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Abstract 
As more and more cores are enabled on the die of 

future CMP platforms, we expect that several diverse 
workloads will run simultaneously on the platform. A key 
example of this trend is the growth of virtualization usage 
models. When multiple virtual machines or applications or 
threads run simultaneously, the quality of service (QoS) 
that the platform provides to each individual thread is 
non-deterministic today. This occurs because the 
simultaneously running threads place very different 
demands on the shared resources (cache space, memory 
bandwidth, etc) in the platform and in most cases contend 
with each other. In this paper, we first present case studies 
that show how this results in non-deterministic 
performance. Unlike the compute resources managed 
through scheduling, platform resource allocation to 
individual threads cannot be controlled today. In order to 
provide better determinism and QoS, we then examine 
resource management mechanisms and present QoS-
aware architectures and execution environments. The 
main contribution of this paper is the architecture 
feasibility analysis through prototypes that allow 
experimentation with QoS-Aware execution environments 
and architectural resources. We describe these QoS 
prototypes and then present preliminary case studies of 
multi-tasking and virtualization usage models sharing one 
critical CMP resource (last-level cache). We then 
demonstrate how proper management of the cache 
resource can provide service differentiation and 
deterministic performance behavior when running 
disparate workloads in future CMP platforms. 

1.  INTRODUCTION  

As the momentum behind on-chip multiprocessor (CMP) 
architectures [7][12][13] continues to grow, it is expected 
that future client and server microprocessors will have 
several cores sharing the on-die and off-die resources. The 
success of CMP platforms depends not only on the number 
of cores but also heavily on the platform resources (cache, 
memory, etc) available and their efficient usage. 
Traditionally, processor and platform architectures are 
designed to perform well when a single parallel application 
is running on them. However, with the evolving software 
use models, CMP platforms will also be used to run 
multiple applications simultaneously in both client and 
server domains. The rapid deployment of virtualization 
[2][6][15][17] as a means to consolidate multiple 
applications on to a platform is a prime example. 

 
When multiple applications run simultaneously on CMP 
architectures, the quality of service (QoS) that the platform 
provides to each individual application will be non-
deterministic (or chaotic) because it depends heavily on 
the behavior of the other simultaneously running 
workloads. As expected, recent studies [3][5][9][10][14] 
have indicated that contention for critical platform 
resources (e.g. cache) is the primary cause for this lack of 
determinism and QoS. In this paper, we highlight this 
problem further and motivate the need for QoS support in 
CMP platforms. We focus on one of the important CMP 
platform resources (last-level cache space) and show case 
studies describing the effect of sharing this resource in 
multi-tasking and virtualization scenarios. Based on these 
observations, we investigate QoS policies and mechanisms 
to efficiently manage these shared resources in the 
presence of disparate applications (or threads).  
 
Recent studies on (cache) resource management have 
either advocated the need for fair distribution [3] between 
threads and applications or the need for unfair distribution 
[5] with the purpose of improving overall system 
performance. In contrast, the work presented here aims to 
improve the performance of an individual application at 
the cost of the potential detriment of others with guidance 
from the operating environment. This is motivated by 
usage models such as server consolidation where service 
level agreements motivate the degree of performance 
differentiation [1][4] desired for some applications. Since 
the relative importance of the deployed applications is best 
managed by the operating software environment, we 
experiment with software-guided priorities (e.g. assigned 
by server administrators) to efficiently manage hardware 
resources. We compare the use of software-guided 
priorities (QoS-aware caches) against dedicated runs 
(isolated cache use), shared runs (unmanaged shared 
caches) as well as fair caches (equal private cache 
partitions per application). 
 
In order to experiment with QoS, we have developed two 
QoS software prototypes (QoS-aware Linux as well as 
QoS-aware Xen). The primary contribution of this paper is 
the description of these prototypes as well as the case 
studies performed using them. The case studies include 
multi-tasking usage scenarios as well as virtualized usage 
scenarios and show the trade-offs between four resource 
management approaches (dedicated, shared, fair and QoS) 
on CMP platforms.  We show that enabling and enforcing 



software-guided priorities is much more effective in 
providing QoS as compared to traditional approaches like 
static partitioning to CMP cache management.  

