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Abstract

As more and more cores are enabled on the die of
future CMP platforms, we expect that several diverse
workloads will run simultaneously on the platform. A key
example of this trend is the growth of virtualization usage
models. When multiple virtual machines or applications or
threads run simultaneously, the quality of service (QoS)
that the platform provides to each individual thread is
non-deterministic today. This occurs because the
simultaneously running threads place very different
demands on the shared resources (cache space, memory
bandwidth, etc) in the platform and in most cases contend
with each other. In this paper, we first present case studies
that show how this results in non-deterministic
performance. Unlike the compute resources managed
through scheduling, platform resource allocation to
individual threads cannot be controlled today. In order to
provide better determinism and QoS we then examine
resource management mechanisms and present QoS
aware architectures and execution environments. The
main contribution of this paper is the architecture
feasibility analysis through prototypes that allow
experimentation with QoS-Aware execution environments
and architectural resources. We describe these QoS
prototypes and then present preliminary case studies of
multi-tasking and virtualization usage models sharing one
critical CMP resource (last-level cache). We then
demonstrate how proper management of the cache
resource can provide service differentiation and
deterministic performance behavior when running
disparate workloads in future CMP platforms.

1. INTRODUCTION

As the momentum behind on-chip multiprocessor (CMP)

architectures [7][12][13] continues to grow, itéspected
that future client and server microprocessors Wwale
several cores sharing the on-die and off-die ressurThe
success of CMP platforms depends not only on tineoen
of cores but also heavily on the platform resoufceshe,
memory, etc) available and their efficient
Traditionally, processor and platform architecturm®
designed to perform well when a single parallelli@ption
is running on them. However, with the evolving s@ite

use models, CMP platforms will also be used to run

multiple applications simultaneously in both clieand
server domains. The rapid deployment of virtuairat

[2][6][15][17] as a means to consolidate multiple

applications on to a platform is a prime example.
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When multiple applications run simultaneously on EM
architectures, the quality of service (QoS) thatphatform
provides to each individual application will be Ron
deterministic ¢r chaotic) because it depends heavily on
the behavior of the other simultaneously running
workloads. As expected, recent studies [3][5][9][10]
have indicated that contention for critical platfor
resources (e.g. cache) is the primary cause ferldlok of
determinism and QoS. In this paper, we highlight th
problem further and motivate the need for QoS stippo
CMP platforms. We focus on one of the important CMP
platform resources (last-level cache space) and slase
studies describing the effect of sharing this reseun
multi-tasking and virtualization scenarios. Basedtloese
observations, we investigate QoS policies and nméshes

to efficiently manage these shared resources in the
presence of disparate applications (or threads).

Recent studies on (cache) resource management have
either advocated the need for fair distribution f@fween
threads and applications or the need for unfatridigion

[5] with the purpose of improving overall system
performance. In contrast, the work presented hiens to
improve the performance of an individual applicatiat

the cost of the potential detriment of others vgthdance

from the operating environment. This is motivategd b
usage models such as server consolidation whevicaser
level agreements motivate the degree of performance
differentiation [1][4] desired for some applicat®rSince

the relative importance of the deployed applicatimnbest
managed by the operating software environment, we
experiment with software-guided priorities (e.gsigeed

by server administrators) to efficiently managedmaare
resources. We compare the use of software-guided
priorities (QoS-aware caches) against dedicateds run
(isolated cache use), shared runs (unmanaged shared
caches) as well as fair caches (equal private cache
partitions per application).

In order to experiment with QoS, we have develotveal
QoS software prototypes (QoS-aware Linux as well as
QoS-aware Xen). The primary contribution of thip@ais

the description of these prototypes as well as dase
studies performed using them. The case studiesidacl
multi-tasking usage scenarios as well as virtudliasage
scenarios and show the trade-offs between fourureso
management approaches (dedicated, shared, faiQagjl

on CMP platforms. We show that enabling and eimfigrc



software-guided priorities is much more effective i
providing QoS as compared to traditional approadikes
static partitioning to CMP cache management.

2.BACKGROUND AND CHALLENGES

In this section, we highlight the motivation behi@dS by
describing disparate threads of execution on CMP
platforms and the shared resource problem.

