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Abstract 

In this thesis the development of PLATO, a special circuit simulator, is 
sketched, with an accent on efficiency and applicability. The simulator is a 
mixed-level simulator, based on a general piecewise linear modeling tech· 
nique, which allows uniform modeling for a broad class of components. A 
piecewise linear dynamic model consists of a matrix, relating three types of 
variables: linear, dynamic and complementary. The piecewise linear behavior 
is determined by the complementary variables and equations. Several prop· 
erties of this modeling are given, and some examples of models are intro· 
duced. 

The internal data structure of the simulator reflects the structure of electric 
and logic circuits, that are the basic circuits to be solved with PLATO. The line ar 
equations are stored in a sparse matrix structure, while the dynamic and 
complementary equations are stored in the components of the circuit. The 
hierarchy of components is replaced by a list, connecting the global values 
with the components. This allows a considerable reduction of the size of a 
problem. 

Each type of equation is solved with its own method: the line ar equations with 
an LU decomposition, the complementarity problem by an algorithm devised 
by Van de Panne, and the dynamic equations by a numerical integration 
method. The interaction between these three basic methods, especially be· 
tween the Van de Panne algorithm and the integration method, is explained. 

To keep the LU decomposition up to date an efficient update is performed, 
which visits only those elements in the matrix that change value. The spar· 
sity guarantees that this involves only few elements. 

The achievement of the Van de Panne algorithm is excellent, as always a valid 
solution is found for the nonlinear equations. In contrary, traditional algo· 
rithms have convergence problems, or are not so broadly applicable on a wide 
range of components. The Van de Panne algorithm is also efficient, because 
only those components are visited that are related to the calculations. 

Of the large number ofknown integration methods, several implicit methods 
with a low order are applied. To improve the efficiency, a multirate integra· 
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viii Abstract 

tion method is used. In this method, variables are grouped in several clusters 
based on their activity. Less active clusters are recalculated less often, so most 
effort is put in calculating the active components. These clusters are deter
mined dynamically, so varia bles may shift to another cluster if their activity 
changes. An explicit integration method, based on the exponential behavior 
in time of the variables, is shown to be too instable to be applicable. 

For reasons of efficiency and accuracy, only the updates on the variables are 
determined. To improve the efficiency further, these updates are not calcu
lated directly, hut again only their update is determined. This second update 
is a sparse vector whose calculation is easy. Because the actual values of the 
variables solved by the linear equations are not used any more, the output of 
the simulator is based on the update vectors also. 

Several examples show the applicability of the simulator. An analog-digital 
converter shows the behavior of the simulator on a typical mixed-level cir
cuit. A special vector-parallel version of the simulator is developed for neural 
networks, used in the solution of the Traveling Salesman Problem. A switch 
capacitor filter shows the behavior of the simulator on a circuit with strong 
dynamic properties. 



Samenvatting 

In deze dissertatie is de ontwikkeling geschetst van PLATO, een speciale circuit 
simulator, met de nadruk op de efficiëntie en toepasbaarheid van het pro
gramma. PLATO is een mixed-level simulator, gebaseerd op een algemene 
stuksgewijs-lineaire modelleringstechniek, waarmee een brede klasse van 
componenten beschreven kan worden. Een stuksgewijs-lineair dynamisch 
model bestaat uit een matrix die drie typen variabelen met elkaar relateert: 
lineaire, dynamische en complementaire variabelen. Het stuksgewijs-line
aire gedrag wordt bepaald door de complementaire variabelen en vergelijkin
gen. Verschillende eigenschappen van de modellering worden besproken, en 
enkele voorbeelden van modellen worden geïntroduceerd. 

De interne data-structuur van de simulator is afgeleid van de structuur van 
electrische en logische circuits, de belangrijkste circuits die met PLATO gesi
muleerd worden. De lineaire vergelijkingen zijn in een ijle matrix-structuur 
opgeslagen, terwijl de dynamische en complementaire vergelijkingen van de· 
componenten in het circuit worden gebruikt. De hiërarchische opbouw van 
het circuit is vervangen door het gebruiken van een lijst, die de globale waar
den koppelt aan de componenten. Dit maakt het mogelijk om de grootte van 
een probleem aanzienlijk te reduceren. 

Ieder type vergelijking wordt opgelost met zijn eigen methodiek: de lineaire 
vergelijkingen via een LU-decompositie, het complementariteitsprobleem 
met een algoritme bedacht door Van de Panne, en de dynamische vergelijkin
gen met een numerieke integratiemethode. De interactie tussen deze drie 
basismethoden is beschreven, in het bijzonder die tussen het Van de Panne 
algoritme en de integratiemethode. 

De LU-decompositie moet vaak veranderd worden. Dit gebeurt efficiënt door 
een algoritme waarmee alleen de te veranderen elementen bezocht worden. 
Dit zijn er slechts weinig door de ijlheid van het systeem. 

Het Van de Panne algoritme geeft uitstekende resultaten, en vindt altijd een 
oplossing voor de niet-lineaire vergelijkingen. Op dit punt schieten veel tra
ditionele algoritmen tekort en hebben problemen met de convergentie voor 
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zo'n grote klasse van componenten en circuits. Dit algoritme is ook efficiënt, 
aangezien slechts in die componenten wordt gerekend waarin iets verandert. 

Van de vele mogelijke numerieke integratiemethoden worden enkele impli
ciete methoden met een lage orde toegepast. Om de efficiëntie te verbeteren 
wordt een zogenaamde multirate integratiemethode gebruikt. Hierin worden 
de variabelen gegroepeerd aan de hand van hun aktiviteit. Minder aktieve 
groepen worden minder vaak doorgerekend, dus de meeste moeite wordt 
gestoken in de berekening van aktieve componenten. De groepen worden 
dynamisch bepaald, zodat variabelen van groep veranderen als hun aktiviteit 
verandert. Een expliciete integratiemeth'ode, gebaseerd op het exponentiële 
tijdsgedrag van de variabelen, is te instabiel om toe te passen. 

De efficiëntie en nauwkeurigheid worden beter door alleen de veranderingen 
van de variabelen uit te rekenen. Om de efficiëntie verder te verhogen, wor
den die veranderingen niet direkt bepaald, maar worden de veranderingen 
van de veranderingen uitgerekend. Dit geeft een ijle vector die makkelijk te 
bepalen is. Omdat de eigenlijke waarden van de variabelen niet meer ge
bruikt worden, is de uitvoer van de simulatorook gebaseerd op de veranderin
gen in waarden. 

Verschillende voorbeelden laten het toepassingsgebied van PLATO zien. Een 
analoog-digitaal omzetter illustreert het gedrag van de simulator voor een 
karakteristiek mixed-level circuit. Een speciale vector-parallel versie van de 
simulator voor neurale netwerken is ontwikkeld en toegepast om het han
delsreizigersprobleem op te lossen. Een switch-capacitor filter maakt duide
lijk dat de simulator ook een circuit met een sterk dynamisch gedrag goed kan 
uitrekenen. 



Pref ace 

This thesis describes the development of a piecewise linear simulator at the 
Design Automation Section of the Department of Electrical Engineering of 
the Eindhoven University ofTechnology. This simulator bas been developed 
for more than a decade, based on the work of Wim van Bokhoven, by Jos van 
Eijndhoven, Mart van Stiphout, myself, and our students. Because the differ
ent aspects of the problem, and their solutions, can not be understood without 
a description of the principles and basic algorithms used.in the development 
of the simulator, this thesis contains a description ofboth these principles and 
algorithms, and the enhancements made by myself. 
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1 Introduction 

1.1 Simulation 

Simulation is the use of one or more models, whose behavior can be deter
mined easily, in order to analyze the behavior of a system. This behavior is 
the reaction of the system on external and internal stimuli. Simulation can 
therefore be used to solve three types ofproblems: to check the correctness of 
newly designed systems, to predict the behavior of complex systems, or to 
compare several different systems. 

After the design of a new system, it should be checked on design errors. Pos
sible errors in the design can usually be found by examining the results of a 
simulation. Simulators (tools that perform simulations) are regularly used 
for this purpose by architects, electronic chips designers, aircraft builders, 
and hydraulic engineers. Of course, simulation is only interesting if (nearly) 
all errors can be found at a reasonable price. 

A simulator can also be used to forecast the behavior of an existing system 
that is too complicated or too large for an accurate enough prediction of its 
behavior. Using a simulator, a better prediction may be found. The standard 
example is the weather forecast, of which the quality bas clearly been 
improved since the meteorologists use supercomputers to calculate the 
weather. 

A third use fora simulator is the exploration of the design space, to try to find 
a system that better suits the specifications of the desired hehavior. Ifthe sys
tem is complicated, a first design may not be satisfactory, and it may not be 
clear how to improve this design. Using variations on the first design may 
indicate whether it can be improved or not. Simulating these variations will 
be much easier and usually cheaper, and the best variant can be chosen. 

Simulation can have several important disadvantages: it may be expensive, 
some errors in the design may not be found, and the results may be totally 
wrong. Errors may occur due to inaccurate modeling or to simulator specific 
errors. Therefore a user of a simulator should always keep in mind that the 
results may be of inferior quality. We like to advocate here that a simulator 
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2 Introduction 

(at least in the beginning) should be used only by experienced people, who 
must examine the results of the simulation carefully and who can judge 
whether these results are good or bad. Only when the simulator is tested for 
a range of well-known problems, a less experienced user could use the simu
lator confidently on this type ofproblèms. In all other cases the user should 
have control over some global parameters to direct the simulator to a good 
approximation. 

A simulator approximates the characteristics of one or more systems. It can 
be mechanical, e.g. a wind-tunnel with small models of airplanes, or it can 
be a program running on a computer. We are only interested in computer pro
grams. The kind of systems that we simulate are in the first place VLSI cir
cuits (chips). These are electronic circuits, either digital or mixed analog/digi
tal of nature. Other kinds of systems are less suitable for our simulator, be
cause it is tuned to these circuits, and will therefore not be discussed. 

1.2 Modeling 

A system is defined by its inputs and outputs, i.e. the system is a function from 
the space of inputs to the space of outputs, which may depend on the state of 
the system. We are almost always interested in time-dependent systems, for 
a finite time interval. The system itselfis also finite (finite-dimensional in
put, output and internal state). The inputs and outputs are functions of the 
time. They usually represent some measurable physical entities, hut we will 
not restrict ourselves to this. The values of the inputs are prescribed and do 
not depend on the system. They may be chosen by the designer, hut they can 
also be the output of(a simulation of) an other system. 

The first step in simulation is the creation of a mathematica! description that 
approximates the system's functionality. This description is called the model 
of the system. Usually there are many descriptions possible, ranging from 
rather simple models to very complex ones. Which model is chosen depends 
on the following requirements: 
1. Accuracy: a simple model of a system is usually less accurate than a com

plex model. This may also be applied in one system, where one (sub)func
tion may be accurately enough modeled in one part of the system, hut the 
same model may be too inaccurate in an other part. 

2. N umerical stability: it may be necessary to replace a simple model by a 
complex model, or vice versa, to ensure that the simulator approximates 
the behavior of the system accurate enough. 

3. Simulation time and computer resources: a simple model needs usually 
less time and less other resources than a more complicated model. 

Complex systems can be built from (simpler) subsystems. The modelstaken 
for the subsystems form, together with the topological relations ( connections) 
of the complex system, the model of the complex system. These subsystems 
may again contain subsystems, etc. Recursive relations between the systems 
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are forbidden, so a system may not contain itself as a subsystem. Such a hier
archical description of a system is usually shorter than a description with its 
hierarchy expanded. Many of its subsystems are identical or are character
ized with a few parameters, so they are described only once. 

The model of the basic components determines the characteristics of a simu
lator. Therefore a simulator is usually classified by the type ofmodels it can 
handle. For electronic circuits there are several classes of simulators. They 
are ordered by the level of complexity and abstraction of the models, from low 
(physical and accurate) to high (logica} and behavioral but inaccurate). In 
genera}, a higher level of modeling implies a faster simulation, and therefore 
allows a larger circuit to be handled, but yields less accurate results. 

The lowest level of modeling is the device modeling. With this method each 
single component (transistor, MOSFET, etc.) is modeled by several equations 
that approximate the physical laws very accurately. At most a few compo
nents can be simulated together, because otherwise the simulation takes too 
much time. The behavior of a single component is calculated very accurately, 
hut a circuit with hundreds of transistors is too large to simulate (Selberherr 
1984). 

The electrical level is the second level ofmodeling. Each component is mod
eled with several continuous nonlinear equations. These simulators calculate 
the behavior accurately, but for many circuits their results are poor. For digi
tal or mixed digital/analog circuits the numerical stability is not guaranteed, 
and the simulator can easily fail. Also for too large circuits (more than 1000 
components) they use too much computer resources to be of practical use. 
These simulators already exist a long time (the first ones appeared around 
1965) and are sometimes called traditional simulators. The most famous ones 
of these simulators are SPICE (Nagel 1975) and ASTAP (Weeks et al. 1973). 

Because these simulators are used intensively, new programs have been de
veloped to improve the performance by applying modern techniq ues in model
ing and simulation. Two of these programs, optimized for MOS simulation, 
areMOTIS (Chawlaetal. 1975) and SPLICE (Newton 1979). Alarge class ofsimu
lators using the Waveform Relaxation technique have been developed in re
cent years, for example RELAX (Lelarasmee et al. 1982), SWAN (Dumlugol et al. 
1987), and TOGGLE (Hsieh et al. 1985). 

The third class of simulators are the logic simulators. They model the circuit 
with logica} units, and are exclusively designed to simulate large digital cir
cuits. Attempts to use multi-valued logic to simulate analog components too 
seem interesting, but lack a thorough numerical foundation. Also strongly 
coupled systems are not handled well. Examples oflogic simulators are cos
MOS (Bryant et al. 1987) and LDSIM (Krodel and Antreich 1990). 

A subclass are the switch level simulators, that model transistor circuits as 
RC networks with ideal switches. Also for digital systems they behave well, 
hut with analog components the simulation result depends on the type of cir-



4 Introduction 

cuit. Four of these simulators are BRASIL (Warmers et al. 1990), CHAMP (Saab 
et al. 1988), MOSSIM (Bryant 1984), and SLS (van Genderen and de Graaf1986). 

The behavioral simulators form the last class ofVLSI simulators. Theymodel 
the circuit on a high and abstract level. This is useful for exploring the design 
space at a high level. Because they can model large pieces of hardware in one 
component, it is possible to simulate multi-chip designs in one run. They are 
inherently unable to simulate analog circuits. Examples of these simulators 
are ESCHER+ (Janssen 1989) and VHDL simulators (IEEE 1988). 

In recent years, a new branch of simulators bas been developed, the mixed
level simulators, specially suited for both analog and digital circuits. The rea
son for creating these simulators is that the traditional analog and digital 
simulators do not meet the requirements for state-of-the-art VLSI design. 
The increasing number of mixed analog/digital chips and the rapidly growing 
number of components on the chips imply that new techniques are necessary 
in simulation. The creation of new simulators able to simulate these chips is 
usually based on an existing simulator. Until now three different techniques 
have been developed to design a mixed-level simulator: 
- Incorporating digital components in an analog simulator, without basically 

changing the solution methods. 
- Incorporating analog components in a digital simulator. This can lead to a 

multi-valued logic simulator. 
- Splitting the circuit in an analog and a digital part and using separate sim

ulation algorithms for the different parts. This is called a mixed-mode sim
ulator. The different algorithms may be implemented in two different simu
lators. 

A basic problem in mixed-level simulation is the interface between digital 
and analog components. Whether both types are simulated apart or together 
does not really matter, because their interaction always introduces instabili
ties in the simulation process. In particular, when a discontinuity, originating 
from a digital component, is transferred to an analog component, the analog 
simulation algorithm must handle this carefully, to avoid incorrect simula
tion results. In general, the results will be better for problems that suit better 
the original simulator, i.e. a mostly analog problem solved by an originally 
analog simulator, a mostly digital problem by an originally digital simulator, 
and a clearly separated analog/digital problem by a mixed-mode simulator. 

An extension of a mixed-level simulator is a multi-level simulator, which can 
also simulate parts of a circuit on the behavioral level. With this extension it 
is possible to use one simulator at each stage of the design process. lt is then 
possible to predict the behavior of a system accurately, even before large parts 
are designed at the hardware level. 
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1.3 PLATO 

In this thesis, we discuss the electronic circuit simulator called PLATO, an acro
nym for Piecewise Linear Analysis TOol. This simulator has been developed 
at the Eindhoven University of Technology during the last decade (van 
Eijndhoven 1984; van Stiphout et al. 1990; van Stiphout 1990 ). It is a genuine 
mixed-level simulator, based on a uniform modeling technique for all compo
nents: the piecewise linear modeling introduced in (van Bokhoven 1981). A 
broad class of models is available, ranging from models at the device level up 
to the register transfer level. On the lower bound the accuracy of the equa
tions is the limiting factor, while on the upper bound the complexity of the 
components limits their modeling. 

