information disam-

biguates noisy visual detections.

Third, by learning a joint multimodal representation on

images and their captions, we are able to measure the global

similarity between images and text, and select the most suit-

able description for the image.

An overview of our approach is shown in Figure 1. First,

we use weakly-supervised learning to create detectors for

a set of words commonly found in image captions. Learn-

ing directly from image captions is difficult, because the

system does not have access to supervisory signals, such

as object bounding boxes, that are found in other data sets

[11, 7]. Many words, e.g., crowded or inside, do not

even have well-defined bounding boxes. To overcome this

difficulty, we use three ideas. First, the system reasons with

image sub-regions rather than with the full image. Next,

we featurize each of these regions using rich convolutional

neural network (CNN) features, fine-tuned on our training

data [21, 42]. Finally, we map the features of each region

to words likely to be contained in the caption. We train this

map using multiple instance learning (MIL) [30, 49] which

learns discriminative visual signature for each word.

Generating novel image descriptions from a bag of likely

words requires an effective LM. In this paper, we view cap-

tion generation as an optimization problem. In this view,

the core task is to take the set of word detection scores, and

find the highest likelihood sentence that covers each word

exactly once. We train a maximum entropy (ME) LM from

a set of training image descriptions [2, 40]. This training

captures commonsense knowledge about the world through

language statistics [3]. An explicit search over word se-

quences is effective at finding high-likelihood sentences.

The final stage of the system (Figure 1) re-ranks a set of

high-likelihood sentences by a linear weighting of sentence

features. These weights are learned using Minimum Error

Rate Training (MERT) [35]. In addition to several common

sentence features, we introduce a new feature based on a

Deep Multimodal Similarity Model (DMSM). The DMSM

learns two neural networks that map images and text frag-

ments to a common vector representation in which the sim-

ilarity between sentences and images can be easily mea-

sured. As we demonstrate, the use of the DMSM signifi-

cantly improves the selection of quality sentences.

To evaluate the quality of our automatic captions, we

use three easily computable metrics and better/worse/equal

comparisons by human subjects on Amazon’s Mechanical

Turk (AMT). The evaluation was performed on the chal-

lenging Microsoft COCO dataset [28, 4] containing com-

plex images with multiple objects. Each of the 82,783 train-

ing images has 5 human annotated captions. For measuring

the quality of our sentences we use the popular BLEU [37],

METEOR [1] and perplexity (PPLX) metrics. Surprisingly,

we find our generated captions outperform humans based on

the BLEU metric; and this effect holds when evaluated on

unseen test data from the COCO dataset evaluation server,

reaching 29.1% BLEU-4 vs. 21.7% for humans. Human

evaluation on our held-out test set has our captions judged

to be of the same quality or better than humans 34% of the

time. We also compare to previous work on the PASCAL

sentence dataset [38], and show marked improvements over

previous work. Our results demonstrate the utility of train-

ing both visual detectors and LMs directly on image cap-

tions, as well as using a global multimodal semantic model

for re-ranking the caption candidates.

2. Related Work

There are two well-studied approaches to automatic im-

age captioning: retrieval of existing human-written cap-

tions, and generation of novel captions. Recent retrieval-

based approaches have used neural networks to map images

and text into a common vector representation [43]. Other

retrieval based methods use similarity metrics that take pre-

defined image features [15, 36]. Farhadi et al. [12] represent

both images and text as linguistically-motivated semantic

triples, and compute similarity in that space. A similar fine-

grained analysis of sentences and images has been done for

retrieval in the context of neural networks [19].

Retrieval-based methods always return well-formed

human-written captions, but these captions may not be able

to describe new combinations of objects or novel scenes.

This limitation has motivated a large body of work on gen-

erative approaches, where the image is first analyzed and

objects are detected, and then a novel caption is generated.