2. BACKGROUND AND CHALLENGES 

In this section, we highlight the motivation behind QoS by 
describing disparate threads of execution on CMP 
platforms and the shared resource problem. 

2.1. Disparate Threads of Execution 

The key trends in software that promote the use of 
disparate threads of execution (Figure 1) on CMP 
platforms are as follows: 
 
(a) Multi-tasking becoming more common: As more 

threads and cores are enabled on the processor die, the 
compute capability is best utilized by multiple 
simultaneously executing tasks or applications (see 
Figure 1a). The behavior and platform resource usage 
of these simultaneous threads of execution will be 
quite disparate in nature (e.g. one is cache-friendly 
and the other is streaming in nature). At the same 
time, it is possible that one application is of much 
more importance than the other (e.g main application 
execution running along with a background streaming 
activity like network backup). 

(b) Virtualized workloads becoming mainstream: While 
the concept of virtualization [6] has been around for a 
while, the recent re-emergence of virtualization as a 
means to consolidate workloads in the datacenter 
exposes the critical need to pay attention to the 
performance behavior of heterogeneous virtual 
machines running simultaneously on a server. This 
becomes even more important as virtualization-based 
usage models continue to rapidly evolve and 
encompass office workstations/desktops and even 
home PCs/laptops. In these scenarios, many disparate 
workloads are consolidated together and hardware 
performance isolation [4] becomes a desired feature 
for the high priority applications that can be identified 
by the user or system administrator. 
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Figure 1. Disparate Threads on CMP Platforms 

2.2. Example Resource Sharing Impact 

In this section, we present an example of resource sharing 
impact based on trace-driven simulation of cache sharing 
in a CMP platform.  
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(a) Illustrating Dedicated and Shared Usage 
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(b) Performance Impact of Resource Sharing 

Figure 2. Implications of Resource Sharing 
 
Figure 2 illustrates the motivation for QoS and resource 
management. The figures show the resource and 
performance implications of a high priority application  
running in standalone (dedicated) mode versus when it is 
running in shared mode with a low priority application. 
We chose Art - a SPEC 2000 benchmark [16], to represent 
a high priority application, and Iperf (a network 
benchmark) to represent the low priority application.  
These experiments were conducted in a virtualized 
environment with each application running in a different 
virtual machine. This simulation study (Figure 2b) shows 
how sharing the cache uniformly between applications 
affects the performance of the high priority application 
(Art). The Y axis on the left depicts the cache occupancy 
of Art relative to the case when it runs alone. The Y axis 
on the right plots the MPI (Misses per Instruction) of Art, 
also relative to the case when it runs alone.  
 
Figure 2b shows that the high priority application’s MPI 
increases by 9.9X when co-scheduled with Iperf. Iperf 
exhibits very poor cache locality and effectively thrashes 
the cache, which accounts for the observed degradation in 



Art’s performance. In order to minimize the effects of 
resource contention, the priority of the application needs to 
be comprehended by the platform in order for it to allocate 
hardware resources (in this case, cache space) accordingly. 
In this paper, we experiment with QoS policies and 
mechanisms to manage the cache resource distribution 
between high and low priority applications.  It should be 
noted that the need for resource management stems both 
from the need for providing better QoS to high priority 
applications as well as the need for better determinism in 
the platform. 
 

3. FROM CHAOS TO QOS 

In this section, we introduce the QoS policies for resource 
management, and the architectural modifications necessary 
to support these policies. 

3.1. Resource Management & QoS Policies 

Most modern processors do not enforce any QoS in the 
cache. In these systems, the amount of cache space 
consumed by each thread depends upon both its memory 
footprint and its memory accesses patterns. This leads the 
cache utilization to be determined solely by the individual 
application’s demand. This has been described as 
“capitalistic” in a previous study [5].  
 