Piecewise linear modeling is not widely used in circuit simulation. Other re
search on piecewise linear models has been performed by Chua and others 
(Chua and Deng 1986; Kahlert and Chua 1990). However, because their set 
ofmodels is a subset of our set of models, their techniques and algorithms are 
not directly suitable in the design of PLATO. 

Recently, piecewise linear models have been used in the process of designing 
analog circuits, in the simulator PLANET (Leenaerts 1992). These are the same 
models as used in PLATO, hut the algorithms used in PLANET do not allow 
employing all possible models. 

The precision of a piecewise linear model is inherently lower than a model 
with nonlinear functions. Although it is possible to create accurate models, 
these are not used much, because they are cumbersome to define with piece
wise linear functions. But the accuracy of the basic analog component models 
is sufficient to calculate the behavior of most analog system with nearly the 
same accuracy as an analog simulator. 

As said before, the accuracy and the effort spent in the simulation process are 
directly related. So a fast simulation will usually be inaccurate, and an accu
rate simulation will take a long time. Because our simulator is a mixed-level 
simulator, its run times will be somewhere between those of an electrical level 
simulator and a digital simulator. A disadvantage is that it will be slowerthan 
the electrical level simulators on electrically modeled circuits and also slower 
than digital simulators on digitally modeled circuits. This is inevitable be
cause our simulator is not optimized for these kinds of models. 

Although the accuracy is not too high, the algorithms and techniques used in
ternally in the simulator are accurate enough for all purposes. Many of these 
algorithms and techniques are also used in traditional or more recently devel
oped analog circuit simulators. The important difference with these simula
tors is the piecewise linear modeling technique. The modeling and the algo
rithms allow a natura} mixing of digital and analog components. Discontinui
ties do not pose problems, so our attitude towards them is: "We love them !". 
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1.4 Overview 

In this thesis the development of PLATO will be discussed. The in tent is to give 
insight in the choices of the algorithms used in the creation of an efficient sim
ulator. The basics of the piecewise modeling technique are introduced in 
Chapter 2. Several of its basic properties are derived and a theorem on the 
existence of solutions is proved. Some examples give an idea of the capabili
ties of the modeling. The models have three different types ofvariables and 
equations: linear, dynamic, and piecewise linear. 

In Chapter 3, the basic data structures are introduced and the solution algo
rithm for the linear equations is discussed. The Van de Panne algorithm is 
presented in Chapter 4. This algorithm solves the piecewise linear equations. 
Also a method to find a DC solution is given. In Chapter 5, the solution of the 
dynamic equations is discussed and the multirate integration method is in
vestigated. The combination of the Van de Panne algorithm and the integra
tion method is also discussed here. 

Several aspects of the implementation, to improve the efficiency and accuracy 
of the simulator, are considered in Chapter 6. Chapter 7 contains several ex
amples of systems that have been simulated with PLATO. In Chapter 8 some 
conclusions are formulated and future extensions are discussed. A 'small' 
model for certain functions is derived in Appendix A. Some non standard 
notations are explained in Appendix B. 



2 Piecewise Linear Modeling 

2.1 Introduction 

In this chapter the heart of our simulator is described, the piecewise linear 
modeling technique. We restrict ourselves to systems that can be modeled by 
an implicit nonlinear differential-algebraic equation f(s(t), r{Q) = Ts(t), in 
which fis a function from 1R n x 1R m- JR n, s(t) is the state vector of the system 
at time twith dimension n, r{t) is a vector of inputs (external stimuli) at time 
t of dimension m, and the time t is in the interval [t0, tel with t0 < te. 

s(t) = d~~Q, and the n x n matrix T, of the form [~ ~] with I the identity 

matrix, describes the partition of the state vector s into an algebraic vector 
x and a dynamic vector u, with length nx and nu respectively. The algebraic · 
and differential equations are split similarly to create the system: 

{ 

f1(x(t), u(t), r{t)) = 0 
(2.1) 

f2(x(t), u(t), r{t)) = û(t) 

The differential equation f2(x(t), u(t), r{t)) û(t) must have boundary or ini
tia! conditions before it can be solved, otherwise it is ill posed. Several con
ditions are possible, of which we generally choose the initial condition 
u(t0) = u0. For now, the inputvector r{t) will be ignored; in Chapter 3 it is 
shown that adding this vector is straightforward. Furthermore, in the next 
chapters the explicit time dependency is in most places not shown, i.e. x, u, 
etc. is written instead of x(t), u(t). 

Our models are restricted to piecewise linear mappings, defined by a finite set 
of pairs (R;, L;). Each R; is a closed polygonal convex region, and each L;is an 
implicit line ar differential-algebraic equation defined on this region. The po
lygonal convex regions can be written in the form 

R; = { (x, u) 1 N; ( ~) + a; ~ 0 } , (2.2) 

7 
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with N; a matrix of size k; x n, defining the k; boundary hyperplanes of the 
region R;. The intersection of a boundary plane with the region is called a 
facet. In genera!, all R;have full dimension, and their union covers R n. In Sec
tion 2.3, exceptions to these assumptions are given. The linear equations L; 
have the form 

[;[ ;[](~) + [:h] ~ (i) . (2.3) 

Each submatrix, A ~etc., and each subvector, b~ and b~, have an appropriate 
fixed size, independent of the current region. All A~u are square (nu x nu), and 
there are p :S nx linear equations (A~ is px nx). If p < nx, nx - p extra 
(input) equations must be added to the system to create a unique and solvable 
system. 

Because most systems we are interested in have continuity properties, we 
consideronly continuous mappings. Laterit is shown that discontinuous rela
tions are still possible in our modeling. Continuity is defined by the following 
properties: 
• Each facet B ofa region R i is the intersection of this region with an adjacent 

region Rp and B is also a facet of this adjacent region. 
• The right hand si de of the linear equations is continuous on common facets, 

i.e. [ ;[ ;[j( ~) + [ ~~] ~ [ ;[ ;~]( ~) + [~] for each ( ~) in R1 n R1 

The continuity does not require that the intersection of two regions is 
restricted to their common boundary face, so two regions may (partially) over
lap. Also the linear equations may differ in such an intersection. 

2.2 The matrix model 

The implementation of piecewise linear mappings must be considered care
fully. Simply tabulating each region with its linear function will give many 
problems, because the number ofregions increases exponentially when new 
functions and varia bles are added to the system. This can be deduced from the 
following example: consider a system with nvariables. Suppose that one vari
able Xn+1 with the following equation is added to the system: Xn+1 = lxnl· The 
state vector has one extra element and one global boundary (Xn = 0) is added 
to the system. The number of regions doubles, because each original region 
is split in two regions, in the !fh dimension. So adding one nonlinear equation 
to the system at least doubles the number of regions. This exploding number 
of regions will give insurmountable problems even for moderately small sys
tems. 
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To avoid this exploding number of regions and linearizations, a compact 
method must be found for storing all relevant information. The continuity of 
each mapping strongly reduces the degrees of freedom, as will be shown in 
this section fora special case. This low degree offreedom can be captured in 
a matrix model, that will be used in the simulator. Some properties of this 
modeling are discussed in the next section. 
To simplify the equations, consider temporarily only linear equations with no 
uvariables. In the next paragraphs, the relevant parameters are enumerated 
with indices indicating the region or their facets, e.g. n12 is the nonnal of the 
facet between adjacent regions R1 and R2, pointing into region R1. The facet 
itselfis denoted by 8 12. All regions are full dimensional. 

First, consider the linear equations of a mapping in two adjacent regions R1 

and R2: A1 x + a 1 == 0 in R1 and A2 x + a2 == 0 in R2• Let their common 

facet 8 12 be (part of) the hyperplane nf2 x + c12 = 0. The continuityrequires 

that A1 x + a1 = A2 x + a2 for each xwith nf2 x + c12 = 0. 
This is only possible if there is a vector v12 with A1 x + a1 = 

A2 x + a2 + v12(nf2 x + c12),i.e. A1 - A2 = v12 nf2 and a 1 - a2 = v12 c12. 

So the continuity implies that there is a vector v12 that, together with the 
boundary equation, determines the update of the linear equations from re

gion R1 to region R2• This well-known fact has been described earlier, see for 
example (Chien and Kuh 1976; van Eijndhoven 1988). The update is a rank 

1 update, i.e. the difference between the two matrices A1 and A2 is the product 
of two rank 1 matrices (vectors). 

When R1 has more than one facet, the continuity also restricts the degrees 

of freedorn of a ma pping. First consider a third region R3, also adjacent to R 1, 

which has a non-empty intersection with R2• Let the boundary hyperplane 

between R1 and R3 be nf3 x + c13 = 0, with n13 linearly independent of n12, 

and let the update of the line ar equation on this plane be determined by a vec
tor v13. Assume that R2 and R3 do not overlap. See Figure 2.1 for an illustra
tion of this topology. 

' 
R :i· One or more facets? 

3 • 

~-~:----
n12 

Figure 2.1. Topology with more than one facet 
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First notice tbat either R2 and R3 have different linearizations, or the line ar 

equations are identical in all three regions. Ifthe linearizations in R2 and R3 

would be equal, the linearupdates v12 nf2 and v13 nf3 are equal. Because n 12 
and n 13 are linearlyindependent, this implies v12 = v13 = 0, so the updates 

vanish and the linear equations are equal in R1 U R2 U R3 . 

The continuity of the modeling implies that R2 and R3 do not have a common 

facet, unless their updates are dependent, i.e. v12 = 1v13 fora certain scalar 

À. Then also their intersection is determined by À. The following proof shows 

this: suppose R2 n R3 is part of the hyperplane nl3 x + c23 = 0. The continu

ity of the linear equations implies that there exists a vector v23 with 

v23 nl3 = v13 nf3 - v12 nf2• Because n 12 and n 13 are linearly independent, 
this is only possible if v12 = Av13 fora certain À. The conclusion can be drawn 

that, if v12 and v13 are linearly independent, R2 and R3 do not have a common 

facet. If v12 and v13 are linearly dependent, the mapping is fully determined 

by the region R1 and its linear equations, the update v12, and the factor Á. 

Now suppose that two facets, B24 and B34, are boundaries of a region R4 sepa

rating R2 and R3, as depicted in Figure 2.2. Because R2 n R3 C 834, the nor

mal n34 is in the plane spanned by n12 and n13, satisfying n34 = 

µ 11 n 12 + µ 12n 13 forcertainscalarsµ 11 andµ 12.Similarlythenormal n24 sat

isfies n24 = µ 21 n 12 + µ 22n 13 for certain µ 21 and µ 22, and the scalars c 24 and 

c34 must satisfy c 24 = µ 21 c 12 + µ 22c 13 and c34 = µ 11 c 12 + µ 12c 13• 

Figure 2.2. Topology with four facets 

This topology imposes several restrictions on the scalars µ if Consider the 

facet 812 = { x 1 nf2 x + c 12 = 0 A nf3 x + c 13 ;::: 0 }. Let x be an interior 
point of 812 (i.e. x $. 813); x also satisfies nI4 x + c24 > 0. 

Now nf4 x + C24 = µ21(nf2 x + C12) + µ22(nf3 x + C13) = µ22(nf3 x + C13)· 

So n[4 x + c 24 > 0 and nf3 x + c 13 ;::: 0 together imply that µ 22 > 0. 



2.2 The matrix model 11 

Analogously one can prove that µ 11 > 0. Applying this reasoning on each of 

the facets 8 24 and 8 34 gives only one extra relation: µ 11µ 22 - µ 12µ 21 > 0. 

Because the magnitude of the vectors n24 and n34 is not important, we restrict 

the values of µ 11 and µ 22 to 1 : µ 11 = µ 22 = 1. A geometrie interpretation is 

that the facets 8 12 and 8 34, when taken together, form one continuous bound

ary surface, which may bend on the crossing with another boundary surface. 

We call 8 34 an extension of 8 12 over 8 13. Notice that 8 34 and 8 12 form one 

hyperplane if µ 12 = 0. The case µ 11µ 22 - µ 12µ 21 = 0 corresponds with a 

topology with only three facets, as described previously. 

The linear equations on R4 depend entirely on previously defined values. This 

is shown by comparing the update in R4 over two different paths, one crossing 

8 12 and 8 24, the other crossing 8 13 and 8 34. This gives the equation 

(v12 + µ21V24)nf2 + V24 nf3 = V34 nf2 + (v13 + µ12V34)nf3· Because n12 
and n13 are linearly independent, the vectors v24 and v34 can both be 

expressed in previously defined values: v24 = (µ 12 v12 + v13)/d and 

v34 = (v12 +µ 21 vrn)/d,whered= 1 -µ 1au 21 .Asshownabove,d> Ointhis 

topology. The conclusion is that a continuous piecewise linear function in four 

regions depends on the linearization and boundaries of one region plus the 

update vectors v12 and v13 and the factors µij· 

These properties of a piecewise linear continuous mapping can be extended 
if more facets of R1 meet in one corner of the region. The following theorem 
describes the degree of freedom in such a situation, with kfacets with linearly 
independent normals and k linearly independent updates on the lineariza
tion. First aprincipal submatrix and aprincipal minor are defined: a princi
pal submatrix with index set a is Maa = (Mij) for i,j E a, and a principal 
minor is the determinant of a principal submatrix, det(Maa). Notice that the 
positiveness of the factors µ 11 , µ 22 and din the case offour regions is equiva-

1 t t 11 . . 1 . f h . [µ11 µ12] .. en o: a pnnc1pa mmors o t e matnx µ 21 µ 22 are pos1tive. 

Theorem 2.1: 
Let a region R1 be given, with k facets B;, each part of a hyperplane 
{ x 1 nT x + C; = 0}, with linearly independent normals n;. Let also a 
linearization on R1 be given, and k linearly independent vectors V;, that 
define the rank 1 updates across the 8;. Let k2 scalars µij be given, with 
all µ ii = 1, defining the k2 - k facets that are found by combining two 
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facets, as described previously. Suppose that each principal minor of 
the matrix(µ q) is positive. Then a continuous piecewise linearmapping 
with 2k regions and a linearization on these regions is uniquely defined 
by these vectors and scalars. 

Proof: 

For k = 1 and k = 2 this theorem has already been proven in the pre
vious paragraphs. The proof will be given with complete induction, so 
suppose that the theorem is valid for given k - 1, k ;;;:::: 3. 

First, create from the first k - 1 facets and their (k - 1 )2 parameters 
µij the topology with 2k- i regions. Add the last facet hyperplane to the 
system, nl x + ck = 0. This facet determines, together with a given 
update vector vk, the linearization on both of its sides. It can be ex
tended over each of the other facet of R1, because its normal is indepen
dent of the otherfacet normals. On each of these intersections, two pa
rameters determine the extensions of the related facets and the lineari
zations in the newly defined regions. These parameters are the scalars 
µik and µki• i = 1, ... , k - 1 with the special element µ kk = 1. 

Because the normal of 8k is independent of the other normals, and the 
principal minors of the matrix (µ ï) are positive, the normals of the 
extensions of 8k are also independent of all other normals of facets. 
Therefore these extensions intersect the other facets, and each region 
of the k - 1 topology is split in two regions by an extension of 8 k· So the 
new topology contains 2k regions. 

On each intersection of one of the original facets and an extension of 8 k• 

two parameters determine the extensions of these two facets. But these 
parameters depend on the already given parameters µij, except for the 
facets of R1, as will be shown now. 

Consider one of these intersections, say of the extension of 8 2 over 8 1 
with the extension of 8k over 8 1• Because the new extension of Bk has 
already been determined, one of the parameters can not be chosen 
freely. Now this extension is also found by another path, crossing first 
8 2 and then 8 1• In both ways, an update on the linearizations over this 
facet is determined, depending on one parameter each. Both updates 
must be identical, which implies that the other parameters are also de
pendent on the parametersµ q· Concluding, the linearizations in the re
gions that can be found by crossing no more than two facets have al
ready been determined. It is clear that the extension of Bk over the 
other facets is also determined by the given parameters and vectors. 

0 
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Corollary: 

If the vectors V; are not linearly independent of each other, Theorem 2.1 
is still valid. 

Pro of: 

The topology of the regions is determined only by the normals n;and the 
parameters µij· o 

This theorem shows that the degrees offreedom in a simple topology are only 
dependent on the facet equations of one region, the linearization in that re
gion, the updates on the linearization after crossing a facet, and the bends of 
the facets. For more complex topologies, in which the facet normals are not 
all linearly independent or with overlapping regions, the freedom in the map
ping can not yet be determined. Also the freedom in a topology with a facet 
that has not a common point with all other previously given facet is not 
known. 