Previous work utilizes syntactic and semantic constraints in

the generation process [32, 48, 26, 23, 22, 47], and we com-

pare against prior state of the art in this line of work. We

focus on the Midge system [32], which combines syntactic

structures using maximum likelihood estimation to gener-

ate novel sentences; and compare qualitatively against the

Baby Talk system [22], which generates descriptions by fill-

ing sentence template slots with words selected from a con-

ditional random field that predicts the most likely image la-

beling. Both of these previous systems use the same set of

test sentences, making direct comparison possible.

Recently, researchers explored purely statistical ap-

proaches to guiding language models using images. Kiros

et al. [20] use a log-bilinear model with bias features de-

rived from the image to model text conditioned on the

image. Also related are several contemporaneous papers

[29, 45, 6, 18, 9, 46, 25]. Among these, a common theme

[29, 45, 6, 18] has been to utilize a recurrent neural network



Figure 2. Multiple Instance Learning detections for cat, red,

flying and two (left to right, top to bottom). View in color.

for generating images captions by conditioning its output on

image features extracted by a convolutional neural network.

More recently, Donahue et al. [9] also applied a similar

model to video description. Lebret et al. [25] have inves-

tigated the use of a phrase-based model for generating cap-

tions, while Xu et al. [46] have proposed a model based on

visual attention.

Unlike these approaches, in this work we detect words by

applying a CNN to image regions [13] and integrating the

information with MIL [49]. We minimize a priori assump-

tions about how sentences should be structured by train-

ing directly from captions. Finally, in contrast to [20, 29],

we formulate the problem of generation as an optimization

problem and search for the most likely sentence [40].

3. Word Detection

The first step in our caption generation pipeline detects

a set of words that are likely to be part of the image’s de-

scription. These words may belong to any part of speech,

including nouns, verbs, and adjectives. We determine our

vocabulary V using the 1000 most common words in the

training captions, which cover over 92% of the word occur-

rences in the training data (available on project webpage 1).

3.1. Training Word Detectors

Given a vocabulary of words, our next goal is to detect

the words from images. We cannot use standard super-

vised learning techniques for learning detectors, since we

do not know the image bounding boxes corresponding to

the words. In fact, many words relate to concepts for which

1http://research.microsoft.com/image_captioning

bounding boxes may not be easily defined, such as open or

beautiful. One possible approach is to use image classi-

fiers that take as input the entire image. As we show in Sec-

tion 6, this leads to worse performance since many words

or concepts only apply to image sub-regions. Instead, we

learn our detectors using the weakly-supervised approach

of Multiple Instance Learning (MIL) [30, 49].

For each word w ∈ V , MIL takes as input sets of “posi-

tive” and “negative” bags of bounding boxes, where each

bag corresponds to one image i. A bag bi is said to be

positive if word w is in image i’s description, and negative

otherwise. Intuitively, MIL performs training by iteratively

selecting instances within the positive bags, followed by re-

training the detector using the updated positive labels.

We use a noisy-OR version of MIL [49], where the prob-

ability of bag bi containing word w is calculated from the

probabilities of individual instances in the bag:

1−
∏

j∈bi

(

1− pwij
)

(1)

where pwij is the probability that a given image region j in

image i corresponds to word w. We compute pwij using a

multi-layered architecture [21, 42]2, by computing a logistic

function on top of the fc7 layer (this can be expressed as a

fully connected fc8 layer followed by a sigmoid layer):

1

1 + exp (−(vt
w
φ(bij) + uw))

, (2)

where φ(bij) is the fc7 representation for image region j
in image i, and vw, uw are the weights and bias associated

with word w.

We express the fully connected layers (fc6, fc7, fc8)

of these networks as convolutions to obtain a fully convo-

lutional network. When this fully convolutional network

is run over the image, we obtain a coarse spatial response

map. Each location in this response map corresponds to the

response obtained by applying the original CNN to overlap-

ping shifted regions of the input image (thereby effectively

scanning different locations in the image for possible ob-

jects). We up-sample the image to make the longer side

to be 565 pixels which gives us a 12 × 12 response map at

fc8 for both [21, 42] and corresponds to sliding a 224×224
bounding box in the up-sampled image with a stride of 32.