2.1. Disparate Threads of Execution

The key trends in software that promote the use of
disparate threads of execution (Figure 1) on CMP
platforms are as follows:

(&) Multi-tasking becoming more common: As more
threads and cores are enabled on the processadhelie,
compute capability is best utilized by multiple
simultaneously executing tasks or applications (see
Figure 1a). The behavior and platform resource @isag
of these simultaneous threads of execution will be
quite disparate in nature (e.g. one is cache-fhend
and the other is streaming in nature). At the same
time, it is possible that one application is of muc
more importance than the other (e.g main applinatio
execution running along with a background streaming
activity like network backup).

Virtualized workloads becoming mainstream: While

the concept of virtualization [6] has been aroundd
while, the recent re-emergence of virtualizationaas
means to consolidate workloads in the datacenter
exposes the critical need to pay attention to the
performance behavior of heterogeneous virtual
machines running simultaneously on a server. This
becomes even more important as virtualization-based
usage models continue to rapidly evolve and
encompass office workstations/desktops and even
home PCs/laptops. In these scenarios, many digparat
workloads are consolidated together and hardware
performance isolation [4] becomes a desired feature
for the high priority applications that can be itieed

by the user or system administrator.

(b)

Disparate VMs
Disparate applications
VM1 VM2
APDIIADPZ AppllADPZ
Appl App2 0OS oS
oS Hypervisor/VMM

(a) Multi-Tasking (b) Virtualizationfidsolidation
Figure 1. Disparate Threads on CMP Platforms

2.2. Example Resour ce Sharing | mpact

In this section, we present an example of resosineging
impact based on trace-driven simulation of caclerisb
in a CMP platform.
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Figure 2. Implications of Resource Sharing

Figure 2 illustrates the motivation for QoS andorgse
management. The figures show the resource and
performance implications of a high priority apptica
running in standalone (dedicated) mode versus vithisn
running in shared mode with a low priority applioat

We chose Art - a SPEC 2000 benchmark [16], to e

a high priority application, and Iperf (a network
benchmark) to represent the low priority applicatio
These experiments were conducted in a virtualized
environment with each application running in a eliént
virtual machine. This simulation study (Figure Aows
how sharing the cache uniformly between application
affects the performance of the high priority apgtion
(Art). The Y axis on the left depicts the cacheuancy

of Art relative to the case when it runs alone. Waexis

on the right plots the MPI (Misses per Instructio)Art,
also relative to the case when it runs alone.

Figure 2b shows that the high priority applicat®iPI
increases by 9.9X when co-scheduled with Iperf.rflpe
exhibits very poor cache locality and effectivellyashes
the cache, which accounts for the observed degosdiat



Art's performance. In order to minimize the effeadt
resource contention, the priority of the applicatieeeds to
be comprehended by the platform in order for #ltocate
hardware resources (in this case, cache spacejdaugly.

In this paper, we experiment with QoS policies and
mechanisms to manage the cache resource distrbutio
between high and low priority applications. It sltbbe
noted that the need for resource management steths b
from the need for providing better QoS to high ptjo
applications as well as the need for better detésmi in
the platform.

3.FROM CHAOSTO QOS

In this section, we introduce the QoS policiesrissource
management, and the architectural modificationessary
to support these policies.

3.1. Resour ce M anagement & QoS Policies

Most modern processors do not enforce any QoSen th
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Figure 3. Platform QoS Policies

Figure 3 illustrates the impact of QoS mechanismbath
the applications, and the whole system. Staticdymamic
QoS policies differ in the way the target perforcamand
resource constraints are specified. Static policies
defined if the specified target performance does$ no
require continuous adjustment of resources. Thigyo
defines the QoS target and constraint in termshef t
resource usage metric (e.g. cache space) proval¢het
high priority application and low priority appli¢ahs

cache. In these systems, the amount of cache SpaC[;;?sp_ectively This requires mech_anisms to statically
consumed by each thread depends upon both its memordlstnbute resources, but not dynamically altemtheased

footprint and its memory accesses patterns. Thidsliéhe
cache utilization to be determined solely by thdividual

on resultant performance. For the cache resoutces i
intuitive that we consider space as the primaryimet

application’'s demand. This has been described as

“capitalistic” in a previous study [5].