With this theorem in mind, a matrix model with four submatrices is in
troduced. The first submatrix is the linearization in a region R 1. A second sub
matrix contains all facet normals of the mapping, i.e. n12 and n13 in the pre
vious topology offour facets. Not only the facets of R1, hut also normals of 
other facets, trivially satisfied in R1, are in this matrix. The update vectors 
v, related to the facets, form the third submatrix of the model. The last part 
of the matrix contains the mutual influence factors µij. However, the values 
of these factors are not restricted in any way. The implications of this freedom 
will be given in the next section. 

This modeling is shown with the previously discussed topology with four fac
ets. The composite matrix/vector system is described by: 

[

A1 V12 V13] [x] [a
1

] [o] nf2 1 µ12 Z1 + C12 = W1 
nT µ 1 Z2 C13 W2 13 21 

(2.4) 

The four variables z1, z2 and w1, w2 are introduced to simplify the next rea
soning, and play an important role in the subsequent sections and chapters. 
First notice that the choice z1 = z2 = 0 gives the linearization ofregiorr R1. 

Then the boundary inequalities of R1 are equivalent to w1 ~ 0 and w2 ~ 0. 

Now z1 can be expressed in terms of w1, z2 and x: 

- nf2 X + W1 - µ12 Z2 - C12 = Z1 • (2.5) 

and z1 can be eliminated in the linear equation and in the last row of (2.4): 

(A1 - V12nf2) x + V12W1 + (V13 - V1aU12) Z2 + a1 - V12C12 = 0 
T T - (2.6) 

(n13 - µ21nd x + µ21W1 + (1 - µ21µ12) Z2 + C13 - µ21C12 - W2. 
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Both equations can be combined in: 

[:f ·;· ~:~:1 [~] + [~:,] = [~1] 
n

24 
µ 21 ,t 24 2 

(2.7) 

This is the same system as (2.4), with z 1 and w1 swapped. Now the choice 
w1 = z2 = 0 together with z1 ;::: 0 and w2 ;::: 0 describes the linearization 
and fäcets of R2• Notice that the last equation in (2.4) denotes 8 13, and the 
last equation in (2.7) denotes 824, the extension of 8 13• 

Analogously, the two other regions can be derived with their choice of z 1, z2, 

w1 and w2: R3 has z1 = w2 = 0 and w1 ;::: 0, z2 ;::: 0, and R4 has w1 = 
w2 = 0 and z1 ;::: 0, z2 ;::: 0. The process of swap ping entries of the zand w 
vectors is called piuoting or performing a pivot. It is in fact calculating a par
tial inverse of the matrix. The diagonal entry of the matrix related to pivoting 
is called the pivot. Each region can be found by pivoting on a number of diago
nal entries. Earlier in this section, it has been proven that in this configura
tion of four different non-overlapping regions all possible pivots are positive. 
Notice that each region satisfies 

{;: g (2.8) 
w· z 0 

where w;::: Omeans Vi: W;;::: 0. So wandzarecomplementary: if Z; = Othen 
W; ;::: 0 and vice versa. Each region is fully determined by the set 
a = { i 1 W; = 0 } and the piecewise linear mapping is then fully described by 
equation (2.4) and the complementarity relations (2.8). 

The general form of our piecewise linear model contains also the vector u to 
model the dynamics of the system. Both x and z depend on the dynamic vari
able u, and ü depends on x and the piecewise linear vector z. So a piecewise 
linear differential equation for u is introduced this way. The general model 
has the following form: 

[

Axx Axu Axz] [x(t)l [axJ [ 0 l Aux Auu Aux u(t) + au = Ü(t) 
Azx Azu Azz z(t) az w(t) (2.9) 

w(t) ;::: 0, z(t) ;::: 0, w(t) · z(t) = 0 

u(t0) = u0 

Both the wand the zvariables (equations) are called the piecewise linear or 
pl variables (equations). The xvariables (equations) are called the linearvari
ables (equations), and the uvariables (equations) are called thedynamic vari
a bles (equations). 
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2.3 Properties of the modeling 

In equation (2.9) a system is introduced, of which in this section some genera} 
properties are given. 

First, this modeling can be associated with an already known problem. Con
sider only the pl equations and the complementary relations. Introducing 
M Azz and q = Azx ·x + Azu u + az gives the following relations: 

{ 
w = Mz + q (2.lû) 
w ~ 0, z ~ 0, w . z = 0 . 

This problem is known in the area of Operations Research as the Linear Com
plementarity Problem (LCP). It is related to the linearly constrained qua
dratic optimization problem: that problem transforms to an LCP by applying 
the Kuhn-Tucker conditions. For the LCP several existence theorems are 
known, as well as many algorithms to solve the problem. One of these algo
rithms will be applied to solve equation (2.9). 

It is easy to see that instead of performing several different pivots one at a 
time, one pivot with the submatrix Maa can be performed, where Maa = (Mij)• 
i, j E a, and a is the set of pivots. This is called a block pivot, contrary to a 
single pivot on one diagonal element. The sign of such a block pivot is the sign 
of the determinant of Maa· If all single pivots of a are nonzero, this sign is the 
product of the signs of the single pivots. Notice that this sign needs not to be 
the product of the diagonal entries of Maa· 

Some other obvious properties are that the number of facets of a region is 
maximally nz, the length of the vectors wand z, and that the maximal number 
of regions is 2nz. There can be less regions, in particular when regions have 
less than nz facets. The continuity of the mapping is simply deduced from 
the continuity of the zand wvectors across the facets. 

An other interesting property is that the boundary inequalities are not de
fined uniquely. An inequality relation can be updated with a linear equation: 

(Azx + L Axx) X + (Azz + L Axz) Z + az + Lax = W , (2.11) 

in which L is a arbitrary matrix. This means that the facet can change, hut 
that then also the LCP changes. With this method one or more xvariables can 
be eliminated from Azx. These variables can be considered as output vari
ables, depending on the other xvariables. This dependency can then be inves
tigated more directly. 

A second interesting possibility is the diagonalization of Azz· If L can be cho
sen so that the new Azz is a diagonal matrix, the new facets, described by 
((Azx + L Axx) x + az + Lax ); = 0, have an independent topology, i.e. the 
facets do not bend over each other. In this way, the influence of two parallel 
facets on each other can sometimes be explained. 
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In the previous section, the pivot was introduced in the derivation of the 
matrix model. lt is related to the relative position of the two involved neigh
boring regions, as is shown now. Introduce a = {i} and ä as the complement 
of a, i.e. ä = { 1, ... , nz }\a. Consider again the basic problem with no dynamic 
variables. The pl equations after a nonzero pivot on M;; are: 

( Z;) = [~' ii ~
1 n] ( W;) + [q:i] ' (2.12) 

W11 M äi M mr Z11 q 1r 

with. 

and 

M' .. = M-::- 1 
Il Il 

M 'lïi = M([; M;j 1 

M' ;r = -Miï 1 M;r 

M 00 = Ml'IZl - Mai M;j 1 Mc 

{ 

q'; = - M;/1 q; 

q' u: = 'h- Mm M;Ï1 qi ' 
where qp = (Azx x + Azu u + az)p for q = i, ä. 

There are three possibilities: the pivot is positive, negative, or it is zero and 
can not be performed. For a positive pivot, q'i is positive if qi is negative, i.e. 
xis on the other side of the facet. So both regions (in the x-space) are on differ
ent sides of their common facet. But if the pivot is negative, q'; is positive 
when qi is positive. This means that both x-regions are on the same side of 
the facet and overlap. There are two linearizations defined in the same (sub-) 
region. Which linearization will be chosen depends on criteria used to solve 
the problem. As will be explained in a later section, two negative pivots can 
be used to describe a model with a hysteresis behavior (see Figure 2.6.c). 

The third possibility is different: the pivot, Mii, is zero and can not be per
formed. This is the situation: 

{ l~: ~!K::)o~ !,~)o~ l~)o (2.13) 

The region described by (2.13) is: 

(2.14) 

This region is part of the facet hyperplane qi = 0. The variable Z; is not di
rectly solvable from the system. The number of inequalities remains the 
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same, while an extra linear equation is added to the system. In this case the 
region is not full dimensional. When a larger set f3 :::> a can be found so that 
M{J{J is regular, a block pivot with this matrix can be performed. The newly 
found region is no longer a part of this facet hyperplane, and is full dimen
sional. The sign of the block pivot once again determines on which side of the 
facet hyperplane the next region is situated. 

Considering this probl.em in the full system (with x- and u-variables), equa
tion (2.14) can be interpreted with stating that one inequality is transformed 
in an equality(qi 0), and that(when there is ajwith (Axz)ji ~ 0) one equal
ity can be chosen that is transformed in an inequality: an inequality is ex
changed with an equality. The nett effect of a zero pivot is a discontinuity with 
respect to this hyperplane. So with a continuous piecewise linear mapping a 
discontinuous piecewise linear function can be modeled. The conclusion is 
that, because the pivots are not limited to be positive, discontinuities can be 
modeled with a zero pivot. 

2.4 Existence of solutions 

Consider the full system 

[ ~:: ~:~ ~::] [0 + [!:l = [~] 
Azx Azu Azz zj azj w (2.15) 

w ~ 0, z ~ 0, w . z = 0 
u(to) = Uo 

The problem of determining criteria for the existence of a solution is split in 
three parts, related to interpretation of the system at three different levels. 
Firstly it is a linear equation in x, depending on u and z. Secondly it is a differ
ential equation in u, depending on x and z. Thirdly it is an LCP in wand z, 
depending on x and u. The existence problem is also considered on these three 
levels. 

2.4.1 The linear equations 

Notice that xcan be solved only when Axx is regular. This is nota strong condi
tion, because Axx represents the current linearization of the x-part of the sys
tem. In general, a singular Axx means that the system specification is either 
incomplete or overdetermined. Ifhowever a solution exists when Axx is singu
lar, some elements of x are determined by the LCP or dynamic equations and 
some elernents of z or u by the linear equations. This problem is discussed in 
Section 3.5 about parallel capacitors, where a heuristic algorithm is described 
to find a solution for a special case. 

With Axx regular, x can be eliminated from the other equations in (2.15): 
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[
A:uu A:uz] (u) + (a:u) = ( û) 
AzuAzz z Bz W 

(2.16) 
w ~ 0, z ~ 0, w . z = 0 
u(t0) = u0 

where A'pq = Apq - Apx A;} Axq and a'p = ap Apx A;} ax for p, q = u, z. 
These matrices are independent of any update on the LCP or dynamic equa
tions with a linear equation, as described in the previous section. Therefore 
several representations, with different pl or dynamic equations, may describe 
the same problem. 

Equation (2.16) can also be viewed on two levels. It is a differential equation 
in u depending on z(a piecewise linear differential equation), or an LCP in w 
and z depending on u (a dynamic LCP). 

2.4.2 The piecewise linear equations 

A criterion must be found that establishes the solvability of the LCP for all 
reached values of u. First, some remarks are made about the more general 
requirement that there is a solution for all q, with qdefined as in (2.10). There 
is a vast amount of articles written about this problem, see for example 
(Cottle and Stone 1983; Doverspike and Lemke 1982; van Eijndhoven 1984). 
The conditions, under which a solution exists for all q, all depend on proper
ties of the matrix A' zz = Azz - Azx A;} Axz· The matrices Azz, Azx, and Axz 
are usually composed from a given set (see the next chapter ), hut the matrix 
Axx varies unpredictable for different problems. Therefore the properties of 
A' zzCan not be (easily) validated. In (van Bokhoven 1981), some conditions 
on electrical systems are given under which a unique solution for a statie 
problem is found. However, many complex and interesting systems do not sat
isfy these conditions. 

In many cases, the term Axz zreaches only a subspace of all possible vectors. 
The existence of a solution can sometimes be derived from considering this 
property. With the following theorem, a criterion is presented for linking the 
solvability of a system to the mapping of this subspace. The idea is that the 
updates on the linearizations are in a way bounded. Only the linear part must 
be bounded, the dynamic variables have more freedom. See Figure 2.3 for a 
graphical interpretation of this theorem. 

Theorem 2.2: 
If there exist a matrix Banda number c, such that each x, zand wthat 
satisfy for each u the LCP 

{
Azz Z + Azx X + Azu U + 8z W (i) 
w ~ 0, z ~ 0, w . z = 0 

also satisfy Il Axz z B x Il s c, then, for any regular Axx with Axx + B 
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also regular, and for any Axu, any ax, and all u, the system 

Pro of: 
Let d =Il A;} Il c. Let u be fixed, and let ax(u) = Axu u + ax and 
az(U) = Azu u + az. Define three surfaces in JR2n: 
V = { (x, y) 1 3z3w: y = -A;} (Axz z + ax(u)) /\ (x, w, z) satisfies (i)}, 

V' = { (x,y) 1 y = -A;} (B x + ax(u)) }, and W = { (x,y) 1 y = x}. 
For each point pin V there exists a point q in V' with Il p - q Il :5 d (take 
the same x-coordinate for p and q, then automatically Il p - q Il :5 d). 

W n V' has one point, because (x, y) E W n V' implies y = x = 
-A;) (B x + ax(u)), or (Axx + 8) x = -ax(u), which has exactly one 
solution. 
Because Visa continuous surface, there must be at least one point (x,y) 

in W n V. This point satisfies y = x = -A;} (Axz z + ax(u)). The 
x-coordinate ofthis point is a solution of the problem. 

0 

Figure 2.3. Graphical interpretation of Theorem 2.2 

Corollary: 
If the matrix Azz is block-diagonal, i.e. Azz = diag((Azz) 1 , .. " (Azz),), 
and each triple ( (Azz) i• (Azx) i• (Axz) ;), i = 1, ... , r satisfies the conditions 
of Theorem 2.2, then Azz satisfies the conditions of Theorem 2.2. 

As will be explained in Chapter 3, the Azz: matrix is block-diagonal, with each 
block originating from one ( electrical) component. So the corollary states that 
it is enough to test the theorem for each component or block of components. 
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There are several types of components and circuits that satisfy Theorem 2.2. 
First, logic components have their output bounded between 0 and 1, so for all 
logic components the theorem is satisfied, independent of the chosen model. 
A second class of components, satisfying the conditions, contains all linear 
components, and all components with Azx = 0 or Axz = 0. These are compo
nents like resistors, linear sources, and capacitors. Especially nonlinear ca
pacitors, of which the voltage is a function of dynamic varia bles only, fall into 
this category. So circuits containing only these components will always have 
a solution, provided the system's matrix Axx is regular. 

A third class of circuits that satisfy the conditions of the theorem are systems 
where only certain combinations of components are allowed. For example 
transistor circuits, where each node has a capacitor connected to ground and 
consequently for each transistor current an explicit equation is defined in the 
transistor model, have always a solution. The applicability of the theorem is 
in these cases based on the dynamics of the system: at the current time point 
a solution is found, and at the next time point a new solution is also found. 
This is observed several times: if a system is modeled with many statie compo
nents (components with no uvariables), and the system contains a feedback 
loop, it is possible that no solution exists or that no solution can be found. 
When some critical components are remodeled so their behavior is dynamic, 
a solution can be found more easily. 

Some components do clearly not satisfy the conditions of the theorem, and so 
may introduce a non-solvable problem. For example, the ideal diode, a major 
electronic device, can be in two states: v = 0 A i ;e:: 0, or v s 0 A i = 0, where 
v and i are elements of the x vector. This model contains only one z variable, 
and does not satisfy the conditions of the theorem. A circuit that has no solu
tion is simply found (Figure 2.4). The circuit with an ideal voltage source and 
an ideal diode is solvable if V0, the output of the voltage source, is negative. 
!fitis positive, there is no solution. So the existence of a solution depends on 
the state of the circuit. 

v 

+ 
diodechar
acteristics 

1 
V0 < 0 

Solution 

Figure 2.4. A simpte circuit and two possible situations 

1 
V0 > 0 

v 

No solution 

This example shows that ideal components may create a non-solvahle circuit. 
When a circuit is created physically with these two components, the parasitic 
effects in the circuit determine a solution. Here, the internal resistances of 
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diode and voltage source determine it. However, this does not imply that a cir
cuit may not contain an ideal diode. The theorem gives only sufficient condi
tions for finding a solution. Specially combining two diodes can create a func
tion that satisfies the conditions of the theorem. Because ourpiecewise linear 
modeling can also he derived from circuits containing only linear dynamic 
and resistive elements and ideal diodes (van Bokhoven 1981), this is not sur
prising. 