The noisy-OR version of MIL is then implemented on top

of this response map to generate a single probability pwi for

each word for each image. We use a cross entropy loss and

optimize the CNN end-to-end for this task with stochastic

gradient descent. We use one image in each batch and train

for 3 epochs. For initialization, we use the network pre-

trained on ImageNet [7].

2We denote the CNN from [21] as AlexNet and the 16-layer CNN from

[42] as VGG for subsequent discussion. We use the code base and models

available from the Caffe Model Zoo https://github.com/BVLC/

caffe/wiki/Model-Zoo [17].

http://research.microsoft.com/image_captioning
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo


3.2. Generating Word Scores for a Test Image

Given a novel test image i, we up-sample and forward

propagate the image through the CNN to obtain pwi as de-

scribed above. We do this for all words w in the vocabulary

V . Note that all the word detectors have been trained in-

dependently and hence their outputs need to be calibrated.

To calibrate the output of different detectors, we use the im-

age level likelihood pwi to compute precision on a held-out

subset of the training data [14]. We threshold this preci-

sion value at a global threshold τ , and output all words Ṽ

with a precision of τ or higher along with the image level

probability pwi , and raw score maxj p
w
ij .

Figure 2 shows some sample MIL detections. For each

image, we visualize the spatial response map pwij . Note that

the method has not used any bounding box annotations for

training, but is still able to reliably localize objects and also

associate image regions with more abstract concepts.

4. Language Generation

We cast the generation process as a search for the like-

liest sentence conditioned on the set of visually detected

words. The language model is at the heart of this process

because it defines the probability distribution over word se-

quences. Note that despite being a statistical model, the LM

can encode very meaningful information, for instance that

running is more likely to follow horse than talking.

This information can help identify false word detections and

encodes a form of commonsense knowledge.

4.1. Statistical Model

To generate candidate captions for an image, we use a

maximum entropy (ME) LM conditioned on the set of vi-

sually detected words. The ME LM estimates the prob-

ability of a word wl conditioned on the preceding words

w1, w2, · · · , wl−1, as well as the set of words with high

likelihood detections Ṽl ⊂ Ṽ that have yet to be mentioned

in the sentence. The motivation of conditioning on the un-

used words is to encourage all the words to be used, while

avoiding repetitions. The top 15 most frequent closed-class

words3 are removed from the set Ṽ since they are detected in

nearly every image (and are trivially generated by the LM).

It should be noted that the detected words are usually some-

what noisy. Thus, when the end of sentence token is being

predicted, the set of remaining words may still contain some

words with a high confidence of detection.

Following the definition of an ME LM [2], the word

probability conditioned on preceding words and remaining

objects can be written as:

3The top 15 frequent closed-class words are a, on, of, the, in,

with, and, is, to, an, at, are, next, that and it.

Pr(wl = w̄l|w̄l−1, · · · , w̄1,<s>, Ṽl−1) =

exp
[

∑

K

k=1
λkfk(w̄l, w̄l−1, · · · , w̄1,<s>, Ṽl−1)

]

∑

v∈V∪</s> exp
[

∑

K

k=1
λkfk(v, w̄l−1, · · · , w̄1,<s>, Ṽl−1)

] (3)

where <s> denotes the start-of-sentence token, w̄j ∈ V ∪

</s>, and fk(wl, · · · , w1, Ṽl−1) and λk respectively denote

the k-th max-entropy feature and its weight. The basic dis-

crete ME features we use are summarized in Table 1. These

features form our “baseline” system. It has proven effec-

tive to extend this with a “score” feature, which evaluates

to the log-likelihood of a word according to the correspond-

ing visual detector. We have also experimented with distant

bigram features [24] and continuous space log-bilinear fea-

tures [33, 34], but while these improved PPLX significantly,

they did not improve BLEU, METEOR or human prefer-

ence, and space restrictions preclude further discussion.