We classify QoS policies into three categories: utilitarian, 
fair and elitist. The utilitarian policy attempts to improve 
the overall throughput (the greater good) of the platform 
by maximizing resources for the cache-friendly application 
and minimizing resources for the cache-unfriendly 
application. The fair policy attempts to equalize the cache 
resources provided to each of the individual applications 
or provide unequal cache resources to ensure equal 
performance degradation for each of the applications [11]. 
The elitist policy considers the relative priority of the 
applications running simultaneously and ensures that a 
high priority application is provided more platform 
resources than the low priority applications. In other 
words, this policy caters to the elite application(s) at the 
possible expense of the non-elite classes of applications. 
 
In this paper, we consider elitist policies for resource 
management and compare them to fair resource 
management (equal resources) as well as no resource 
management. This study focuses on performing resource 
management in the last level cache. We experiment with 
both static and dynamic mechanisms for achieving elitist 
QoS.    
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Figure 3. Platform QoS Policies 
 
Figure 3 illustrates the impact of QoS mechanisms on both 
the applications, and the whole system. Static and dynamic 
QoS policies differ in the way the target performance and 
resource constraints are specified. Static policies are 
defined if the specified target performance does not 
require continuous adjustment of resources. This policy 
defines the QoS target and constraint in terms of the 
resource usage metric (e.g. cache space) provided to the 
high priority application and low priority applications 
respectively This requires mechanisms to statically 
distribute resources, but not dynamically alter them based 
on resultant performance. For the cache resource, it is 
intuitive that we consider space as the primary metric.  
 
Dynamic QoS requires resource allocation to be 
continuously monitored based on the observed 
performance and the targets/constraints. The targets and 
resource constraints are specified in terms of process’ miss 
rates and cache space allocation respectively. The dynamic 
policy we implemented involved varying both the 
resources provided to different processes and the targets 
assigned to them based on the current phase of the 
application. Both applications start out sharing all the 
available resources without any constraints. The high 
priority process’ initial target is set to be half its observed 
miss rate and the low process’ degradation threshold to be 
twice its observed miss rate. The adjustment of targets and 
constraints is performed every 50 million instructions. If 
the high priority application’s miss rate is lower than the 
target, and the degradation threshold for the low priority 
application is not exceeded, then the percentage of 
resources assigned to the low priority application is 
decreased by a factor of two. If the low priority 
application’s performance degrades beyond its target miss 
rate, the percentage of resources assigned to it is increased 
by 10%. The targets for the applications are made more 
aggressive (decrease the target miss rate by 10%) or 
conservative (increase the target miss rate by 10%) 
depending upon whether they are met or not.  

3.2. QoS-Aware Platform Architecture 

The elitist policy requires that threads or applications be 
classified into various priorities and architectural support 



be added to control the hardware resource consumption 
based on the classification. Figure 4 illustrates the 
architecture that meets these requirements. As shown in 
the figure, applications are assigned various priorities by 
the administrator. Based on the priorities, the QoS 
resource table (QRT) is updated with cache space 
limitation data for each priority level. When threads are 
scheduled to run, their memory requests are tagged with 
priority levels and cache space limitation information. The 
cache subsystem is modified to maintain the priority level 
associated with each line. There are counters that monitor 
cache space used by each priority level. These counters are 
used by the replacement policy to evict the appropriate 
lines within the set. For example, when the low priority 
resource usage limit is reached, it requires that a low 
priority victim be chosen from the cache set. Similarly, the 
high priority process should preferentially replace the low 
priority process’ entries since we our goal is an elitist 
policy. We accomplished this by modifying the LRU 
policy to first identify low priority lines and pick the 
victim among these lines for replacement, in the 
abovementioned scenarios. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Architecture support for QoS 
 
In order to enable users or administrators to specify the 
priorities of the application/thread/process, we require 
QoS support in the execution environment (OS or virtual 
machine monitor). In section 4, we describe in more detail 
the architectural support required to provide QoS, and 
introduce prototypes that mimic this support. 
 