2.4.3 The dynamic problem 

The dynamic problem is trivia!. If the linear equations and the LCP have a 
solution, a u-region is defined in which the following linear differential equa
tion must be solved: 

{ 

A" uu u(t) + a" u = û(t) ' 
(2.17) 

u(t0) = u0 

with A" uu = A' uu - (A' uz).a (A' zz)~d (Azu)a• fora the set of pl pivots. Here 
the star notation is introduced: A,.. is the ;th row of A, and A.iis the Jth column 
of A. 

This linear differential equation has always a unique solution. Problems can 
be encountered only at the borders of a region. A continuation of the current 
solution must then be found in another region. This occurs when the time 
derivative of w; w, points to the exterior of the current region, so if there is an 
i with W; = 0 and wi < 0. A solution that can not be dynamically continued 
in the current region is called dynamically invalid. 

If a single nonzero pivot can be performed, the next region is entered. If this 
pivot is positive, the next region is on the other side of the facet. Also the time 
derivative of win this region, W;, is positive, so the solution can be continued 
into this region, and this dynamically valid solution can be chosen. Because 
all functions are continuous, û is continuous over the facet and the solution 
is continuously differentiable on the facet. 

If the pivot is negative, a continuation in the new region is not found, because 
W; < 0 also points out of the new region. Soa third region must be found. This 
exists under the conditions ofTheorem 2.2 (there is a solution fora point in
finitesimally beyond the houndary) and a dynamically valid solution in this 
region is found, because it overlaps the facet. Only if also a zero pivot is en
countered, this is not true, as is explained in the next paragraph. Concluding, 
there is a discontinuity here, hut when the theorem is valid, a new region 
exists from which the solution continues. This discontinuity bas a hysteresis
like behavior because the new region and the original region overlap. In the 
next section, a model exhibiting hysteresis behavior is derived. 

The third possibility is a zero pivot. This also implies discontinuous behavior 
on the facet, hut it may give more serious problems. If a block pivot is per
formed and the piecewise linear problem is solved, this solution may still be 
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not dynamically valid. Contrary to the situation with a negative pivot, this 
solution still can be on a facet. This can happen for instance if the block pivot 
changes the value of an entry of ü {see Figure 2.5). So a third region must be 
found that is dynamically valid. But this region may not exist, because that 
region is part of the facet itself. 

This problem can not easily be solved. Instead of the genera! implicit descrip
tion of the boundaries in terms of x and u, two explicit inequalities for ûmust 
be used in the description of the region. Also the functionality between u and 
u is inverted, i.e. u is a function of ü. These properties will give difficulties in 
calculating a solution. This problem will emerge in the next section in an 
example with ideal logic components Notice that this problem does not exist 
in the x domain, as long as ü does not change at a facet. 

û 
solution 

dynamically valid solutions 

Figure 2.5. An example of a dynamically invalid solution 

The conclusion is that a solution exists under some not too severe restrictions. 
Axx must be regular, and the LCP must have a solution in the neighborhood 
of the starting point ( which may be hard to prove, hut is valid in most practical 
situations). A direct feedback of u and uwith a zero pivot may give problems. 

2.5 Creating piecewise linear models 

With our modeling technique many different components can be modeled. 
The used component models range from simple devices to register transfer 
level. In this range the modeling is best suited to the complexity of the compo
nents. For register transfer level and higher levels the internal complexity of 
the components and the transported values makes the modeling too difficult. 
For accurate device simulation the model will be too large. To give some 
insight in the possibilities of the modeling, in this section the creation of mod
els is discussed. 

One important aspect, which is sometimes forgotten, is that a model should 
function under all circumstances, i.e. a solution is found whenever the input 
of the component is within its domain. This depends also on the algorithm 
being used to find the solution. There is an interaction between modeling and 
solving: if a model is in principle right, hut an otherwise good algorithm fails 
in special cases to find the right region, usually not the algorithm is replaced, 
hut another model is developed. 
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The creation of piecewise linear models is a non-trivia! task. There are a few 
genera! rules that can be applied to simplify the problem, hut the creation of 
a specific function can be difficult. 

First some general rules are given to simplify the task of creating models. 
Then the basic modeling of functions from R to IR is given. These basics are 
applied to create three different models oflogic gates, that are also interesting 
in itself. 

The general rules are: 
• The dimension of the input and output vectors should be as small as pos

sible. This can be accomplished in many cases by taking a suitable linear 
combination of variables. The reason is that lower dimensional modeling 
is much simpler. 

• The function should be partitioned into simpler functions. Like in system 
design, it is easier to build simple subsystems and connect them than to 
build a large system out of one piece. The models can be combined with a 
linear transformation oftheir inputs and outputs. 

• Symmetry should be used if possible. Notice that even functions can be 
created by inserting an absolute function (only one extra z entry) in front 
of the input. For an odd function five extra entries in the wand z vectors 
need to be used (using an absolute and a sign function, and a switch). 

• Already known models can be investigated and adjusted in order to create 
new models. By using linear transformations a different model is created. 
Manymodels have matrix entries that can be modified to change the behav
ior of the model. This can be accomplished by parameterizing these entries, 
instead of creating a separate model for every application. 

By applying these rul es, part of the system might be known already, and other 
parts should be as simple as possible. Now the second part of the modeling 
must be performed. If the resulting functions are from IR to IR and continuous, 
it is possible to approximate them by applying the following algorithm. 

Algorithm 2.1: Creation of a model of a continuous function f : IR - R. 

The function is approximated with a continuous piecewise linear 
function with n breakpoints. Let the breakpoints be at x1, ••. , Xn. Let 
the linearization on the interval [x;, X;+ 1] be y = d; (x - x) + bi> on 
(- oo,x1] be y = d0 x + b0, and on [Xn,oo) be y = dn x + bfl' 
N otice that only 2n + 2 of these parameters are sufficient due to the 
continuity. 

Axx: matrix[1 x2]; Axz: matrix[1 xn]; 
Azx: matrix[nx2]; Azz: matrix[nxn]; 
Only the nonzero elements are giuen. 
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Axx:= [d0, -1); ax:= b0 ; 

for i : = 1 to n do 

od; 

(Azx)i1 := -1; (az)i:= xi; 
(Axz)1i: di- di-1; 
(Azz)ii := 1; 

{ Axx x + ax = d0 x Y + b0 } 

{ x::;; xi} 
{ Update with difference } 
{ Azz = l }; 

With this algorithm n hyperplanes (lines) are created in the (x,y)-space at the 
breakpoints, all parallel to the y-axis. For each plane the update to the linear 
function is simply calculated. Notice that the number of defined regions is 
nz+ 1 instead of 2nz, the theoretica! maximum. This is a general property of 
this modeling: if Azz is the identity matrix and the rank of Azx is 1, there are 
(at most) nz+ 1 regions. 

The problem of creating a minimal-sized model, i.e. a model with minimal nz, 
has not yet been solved. To model a function f : IR - IR with n breakpoints, in 
general more than log2 n pl variables are necessary. Only in special cases of 
symmetry (directly visible or not) less pl variables need to be used, as in the 
square function (van Eijndhoven 1984). In several cases it is possible to use 
a 2x2 submatrix Azz to map a function with four segments. The derivation of 
these 2x2 submatrices and the conditions, under which this mapping is pos
sible, are given in Appendix A. 

Algorithm 2.1 can be automated if a rule is given to determine the break
points of a function. Possible rules are, for instance, placing the breakpoints 
equally spaced, or situating them based on the approximation error. This can 
lead to large models, hut internally only Axz, ax, Azx and az need to be stored. 

These rules and Algorithm 2.1 are clarified by the example of logic gates. 
Models for logic gates are necessary for any mixed-level simulator, so some 
of these models have been defined for our simulator. There are several models 
possihle, depending on their use in the system. Both continuous/discontinu
ous and static/dynamic models can be created and simulated in our system. 
In some detail will be described how three statie models (a continuous, a dis
continuous, and a hysteresis-like model) are derived. Afterwards a dynamic 
model will be given. The inputs of the gate are numbered x1, x2 , ..• , the output 
is y ( 1-dimensional). 

The second rule gives a starting point: the model should be divided in simple 
submodels. For logic gates this is accomplished by defining an intermediate 
variable s, representing the wanted output value. lts value has the property 
thatitis;.;:: 1 iftheoutputofthegateshouldbe1 and :5 Oiftheoutputshould 
be 0. The first submodel creates this variable, the second submodel creates 
the desired output behavior. 

Now the first rule, diminishing the dimension of the vectors, can be applied 
to the input vector. For most basic logic gates, a linear function can be used 
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todefines.Forexample,aninverterhass = 1 - x1 anda3-inputnand-gate 
has s = 3 - x 1 - x2 x3• Only the xor-gate has a nonlinear input part. This 
can be modeled by s = lx1 - x21, which uses one pl variable pair. More com
plex logic function models can be generated by the algorithm described in 
(Kevenaar 1990). 

The first and simp lest output part of the gates is the following piecewise lin
ear function: 

{

y=O forssO 
y = s for 0 s s s 1 
y = 1 for s 2: 1 

With Algorithm 2.1, the system is directly created: 

[Ö
1 ~1 ~ ö

1J[:.] + [g] = [~1] . 
0 -1 Û 1 z

2 
1 W2 

This model is depicted in Figure 2.6.a. 

(2.18) 

(2.19) 

The second model of the output part is a discontinuous function. lt is modeled 
with: 

{ 
y = 0 for s < 0.5 

(2.20) 
y = 1 for s > 0.5 

To create a continuous mapping of this discontinuous function, the vertical 
line segment at s = 0.5 is added to equation (2.20): 

s = 0.5 for 0 s y s 1 . (2.21) 

lnstead of considering y as a function of s, consider y as a function of s + y. This 
is a continuous function and can be modeled by applying Algorithm 2.1: 

[-1 o 1 1l[~] [o] [o] - 1 -1 1 0 z
1 

+ 0.5 = W1 • 

- 1 -1 0 1 z 1.5 W2 
2 

(2.22) 

This map ping has facets that depend on the output of the mapping. The yvari
able can be eliminated from the pl equations of (2.22) to remove that depen
dency and show clearly the zero pivot: 

[

-1 0 
0 -1 
0 -1 

6 1
1

][:.] + [o~s] = [21] • 
-1 2 z 1.5 W2 

2 

(2.23) 

This model is shown in Figure 2.6.b. Notice that this bas become an example 
of a mapping in which two parallel facets have influence on each other. 
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The third statie model of the output of a logic gate is a model with hysteresis. 
This model has y = 0 for s::::; 0.75 and y = 1 for s ~ 0.25. Because both 
regions overlap, there is the possibility to change the output of the gate at an 
arbitrary value of s between 0.25 and 0. 75. This model is made continuous by 
adding the linearization y = -2s + 1.5 in the region 0.25 :s; s :s; 0.75. Like 
in the previous model, consider y as a function of s+ y and apply Algorithm 
2.1: 

[ =~ ~1 ~ 0
2][:,] + [o~5] = [~11. 

-1 -1 0 1 z 1.25 W2 
. 2 

(2.24) 

Eliminating y yields a negative pivot: 

[o 1 
~1 

2

1 2
2
][:,] + [o~s] = [~11 

0 -1 - 2 3 z
2 

1.25 W2 

(2.25) 

This model is pictured in Figure 2.6.c. lf the negative pivot is performed, the 
second pivot becomes also negative. This example shows that two consecutive 
negative pivots create a hysteresis. 

yl 1 y ·, 

td ' ' ' ' ' ' ' 
1 s ' ' s ' ' s 1 1 ' a) b) c) 

--- The boundaries of the mappings. 

Figure 2.6. The logic gate output mapping: a) with a continuous model 
b) with a discontinuity c) with a hysteresis 

These three examples show the behavior of simple models. A dynamic logic 
gate is amore difficult model. The output ofthis gate is analog (the dynamic 
variable u), hut it is easy to switch to a digital or hysteresis-like output by 
transforming the output with one of the above presented models. 

This dynamic model is based on a split in four regions of the (s,u)-plane, with 
in each region a constant ü. This has the advantage, that the function is also 
piecewise linear in time, instead ofhaving an exponential behavior. The idea 
is that the output is dynamic and will reach the desired output value after a 
certain time. This is implemented with two boundaries: on one boundary a 
switch of s sets üto a fixed nonzero value. On the second boundary u switches 
üback to 0. Thisis shownin Figure 2.7. The behaviorofthis model is that the 
output increases to 1 if s > 0.5 and it decreases to 0 if s < 0.5. As soon as the 
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output reaches its maximum or minimum, it remains constant. The model 
uses only four pi variables to implement this behavior: 

1 0 1 0 0 0 0 
0 0 0 d1 0 d2 0 
0 -1 0 0 1 0 0 
0 0 0 -1 0 0 0 
0 0 -1 1 
0 0 0 

d1 
where r = - d - 1. 

2 

r 
0 0 1 
0 -1 0 

y 0 0 s 
0 û u 

Z1 0.5 W1 
+ 1 = W2 • Z2 

Z3 0 W3 

Z4 1 W4 

(2.26) 

This model is difficult to understand at once, so some explanation is given. 
The model is based on two discontinuities, each modeled with the 2x2 pl 
matrix of equation (2.27). 

[
-1 o p ol[~] [o] [o] 0 -1 0 1 z

1 
+ Xo = W1 • 

0 0 -1 0 z 1 W2 
2 

(2.27) 

The matrix of (2.27) models a discontinuity at x = x0: y = 0 for x < x0 and 
y = p for x > x0 . 

The first discontinuity in (2.26), related to z1 and z2 , implements a step func
tion on the inputs. This functional unit sets û high if s > 0.5. Through the 
entry (Azzb it shifts the second boundary, so there is a multiple boundary on 
the line segment (s = 0.5,0 < u < 1). Through the entry (Azz)41 (= r) the. 
influence of the second boundary on û is changed. This is only possible if 
r > 1 (otherwise w4 < 0), which is equivalent to d1 d2 < 0, exactly what 
the model requires. The second discontinuity is related to z3 and z4 and im
plements the dependency of û on u. This model only behaves as described if 
0 s u s 1, which the model ensures after the initialization. An initialization 
outside this region has an unpredictable effect on the other components. 

u = 1 

û=O 

------------s = 0.5 

û=O u 

u=O 

Figure 2. 7. The functionality of a dynamic logic gate 
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The influence of the circuit 

With these four output parts oflogic gates some characteristics of the influ
ence of the circuit are shown. One of the simplest possible circuits is consid
ered: one inverter with its output connected to its input. This adds to the 
equation for y two equations for s and x respectively: s = 1 - x and x = y. 
Because theirvalues are trivial, xand s are eliminated from the matrices. The 
graphic solution is shown in Figures 2.8 and 2.9. The following four systems 
are found: 

1) Statie with continuous output: 

[g1 ~ ~~][f]+[~1]~[::] (2.28) 

Pivoting on (Azz) 11 yields the only possible solution. Notice that after this 
pivot the Azz matrix has become singular. A graphic representation of this 
system is shown in Figure 2.8.a. 

2) Statie with discontinuous output:· 

[0
1 

~ 0
1

][~] + [-~.s] = [~ 1 ] (2.29) 
0 Q 1 Z2 0.5 W2 

Here the zero pivot is changed in a positive pivot and the Azz matrix is 
changed back to the identity matrix, because the circuit equation is parallel 
to the original facets. After performing a pivot on (Azz) 11 the unique solution 
is found (see Figure 2.8.b). 

3) Statie with hysteresis output. 

[o
1 

~ 0
2

][~] + [-g_25] = [~1] (2.30) 
0 0 1 Z2 0.25 W2 

The influence of the circuit is that again the Azzmatrix is changed to the iden
tity matrix. The model is not in a valid state, hut it is simple to find the same 
solution as above. See Figure 2.8.c for a sketch of the situation. 

y 

' 
a) 

s 
b) 

s 
c) 

s 

Figure 2.8. Finding a solution for an inverter with it<; input connected to 
its output: a) with a continuous model 
b) with a discontinuity c) with a hysteresis 
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4) Dynamic with analog output: 
-1 1 0 0 0 0 y 0 0 
0 0 d1 0 d2 0 u 0 ü 
0 1 0 1 0 0 Z1 -0.5 W1 

(2.31) Z2 + 1 = W2 0 0 -1 0 0 0 
0 1 1 0 0 1 Z3 0 W3 

0 0 r 0 -1 0 Z4 1 W4 

where r = d1 
-ëf-1. 

2 

This model still has its two discontinuities. But from Figures 2.9.a and 2.9.b 
follows that both discontinuities are crossed for only one u ( u = 0.5) and that 
ü can have only the values ü = d1 and ü = d2• This is the situation as 
described in Section 2.4.3: the dynamic solution can bè found only by perform
ing a zero pivot. As this is impossible in our simulator, no dynamically valid 
solution is obtained and the simulation will always abort in this point. So this 
idealized model may cause problems. In practice, however, no problems are 
encountered with this model. Only once we have observed this behavior: con
necting an odd number ofinverters with this continuous model, all modeled 
exactly the same and with the same starting value, crashed the simulation 
algorithm, hecause the calculations were too exact. This problem is solved by 
changing one inverter, either its delays d1 and d2 or its initia! starting point. 