To train the ME LM, the objective function is the log-

likelihood of the captions conditioned on the corresponding

set of detected objects, i.e.:

L(Λ) =
S∑

s=1

#(s)∑

l=1

log Pr(w̄
(s)
l |w̄

(s)
l−1, · · · , w̄

(s)
1 ,<s>, Ṽ

(s)
l−1) (4)

where the superscript (s) denotes the index of sentences in

the training data, and #(s) denotes the length of the sen-

tence. The noise contrastive estimation (NCE) technique is

used to accelerate the training by avoiding the calculation

of the exact denominator in (3) [34]. In the generation pro-

cess, we use the unnormalized NCE likelihood estimates,

which are far more efficient than the exact likelihoods, and

produce very similar outputs. However, all PPLX numbers

we report are computed with exhaustive normalization. The

ME features are implemented in a hash table as in [31]. In

our experiments, we use N-gram features up to 4-gram and

15 contrastive samples in NCE training.

4.2. Generation Process

During generation, we perform a left-to-right beam

search similar to the one used in [39]. This maintains a stack

of length l partial hypotheses. At each step in the search, ev-

ery path on the stack is extended with a set of likely words,

and the resulting length l + 1 paths are stored. The top k
length l + 1 paths are retained and the others pruned away.

We define the possible extensions to be the end of sen-

tence token </s>, the 100 most frequent words, the set of at-

tribute words that remain to be mentioned, and all the words

in the training data that have been observed to follow the last

word in the hypothesis. Pruning is based on the likelihood

of the partial path. When </s> is generated, the full path to

</s> is removed from the stack and set aside as a completed

sentence. The process continues until a maximum sentence

length L is reached.



Table 1. Features used in the maximum entropy language model.

Feature Type Definition Description

Attribute 0/1 w̄l ∈ Ṽl−1 Predicted word is in the attribute set, i.e. has been visually detected and not yet used.

N-gram+ 0/1 w̄l−N+1, · · · , w̄l = κ and w̄l ∈ Ṽl−1 N-gram ending in predicted word is κ and the predicted word is in the attribute set.

N-gram- 0/1 w̄l−N+1, · · · , w̄l = κ and w̄l /∈ Ṽl−1 N-gram ending in predicted word is κ and the predicted word is not in the attribute set.

End 0/1 w̄l = κ and Ṽl−1 = ∅ The predicted word is κ and all attributes have been mentioned.

Score R score(w̄l) when w̄l ∈ Ṽl−1 The log-probability of the predicted word when it is in the attribute set.

Table 2. Features used by MERT.

1. The log-likelihood of the sequence.

2. The length of the sequence.

3. The log-probability per word of the sequence.

4. The logarithm of the sequence’s rank in the log-likelihood.

5. 11 binary features indicating whether the number

of mentioned objects is x (x = 0, . . . , 10).
6. The DMSM score between the sequence and the image.

After obtaining the set of completed sentences C, we

form an M -best list as follows. Given a target number of

T image attributes to be mentioned, the sequences in C cov-

ering at least T objects are added to the M -best list, sorted

in descending order by the log-likelihood. If there are less

than M sequences covering at least T objects found in C,

we reduce T by 1 until M sequences are found.

5. Sentence Re-Ranking

Our LM produces an M -best set of sentences. Our final

stage uses MERT [35] to re-rank the M sentences. MERT

uses a linear combination of features computed over an en-

tire sentence, shown in Table 2. The MERT model is trained

on the M -best lists for the validation set using the BLEU

metric, and applied to the M -best lists for the test set. Fi-

nally, the best sequence after the re-ranking is selected as

the caption of the image. Along with standard MERT fea-

tures, we introduce a new multimodal semantic similarity

model, discussed below.

5.1. Deep Multimodal Similarity Model

To model global similarity between images and text, we

develop a Deep Multimodal Similarity Model (DMSM).