We classify QoS policies into three categorieditatian,
fair and elitist. The utilitarian policy attempts improve
the overall throughput (the greater good) of thatfptrm
by maximizing resources for the cache-friendly aation
and minimizing resources for the cache-unfriendly
application. The fair policy attempts to equalibe tache
resources provided to each of the individual ajgpilins

Dynamic QoS requires resource allocation to be
continuously monitored based on the observed
performance and the targets/constraints. The trged
resource constraints are specified in terms ofgeganiss
rates and cache space allocation respectivelydyhamic
policy we implemented involved varying both the
resources provided to different processes and argets
assigned to them based on the current phase of the
application. Both applications start out sharing the

or provide unequal cache resources to ensure equa@vanable resources without any constraints. Thegh hi

performance degradation for each of the applicat{@ad].
The elitist policy considers the relative prioriof the
applications running simultaneously and ensures$ tha
high priority application is provided more platform
resources than the low priority applications. Irhest
words, this policy caters to the elite applicatg)nét the
possible expense of the non-elite classes of agifuits.

In this paper, we consider elitist policies for cesce
management and compare them to fair

priority process’ initial target is set to be hiaff observed
miss rate and the low process’ degradation thréstmobe
twice its observed miss rate. The adjustment gfetgrand
constraints is performed every 50 million instraos. If

the high priority application’s miss rate is lowian the
target, and the degradation threshold for the loiwriy
application is not exceeded, then the percentage of
resources assigned to the low priority applicatisn
decreased by a factor of two. If the low priority

resource@pplication’s performance degrades beyond its targes

management (equal resources) as well as no resourcEte; the percentage of resources assigned tanitrisased

management. This study focuses on performing resour
management in the last level cache. We experiméht w
both static and dynamic mechanisms for achievittistel
QoS.

by 10%. The targets for the applications are madeem
aggressive (decrease the target miss rate by 10%) o
conservative (increase the target miss rate by 10%)
depending upon whether they are met or not.

3.2. QoS-Aware Platform Architecture

The elitist policy requires that threads or appiaas be
classified into various priorities and architectusapport



be added to control the hardware resource consampti 4.1. QoS-Enabled OS

based on the classification.

Figure 4 illustratée t

architecture that meets these requirements. Asshow  The OS based platform QoS prototype is built on the
4 ariot Linux operating system. In order to provide QoSpsrf
the administrator. Based on the priorities, the QOS e made several modifications and additions or2tBel6
resource table (QRT) is updated with cache spacejnux kernel on a Fedora Core 5 host machine. These
changes are illustrated in Figure 5.

the figure, applications are assigned various fiesr by

limitation data for each priority level. When thdsaare
scheduled to run, their memory requests are taggtd
priority levels and cache space limitation inforioat The
cache subsystem is modified to maintain the psidevel
associated with each line. There are countersntioaitor
cache space used by each priority level. Thesetersuare
used by the replacement policy to evict the appater
lines within the set. For example, when the lowopty
resource usage limit is reached, it requires thdova
priority victim be chosen from the cache set. Sintyl, the
high priority process should preferentially repldloe low
priority process’ entries since we our goal is ditise

policy. We accomplished this by modifying the LRU

policy to first identify low priority lines and pic the
victim among these lines for replacement,
abovementioned scenarios.
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Figure 4. Architecture support for QoS

Cache/memory Subsystem

In order to enable users or administrators to $pdhe
priorities of the application/thread/process, wejuiee
QoS support in the execution environment (OS aualr
machine monitor). In section 4, we describe in naetalil
the architectural support required to provide QaSd
introduce prototypes that mimic this support.

4. QOSPROTOTYPESFOR EXPERIMENTATION

In this section, we describe the QoS support reduin

systems software (OS and VMM) and present protatype

that we developed to emulate this support.
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Figureb. lllustration of QoS-Enabled Linux

The QoS software prototype implementation comprifes
these major components:

(@)

(b)

QoS bits in process state: QoS bits that indicate the
priority level and associated information were atide
to each process’ state. This information is saed
restored during context switches.

QoS register emulation: The Linux scheduler was
modified to emulate saving and restoring the Qds$ bi
from the process state and to commit it to proaesso
architecture state (QoS register). This was aclidye
employing a special I/O instruction during every
processor context switch. More specifically, westfi
read the QoS bits value from the process contett th
was switched in. Then we issued aut (x86 ISA)
instruction that sent this value to an unused I4® p
0x200(typically, this port was reserved for joykjic
This instruction was used to communicate the pices
QoS value to the hardware. Port 0x200 was registere
as the “QoS” port in the kernel 1/O resource
registration module to guarantee that it would bbet
used by other 1/O devices.