,, s 
û 

ü = d2 > 0 û=O ... d2 

' u u 
û=O û = d1 < 0 .,_ 

d1 

a) b) 

Figure 2.9. Finding a solution fora dynamic inverter with its input con
nected to its output: 
a) the linear equation in the (u,s)-space 
b) il as function of u 



3 The Linear Equations 

3.1 The data structure 

In Chapter 2 the general model of systems bas been introduced. In this and 
subsequent chapters the simulator PLATO, which uses these models, is de
scribed. The modeling is suited best for circuits containing relatively simple 
components. lts primary use is in simulating mixed analog/digital electrical 
circuits. Therefore the simulator bas been optimized for these types of cir
cuits. In this chapter the choice of the data storage is discussed, as well as the 
solution of the linear equations of the form Axx x = b. 

The input to the simulator is described as a circuit containing electrical and 
logica} components. Whether in reality the system is an electrical circuit or 
something else like a neural network or a dynamic LCP is not important. 
Each circuit can be built up hierarchically from several subcircuits, which 
each may contain other subcircuits, etc. A circuit may also be a component 
with a piecewise linear model, which of course bas no subcircuits. These com
ponents are called leaf cells, whereas higher level circuits are called com
pound cells. 

Each circuit has several contacts to the outer world called terminals, which 
are used to connect it to an other circuit. There are two types of terminals: 
electric ones and signal ones. Electric terminals have two circuit variables 
related to them, called voltage and current. These variables have different 
topological relations: connected terminals have the same voltage value, while 
the sum of the values of the related currents is zero. For digital components, 
terminals are available with only one circuit variable related to them, called 
signal, which behaves like a voltage. To simplify the modeling, the terminal 
variables are restricted (without loss of generality) to be x variables, so the 
u, wand z variables are local to a leaf cell. 

In this hierarchy ofleaf cells and compound cells, for each entry in the input 
vector ri, t) an input cell can be associated with one en try in the x vector. This 
cell can be viewed as a special type of leaf cell, not with a piecewise line ar 
model, but with a functional model xi = r;(t). This cell can emulate easilythe 
actions performed by a leaf cell. 

31 
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The system of equations that must be solved, contains the different types of 
equations from the model descriptions, combined with the topological rela
tions (connections) and the input relations on the terminals of the top-level 
circuit. The general matrix of such a system of equations is given in Figure 
3. L Only the nonzero elements are shown, the other elements are inherently 
zero. 

D B 

Cl Cl 
c m 

columns related to 
one component 

Figure 3.1. Genera) structure of the system matrix A 

A main objective in the design of a simulator is to minimize the number of cal
culations that are to be performed by the program to decrease the execution 
time. Therefore the internal data structures must be optirnized with respect 
to the expected data, and the algorithms must take advantage of previously 
acquired knowledge. The internal data structure in PLATO bas been optimized 
for electric circuits. 

In an electric or logic systern the number of terminals of a component ranges 
usually from 2 to 4. Furtherrnore most connections are local, connecting only 
a few components. Exceptions to this are some basic connections like the 
power supply and the doek. This implies that the matrices A.x are sparse and 
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have no special structure, i.e. the matrices are not banded, symmetrie or 
block-diagonal. 

Other types of systems do not need to have this sparsity. An example is a Hop
field neural network, a fully connected network containing neurons (simple 
components). In this network Axx is a full matrix and Azx can be a matrix with 
zeros, as is explained in Section 7.3. Because PLATO is primarily interided for 
circuit simulation, its data structure is based on the sparsity of the matrices. 
For other types of systems the next considerations are not valid. A non sparse 
implementation is considered in Section 7 .3 describing a Hopfield neural net
work simulator. 

The A.u and A.z matrices are always block diagonal. To preserve the sparse 
structure of the problem, especially this block diagonal structure of the A.u 
and A.z matrices, the matrix ofFigure 3.1 is not created explicitly in one data 
structure. The local matrices of the leaf cells are used whenever the global 
matrix is referenced. This implies that there is a separation between the 
implementation of the algorithms at the global level and the processes at the 
leaf cell level. An advantage is that the implementation at the leaf cell level 
can change depending on the particular type of cell. For instance, the models 
created with Algorithm 2.1 can be stored sparsely, differing from general 
models. Because all changes in a component are only visible through changes 
in x and in Axx. these are (at the global level) the only interesting parts of the 
leaf cells. There are two different methods to handle the x varia bles and the 
Axxmatrix. 

The first possibility is to keep all linear equations locally within the compo
nents. This means that in each component the variables are split into input 
and output variables. With the values of the input variables, the component 
can determine the value of the output varia bles. These values are propagated 
to its 'children and its parent, so the hierarchy of the network description is 
preserved. In Figure 3.2, the data flow and the calling sequence are shown, 
as well as the changed varia bles (in the compound cells ofboth their children 
and their parent). Suppose in one leaf cell some xvariables change value. This 
change is passed to its parent, which subsequently calculates the change in 
the xvariables ofhis parent, etc., until eitherthe root of the tree is reached 
or (as in Figure 3.2) its parent's xvariables do not change. Then all calculated 
changes are propagated to the children of the current cell, that calculate the 
changes for their children, etc. 

The advantage ofthis method is that all calculations on xvariables are per
formed locally. Because the influence of a variable is usually limited, only a 
few components are reached. There is one important drawback of this 
method: the number of variables and equations is large. If one x variable is 
output of a leaf cell and input to an other leaf cell, at least three variables are 
used for one value: in both components as well as in their common parent. 
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~ initial cell with change 
<:::i) other reached cells 

compound cells 

leaf cells 

D aff ected variables 
~ call sequence 

Figure 3.2. Hierarchy of cells and the calling sequence after a variable 
change 

Because there is one equation per variable, the number of equations is also 
large. 

The second method is to use a global x vector. Each component accesses this 
global vector when it needs its value. The advantage over the hierarchical 
method is that many variables and equations can be eliminated. The voltage 
(and signal) variables that are related to connected terminals have the same 
value, so they are replaced by one global variable, called the node voltage. If 
exactly two electric terminals are connected, their related current variables 
differ only in sign, so one is eliminated. This greatly reduces the number of 
xvariables and linear equations. 

If a global xvector is used, another choice must be made: the Axx matrix can 
be stored locally or globally. The advantage of storing the matrix glohally is 
that further eliminations can be performed (which often are possible) and 
that the compound cells and the hierarchy are not used any more. Because 
the hierarchy is mainly used to limit the effect of one leaf cell action to the leaf 
cells that are affected by this action, an alternative method will be necessary 
for an efficient implementation of the actions between leaf cells. 

Such a method is found by noticing that the Aux and Azx matrices of a leaf cell 
have only nonzero entries in the columns of terminal variahles. Because the 
number of terminal variables is in general low, only these columns are stored 
in the component's matrix. During the calculations, many times an update on 
the component's variables is performed, initiated by a ( usually sparse) update 
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on the xvector. Ifthis update is sparse, many leaf cell values will not change. 
Therefore a list is maintained with for each x variable the leaf cells that are 
related to it. This list is, in a way, equivalent to the use of a hierarchical sys
tem. Local effects are handled efficiently in a hierarchical system, because 
only a subtree will be traversed. With such a list structure the same effect is 
accomplished: only the affected leaf cells are visited. See Figure 3,3 for a 
sketch of this list. There is one drawback on the use of such a list: for each 
en try in the x vector a list of leaf cells is maintained. The list that is used is 
created by merging the lists of each entry in the vector, which process can be 
inefficient. If two entries in x are coupled, i.e. they are always both zero or 
both nonzero, one of those lists can be emptied. This coupling can not be 
detected, because it is dynamic in behavior, and may emerge or vanish at cer
tain time points. In our implementation, the overhead of this list structure 
is small (see Chapter 7 for experimental results). 

~ initia! cell with change 
<[D other reached cells 

D aff ected variables 
-+ call through list structure 

Figure 3.3. List structure with calculations 

In PLATO the second approach has been implemented, using a global x vector 
and a global Axx matrix. The choice of mixing local and global matrices implies 
some far-reaching consequences. The obvious consequence is that the xvari
ables are not eliminated from the leaf cell models. Elimination does usually 
not result in a smaller system, because the other matrices would lose their 
block structure and be filled totally. The local structure of these matrices 
would disappear and they had to be stored globally. This will certainly use 
much more memory and the calculations would be much more expensive than 
without elimination, taking into account that the number of x variables is 
usually much smaller than the total number of u and z varia bles. 

3.2 Nodal analysis 

In genera!, too many varia bles and equations are abstracted from the circuit 
topology and component descriptions. This is because it is not known apriori 
which variables are interesting for the user or necessary for the simulation 
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process. The models may contain any dynamic piecewise linear equation, hut 
it is possible that some components define only trivia! linear equations. 
Decreasing the n umber of equations and varia bles will increase the efficiency 
in some parts of the simulator, and therefore as much as possible variables 
are eliminated. This elimination is called nodal analysis and is performed 
aft.er the initia} equations are created. Instead of applying the standard tech
niques for nodal analysis, some adaptations are made to the method, in order 
to maintain the sparsity of the total system, and the low density of the Axx 
matrix in particular. 

There are theoretically two basic methods to create the network equations. 
The first is the sparse tableau method, the second is the (modified) nodal anal
ysis. In the sparse tableau method, all terminal currents, terminal voltages 
and node voltages are used. All topological relations are put in the global 
matrix Axx together with the linearizations of the leaf cell equations, the local 
Axx matrices. This has the advantage that the matrix will be very sparse, 
mostly because many entries are of the form xi = xi" The disadvantage is the 
large number ofvariables, because this method is the same as using local x 
varia bles. 

With the nodal analysis method, only the node voltages are calculated. These 
variables are solved with the nodal current equations, i.e. the topological 
equations related to the currents. All other equations are used to eliminate 
the remaining variables. This creates a small hut rather dense system of 
equations. Therefore this method is used in most popular circuit simulators. 
Varia bles with type signal, which do not exist in other simulators, are also cal
culated. Because there is no current related to these variables, they are calcu
lated from their leaf cell equations. 

With the piecewise linear models, both methods can be used, except that the 
terminal voltages have already been eliminated during the expansion of the 
network hierarchy. Because an explicit equation is available for each xvari
able, it is possible to eliminate any xvariable. There are however three rea
sons to keep some x varia bles: 
• Elimination is sometimes possible only by merging two (or more) leaf cells. 

Consider a variable X;, depending directly on some .nonlinear variables, 
which is used in a component, other than where its equation is defined. 
Eliminating this variable implies that these two components must be 
merged. Because this will finally lead to one large component with non 
sparse internal matrices (as discussed in Section 3.1) this type ofvariables 
will not be eliminated. 

• The density of the A.x matrices may increase. When a variable X; is refer
enced a few times in the Axx matrix, elimination of X; can yield more ele
ments in this matrix. Eliminating this variable may also increase the num
berof terminal varia bles in the local Aux and Azx matrices, thereby increas
ing the number of local calculations and increasing the connectivity of 
components. 
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• The output of the simulator are the values of several x variables over the 
time interval [ t0, t8 ]. Which x variables are printed depends on the user. 
There are two reasons to keep the output x variables in the system: the 
associated values must be calculated anyhow, and elimination implies that 
the printing of some global variables must be performed by the local leaf 
cells. The partial elimination of varia bles also implies that the size of the 
system which is solved can vary between different simulations, depending 
on the output (see also Figure 7.3). 

The following algorithm is used to remove as many variables and equations 
as possible from the system, taking the three points above into account. For 
a good result, also the leaf cell data are manipulated, discarding linear equa
tions and eliminated or unused variables. 

} 

Algorithm 8.1: Nodal analysis 

A candidate is a pair (variable, equation) where the variable can be 
solved {rom this equation, and the equation is linear or the 
variable is not used in other components 

C: = set_of_candidates( ); 

while C ;<! 0 do 

c: = take_elJrom( C ); 
eliminateJrom_system( c ); 
lf nr_new_elements > element_grow_limit or 

nr_new _leaf_ celL variables > variable _grow _limit then 

undo_elimination( ); 
else 

fl; 

lf not outputvar( c ) then 

remove_equation( c ); 
fi; 

C: = C U new_candidates(} \ no_longer _candidates( ); 

od; 

clean_leafs( ); 

The equations and variables that are eliminated with this algorithm are usu
ally in some restricted classes. First, variables with constant value are elimi
nated from the system. These are usually the power supply voltage and the 
ground voltage (both connected to many components), and constant inputs. 
Then variables with simple relations are eliminated, like the Q and Q outputs 
of a flip-flop that satisfy Q = 1 Q. Third, many current variables (those 
that are not interesting) are removed. 
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However, most voltage and signal variables are not eliminated, because these 
variables are interesting to a user and most of them are non-local nonlinear 
variahles. This is also the reason that most capacitors and capacitor-like 
components keep their current variahle(s), because these currents depend on 
several other variables. 

Theoretically a subsystem that has no output to the rest of the system and 
that is also not interesting for the user can he eliminated completely. But this 
situation is not detectable by the algorithm. For example, if two not interest
ing components are connected to each other through two nonlinear variables, 
then these variahles can not be eliminated. This flaw in the algorithm is not 
important in practical cases. 

Algorithm 3.1 can be refined when a better output processor is available. 
Then also interesting variables can be removed, depending linearly on some 
other output variahles. The output processor can recreate the variahle at the 
moment it is needed. 

8.3 The LU decomposition 

During the simulation process two actions are performed many times with 
the matrix Axx: 
- Equations of the form Axx x = bare solved. 
- The matrix Axx is updated, either due to the changes in the linearizations 

when a new region is entered, or due to the application of an implicit 
integration method to solve the dynamic equations, as will be explained in 
later chapters. 

Because the execution time in these algorithms dominates the execution time 
of the simulator for large circuits, both actions must be performed efficiently. 

The equation Axx x = bis solved with an LU decomposition, a direct method. 
An iterative method is not applied, because for our type of problems the LU 
decomposition is efficient enough. Ari other direct method, for example the 
QR decomposition, is not used, because possible advantages in efficiency or 
accuracy, compared with the LU decomposition, are not outweighed by the 
simplicity of the LU decomposition. 

The LU decomposition is named after the matrices L and U, which are deter
mined so that PAxxOT = LU. These matrices have the following properties: 
Pand Q are permutation matrices, Lis a lower triangular matrix and U is an 
upper triangular matrix. With these matrices, the solution of the matrix 
equation Axx x = b is determined by solving L v = P b and U Q x = v. 
These two steps are called the forward and backward substitution. 

The LU decomposition will maintain the sparse structure of the original ma
trix, which property is essential to solve large problems. The new matrices 
have a nonzero en try for each original nonzero entry, and a number of new 
nonzero entries called fill-ins. As is shown earlier (Chua and Lin 1975; van 
Stiphout 1990), it is possihle to order the rows and columns of the matrix in 
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such a way, that for an electric circuit the number offill-ins in the Land U 
matrices is in general less than the number of original elements. 

Algorithm 3.2: The LU decomposition. 

for i : = 1 to n do 

od; 

<p, q> : = select_pivot ( ) ; 
perform_permutation ( p, q, i ); 
Uii := Aii; 
for j : = i + 1 to n do 

od; 

Lji:= Aj/Uii; 
Uii:=Aq; 
for k := i + 1 to ndo 

Aik:= Aik- Li;*Uik; 
od; 

The most important part of this algorithm is the selection of the pivot. This 
selection serves two purposes: the pivot should be as large as possible, and the 
structure of the ·matrices L and U should be as sparse as possible. These ob
jects are in genera! conflicting. The value of the pivot must be large in order 
to make the decomposition numerically stable. There are two different selec- · 
tion methods in use to find a large pivot: partial and full pivoting. With full 
pivoting the largest en try in the remaining submatrix is chosen. With partial 
pivoting the largest entry in the current column is chosen ( q = i, Q = /). Par
tial pivoting is theoretically not as numerically stable as full pivoting, hut in 
practice it is always stable; see Section 6.6 for more problem specific consider
ations. Therefore partial pivoting is always chosen and has been imple
mented in PLATO. 

To fulfill the second purpose, the selection of the pivot is changed. If more than 
one candidate is numerically acceptable, i.e. not more than 10 times smaller 
than the largest candidate, the one which keeps the structure more sparse is 
chosen. This can be estimated by a Markowitz count (Markowitz 1957). This 
method is used in PLATO and has the desired properties (van Stiphout 1990). 

The costs of the LU decomposition are for full matrices and full vectors: 
decomposition: ri;/3 

- forward and backward substitution: n~/2 each. 