The DMSM learns two neural networks that map images

and text fragments to a common vector representation. We

measure similarity between images and text by measuring

cosine similarity between their corresponding vectors. This

cosine similarity score is used by MERT to re-rank the

sentences. The DMSM is closely related to the unimodal

Deep Structured Semantic Model (DSSM) [16, 41], but ex-

tends it to the multimodal setting. The DSSM was initially

proposed to model the semantic relevance between textual

search queries and documents, and is extended in this work

to replace the query vector in the original DSSM by the im-

age vector computed from the deep convolutional network.

The DMSM consists of a pair of neural networks, one for

mapping each input modality to a common semantic space,

which are trained jointly. In training, the data consists of

a set of image/caption pairs. The loss function minimized

during training represents the negative log posterior proba-

bility of the caption given the corresponding image.

Image model: We map images to semantic vectors us-

ing the same CNN (AlexNet / VGG) as used for detecting

words in Section 3. We first finetune the networks on the

COCO dataset for the full image classification task of pre-

dicting the words occurring in the image caption. We then

extract out the fc7 representation from the finetuned net-

work and stack three additional fully connected layers with

tanh non-linearities on top of this representation to obtain

a final representation of the same size as the last layer of

the text model. We learn the parameters in these additional

fully connected layers during DMSM training.

Text model: The text part of the DMSM maps text frag-

ments to semantic vectors, in the same manner as in the

original DSSM. In general, the text fragments can be a full

caption. Following [16] we convert each word in the caption

to a letter-trigram count vector, which uses the count dis-

tribution of context-dependent letters to represent a word.

This representation has the advantage of reducing the size

of the input layer while generalizing well to infrequent, un-

seen and incorrectly spelled words. Then following [41],

this representation is forward propagated through a deep

convolutional neural network to produce the semantic vec-

tor at the last layer.

Objective and training: We define the relevance R as

the cosine similarity between an image or query (Q) and a

text fragment or document (D) based on their representa-

tions yQ and yD obtained using the image and text models:

R(Q,D) = cosine(yQ, yD) = (yQ
T yD)/‖yQ‖‖yD‖. For a

given image-text pair, we can compute the posterior proba-

bility of the text being relevant to the image via:

P (D|Q) =
exp(γR(Q,D))

ΣD′∈D exp(γR(Q,D′))
(5)

Here γ is a smoothing factor determined using the val-

idation set, which is 10 in our experiments. D denotes the

set of all candidate documents (captions) which should be

compared to the query (image). We found that restricting

D to one matching document D+ and a fixed number N
of randomly selected non-matching documents D− worked

reasonably well, although using noise-contrastive estima-

tion could further improve results. Thus, for each image we



select one relevant text fragment and N non-relevant frag-

ments to compute the posterior probability. N is set to 50

in our experiments. During training, we adjust the model

parameters Λ to minimize the negative log posterior proba-

bility that the relevant captions are matched to the images:

L(Λ) = − log
∏

(Q,D+)

P (D+|Q) (6)

6. Experimental Results

We next describe the datasets used for testing, followed

by an evaluation of our approach for word detection and

experimental results on sentence generation.

6.1. Datasets

Most of our results are reported on the Microsoft COCO

dataset [28, 4]. The dataset contains 82,783 training im-

ages and 40,504 validation images. The images create a

challenging testbed for image captioning since most images

contain multiple objects and significant contextual informa-

tion. The COCO dataset provides 5 human-annotated cap-

tions per image. The test annotations are not available, so

we split the validation set into validation and test sets4.

For experimental comparison with prior papers, we also

report results on the PASCAL sentence dataset [38], which

contains 1000 images from the 2008 VOC Challenge [11],

with 5 human captions each.

6.2. Word Detection

To gain insight into our weakly-supervised approach for

word detection using MIL, we measure its accuracy on the

word classification task: If a word is used in at least one

ground truth caption, it is included as a positive instance.