In addition, to allow administrators to manage Quaties

associated with running processes, the Linux kewssd

modified toprovide:

(@) QoS APIs for user/administrator: Two extra system

(b)

4.2.

calls were added to the Linux kernel to provide
interfaces for programs to access the QoS bitshwhic
were stored in kernel address space.

QoS utility program: This tool was implemented in
the host Linux machine to query and modify the QoS
value of the running applications.

QoS-Enabled VMM

Our virtualization software prototype is similar ttee OS
prototype, except the enhancements were made to the
hypervisor instead of the operating system. Thislired



making the following modifications
hypervisor, Xen 3.0.2:

to a popular

(@) QoS at virtual domain level: QoS bits that indicate
the priority level and associated information were
added to each domain’s (virtual machine’s) state.
This information is saved and restored during cante
switches.

QoS register emulation: The Xen scheduler was
modified to emulate setting the processor architect
state (QoS register) based on the priority of the
domain. We used a setup similar to that described i
Section 4.1 to expose this register to the undsglyi

(b)

hardware.
VM1 VM2
Appl | App2 || Appl | App2
Add QoS bits 0S 0S Modify OS
i | scheduler to
in process schedul
o f writing
data structure HyperV|sorNMM 0t it

Figure6. lllustration of QoS-Enabled Xen

With this infrastructure, it is possible to make tbache
subsystem cognizant of the priority of the virto@chine
it is servicing.

4.3. Experimental Framework

In order to evaluate proposed OS/VMM prototypes, we
setup the experimental framework shown in Figure 7.

VM1
Appl | App2
(oS

VM2
App1| App2
Os<

QoS-Enabled VMM
(Xen)

APP; APP,

QoS-Enabled Linux OS
(Fedora Coreb5)

Disk image

—_ =
SoftSDV

:< APIs )

Figure 7. Simulation framework for QoS aware OS/VMM

Performance Model
(CASPER Cache
model

Functional
CPU Model

We employed SoftSDV [18], a full system simulatbatt
allowed us to functionally model the architectuned a
provided an interface for enabling performance nwde
We used the functional model of SoftSDV to boot a

we used to pass the instructions executed by theing
applications or VMs from our functional model toeth
performance model. These instructions included the
specialout instructions mentioned in Section 4.1, which
triggered the performance model to simulate theuiegs
memory accesses with the specified priority. Wegrated
CASPER [8] - a functional cache simulator which was
modified to support the cache QoS policies desdriine
Section 3.3, into this experimental framework, for
evaluating cache performance.

Values
1/2/4
Unified, non-inclusive, 32KB, 16 waly,

64B Block, LRU
Unified, 512/1024/2048/4096/81/92

KB, 16 way, 64B Block

Table 1. Cache Simulation Parameters

Parameters
Core Number
L1 (Private)

L2 (Shared)

Table 1 summarizes the parameters for our expetmen
We evaluated the QoS-Enabled OS prototype usireyva f
applications from the SPEC 2000 benchmark suitg {16
Ammp, gcc, art, applu and mcf, which show largeheac
sharing impact when they are co-scheduled. Thedatdn
ref input sets were used with these benchmarks. Tt Qo
Enabled VMM prototype was evaluated using Iperf (a
networking benchmark) and SPEC 2000 benchmarks — ar
swim, mesa and bzip2. In all experiments, we ctéiéthe
cache sharing statistics for billion instruction®euted by
the system.

5. PRELIMINARY RESULTSAND ANALYSIS

In this section, we describe the experimental tesal our
QoS-Aware Linux and QoS-Aware Xen software
prototypes.

5.1. Multi-Tasking Experiments on QoS-
Aware Linux

In the multi-tasking experiments, we assumed the
execution platform to be two/four core CMP architee.
Two or four applications run simultaneously andrshhe

L2 cache.