For sparse matrices these costs are considerably lower. Consider a structure 
with on average p elements per row or column in the Land Umatrices, as usu
al1y happens in electric and logic circuits: 
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- decomposition (including Markowitx count): O(p2nx) 
- forward and backward substitution: O(pnx). 

Ifthe vector xcontains afterwards only qelements, the forward and backward 
substitution costs are even lower: O(pq). 

These costs are only reachable for an efficient implementation, i.e. the costs 
of accessing the nonzero entries of Axx, L and U are small compared to the 
costs ofmultiplication. With an orthogonally linked list structure and three 
arrays, in nearly all cases the entries are directly accessible in the employed 
algorithms (van Stiphout 1990). Only the backward substitution with a 
sparse vector x is slightly more complicated. 

3.4 The rank m update 

There is a second operation performed on the matrix during the simulation: 
the rank m update. The matrix is updated as follows: A' xx = Axx + e rT, with 
e and rmatrices of size nx x m, and m 46 nx. In most cases it is only a rank 1 
update. The update has already been executed in the component's matrix, 
and to keep the LU decomposition valid, this update must also be performed 
on L and U. The following direct algorithm, that updates the decomposition 
efficiently, has been introduced in (Bennett 1965). 

} 

Algorithm 3.3: Rank m update (Bennett) 

preconditions: Axx = L U, A'xx = Axx + c rT; 
Axx: matrix(nxn); c, r. matrix[nxm]; 

var d: matrix[mxm], p, q: vector[m], oldU, fact scalar; 
d:= /; 
for i : = 1 to n do 

p:= dT*(Cr)T; 
q:= d*(f;.)T; 
oldU := Un; 

od; 

U;;:= U;;+ rr*p; 
tact : = U;;f oldU ; 
d := d q• pT/U;;; 
for j : i + 1 to n do 

od; 

ei':= ei' - Li" c;.; 
'r: = 'r - r;. * U;/oldU; 
Lj;:= Lji+ e;*q/U;;; 
Uq== fact* Uif + P* ';; 
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This algorithm efficiently updates only those elements of the decomposition 
that really change. In our simulator, the matrix c consists of a few columns 
of Axu or Axz and r of a few rows of Aux or Azx. In many cases, c has only one 
or two nonzero entries. When, as is often the case, the update is only rank 1 
on one row of the matrix, say the Jr-h row, then the costs ofthis update are for 
a full matrix: n~/2 + 1.51<2. For a sparse matrix structure in which a sparse 
update is performed, the costs are lower. Consider an update where c and r 
are sparse vectors with at most p entries after the update, and the L and U 
matrices have on average p elements per row or column (the number of 
entries in c and L will be about the same). Then the costs of the update are 
O(p2). So only when a very large part of the matrix changes it is cheaper to 
perform a full LU decomposition instead of a rank m update. 

The rank m update is still one of the more expensive actions in the simulator. 
When two rank 1 updates must be performed simultaneously, they can be 
combined in one rank 2 update. But this is only cheaper if the updates have 
an overlap in the elements they change, else it is more expensive. Because 
usually many rank 1 updates are perf ormed with little or no overlap, this al
gorithm is implemented in two versions: once as a rank 1 update and once as 
a general rank m update. Usually the rank 1 update is chosen. The rank m 
update is chosen in only two situations: 
1. If a block pivot is performed. 
2. If the rank 1 update gives an invalid decomposition. 

In the first case, a block pivot is performed duringthe solution of the piecewise 
linear equations, if a diagonal element of Azz - Azx A;} Axz is zero. This is. 
equivalent to a discontinuity in the piecewise linear function, and it means 
that if the block pivot is performed as a number of single pivots, the matrix 

[
Axx Axz] Azx Azz is not regular between the first and the last update. Therefore the 

submatrix Axx may become singular after the first update. Because an LU 
decomposition is not possible then, the rank 1 update algorithm will abort 
with a failure. But with a rank m update the block pivot is performed in one 
step, so the matrix Axx will remain regular. 

The second case occurs when during the rank 1 update a diagonal element of 
U becomes small. Because a column of L, and later an en try of the solution vec
tor, is divided by this value, this is numerically not acceptable. If the matrix 
itself remains regular, a better decomposition is usually possihle. A full LU 
decomposition can be performed, hut usually it suffices to swap two or three 
rows. Because swapping two rows is also a rank 1 update, a rank m update 
is performed instead of a full decomposition. A full LU decomposition is per
formed when the rank m update fails to find a valid decomposition. 

In PLATO, the data structure contains a sparse Axx matrix, and sparse vectors 
are used. A detailed description of the LU decomposition and the rank 1 up-
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date with these sparse structures can be found in (van Eijndhoven and van 
Stiphout 1988). The forward and backward substitution is implemented 
twice: one routine using a nonsparse vector, the other one using only sparse 
vectors. The first routine is used for solving vectors that may become not 
sparse, while the latter one is employed if the vector will remain sparse. These 
two cases are heuristically detennined: the sparse version is applied during 
the Van de Panne algorithm (see next chapter ), the nonsparse version is used 
in the other cases. 

8.5 Parallel capacitors 

As mentioned in Section 2.4, on the existence of solutions, it may happen that 
the Axx matrix is not regular. This will happen when the circuit specification 
is wrong, for instance if not all inputs are specified, or if loose wires exist. 
Other errors occurwhen the component's models are invalid. These errors are 
fatal and can not be repaired. However, sometimes the circuit is valid, hut has 
a singular A xx matrix, so the system can not be solved. This hap pens most fre
quently in the case of parallel capacitors, although it can happen in other 
cases too. Therefore the casè of parallel capacitors is studied first. An exam
ple, a part of a network with two linear parallel capacitors, is shown in Fig
ure 3.4. 

Figure 3.4. Two parallel capacitors 

Two linear capacitors, denoted with their capacitances C1 and C2, are set par
allel. Their local matrices are (after the nodal analysis): 

[ ~ 11°c, o 
1 Hl = (2,), and [ ~ 11°c, ö1

][ f] = ( 22) · (3.1) 

The topology relation is: 

i1 + i2 - Î3 = 0 . (3.2) 

From the linear part of the equations (3.1) and (3.2), the varia bles v, i1 and i2 
must be calculated. This is a singular system and can not be solved directly, 
although a solution exists. One of the equations used to solve v must be re
placed by an equation for solving i1 or i2• This equation can be derived in the 
following way: v = u1 = u2 implies ü1 = ü2 and u1 (t0) = u2(t0), and this 
implies C2 i1 = C1 i2. Replacing the equation v = u2 with this equation will 
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give a valid system. The dynamic behavior of capacitor C2 then fully depends 
on capacitor C1: the dynamic variable u2 is not used any 'more and can he 
removed from the system. 

The automatization of this procedure is straightforward. The LU decomposi
tion does not find an equation for i2 (the diagonal element is zero). The rele
vant components are gathered, which gives only capacitor C2• There is no pos
sibility to change the internal state of the component in such a way that a lin
ear equation can be used to determine i2• Therefore all other components, 
related to the other variable(s) of C2 must be checked. Amongst others capaci
tor C1 is found. Because its linear equation defines v, this component is 
checked and it has the same type as C2• Both initia! values are checked and 
iftheyareequaltheequation C2 i1 = C1 i2 canbeusedtoreplacetheoriginal 
equation of C2. 

The genera! problem of a singular matrix Axx is however in practice unsolv
able. If not two parallel linear capacitors are found, an exhaustive search over 
all possible regions for a regular linearization is the only possible algorithm 
to solve this prohlem. Because this is very expensive, as these kinds ofproh
lems usually only occur in large problems, and because a regular lineariza
tion can in genera! not be found, a singular matrix induces in PLATO a failure 
to solve the given problem. 
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4.1 lntroduction 

The Piecewise Linear 

Equations 

This chapter describes the methods employed to solve the piecewise linear 
equations. As described in Section 2.4, on existence of solutions, these equa
tions can be written as the following LCP problem: 

{ : : :. : : ~. w . z = 0 ' 
(4.1) 

with 

M = Azz - Azx A,;-1 Axz 

q = Bz Azx A,;-1 Bx + Azu U 

Several methods have been developed to solve an LCP. They can be divided 
into three classes: pivoting algorithms, integer labeling algorithms, and re
laxation algorithms. For all known algorithms it has been proven that a solu
tion will be found with certainty only if M belongs to a restricted class. The 
most important matrix classes are enumerated in Table 4.1. The classes Posi
tive Definite, Positive and Strict SemiMonotone are usually abbreviated to 
PD, P and SSM respectively, while the class .l has no other name. It is 
straightforward to prove that PO C P C SSM C .t. 

Table 4.1. Matrix classes 

class class definition 

"xER" X>éO 3k [ xk > 0 A (Mx)k;:::: 0] A 
" 

V xE R :,x>é 0, Mx<:: 0, xTMx= 0 3 aiagonal matrixA ,.Q <:: 0 
[ Qx ~ 0 A (AM + MTQ)x = 0] 

45 
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These classes are related to the number ofsolutions of the LCP (van Eijnd
hoven 1988): 
- If the matrix Mis in class P, the problem bas one solution. 
- If the matrix is in class SSM, the problem bas an odd number of solutions. 
- Ifthe matrix is in class .t, the problem has either no solution, an odd num-

ber of solutions, or a bounded subspace of solutions. 

The class P is also characterized by the fact that each pivot is positive, and 
it is therefore closed with respect to the pivot operation. Unfortunately, the 
class SSM is not closed under pivoting. All the following algorithms have 
global convergence · properties, i.e. a solution is found independent of the 
starting value, if the problem is in the given class. 

As stated before, the properties of the matrix Mare not known in general, and 
in our simulator several models are used of which the matrix is not in one of 
the above mentioned classes. For example, the matrix of the discontinuity 

. model of equation (2.27) is in .t, hut not in SSM, and the hysteresis model of 
equation (2.25) has a matrix not in :t. To be able to solve as many systems as 
possible, an algorithm must be chosen which will find a solution for the larg
est matrix class. Because rèlaxation methods will only converge with cer
tainty if the matrix is in PD (van Bokhoven 1981), these methods are not con
sidered further. An integer labeling method finds, with the simplex method, 
an approximate solution of the LCP, and converges toa solution if the matrix 
is in the class SSM. Some path-following algorithms find an exact solution 
for a class larger than the class of .t-matrices (Jones 1986). 

Because we do not want to restrict the modeling of the systems, one of the 
path-following algorithm is used in our simulator. These algorithms have the 
nice property that they either find a solution or fail quickly. Using a path-fol
lowing algorithm has as a second advantage that the pivots are performed ex
plicitly. Ifa sol ution is found, the vector zis zero, the vector wgives the current 
region, and the current linearization is available. A third advantage is that 
the algorithms finish in a limited number of steps. Although the path-follow
ing algorithms will, in worst case, perform all possible pivots, they tend to find 
a solution in a few steps, many times in the minimal number of steps. 

The path-following algorithms are not specially suitable to find all possible 
solutions. The algorithms will find a region that is in a sense closest to the 
starting region. In contrary, the integer labeling algorithms are more suitable 
in finding more solutions. For the types of problems that we solve, it is usually 
enough to find one solution. Only if no solution is found, which does not hap
pen often, finding all solutions might be an appropriate method to continue 
the simulation. 

4.2 Path-following algorithms 

There are several path-following algorithms. All these algorithms find a solu
tion by tracing a continuous path through the ( w, z) space. Notice that the con-
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tinuity of the mapping is related to the continuity in the ( w, z) space, and that 
a continuous path in the ( w, z) space is also a continuous path in the x space. 
The two best-known algorithms are described in (Katzenelson 1965) and 
(Lemke 1968). Katzenelson's algorithm is a simple algorithm, which bas as 
main drawback that it can only handle positive pivots: it converges only if the 
matrix is in class P. Lemke's algorithm performs better: it can handle every 
possible pivot, and will be successful if the matrix is in a class described in 
(Jones 1986). Instead of using Lemke's algorithm directly, a variant of this 
algorithm is used, described in (Van de Panne 197 4). The advantage of using 
Van de Panne's algorithm above Lemke's is its behavior on zero pivots, and 
the possibility of a feasibility check. 

The Katzenelson, Lemke and Van de Panne algorithms start as follows: a vec
tor e (always non-negative) and a positive number À are chosen such that 
q + À.e 2: 0. This choice gives the feasible point (q + À.e, 0) in the (w, z)
space.À. is a measure of the error made by choosing z = 0. Therefore the objec
tive is to decrease À until 0 is reached, under the conditions w 2: 0, z 2: 0 and 
the complementarity condition w · z = 0. Then a path in the (w, z)-space is 
found, a mapping of the line segment { À.e 1 0 ~ À ~ Àmax }. This mapping 
needs not to be a function, as more than one point in the ( w, z)-space may be 
related to one value of À. 

All three algorithms trace the path in the following way: one free positive pa
rameter, currently describing a piece of the path, is changed in one direction 
(increasing or decreasing) until a blocking row is found or the free parameter 
becomes zero. A blocking row (boundary) is the index ifor which w1 = 0 and 
decreasing under influence of the free parameter. Then a pivot is performed 
and/or a new free parameter is chosen, after which the free parameter is 
changed, and the iteration is continued. 

The Katzenelson algorithm, described in Algorithm 4.1, is the simplest of the 
three. lts free parameter is À.. The first step is to decrease À until a blocking 
row kis found or À reaches zero. IfÀ. reaches zero a solution is found, otherwise 
a pivot on Mkkmust be performed to continue. When this pivot is positive the 
path can continue in the same direction entering a new region. But fora nega
tive or zero pivot the new region can not be entered by decreasing À.. Because 
the Katzenelson algorithm can only handle a decreasing À it aborts when the 
pivot is not positive. An extension on this algorithm can be given by noticing 
that, after a negative pivot, the new region is entered by increasing À.. This 
only slightly increases the complexity of the algorithm. 

To simplify the notation, in the Lemke and the Van de Panne algorithms the 
vectors wand zwill denote different vectors before and after a pivot operation. 
One entry of wis swapped with one en try of z, and the resulting vectors are 
ag~indenotedby w:ndz(e.g. afterapivoton M11 is w = (z1, w2"." Wn,) Tand 
z - (w1,z2,".,zn,) . 
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Algorithm 4.1: The Katzenelson algorithm 

initialize( ) ; 
whlle true do 

od; 

<Step, k> : = determine_blocking_row( }; 
lf step = oo then 

exit unsuccessful; { no blocking row } 
fi; 

make_step( step); 
IH = Othen 

exit successful; 
fi; 

if Mkk > O then 

perform_pivot( k ); 
else 

exit unsuccessful; 
fi; 

The Lemke algorithm, Algorithm 4.2, is more complicated than the Katze
nelson algorithm. It uses À as an extra (zeroth) element of zand e as an extra 
(zeroth) column of the matrix M. One aspect is that only one entry of z, denoted 
by j, is positive during the algorithm. In the starting position therefore j = 0. 
The free parameter is zt The algorithm starts by decreasing zj until a block
ing row, say k ~ j, is found. Mkj ~ 0, because wk depends on z .. Now zk can 
be increased while wk remains zero. To satisfy the condition that only one 
en try of z is positive, zj and w k are swapped: a pivot on M kj is performed. The 
next variable, zk, starts increasing, so set j = k. The algorithm terminates if 
k = 0 is found, i.e. À reaches 0. 'lb finish with À in the z vector the last pivot 
on M0j must be performed, where row 0 is the row currently related with À. 
The algorithm fails when no blocking row is found. 

The Van de Panne algorithm, Algorithm 4.3, is the most complicated of the 
three path-following algorithms described here. lts description uses the term 
active variable, which is either À or a zi and a direction (increase or decrease) 
which together determine the direction in which the path is pursued. A stack 
is used containing blocked variables, i.e. those active variables that are 
stopped by a blocking row. This stack, S, is transparent, i.e. all elements of 
the stack can be inspected, hut the only available operations are push and 
pop. Each stack element is a record containing one variable (Ä or a Z;) and its 
direction, up(+ 1 )or down (-1 ). The algorithm starts withan emptystackand 
the active variable is the decreasing À.. 
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Algorithm 4.2: The Lemke algorithm 

initialize( ); 
M.

0 
:= e; z0 := .1.; j:= O; 

while true do 

od; 

<Step, k> : = determine_blocking_row( j); 
if step = oo then 

exit unsuccessful; {no blocking row} 
fi; 

make_step( step); 
perform_pivot( k, j); 
lf k = Othen 

exit successful; 
fi; 

j:= k, 
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The algorithm finds the path by tracing the active variable in its direction 
until a blockingrow jis found or the active variable becomes zero. Ifno block
ing row is found the algorithm fails. If M jj is positive, a pivot operation is per
formed on it, and the path is continued in the new region by tracing the active 
variable in the same direction, like in the Katzenelson algorithm. If Muis neg
ative, the pivot is also performed, hut now the active variable can not main
tain the same direction, because the new region is on the same side of the 
boundary. Therefore its direction is reversed (decreasing to increasing and 
vice versa) and the new region is entered. 