Note that this is a challenging task, since conceptually sim-

ilar words are classified separately; for example, the words

cat/cats/kitten, or run/ran/running all correspond to differ-

ent classes. Attempts at adding further supervision, e.g., in

the form of lemmas, did not result in significant gains.

Average Precision (AP) and Precision at Human Recall

(PHR) [4] results for different parts of speech are shown

in Table 3. We report two baselines. The first (Chance)

is the result of randomly classifying each word. The sec-

ond (Classification) is the result of a whole image classifier

which uses features from AlexNet or VGG CNN [21, 42].

These features were fine-tuned for this word classification

task using a logistic regression loss.

As shown in Table 3, the MIL NOR approach improves

over both baselines for all parts of speech, demonstrating

that better localization can help predict words. In fact, we

observe the largest improvement for nouns and adjectives,

4We split the COCO train/val set ito 82,729 train/20243 val/20244 test.

Unless otherwise noted, test results are reported on the 20444 images from

the validation set.

Figure 4. Qualitative results for images on the PASCAL sentence

dataset. Captions using our approach (black), Midge [32] (blue)

and Baby Talk [22] (red) are shown.

which often correspond to concrete objects in an image sub-

region. Results for both classification and MIL NOR are

lower for parts of speech that may be less visually infor-

mative and difficult to detect, such as adjectives (e.g., few,

which has an AP of 2.5), pronouns (e.g., himself, with

an AP of 5.7), and prepositions (e.g., before, with an

AP of 1.0). In comparison words with high AP scores are

typically either visually informative (red: AP 66.4, her:

AP 45.6) or associated with specific objects (polar: AP

94.6, stuffed: AP 74.2). Qualitative results demonstrat-

ing word localization are shown in Figures 2 and 3.

6.3. Caption Generation

We next describe our caption generation results, begin-

ning with a short discussion of evaluation metrics.

Metrics: The sentence generation process is measured

using both automatic metrics and human studies. We use

three different automatic metrics: PPLX, BLEU [37], and

METEOR [1]. PPLX (perplexity) measures the uncertainty

of the language model, corresponding to how many bits on

average would be needed to encode each word given the

language model. A lower PPLX indicates a better score.

BLEU [37] is widely used in machine translation and mea-

sures the fraction of N-grams (up to 4-gram) that are in

common between a hypothesis and a reference or set of ref-

erences; here we compare against 4 randomly selected ref-

erences. METEOR [1] measures unigram precision and re-

call, extending exact word matches to include similar words

based on WordNet synonyms and stemmed tokens. We ad-

ditionally report performance on the metrics made available

from the MSCOCO captioning challenge,5 which includes

scores for BLEU-1 through BLEU-4, METEOR, CIDEr

[44], and ROUGE-L [27].

All of these automatic metrics are known to only roughly

correlate with human judgment [10]. We therefore include

human evaluation to further explore the quality of our mod-

els. Each task presents a human (Mechanical Turk worker)

with an image and two captions: one is automatically gen-

erated, and the other is a human caption. The human is

asked to select which caption better describes the image,

or to choose a “same” option when they are of equal qual-

ity. In each experiment, 250 humans were asked to compare

5http://mscoco.org/dataset/#cap2015

http://mscoco.org/dataset/#cap2015


Table 3. Average precision (AP) and Precision at Human Recall (PHR) [4] for words with different parts of speech (NN: Nouns, VB: Verbs,

JJ: Adjectives, DT: Determiners, PRP: Pronouns, IN: Prepositions). Results are shown using a chance classifier, full image classification,

and Noisy OR multiple instance learning with AlexNet [21] and VGG [42] CNNs.