5.1.1 Two-Core CMP Scenario

Our evaluation of the static QoS policy on two-cadP

is done by varying the cache space limit for lovoipty
applications from 10% to 40% of the cache. We campa
this to the shared mode execution without QoS, kwic
denoted by a cache space limit of 100%. We use the
resource performance metric to evaluate effectisgria

Fedora Core 5 Linux disk image for a QoS-enabled OSterms of the L2 cache’s MPI (misses per instrugtion

simulation. A disk image of Xen 3.0.2 running vatu
machines with Suse 9.1 Linux was used for QoS-Emhbl
VMM simulation. SoftSDV provided us with APIs which

Figure 8 shows the impact of QoS policy when Ammg a
Gcce are running simultaneously (on separate caagd)
share a 512KB cache.
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(b) Ammp(hi)+ Gcec(lo) Figure 9 illustrates the MPI of Gecc and Ammp under
Figure 8. Impact of QoS in two-core CMP scenario shared mode (without prioritization), fair mode dea
application occupy half of the cache), static Qo&den

The two Y-axes represent the MPI (lines) and awerag (ammp is low priority and is constrained to occdj®fo of
cache space occupancy (bars) of the co-scheduledhe cache), dynamic QoS mode (ammp is low pricityl
applications respectively. The MPI value is noraedi to the amount of cache it occupies is dynamically ried)
the case when both applications share the L2 caitheut and dedicated mode (applications occupy the whole
any prioritization. Figure 8a illustrates the smém when cache). The MPI value of each application is ndizad
Gcece has a higher priority than Ammp. As expectée, t to the case when it runs under shared mode. Figure
MPI of Gcc reduces when we reduce the cache spaceshows that both static and dynamic QoS are moreexft
available for Ammp. This is accompanied by an insee  policies to approach the performance improvemenindo
in the the MPI of Ammp. The MPI reduction was séen (dedicated mode) than fair QoS. For applicatioke |
be as much as 57% when Ammp was constrained toAmmp that occupy large percentages of cache spaite i
occupy 10% of total cache size. A noteworthy fingimas shared mode, it is not surprising that fair QoSeasely
that Gce benefited more from cache Qos than Amwgne  affects performance.
though Ammp occupied more cache space than Gdwein t
base case with no QoS (around 65%). This conclusam  5.1.2 Four-Core CM P Scenario
based on the fact that Ammp’s MPI increased by only |, the four-core CMP scenario, we assume that agie h
around 125% when it lost about 40% of total cagiece  priority application, two mid level priority apptions
(Figure 8a), while the MPI increase of Gee was BIOU  and one low priority application run simultaneousiyd
320% when it lost about 15% of total cache spa@@U(E  share a 1MB cache. Under the prioritized runningieyo
8b). This explains why reducing the cache spacéadl@  the middle priority application is limited to ocqufi0% of
for Gee did not cause significant MPI reduction fonmp total cache space and the low priority applicatieit

(Figure 8b). bypass the L2 cache (i.e. 0%).

Note that although we limit the cache space for low Figure 10 shows the impact of QoS when Applu (high
priority application, this limitation is not a hatdund and priority), Art (mid level priority), Gee (mid levepriority)
appligations can sometimes exceed the specifiedslim 509 Mcf (low priority) are co-scheduled. In Figd@a, the
This is because of a couple of reasons. One, ghafin  \ip| value of each application is normalized to tzse
data by applications, (shared libraries etc) resuft  \yhen it shares the cache with other applicatiorthouit
processes sometimes accessing data tagged with thgrioritization. Figures 10b and 10c show the cache



occupancies of four applications without and witiclee
QoS respectively. When we limit the cache spacArof
and Gcc and bypass the cache accesses from Mdf|Rhe
of Applu reduces by 33%. As a result, the MPI of, A
Gcee and Mcf will increase by 21%, 150% and 216%
respectively. Figure 10b and Figure 10c clearlysithat
employing cache QoS can efficiently assign a detrestic
amount of cache space to the high priority appticatThe
cache occupancy of Applu increases from 7% to 67% o
average with prioritization. Mcf's occupancy isgélily
larger than 0% and Art’'s occupancy is around 30%hef
cache, due to shared Linux libraries as explainestction
5.1.1
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Figure 10. Impact of QoS in four-core CMP scenario

5.2. Virtualization Experiments on QoS-
Aware Xen

We ran our experiments on a uni-processor witht spli
Level-1 instruction and data caches (each 32 KR) an
unified Level-2 cache. Only the Level-2 cache waslen
QoS-aware. Our experiments involved running two
benchmarks, in different virtual machines. One loé t
virtual machines was given a higher priority, allogvit to
use the whole cache, while the other had a lowerifyr
and was constrained to use only a portion of thehea
The cache size was varied between 1MB and 8MB to
mimic large server workloads. We also varied theam

of cache allocated to lower priority virtual maodsn
between 10% and 40% of the cache. We ran threeoets
benchmarks which are described in this section:

/O

5.21 Co-scheduling Compute intensive and

intensive wor kloads

Compute intensive tasks typically have more uniform
cache access patterns and are far more cachelyridiah

I/O intensive applications. Constraining the amouofit
cache available to the I/O application should heiprove
the MPI of the compute intensive process, when tmey
co-scheduled, since I/O applications cause an aserén
the number of conflict misses, effectively thrashitihe
cache.