4.  QOS PROTOTYPES FOR EXPERIMENTATION 

In this section, we describe the QoS support required in 
systems software (OS and VMM) and present prototypes 
that we developed to emulate this support. 

4.1. QoS-Enabled OS 

The OS based platform QoS prototype is built on the 
Linux operating system. In order to provide QoS support, 
we made several modifications and additions on the 2.6.16 
Linux kernel on a Fedora Core 5 host machine. These 
changes are illustrated in Figure 5.  
 

 
Figure 5. Illustration of QoS-Enabled Linux  

 
The QoS software prototype implementation comprises of 
these major components: 
(a) QoS bits in process state:  QoS bits that indicate the 

priority level and associated information were added 
to each process’ state.  This information is saved and 
restored during context switches. 

(b) QoS register emulation: The Linux scheduler was 
modified to emulate saving and restoring the QoS bits 
from the process state and to commit it to processor 
architecture state (QoS register). This was achieved by 
employing a special I/O instruction during every 
processor context switch.  More specifically, we first 
read the QoS bits value from the process context that 
was switched in. Then we issued an out (x86 ISA) 
instruction that sent this value to an unused I/O port 
0x200(typically, this port was reserved for joystick). 
This instruction was used to communicate the process’ 
QoS value to the hardware. Port 0x200 was registered 
as the “QoS” port in the kernel I/O resource 
registration module to guarantee that it would not be 
used by other I/O devices. 

In addition, to allow administrators to manage QoS values 
associated with running processes, the Linux kernel was 
modified to provide: 
(a) QoS APIs for user/administrator: Two extra system 

calls were added to the Linux kernel to provide 
interfaces for programs to access the QoS bits which 
were stored in kernel address space. 

(b) QoS utility program: This tool was implemented in 
the host Linux machine to query and modify the QoS 
value of the running applications. 

4.2. QoS-Enabled VMM 

Our virtualization software prototype is similar to the OS 
prototype, except the enhancements were made to the 
hypervisor instead of the operating system. This involved 
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making the following modifications to a popular 
hypervisor, Xen 3.0.2: 
 
(a) QoS at virtual domain level: QoS bits that indicate 

the priority level and associated information were 
added to each domain’s (virtual machine’s) state. 
This information is saved and restored during context 
switches. 

(b) QoS register emulation: The Xen scheduler was 
modified to emulate setting the processor architecture 
state (QoS register) based on the priority of the 
domain. We used a setup similar to that described in 
Section 4.1 to expose this register to the underlying 
hardware. 
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Figure 6. Illustration of QoS-Enabled Xen 
 

With this infrastructure, it is possible to make the cache 
subsystem cognizant of the priority of the virtual machine 
it is servicing. 

4.3. Experimental Framework 

In order to evaluate proposed OS/VMM prototypes, we 
setup the experimental framework shown in Figure 7. 

 
Figure 7. Simulation framework for QoS aware OS/VMM 
 
We employed SoftSDV [18], a full system simulator that 
allowed us to functionally model the architecture and 
provided an interface for enabling performance models. 
We used the functional model of SoftSDV to boot a 
Fedora Core 5 Linux disk image for a QoS-enabled OS 
simulation. A disk image of Xen 3.0.2 running virtual 
machines with Suse 9.1 Linux was used for QoS-Enabled 
VMM simulation. SoftSDV provided us with APIs which 

we used to pass the instructions executed by the running 
applications or VMs from our functional model to the 
performance model. These instructions included the 
special out instructions mentioned in Section 4.1, which 
triggered the performance model to simulate the ensuing 
memory accesses with the specified priority. We integrated 
CASPER [8] - a functional cache simulator which was 
modified to support the cache QoS policies described in 
Section 3.3, into this experimental framework, for 
evaluating cache performance. 
 