Average Precision Precision at Human Recall

NN VB JJ DT PRP IN Others All NN VB JJ DT PRP IN Others All

Count 616 176 119 10 11 38 30 1000

Chance 2.0 2.3 2.5 23.6 4.7 11.9 7.7 2.9

Classification (AlexNet) 32.4 16.7 20.7 31.6 16.8 21.4 15.6 27.1 39.0 27.7 37.0 37.3 26.2 31.5 25.0 35.9

Classification (VGG) 37.0 19.4 22.5 32.9 19.4 22.5 16.9 30.8 45.3 31.0 37.1 40.2 29.6 33.9 25.5 40.6

MIL (AlexNet) 36.9 18.0 22.9 31.7 16.8 21.4 15.2 30.4 46.0 29.4 40.1 37.9 25.9 31.5 21.6 40.8

MIL (VGG) 41.4 20.7 24.9 32.4 19.1 22.8 16.3 34.0 51.6 33.3 44.3 39.2 29.4 34.3 23.9 45.7

Human Agreement 63.8 35.0 35.9 43.1 32.5 34.3 31.6 52.8

Figure 3. Qualitative results for several randomly chosen images on the Microsoft COCO dataset, with our generated caption (black) and a

human caption (blue) for each image. In the bottom two rows we show localizations for the words used in the sentences. More examples

can be found on the project website1.

20 caption pairs each, and 5 humans judged each caption

pair. We used Crowdflower, which automatically filters out

spammers. The ordering of the captions was randomized

to avoid bias, and we included four check-cases where the

answer was known and obvious; workers who missed any

of these were excluded. The final judgment is the majority

vote of the judgment of the 5 humans. In ties, one-half of a

count is distributed to the two best answers. We also com-

pute errors bars on the human results by taking 1000 boot-

strap resamples of the majority vote outcome (with ties),

then reporting the difference between the mean and the 5th

or 95th percentile (whichever is farther from the mean).

Generation results: Table 4 summarizes our results on

the Microsoft COCO dataset. We provide several base-

lines for experimental comparison, including two base-

lines that measure the complexity of the dataset: Uncon-

ditioned, which generates sentences by sampling an N -

gram LM without knowledge of the visual word detec-

tors; and Shuffled Human, which randomly picks another

human generated caption from another image. Both the

BLEU and METEOR scores are very low for these ap-

proaches, demonstrating the variation and complexity of the

Microsoft COCO dataset.

We provide results on seven variants of our end-

to-end approach: Baseline is based on visual features

from AlexNet and uses the ME LM with all the dis-

crete features as described in Table 1. Baseline+Score

adds the feature for the word detector score into the

ME LM. Both of these versions use the same set of

sentence features (excluding the DMSM score) described

in Section 5 when re-ranking the captions using MERT.

Baseline+Score+DMSM uses the same ME LM as Base-

line+Score, but adds the DMSM score as a feature for

re-ranking. Baseline+Score+DMSM+ft adds finetuning.

VGG+Score+ft and VGG+Score+DMSM+ft are analogous

to Baseline+Score and Baseline+Score+DMSM but use



Table 4. Caption generation performance for seven variants of our system on the Microsoft COCO dataset. We report performance on

our held out test set (half of the validation set). We report Perplexity (PPLX), BLEU and METEOR, using 4 randomly selected caption

references. Results from human studies of subjective performance are also shown, with error bars in parentheses. Our final System

“VGG+Score+DMSM+ft” is “same or better” than human 34% of the time.

System PPLX BLEU METEOR ≈human >human ≥human

1. Unconditioned 24.1 1.2% 6.8%

2. Shuffled Human – 1.7% 7.3%

3. Baseline 20.9 16.9% 18.9% 9.9% (±1.5%) 2.4% (±0.8%) 12.3% (±1.6%)

4. Baseline+Score 20.2 20.1% 20.5% 16.9% (±2.0%) 3.9% (±1.0%) 20.8% (±2.2%)

5. Baseline+Score+DMSM 20.2 21.1% 20.7% 18.7% (±2.1%) 4.6% (±1.1%) 23.3% (±2.3%)

6. Baseline+Score+DMSM+ft 19.2 23.3% 22.2% – – –

7. VGG+Score+ft 18.1 23.6% 22.8% – – –

8. VGG+Score+DMSM+ft 18.1 25.7% 23.6% 26.2% (±2.1%) 7.8% (±1.3%) 34.0% (±2.5%)

Human-written captions – 19.3% 24.1%

Table 5. Official COCO evaluation server results on test set

(40,775 images). First row show results using 5 reference captions,

second row, 40 references. Human results reported in parentheses.