For the purpose of this study we ran Iperf and iArg
virtualized environment. We ran Iperf in Xen's Dam@
(along with the 1/0 VM) and assigned it a low piigrWe
enabled Xen’s native scheduler which allows Donfain
use as much as 75% of the CPU. Art was run infareifit
virtual machine (Domain 1) which was allowed to egx
the whole cache, and was scheduled for up to 25%eof
CPU time. The two benchmarks were co-scheduledfor
billion instructions varying both the amount of hacat
Iperf's disposal and the total size of the cache.
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(b) MPIsof Art and Iperf sharing a 2MB cache
Figure 11. Impact of QoS while co-scheduling Art and
Iperf

Figure 11 shows the static QoS evaluation restdts our
QoS prototype experiment with an I/O applicatiope¢F)
and a computation application (Art) sharing a lestel
cache. These plots also show the percentage ofecac
occupied by Art and Iperf at different cache sizéhen
running Art (high priority) and Iperf (low priorijywith a
4MB level-two cache (Figure 11a), we find that jotaca
limit on the cache space that the lower prioritplagation
can occupy significantly decreases the MPI of thyhdr
priority application (reduced to around 40%). TN$I
reduction is corroborated by the cache occupanaplgr
which shows Art's occupancy stabilizing when Ipésf
limited to 30% of the 4MB cache. The reduction irt'g\
MPI is more than the increase in that of Iperf,i¢ating
that resource management in this situation not baly a
positive influence over the high priority applicati but
also helps lower the net MPI of the system (Art §etf
running together). Another point to note from tmeghs is
that the occupancies of the low priority applicatiaren’t
strictly bound by the upper limits we set. As expdal in
section 5.1.1, this is due to sharing of VMM erdriezhich
inherit the priorities of the processes they areoked
from) and maintaining global cache occupancy cagnte

When the cache size is less than 2MB (Figure Mb)ee
that the percentage occupancy of Art
monotonically to use most of the cache. This ingisahat
the cache is too small to fit Art's working set qaetely.
Constraining the amount of cache accessible by hgesr a
positive impact on Art's MPI at the cost of Iperfiahe
performance. The overall MPI of the system increase
significantly when Iperf is constrained to run wi#ss than
10% of the 2MB cache, indicating that resource
management of small caches could adversely affeet t
system’s performance if the lower priority applioat is
not allocated a minimum amount of cache space.
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Figure 12. Performance of Art and Iperf running
simultaneously with a 4MB cache with different exan
modes

Figure 12 illustrates the MPI of Art and Iperf rimg in
shared mode (without prioritization), fair mode dlea
application occupies half of the cache), static Qo&le

n(Iperf is assigned a low priority and occupies 10f4he

cache), dynamic QoS mode (Iperf is assigned a low
priority and the amount of cache it occupies isatgitally
modified) and dedicated mode (both applicationsehav
dedicated 4MB caches). The MPI value of each
application is normalized to the case when it iarghared
mode. Figure 12 shows that both static and dyn&poi§

are more efficient policies to approach the maximum
performance improvement point (dedicated mode) than
fair QoS. In addition, dynamic QoS can be tuned to
provide better performance for the platform in gahand

not just one application.

5.2.2 Co-scheduling two compute intensive wor kloads

In this study, we ran Swim and Art, two SPEC2000
workloads that have very different cache scalintepas.
Swim’s MPI (misses per instruction) remains fairly
constant as the cache size changes while Art’s fizliRl
rapidly as the size of the cache increases. Wetreamsd
the amount of cache the domain running Swim cosél u
while allowing the domain running Art access to Wiele
of the cache. We modified Xen to schedule both desna

increasesfor equal time slices (while using the default pdrof the

SEDF scheduler).

Figure 13 shows the static QoS evaluation restiliese
plots also show the percentage of cache occupiedrby
and Swim at different cache configurations. Whilaring
Art (high priority) and Swim (low priority) with ai8MB
level-two cache (Figure 13a), we find that placagimit

on the cache space that the lower priority appboatan
occupy significantly decreases the MPI of the highe
priority application (reduced to less than 70%).ciga
management in this situation not only has a pasitiv
influence over the high priority application, but &lso
helps lower the net MPI of the system (Art and Swim
running together).