Parameters Values 
Core Number 1/2/4 
L1 (Private) Unified, non-inclusive, 32KB, 16 way, 

64B Block, LRU 
L2 (Shared) Unified, 512/1024/2048/4096/8192 

KB, 16 way, 64B Block 
Table 1. Cache Simulation Parameters 

 
Table 1 summarizes the parameters for our experiments.  
We evaluated the QoS-Enabled OS prototype using a few 
applications from the SPEC 2000 benchmark suite [16] - 
Ammp, gcc, art, applu and mcf, which show large cache 
sharing impact when they are co-scheduled. The standard 
ref input sets were used with these benchmarks. The QoS-
Enabled VMM prototype was evaluated using Iperf (a 
networking benchmark) and SPEC 2000 benchmarks – art, 
swim, mesa and bzip2. In all experiments, we collected the 
cache sharing statistics for billion instructions executed by 
the system. 

5.  PRELIMINARY RESULTS AND ANALYSIS 

In this section, we describe the experimental results for our 
QoS-Aware Linux and QoS-Aware Xen software 
prototypes. 

5.1. Multi-Tasking Experiments on QoS-
Aware Linux 

In the multi-tasking experiments, we assumed the 
execution platform to be two/four core CMP architecture. 
Two or four applications run simultaneously and share the 
L2 cache.  

5.1.1 Two-Core CMP Scenario  

Our evaluation of the static QoS policy on two-core CMP 
is done by varying the cache space limit for low priority 
applications from 10% to 40% of the cache. We compare 
this to the shared mode execution without QoS, which is 
denoted by a cache space limit of 100%. We use the 
resource performance metric to evaluate effectiveness in 
terms of the L2 cache’s MPI (misses per instruction). 
 
Figure 8 shows the impact of QoS policy when Ammp and 
Gcc are running simultaneously (on separate cores) and 
share a 512KB cache. 
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(b) Ammp(hi)+Gcc(lo) 

Figure 8. Impact of QoS in two-core CMP scenario 
 
The two Y-axes represent the MPI (lines) and average 
cache space occupancy (bars) of the co-scheduled 
applications respectively. The MPI value is normalized to 
the case when both applications share the L2 cache without 
any prioritization.  Figure 8a illustrates the scenario when 
Gcc has a higher priority than Ammp. As expected, the 
MPI of Gcc reduces when we reduce the cache space 
available for Ammp. This is accompanied by an increase 
in the the MPI of Ammp. The MPI reduction was seen to 
be as much as 57% when Ammp was constrained to 
occupy 10% of total cache size. A noteworthy finding was 
that Gcc benefited more from cache Qos than Ammp, even 
though Ammp occupied more cache space than Gcc in the 
base case with no QoS (around 65%). This conclusion was 
based on the fact that Ammp’s MPI increased by only 
around 125% when it lost about 40% of total cache space 
(Figure 8a), while the MPI increase of Gcc was around 
320% when it lost about 15% of total cache space (Figure 
8b). This explains why reducing the cache space available 
for Gcc did not cause significant MPI reduction for Ammp 
(Figure 8b).   
 
Note that although we limit the cache space for low 
priority application, this limitation is not a hard bound and 
applications can sometimes exceed the specified limits. 
This is because of a couple of reasons. One, sharing of 
data by applications, (shared libraries etc) results in 
processes sometimes accessing data tagged with the 

priorities of other processes. In our implementation, cache 
lines are tagged with the priority of the last application that 
touches the data. This accounts for the calculated low 
priority application occupancy potentially being larger 
than the prescribed space limit. Secondly, cache locality 
dictates that we need not always have a replacement 
candidate with the same priority present in every set. Since 
we try and constrain total cache occupancy and not the 
occupancy per set, such situations lead to the low priority 
process potentially exceeding the bounds set for it. 
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Figure 9. Performance of Gcc and Ammp running 

simultaneously with different execution modes  

 
Figure 9 illustrates the MPI of Gcc and Ammp under 
shared mode (without prioritization), fair mode (each 
application occupy half of the cache), static QoS mode 
(ammp is low priority and is constrained to occupy 10% of 
the cache), dynamic QoS mode (ammp is low priority and 
the amount of cache it occupies is dynamically modified) 
and dedicated mode (applications occupy the whole 
cache).  The MPI value of each application is normalized 
to the case when it runs under shared mode.  Figure 9 
shows that both static and dynamic QoS are more efficient 
policies to approach the performance improvement bound 
(dedicated mode) than fair QoS.  For applications like 
Ammp that occupy large percentages of cache space in the 
shared mode, it is not surprising that fair QoS adversely 
affects performance. 