CIDEr BLEU-4 BLEU-1 ROUGE-L METEOR

[5] .912 (.854) .291 (.217) .695 (.663) .519 (.484) .247 (.252)

[40] .925 (.910) .567 (.471) .880 (.880) .662 (.626) .331 (.335)

finetuned VGG features. Note: the AlexNet baselines with-

out finetuning are from an early version of our system which

used object proposals from [50] instead of dense scanning.

As shown in Table 4, the PPLX of the ME LM with and

without the word detector score feature is roughly the same.

But, BLEU and METEOR improve with addition of the

word detector scores in the ME LM. Performance improves

further with addition of the DMSM scores in re-ranking.

Surprisingly, the BLEU scores are actually above those pro-

duced by human generated captions (25.69% vs. 19.32%).

Improvements in performance using the DMSM scores with

the VGG model are statistically significant as measured

by 4-gram overlap and METEOR per-image (Wilcoxon

signed-rank test, p < .001).

We also evaluated an approach (not shown) with whole-

image classification rather than MIL. We found this ap-

proach to under-perform relative to MIL in the same set-

ting (for example, using the VGG+Score+DMSM+ft set-

ting, PPLX=18.9, BLEU=21.9%, METEOR=21.4%). This

suggests that integrating information about words associ-

ated to image regions with MIL leads to improved perfor-

mance over image classification alone.

The VGG+Score+DMSM approach produces captions

that are judged to be of the same or better quality than

human-written descriptions 34% of the time, which is a sig-

nificant improvement over the Baseline results. Qualitative

results are shown in Figure 3, and many more are available

on the project website.

COCO evaluation server results: We further gener-

ated the captions for the images in the actual COCO test

set consisting of 40,775 images (human captions for these

images are not available publicly), and evaluated them on

the COCO evaluation server. These results are summarized

in Table 5. Our system gives a BLEU-4 score of 29.1%,

and equals or surpasses human performance on 12 of the 14

metrics reported – the only system to do so. These results

are also state-of-the-art on all 14 reported metrics among

the four other results available publicly at the time of writ-

ing this paper. In particular, our system is the only one ex-

ceeding human CIDEr scores, which has been specifically

proposed for evaluating image captioning systems [44].

To enable direct comparison with previous work on au-

tomatic captioning, we also test on the PASCAL sentence

dataset [38], using the 847 images tested for both the Midge

[32] and Baby Talk [22] systems. We show significantly

improved results over the Midge [32] system, as measured

by both BLEU and METEOR (2.0% vs. 17.6% BLEU and

9.2% vs. 19.2% METEOR).6 To give a basic sense of the

progress quickly being made in this field, Figure 4 shows

output from the system on the same images.7

7. Conclusion

This paper presents a new system for generating novel

captions from images. The system trains on images and cor-

responding captions, and learns to extract nouns, verbs, and

adjectives from regions in the image. These detected words

then guide a language model to generate text that reads well

and includes the detected words. Finally, we use a global

deep multimodal similarity model introduced in this paper

to re-rank candidate captions

At the time of writing, our system is state-of-the-art on

all 14 official metrics of the COCO image captioning task,

and equal to or exceeding human performance on 12 out of

the 14 official metrics. Our generated captions have been

judged by humans (Mechanical Turk workers) to be equal

to or better than human-written captions 34% of the time.

6Baby Talk generates long, multi-sentence captions, making compari-

son by BLEU/METEOR difficult; we thus exclude evaluation here.
7Images were selected visually, without viewing system captions.
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