The third possibility is a zero pivot. As explained earlier, the blocking row j 
is changed temporarily into an equality and one extra inequality z1 ~ 0 is 
added to the system. Now the path stays in the blocking boundary. This is 
equivalent with keeping the active variable fixed and following the path in 
the new direction of an increasing zj' So the old active variable is pushed on to 
the stack and z1 becomes the new active variable. 

After a new blocking row kis found, a block pivot is sought that releases as 
many variables from the stack as possible, i.e. it exchanges as many entries 
of wand z variables as possible. If a regular block or single pivot is found, it 
is performed and the related variables are popped from the stack. The active 
variable is set to the new top element of the stack or À if the stack is empty, 
and its direction is reversed if the sign of the block pivot was negative. If no 
regular pivot can be found, the active variable is pushed on the stack and zk 
becomes the new active variable. 

There is one otherpossibility: the active variable hecomes zero. Ifthis iû, the 
algorithm will terminate successfully. If this variable is not À, it is popped 
from the stack, and the new active variahle will be the one on top of the stack, 
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or l if the stack is empty. To follow the path in the right direction, the direction 
must be reversed, since there was one negative pivot perf ormed during the 
blocking of this variable. 

Algorithm 4.3: The Van de Panne algorithm 

initialize( ) ; 
act_ var:= l; act_dir: = down; 
while true do 

od· , 

<Step, k> := determine_blocking_row( act_ var); 
lf step = oo then 

exit unsuccessful; {no blocking row} 
fi; 
make_step( step, act_var, act_dir); 
if k = 0 then { Jl became 0 } 

exit successful; 
elslf act_ var= zk then { act_varbecame 0} 

else 

fl; 

pop( 1 ); act_var:= get_act_var( ); act_dir:= - act_dir; 

push( k, up); 
d : = O; { size of the block pivot } 
i := 1; 
while is top_ot_stack A d = 0 do 

Sig : = sign( M S(1]. var, k); 
lf Sig :;>!: O then 

od; 

d: = top_ot_stack i + 1; 
fl; 

i:=i+1; 

if d > 0 then { regular block pivot found } 
perform_block_pivot( d);pop( d); 
act_var:= get_act_var( ); 
act_dir:= act_dir*Sig; {down<->up} 

else 

fl; 
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It bas been shown that both Lemke's algorithm and the Van de Panne algo
rithm follow the same path and have the same convergence properties (Van 
de Panne 1974). If only positive pivots are performed, this is the same path 
as followed by the Katzenelson algorithm. There is one important reason why 
the more complicated Van de Panne algorithm suits our purposes better than 
the Lemke algorithm does: the Van de Panne algorithm performs only block 
pivots. As has been proven (van Stiphout 1990), either a block pivot is per
formed with all pivots locally in some leaf cell, or a block pivot can be per
formed with pivots on the diagonal of Azz in separate leaf cells. This will keep 
the block-matrix structure of the Azz matrix intact. In contrary, the Lemke 
algorithm performs off-diagonal pivots only. If a blocking row is found in a cell 
differing from the starting one, the related pivot in the Azz matrix is zero. This 
pivot can be performed by adding a row AX* to the wrow, pivoting and sub
tracting the same row, hut this will create entries outside the current block 
structure. This is cumbersome in our implementation, because only the 
blocks are stored. The feasibility check of the Van de Panne algorithm is not 
used, and is therefore not described in Algorithm 4.3. 

From the description of the Van de Panne algorithm it follows directly that 
it can handle any number of positive pivots. But a negative pivot must be fol
io wed by an other negative pivot later in the process, otherwise À will not be 
bounded. BecauseÀ will not change while the variables on the stack are ma
nipulated, the stack is empty if a solution is found. So no solution is found in 
a facet of a region, i.e. on a discontinuous relation in the (x,u)-space. 

The success of the algorithms depends on the choice of the vector e. The path 
which is traced depends on the initial direction in which a solution is sought. 
A choice for eis good if it will give a converging and short path (minimal num
ber of pivots), while with another choice a path diverging from the solution 
may be found. The minimal requirement for the vector is that for all negative 
entriès in w a positive en try in eis chosen, and that negative en tri es of e have 
a bounded value so that q + Àe is initially positive. However, the termination 
of the algorithms is only guaranteed if e contains initially only positive en
tries (Lemke 1968). 

The choice of e indicates which pivot is performed first. Therefore an indeci
sive choice for eis to set e; W;ifw; < Oand e; > Oifw;;;:::; 0, becausethen 
the first pivot is chosen at random, depending on numerical rounding errors. 
This may lead to an unpredictable performance: ifmore solutions exist, the 
one that is found may differin different situations, even if the initial situation 
is (nearly) the same. 

In most applications, the vector eis chosen as e; = 1 for all i, which gives good 
convergence of the algorithms. In our problems, however, the matrix M is 
block-diagonal and combined with linear equations. To use the sparseness of 
this system, a sparse vector eis chosen. Then as few as possible entries of w 
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have to be checked dwing the algorithm. Our experience is that the Van de 
Panne algorithm nearly always finds a solution with the following choice: 

e. = { 1 if wi < 0 . (4.2) 
1 Û if W; ~ Û 

Then the rows with a large negative W; will be in genera! pivoted earlier than 
the rows with a small negative W;. This is logical, when the problem is consid
ered in the x-domain. lt is usually sensible to cross a facet closer to the start
ing point before crossing a facet further away in the direction of the solution. 

To show that this choice is not always the best choice, consider the following 
problem, based on a model of a square function (van Eijndhoven 1984): 

[
1 2](z1) + (-2.5) (W1) . 
0 1 Z2 -1.5 W2 

(4.3) 

· The solution of this problem with the Van de Panne algorithm can be 
described with a few tableaux. First, notiçe that the solution can be found 
with one pivot on M22• However, the algorithm uses three pivots, denoted in 
the next tableaux with a circle. The algorithm can be described by the differ
ent tableaux: first tableau 1 is created, containing the current matrix, the cur
rent e vector and the vector w for the indicated value of À. It is inspected for 
a blocking row, which yields the pivot (on the (1,1) entry) to transform this 
tableau to tableau 2. In this tableau first À is decreased until a blocking row 
is detected, in this case from 2.5 to 1.5. A pivot on entry (2,2) gives tableau 3, 
etc. In tableau 4 the final situation is encountered, in whichl reaches 0 and 
the final solution is found. 

Table 4.2. The steps of the Van de Panne algorithm 

tableau 1 tableau 2 tableau 3 tableau 4 

e À= e À= À= e À= À= e À= À 
2.5 2.5 1.5 1.5 0.5 0.5 0 

1 2 1 0 1 -2 -1 0 1 1 -2 0 1 2 -1 0 0.5 
-+ 

0 G) 
-+ ..-.. 

0 1 1 1 0 0 1 -1 0 1 0 1 -1 1 1.5 

Although this problem suggests that the Van de Panne algorithm uses too 
many pivots, it must be noted that in this example this number of pivots is 
nearly inevitable. The four regions ofthis example are given in Figure 4.1.a 
as function of the vector q. Also the line q = Qo + Àe, À ~ 0, with Qo the ini
tia! value of q, is shown. This line crosses three facets, so three pivots are per
formed. The related path in the x-domain is given in Figure 4.1.b. So in the 
x-domain an obvious path is followed, although a non-trivial path with less 
pivots can be found. Because the path in the x-domain is the interesting one, 
it does not matter that a longer path is followed. 
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Figure 4.1. Topology (a) and linearization (b) of the square function in 
equation (4.3) 
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The detailed algorithm that is implemented in our simulator is discussed 
here. The problems are shown that are introduced by the use of a global xvec
tor and the distribution of the matrices over the components. As explained in 
the previous section, the algorithm uses some temporaryvariables and struc
tures. A positive variable Ä is used which will hopefully reach zero. A vector 
eis set with entries + 1 or 0. Each element of the stack Sis a record containing 
a variable (Ä or z1) and its direction, up ( + 1) or down (-1 ). The stack contains 
top_ of_ stack elements, which number is affected by the push() and pop() op
erations. To simplify the implementation, the free or active variable is always 
the top element of the stack, so Ä is always S[1 ]. Furthermore, because the 
first blocking row is known, the start of the algorithm is shifted to halfway 
the loop of description 4.3. 

Algorithm 4.4: lmplementation of the Van de Panne algorithm 

z: = O; w: Axx x + Azu u + az; 
Ä := O; e := O; 
for i : = 1 to nz whenever w1 < 0 do 

e1:= 1; 
if A. < - w1then 

À : = - w1; row : = i; 
fl; 

od; 
if À = 0 then { the quadruple (x, u, z, w) is a solution } 

exit successful; 
fi; 



54 The Piecewise Linear Equations 

w := w +À* e;push( À, down); 
push( row, up); {the first blocking row} 

{main loop} 
whlle À> o do 

od· 
' 

d: = O; { size of the block piuot } 
i : = 2; { skip À } 

whlle i ~ top_of_stack /\ d = O do 

od; 

Sig := matrix_sign( S[i], S[top_of_stack] ); 
if Sig ~ O then 

d: = top_of_stack i + 1; 
fi; 

i:=i+1; 

if d > 0 then { regular block found } 
perform_block_piuot ( d);pop( d); 
S[top_of_stack].dir: = S[top_of_stack].dir* Sig; {down.,.... up} 

fi; 

<Step, roW> := determine_blocking_row( S[top_of_stack] ); 
if ( step = oo ) then 

exit unsuccessful; {no blocking row} 
fi; 

make_step( step); 
if row ~ À then 

fi; 

if ( row = S[top_of_stack].var) then 

pop( 1 ); S[top_of_stack].dir: = - S[top_of_stack].dir, 
else 

push( row, up); 
fi; 

There are several points in this algorithm where simple routines must be 
replaced by more elaborate ones. 
Denote p = S[i].varand q = S[top_of_stack].var, then the first value that must 
be calculated (in matrix_sign()) is the sign of Mpq. or (Azz - Azx A_;x1 Axz)pq, 
for several p's. 'Ib accomplish _this, first the temporary variable b = (Axz).q is 
created. The vector x = A;) bis calculated from it, with a forward and back
ward substitution. This vector is then used for each p, because 
Mpq = (Azz)pq (Azx) P*x. Notice that only one leaf cell generates b, due to the 
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block structure of Axz· The calculation of each Mpq involves only those leaf 
cells, that already have a blocking row on the stack. 

Secondly the pivot(s) must be performed ifthe block is regular. The routine 
perform_block_pivot() performs an update of the local matrix as well as an 
update of the global matrix. The update of the local matrix is performed easily, 
with one exception. It may happen that the algorithm finds a nonzero pivot 
Mpq. while the corresponding Azz entry is zero. That is only possible if there 
exists a nonzero entry (Axz)kq in the local Axz, according to (van Stiphout 
1990), so then a multiple of the row k can be added to the pivot row p to create 
a nonzero Azz entry. As noted before, a block pivot in more than one compo
nent can be performed with diagonal pivots, i.e. with pivots on the diagonal 
of Azz. The update of the global matrix is easily found by a rank m update 
(Algorithm 3.3) with the pivot row(s) of A2xand the pivot column(s) of Axz· As 
already described, this rank m update is usually performed as a rank 1 up
date, hut in case of a block pivot it is performed as a full rank m update. 

The third action is the determination of a new blocking row and a step which 
can be taken. This depends on the free variable. There are two possibilities: 
ifthis variable is À, the step is made in the direction of the evector, otherwise 
in the direction of the A.z column of the active varia bie. In both cases this has 
a local and a global effect. The local effect is easily calculated, hut the global 
effect once again needs solving the global equations. A change in the free 
parameter will also change the x vector. This effect is taken into account by 
calculating again x = A;;,1 b, with b = e or b = (Axz)·q· Note th~t if the free 
variable is À, every leaf cell is visited during the calculation of b. Otherwise 
only one leaf cell generates nonzero entries in b. With this vector x, the global 
effect of changing the free parameter can be calculated in every leaf cell. 

The last routine with global and local influence is make_step(). Here the free 
variable is changed, and all other varia bles are updated. With the help of the 
previously determined value of x, the local update is performed. The global 
xvector also changes, hut fortunately with an update vector step· x, and the 
previously calculated vector can be used again. 

4.4 The DC solution 

The Van de Panne algorithm is applied in two situations: to find the initia} 
sol ution and to find a new linearization during the integration. Both problems 
are solved with Algorithm 4.4, hut the latter of these two needs a different ini
tialization, because the current region is not yet left. 

During the integration, first the time point t is determined at which a facet 
is actually crossed. This depends of course on the dynamic equations and will 
be discussed in the next chapter. Then the values are updated up to this time 
point. A useful initialization can be found by examining the situation at the 
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timet+ öforsomepositiveó: w(~isa validsolution, hut w(t+ó) = w(t) + oW(t) 
is not valid for any o. This suggests that the choice À = o and e = -W(t) is a 
valid initialization. Taking the limit for o ! 0 gives the exact initialization for 
À: À = 0, direction down. Also the criterion for exiting the loop, À > 0, is ad
justed to ensure that the loop is executed at least once. In PLATO, the search 
fora new linearization is initialized this way. Because in nearly all cases only 
one boundary is crossed, or, in the case of a discontinuity, two, a few pivots are 
enough to find the new region and linearization, and this application of the 
algorithm nearly never gives problems. 

The initia! solution problem in general is also simply solved by the simulator. 
Although the initial region and the initia} value do not match, the Van de 
Panne algorithm has such strong convergence properties that nearly always 
a solution is found. The initial solution problem is one of the more difficult 
problems for traditional circuit simulators, because finding a valid initial 
solution with a Newton-Raphson iteration is oft.en unsuccessful, due to its 
local convergence property. 

As described in Chapter 2, the differential equation needs an additional equa
tion to defi.ne a unique solution. In circuit simulation, except the condition 
u(t0) = u0, also the condition u(t0) = 0 is used. A solution satisfying this 
condition is called a DC solution. More than one DC solution may exist, hut 
finding one solution is currently satisfying. In general, a circuit may contain 
several components whose local u vector should not be set to zero, for example 
a clock or an oscillator. Therefore we restrict the DC problem to: find a solu
tion (x, u, w, z) so that viE/ [ u,{to) = 0 ] fora given set/. Because it is nearly 
impossible to determine whether a component should belong to the set /, the 
user of the simulator must supply this set. The continuity of the modeling 
implies that a solution exists in which for example a clock is in a stable state. 
Because the Van de Panne algorithm finds this solution without problems, it 
is necessary to specify the set I accurately. 

To determine a DC solution, the equations must be transformed. In the origi
nal equations il is a function of x, u and z. To describe a DC problem, this is 
combined with il = 0. Together with these extra linear equations a linear sys
tem is formed to solve both the x and the u varia bles. This is only possible if 
the resulting system is regular, which is not always the case. Consider for 
example a system with the following type of equations: 

{ 

Axx x + Axz z + ax = 0 
Aux x + Auz z + au = il = 0 

(4.4) 
Azx x + Azu u + Azz z + az = w . 
w ;::: 0, z ;::: 0, w . z = 0 

In this case the linear system will not be regular, because there is no direct 
equation for u. Therefore a different formulation of the problem is used, which 
always will create a regular system, if that exists. Another advantage ofthis 
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new formulation is that the global equations are not extended. Instead of ad
ding the equation u(t0) = 0, the differential equation is changed in an equa
tion defining u. This means that, instead of u being a function of u, x and z, 
now u is a function of u, x and z, and that instead of the initial condition 
u(t0) = u0 now u(t0) = 0 is used. Sou and û are swapped in the differential 
equation. This is the same situation as with the wand zvectors, ofwhich also 
entries may swap sides. So pivoting on Auu will yield this new formulation. 

Pivoting on Auu can have the same kind of problems as pivoting on Azz· First 
notice that this pivoting can be performed locally, so the global matrix struc
ture (in particular the block-diagonal u and z parts of the system) will not 
change. But it may happen that the diagonal of Auu bas zero entries. This 
might be solved by adding a (local) linear equation to the row. If x depends on 
u, the matrix becomes regular, and the nett effect of the pivot is the replace
ment of one or more linear equation by one or more equation of the form 
Û; = (Aux x + Auz z +au);= O.However,aswasshowninthepreviouspara
graph, such a linear equation may not exist. Another pitfall is that possibly 
Aux = 0, in which case such an addition will lead to a singular Axx matrix, 
with a row containing only zero entries. 