5.1.2 Four-Core CMP Scenario  

In the four-core CMP scenario, we assume that one high 
priority application, two mid level priority applications 
and one low priority application run simultaneously and 
share a 1MB cache. Under the prioritized running mode, 
the middle priority application is limited to occupy 10% of 
total cache space and the low priority application will 
bypass the L2 cache (i.e. 0%). 
 
Figure 10 shows the impact of QoS when Applu (high 
priority), Art (mid level priority), Gcc (mid level priority) 
and Mcf (low priority) are co-scheduled. In Figure 10a, the 
MPI value of each application is normalized to the case 
when it shares the cache with other applications without 
prioritization.  Figures 10b and 10c show the cache 



occupancies of four applications without and with cache 
QoS respectively.  When we limit the cache space of Art 
and Gcc and bypass the cache accesses from Mcf, the MPI 
of Applu reduces by 33%.  As a result, the MPI of Art, 
Gcc and Mcf will increase by 21%, 150% and 216% 
respectively.  Figure 10b and Figure 10c clearly show that 
employing cache QoS can efficiently assign a deterministic 
amount of cache space to the high priority application. The 
cache occupancy of Applu increases from 7% to 67% on 
average with prioritization. Mcf’s occupancy is slightly 
larger than 0% and Art’s occupancy is around 30% of the 
cache, due to shared Linux libraries as explained in section 
5.1.1 
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(b) No Cache QoS 
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(c) With Cache QoS 

Figure 10. Impact of QoS in four-core CMP scenario 
 

5.2. Virtualization Experiments on QoS-
Aware Xen 

We ran our experiments on a uni-processor with split 
Level-1 instruction and data caches (each 32 KB) and a 
unified Level-2 cache. Only the Level-2 cache was made 
QoS-aware. Our experiments involved running two 
benchmarks, in different virtual machines. One of the 
virtual machines was given a higher priority, allowing it to 
use the whole cache, while the other had a lower priority 
and was constrained to use only a portion of the cache. 
The cache size was varied between 1MB and 8MB to 
mimic large server workloads. We also varied the amount 
of cache allocated to lower priority virtual machines 
between 10% and 40% of the cache. We ran three sets of 
benchmarks which are described in this section: 

5.2.1 Co-scheduling Compute intensive and I/O 
intensive workloads 

Compute intensive tasks typically have more uniform 
cache access patterns and are far more cache friendly than 
I/O intensive applications. Constraining the amount of 
cache available to the I/O application should help improve 
the MPI of the compute intensive process, when they are 
co-scheduled, since I/O applications cause an increase in 
the number of conflict misses, effectively thrashing the 
cache. 
  
For the purpose of this study we ran Iperf and Art in a 
virtualized environment. We ran Iperf in Xen’s Domain 0 
(along with the I/O VM) and assigned it a low priority. We 
enabled Xen’s native scheduler which allows Domain 0 to 
use as much as 75% of the CPU. Art was run in a different 
virtual machine (Domain 1) which was allowed to access 
the whole cache, and was scheduled for up to 25% of the 
CPU time. The two benchmarks were co-scheduled for a 
billion instructions varying both the amount of cache at 
Iperf’s disposal and the total size of the cache. 
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(a) MPIs of Art and Iperf sharing a 4MB cache 
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(b) MPIs of Art and Iperf sharing a 2MB cache 