At 4MB (Figure 13b), we see that Art occupies mafghe modified) and dedicated mode (both applicationsehav
cache, even in the shared case. This high and tmosdedicated 8MB caches). The MPI value of each
constant cache occupancy graph explains the lack of application is normalized to the case when it iarghared
radical reduction in Art's MPI at this cache configtion mode. The figure shows that both static and dyod@aS
when Swim’'s cache space is changed. For cache sizeare more efficient policies to approach the maximum

smaller than 4MB, the performance boost for Arsnsall performance improvement point (dedicated mode) than
due to the fact that the cache size is too small tofair QoS. This figure also illustrates the unifobmhavior
accommodate the working sets of both Art and Swim. of Swim across the different modes, due to whidticst

and dynamic QoS actually provide a performance timos
These studies indicate that enabling cache-pmsriit the  not only Art but the whole system.
granularity of virtual machines definitely decreasie
amount of contention in the cache and allows tlgndi
priority applications to be assured a much bettadity of
service. They also suggest that even overall system
performance could receive a boost at certain haielwa O Static QoS
configurations, which are dependent upon the waidkain | Dynamic Qos
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Cache Space that Swim can consume 5.2.3Four-VM CMP Scenario
(@) MPIsof Art and Swim sharing an 8MB cache In this _study, we scaled the numberl of virtual n1_lae$1to
four, with each of them running a different appiica, to
, gauge the effectiveness of our scheme in larger CMP
[ Art-occupancy [ Swim-occupancy : .
—¥— Art-MPI —— Swim-MP| environments. In the four-VM CMP scenario, we assum
l4dr-r—7-- e B T i one high priority application, two mid-level prioyi
|| || | | ] [ 3 applications and one low priority application atmming
=12 P80% g | simultaneously and share a 4MB cache. Under the
a Lm | 70% g prioritized running mode, the mid-level priority
o ] 1 60% © 5| applications are limited to occupy 20% of the tatathe
N 1ok W W | [[5%% S=| space and the low priority application is limiteddccupy
© T~
E | A% Q 10% of the total cache space. All these applicatioere
Sos | b4 Lo Lol ] s run with equal scheduling priority.
- 20% g
06 I ;Z% Figure 15 shows the impact of QoS when Art (high
. 0

priority), Mesa (middle priority), Bzip2 (middle iority)
and Iperf (low priority) are co-scheduled. Eachtloése
applications run in different virtual machines whishare

100% 40% 30% 20% 10%
Cache Space that Swim can consume

(b) MPIsof Art and Swvim sharing a 4MB cache the physical resources available to one core.drFigure,
Figure 13. Impact of QoS while co-scheduling Art and the MPI value of each application is normalizedhi® case
Swim when it shares the cache with other applicatiorthouit

prioritization. As is evident from the figure, litimg the
Figure 14 illustrates the MPI of Art and Swim rurin amount of space available to the other applicatiessits

shared mode (without prioritization), fair mode dea in a 45% reduction in miss rate for Art. Mesa also
application occupies half of the cache), static Qu&le  surprisingly benefits from QoS which is perhapsause
(Swim is assigned a low priority and occupies 10%he  of the decreased interference from Iperf. The petémce
cache), dynamic QoS mode (Swim is assigned a lowdegradation for the other mid-level priority proses
priority and the amount of cache it occupies isadgitally  Bzip2, is minimal. Iperf's performance sees a ddgtan



which is consistent with its getting allotted ju§t% of the
cache.
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Figure 15. Impact of QoS in four-VM CMP scenario (3]

6. SUMMARY AND FUTURE WORK 6]
In this paper, we presented the motivation behim8-Q
aware platforms and execution environments by sigwi [7]
case studies of CMP cache resource usage. We showed
that it is important to provide better determinigmthe (8]
platform especially in the context of multi-taskirzqd
virtualization. By enabling QoS mechanisms in the
hardware as well as exposing it to the systemsvaodt, we

can address this requirement. We described twaovandt
prototypes (QoS-aware Linux and QoS-aware Xen) that
allow experimentation  with  multi-tasking  and
virtualization usage scenarios. The preliminary ecas
studies with these usage scenarios showed that QoS-

9]
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