Figure 11. Impact of QoS while co-scheduling Art and 
Iperf 
 
Figure 11 shows the static QoS evaluation results from our 
QoS prototype experiment with an I/O application (Iperf) 
and a computation application (Art) sharing a last level 
cache. These plots also show the percentage of cache 
occupied by Art and Iperf at different cache sizes. When 
running Art (high priority) and Iperf (low priority) with a 
4MB level-two cache (Figure 11a), we find that placing a 
limit on the cache space that the lower priority application 
can occupy significantly decreases the MPI of the higher 
priority application (reduced to around 40%). This MPI 
reduction is corroborated by the cache occupancy graph 
which shows Art’s occupancy stabilizing when Iperf is 
limited to 30% of the 4MB cache. The reduction in Art’s 
MPI is more than the increase in that of Iperf, indicating 
that resource management in this situation not only has a 
positive influence over the high priority application, but 
also helps lower the net MPI of the system (Art and Iperf 
running together). Another point to note from the graphs is 
that the occupancies of the low priority applications aren’t 
strictly bound by the upper limits we set. As explained in 
section 5.1.1, this is due to sharing of VMM entries (which 
inherit the priorities of the processes they are invoked 
from) and maintaining global cache occupancy counters. 
 
When the cache size is less than 2MB (Figure 11b), we see 
that the percentage occupancy of Art increases 
monotonically to use most of the cache. This indicates that 
the cache is too small to fit Art’s working set completely. 
Constraining the amount of cache accessible by Iperf has a 
positive impact on Art’s MPI at the cost of Iperf cache 
performance. The overall MPI of the system increases 
significantly when Iperf is constrained to run with less than 
10% of the 2MB cache, indicating that resource 
management of small caches could adversely affect the 
system’s performance if the lower priority application is 
not allocated a minimum amount of cache space.  
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Figure 12. Performance of Art and Iperf running 
simultaneously with a 4MB cache with different execution 
modes 

 
Figure 12 illustrates the MPI of Art and Iperf running in 
shared mode (without prioritization), fair mode (each 
application occupies half of the cache), static QoS mode 
(Iperf is assigned a low priority and occupies 10% of the 
cache), dynamic QoS mode (Iperf is assigned a low 
priority and the amount of cache it occupies is dynamically 
modified) and dedicated mode (both applications have 
dedicated 4MB caches).  The MPI value of each 
application is normalized to the case when it runs in shared 
mode. Figure 12 shows that both static and dynamic QoS 
are more efficient policies to approach the maximum 
performance improvement point (dedicated mode) than 
fair QoS. In addition, dynamic QoS can be tuned to 
provide better performance for the platform in general and 
not just one application.  

5.2.2 Co-scheduling two compute intensive workloads  

 In this study, we ran Swim and Art, two SPEC2000 
workloads that have very different cache scaling patterns. 
Swim’s MPI (misses per instruction) remains fairly 
constant as the cache size changes while Art’s MPI falls 
rapidly as the size of the cache increases. We constrained 
the amount of cache the domain running Swim could use, 
while allowing the domain running Art access to the whole 
of the cache. We modified Xen to schedule both domains 
for equal time slices (while using the default period of the 
SEDF scheduler). 
 
Figure 13 shows the static QoS evaluation results. These 
plots also show the percentage of cache occupied by Art 
and Swim at different cache configurations. While running 
Art (high priority) and Swim (low priority) with an 8MB 
level-two cache (Figure 13a), we find that placing a limit 
on the cache space that the lower priority application can 
occupy significantly decreases the MPI of the higher 
priority application (reduced to less than 70%). Cache 
management in this situation not only has a positive 
influence over the high priority application, but it also 
helps lower the net MPI of the system (Art and Swim 
running together).  
 



At 4MB (Figure 13b), we see that Art occupies most of the 
cache, even in the shared case. This high and almost 
constant cache occupancy graph explains the lack of a 
radical reduction in Art’s MPI at this cache configuration 
when Swim’s cache space is changed. For cache sizes 
smaller than 4MB, the performance boost for Art is small 
due to the fact that the cache size is too small to 
accommodate the working sets of both Art and Swim. 
 
These studies indicate that enabling cache-priorities at the 
granularity of virtual machines definitely decreases the 
amount of contention in the cache and allows the higher 
priority applications to be assured a much better quality of 
service. They also suggest that even overall system 
performance could receive a boost at certain hardware 
configurations, which are dependent upon the workloads in 
question. 
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(a) MPIs of Art and Swim sharing an 8MB cache 
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(b) MPIs of Art and Swim sharing a 4MB cache 

Figure 13. Impact of QoS while co-scheduling Art and 
Swim  
 
Figure 14 illustrates the MPI of Art and Swim  running in 
shared mode (without prioritization), fair mode (each 
application occupies half of the cache), static QoS mode 
(Swim is assigned a low priority and occupies 10% of the 
cache), dynamic QoS mode (Swim is assigned a low 
priority and the amount of cache it occupies is dynamically 

modified) and dedicated mode (both applications have 
dedicated 8MB caches).  The MPI value of each 
application is normalized to the case when it runs in shared 
mode.  The figure shows that both static and dynamic QoS 
are more efficient policies to approach the maximum 
performance improvement point (dedicated mode) than 
fair QoS.  This figure also illustrates the uniform behavior 
of Swim across the different modes, due to which static 
and dynamic QoS actually provide a performance boost to 
not only Art but the whole system. 
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Figure 14. Performance of Art and Swim running 
simultaneously with a 8MB cache with different execution 
modes 
 

5.2.3 Four-VM CMP Scenario  

In this study, we scaled the number of virtual machines to 
four, with each of them running a different application, to 
gauge the effectiveness of our scheme in larger CMP 
environments. In the four-VM CMP scenario, we assume 
one high priority application, two mid-level priority 
applications and one low priority application are running 
simultaneously and share a 4MB cache. Under the 
prioritized running mode, the mid-level priority 
applications are limited to occupy 20% of the total cache 
space and the low priority application is limited to occupy 
10% of the total cache space. All these applications were 
run with equal scheduling priority. 
 
Figure 15 shows the impact of QoS when Art (high 
priority), Mesa (middle priority), Bzip2 (middle priority) 
and Iperf (low priority) are co-scheduled. Each of these 
applications run in different virtual machines which share 
the physical resources available to one core. In the Figure, 
the MPI value of each application is normalized to the case 
when it shares the cache with other applications without 
prioritization.  As is evident from the figure, limiting the 
amount of space available to the other applications results 
in a 45% reduction in miss rate for Art. Mesa also 
surprisingly benefits from QoS which is perhaps because 
of the decreased interference from Iperf. The performance 
degradation for the other mid-level priority process - 
Bzip2, is minimal. Iperf’s performance sees a degradation 



which is consistent with its getting allotted just 10% of the 
cache. 
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Figure 15. Impact of QoS in four-VM CMP scenario 

 

6. SUMMARY AND FUTURE WORK 

In this paper, we presented the motivation behind QoS-
aware platforms and execution environments by showing 
case studies of CMP cache resource usage. We showed 
that it is important to provide better determinism in the 
platform especially in the context of multi-tasking and 
virtualization. By enabling QoS mechanisms in the 
hardware as well as exposing it to the systems software, we 
can address this requirement. We described two software 
prototypes (QoS-aware Linux and QoS-aware Xen) that 
allow experimentation with multi-tasking and 
virtualization usage scenarios. The preliminary case 
studies with these usage scenarios showed that QoS-
enabled caches work better than unmanaged caches and 
fair caches. We also show that enabling QoS provides 
better determinism to the high priority application by 
bringing its performance closer to that of when the 
application is running by itself.  
 
In future, we hope to experiment more with dynamic QoS 
mechanisms that improve the performance of not just one 
application, but the whole platform. We also plan to 
experiment with QoS in other CMP resources (memory, 
interconnect and I/O). We plan to investigate the impact of 
QoS for realistic applications and virtual machined 
deployed on future architectures. Last but not least, we 
found that the lack of benchmarks for virtualization and 
multi-tasking scenarios is a significant problem for 
experimenting with such usage models. This is an open 
problem area that is to be addressed as these usage models 
become widespread. 
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