'Th overcome these two problems it is sometimes not enough to swap only the 
u and u vectors, hut it may be necessary to swap also some entries of w ::ind 
z, in order to find a system of equations that can be solved. This means that 
the system is put in to another starting region, where the linearizations differ 
from the original ones. There is again the possibility, that swapping entries 
of wand z will not solve the problems, because either w depends not on u or 
u depends not on z. In both cases a linear row must be available, that is added · 
to the relevant û or w row. This linear row is available in general, because 
otherwise a uvariable is spurious in the equations. Now a block pivot is found 
to swap the entries of u or û, as well as one or more entries of wand z. This 
block pivot exists, assuming that u, w, and z have all influence, directly or 
indirectly, on x. 

This procedure leads to Algorithm 4.5, after which the equations are suitably 
changed to solve a DC problem. In this algorithm a simple optimization is per
formed, in order to minimize the number of pivots needed. Ifit is possible to 
find a jwith (Auz) ij ~ 0 and (Azu) ji ~ 0, only on these two entries a pivot is per
formed. If such a j can not be found, an additional subblock must be found in 
the Azz part of the (local) matrix. 
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Algorithm 4.5: Swapping u and u. 
for i : = 1 to nu whenever i E Ido 

od; 

if (Auu) ii ;= 0 then 

perform_u_pivot( i); 
elsif (Aux);. ?! 0 A (Axu).; ~ 0 then 

else 

fi; 

j: = add_row _to_u( i ); {j not used} 
perform_u_pivot( i); 

if (Auz) i* = 0 then { add linear equation } 
j: add_row_to_u(i); 

else 

j : = get_index( i); { (Auz) ij ;;t 0 } 
fl; 

if (Azu) li = 0 then { add linear equation } 
add_row_to_pl(j, i); 

fi; 

pivot_u_and_pl( i, j); 

To return to the original equations after a DC solution is found, Algorithm 4.5 
is executed a second time. In practical applications this algorithm has never 
failed, although not always a DC solution has been found. This is caused by 
the difficulty of the problem, because in many cases the initial region and 
linearization are "too far" from a solution to be found. This might in some 
cases be based on our choice for the vector e. For some circuits the DC solution 
can be found by manually putting some components in the right state, but 
that is contrary to the policy that a user may enter any problem and the simu
lator will solve it. 
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5.1 Introduction 

In the previous chapters, algorithms were discussed to solve linear equations 
or piecewise linear equations. In this chapter the numerical solution of the 
ordinary differential equation is investigated. In Section 2.4, on the existence 
of solutions, it has already been shown that the basic problem to solve is a non
linear ordinary diff erential equation in u: 

{
urn = A(u(t)) u(t) + a(u(t), t) 

u(t0> = u0 

(5.1) 

for t0 ::;; t :S te. 

The matrix A ( u( t)) is piecewise constant, and its value is determined by the 
linear complementarity problem. The vector a( u( t), t) is the sum of a piece
wise constant vector depending on u(t) (like the matrix), and a vector depend
ing only on the time, through the inputs of the system. The solution of equa
tion (5.1) can be given in an exact hut implicit formula: 

t 

u(t) = eA; (t- t;) u(t) + f eA; (t-i-) a(r) ck (5.2) 

ti 

for t; :::;; t ::; t;+ 1• Here eA is the matrix exponent, defined fora square matrix 
co 

A by eA = I ~·Ai is the current linearization matrix, and t; is the time 
k=O 

point at which a new region is entered, i.e. A{u(t)) changes from A;_ 1 to A;. 

One of the main problems is the determination of the time points t;, at which 
a new region must be found. But even if the time points t; are known apriori, 
formula (5.2) is not explicitly used in general, because the calculation of eA; 
is expensive and numerically unstable (Moler and Van Loan 1978). lnstead, 
numerical methods are employed (integration methods) to find an approxi
mate solution of equation (5.1). Which integration method must be chosen is 

59 
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discussed in the next section. It depends on the main properties of the meth
ods: accuracy and efficiency, and on the type of problems that are solved. In 
Section 5.3 the implementation of the chosen integration methods is dis
cussed, as well as the determination of the grid of time points, in Section 5.4 
the multirate integration is introduced to employ further efficiency. In Sec
tion 5.5 an explicit exponential integration method is investigated. The com
bination of the integration method with the piecewise linear mapping is dis
cussed in Section 5.6. 

5.2 Properties of integration methods 

Numerous integration methods have been proposed to solve the initia! value 
problem (5.1). Agood overview ofintegration methods can be found in (Hairer 
et al. 1987). Each method has its own advantages and disadvantages, so the 
choice for a particular method is guided by the characteristics of the problem 
that must be solved. In this section, those properties of integration methods 
are introduced that are important on our type of problems. 

An integration method chooses a grid of time points, and on each grid point 
an approximation of the solution is calculated. The determination ofthis grid 
is explained in the next section. The grid consists of the set of points t;. 
0 s i s N, with t0 < t1 < ". < tN = t8• The time steps are denoted by 
h; = t;+ 1 t;. If the set of time points is equidistant, the uniform time step 
is denoted by h. For now, the time points are assumed to be equidistant. In 
this section, the matrix A( u( t)) and the vector a( u( t), t) are taken to be inde
pendent of u(t), and y(t) denotes the calculated solution of problem (5.1). u(i) 
denotes u(t). In principle, y(~ is known only in the points t;. 

A first aspect of an integration method is the accuracy, i.e. the difference be
tween the calculated solution y(~ and the exact solution u(~. This difference 
should be less than a user-specified tolerance e, i.e. 

Il y(t;) - u(t) Il< e (5.3) 

for all î, with Il · Il a suitable vector norm. However, this criterion is difficult to 
check, because the exact solution is not known for most problems. Instead, a 
less strict criterion is used, based on the local behavior. Let u' 

1
{ ~, in our case, 

be defined on the interval [ t;, t;+ 1] as the exact solution of: 

{
û' 11 (~ = A u' ,(t) + a(t) . 
u ,(t;) = y(t) (5.4) 

The Local Truncation Error (LTE) in time point t;, L TE;, is then defined as: 

L TE; ==Il Y(t;+ 1> - u';<t;+ 1> Il · (5.5) 

For each integration method, the LTE can be determined. lts form is in gen
era!: 

L TE; = Chq+ 1 Il u'/q+ 1 l(~ ;) Il , (5.6) 
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with q an integer called the order of the method, C a real constant, u' ,<q+ 1 >the 
(q + 1)th derivate of u' i• and t(i) < ;; < t(i+ 1t Equation (5.6)implies'that the 
method is exact ifthe solution is a polynom1al of order q. 

An integration method is called convergent if the calculated solution con
verges to the exact solution if h -- 0. If q > 0, and if the method satisfies an 
extra stability condition, it is convergent (Hairer et al. 1987). For convergent 
methods of order q, the global error is O(hCT). In the next section is explained, 
how the LTE is used to determine the time steps, so that a small step is taken 
if the LTE is large, and vice versa. 

A second aspect of an integration method is its efficiency, which is expressed 
by the number of calculations of ûperformed by the integration method. Effi
ciency and accuracy are in general conflicting. Each calculation of ûinvolves 
the calculation of x, so this operation is expensive. From equation (5.6) follows 
that for most differential equations the LTE decreases for higher order. There 
are two different schemes to achieve a high order, by employing a one-step 
method or by employing a linear multistep method. A one-step method uses 
the values of u and û at the current grid point and possibly at intermediate 
time points not on the grid. A linear multistep method uses the values of u and 
ü at the current and previous grid points. But, fora one-step method the num
ber of calculations of üis equal to its order, while a linearmultistep only needs 
one calculation. Therefore, a linear multistep method is more efficient than 
a one-step method. 

A third aspect of a method is the global error made iflarge time steps h are 
taken. This only happens if a stiff problem is solved, i.e. if the time constants. 
of the problemhave different orders of magnitude, sou has a component con
verging fast and a component converging slow to its final value. As the length 
of the time interval is related to the slow component, the fast component may 
introduce instability in the later part of the time interval. Integration meth
ods that do not show this behavior are calledA-stable. For these methods, the 
time step may be chosen as large as the L TE; indicates. In circuit simulation, 
most problems are stiff. 

A-stability of a method is determined with the one-dimensional linear differ
ential equation ü = ÀU, with À ECC. A region in the complex plane, called the 
region of absolute stability, is defined as the set of values tû for which the cal
culated solution of this differential equation is bounded. If this region con
tains the left half of the complex plane, { z E C 1 Re(z) < 0 } , the method is 
A-stable. 

Because A-stable methods have an order of at most 2 (Dahlquist 1959), a less 
strong criterion bas been developed, called A( a)-stability. A method is A( a)
stable if the region { z ECC 1 - a < :n; - arg(z} < a } is contained in the region 
of absolute stability. To achieve A(a)-stability, it is necessary to use in the 
method the value of ü at the next grid point. So only some implicit methods 
are A(a)-stable. 
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The only methods that are convergent, use a minimal number of calculations 
and are A( a.)-stable, are several implicit linear multistep methods. Their gen
era! form is: 

p p 

u(i+ 1l = L aj u(i-j) + h L f3j û(i-j} , (5.7) 
j=O j=-1 

with p the number of previously calculated values, and ai and f3 i real coeffi
cients. If the time steps are not uniform, these coefficients can depend on the 
time steps. 

Of these methods, the most important ones are the Trapezoidal Rule (TR), 
and the BDF methods, popularized by Gear (Gear 1971). There are two rea
sons to choose a method with a low order: 

If a discontinuity occurs, the high order method must be restarted with a 
number of steps by a lower order method. Because discontinuities may 
occur often, this means that then the average order is relatively low with 
high overhead costs. 

- The multirate method, as will be discussed in the next section and in Sec
tion 6.3, is much more efficient if the order of the integration method does 
not exceed 2. 

For these reasons only a few relatively simple integration methods have been 
implemented in PLATO: the one-step BDF (BE, the Backward Euler method), 
the one-step Trapezoidal Rule, the two-step BDF, and a less used two-step 
A-contractive method (ACF). These formulae are summarized in Table 5.1 
with their LTE. 

Table 5.1. Integration methods in PLATO with their LTE 

name formula LTE 

BE u(i+ 1 l = uU> + hûu+ 1 > ~/J2y(2l(;) 

TR U(i+ 1) = U(i) + ~h(Ü(i+ 1 ) + U(i)) - 112 h3 y(3l(~) 

BDF 4 1 2 h. 
U(i+1) = 3U(i) - 3U(i-1) + 3 U(i+1) - ~h3y(3)(~) 

ACF u(i+ 1) = ~u(îl +~u(i- 1 ) + 1
2
5 h(5ü0+1) + 2ûul + 2û(i- 1)) - ~ h3y(3)(~) 

5.3 lmplementation of the integration methods 

Applyingformula (5.7) on a general differential equation û(~ = f(u(~) + g(~ 
gives, after splitting ü(i+ 1): 

U(i+1) - h f3_1 f(u(i+1)) = 
p (5.8) 

_I(ai u(i-j) + h/3i üu-n) + hf3_1 9u+ 1), 
j=O 
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where g(i+ 1) is the value of g(t;+ 1). 

The right hand side of this equation is known, hut the left hand side is an 
implicit relation in u(i+ 1), hecause f3 _1 ;ie 0. In a traditional simulator like 
SPICE, equation (5.8) is solved by a Newton-Raphson iteration, which is ex
pensive and converges only locally. U sing piecewise linear models avoids such 
an algorithm, hecause the equation is transformed into an implicit matrix 
equation: 

p 

(/- hf3_1 A)uu+ 1> = I<ai u(i-i) + hfJi üu-n> + hf3_1 a. (5.9) 
j=O 

Equation (5.9) can be solved directly, yielding the value of u at the next time 
point. 

The linear multistep formula is not applied to a simple linear differential 
equation, hut to the linear differential-algebraic system 

[Axx Axu](x) (ax) (0) (5.10) 
Aux Auu u + au = il . 

Combining equations (5.9) and (5.10), the resulting system that must be 
solved is 

with 

[Axx Axu ][x(i+ 1)] ( ax) (0) (5.11) 
A'ux A'uu u(i+1) + a'u = 0 ' 

A'ux = - h b_1 Aux 
A'uu = I h b_1 Auu 

p 

a'u = h b_1 au+ _I(ai u(i-j) + h Pi ü(i-j)) 
j=O 

Notice that the matrices depend on the time step h. A disadvantage of a vari
able step two-step method is that, although the formulae are not given here, 
the matrices depend not only on the next step, hut also on the previously 
applied step. Therefore the matrices change twice ifthe step size changes. 

The linear system (5.11) can only be solved if the previous values xill and u(i) 

are known. The initia! value is simple, because u(O) = u0 is given. The value 
~O}_ is calculated with the explicit equations (5.10). Now a one-step method 
(BE or TR) can be applied to find the values x(1) and u(1), after which a two
step method can be used. 

The linear system (5.11) can not be solved directly, because the x and u equa
tions are stored in different places: the Axx matrix is global, the other matrices 
are scattered over the leaf cells. Therefore the u(il variables are eliminated 
from the other equations. This is simple, because the matrix A' uu is block di-
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agonal with small blocks (usually only lxl or 2x2), always regular, and its 
inverse can be calculated block by block, leading to: 

u(i+ 1) = -A'~ 1 (A'ux Xu+ 11 + a'u) . (5.12) 

Equation (5.12) is substituted in the linear equations, and since the A.u ma
trices are block diagonal, it bas only limited influence on Axx and ax: 

A , - A A A'- 1 A' xx- xx- xu uu ux 
, _ A A'-1 , a x - Bx - xu uu a u 

(5.13) 

Ifthe A' uu matrix of a leaf cell has dimension m, the update on the Axxmatrix 
is for each leaf cell a sparse rank m update, which is performed efficiently with 
Algorithm 3.3. With the updated matrices of(5.13), the new value of x(i+ 1) is 
calculated, which is used to calculate u(i+ 1) with (5.12). 

The method sketched above can be simplified, ifit is allowed to apply a sim
pler integration method. In general, an implicit method must be applied, hut 
fora problem with Auu = Aux = 0, i.e. üis (piecewise) constant, the explicit 
Forward Euler method solves the problem exactly. Then equation (5.11) has 
the following different terms: 

A'ux = 0 
A'uu = I 

a'u = u(i) + h û(i) 

Therefore the Axx matrix does not need to he updated, and the linear system 
with the vector a'x of formula (5.13) can be solved directly. The possible ap
plication of the Forward Euler method can be detected directly, because then 
Ü= 0. 

Step size control 

The time grid of an integration method is always determined dynamically. It 
must be chosen to satisfy the specified tolerance and to minimize the numher 
of time points. The specified tolerance contains two terms to con trol the error, 
the absolute tolerance e abs and the relativa tolerance ere/· Each L TE; must sat
isfy Il L TE; Il ::s e abs + e rel Il u' (i) Il· The maxima} time step hmaxU;) that is al
lowed is determined by using equation (5.6): 

1 

[
e abs + E rel Il u' (i) ll]q+T 

hmax(t;) = Cll u•Jq+1)(~;) Il (5.14) 

From this relation, a good indication for the maximal time step can be deter
mined. Instead of using u';(~, the calculated value y(t) is used. The value of 
u'~q+ 1 l(~;) is approximated by calculating divided differences on the Yw 

u'.(t. 1) u'.(t.) û'.(t. 1) - û'.(t.) 
Using û'.(t. ) = 1 

i+ 
1 1 il-(t· ) / 

i+ 
1 1 etc and by 

1 1+1 h. ' I 1+1 h. ' " 
1 1 
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approximating u';(f) with y(~, etc., an estimation for hmax(f;) is found. Because 
this is only an approximation, usually a step h; ~ 0.9hmax(t;) is chosen. 

Notice that this scheme is implicit, and is therefore only useful to check aft.er
wards whether the step was not too large. An explicit scheme is found in the 
following way: 
- Start the integration by calculating the size of one step of the Forward 

Euler method. For this method, Û~;(~ 0 ) is approximated by y(t0). Because 
the step has no influence on the matrices, this value is calculate directly 
from û(to) and x(to)· 

- Instead of taking this step, a one-step implicit integration method is 
applied (BE or TR), with the step size of the Forward Euler method. Before 
the step is actually made, it is checked if it is not too large. This is possible, 
because y(t1), etc. can be calculated exactly without actually performing a 
step. If the step is too large, the newly calculated maxima! time step is used 
as the new step. 

- In the next steps, the estimation of hmax(t;) of the previous step is used as 
a new step. 

One modification to this method is made for efficiency reasons: if the new step 
and the old step are about the same, the old step is used. In that case the 
matrices do not need to be updated, which operation is expensive. Some other 
modifications of the choice of the step size are made for the application of the 
multirate integration, as explained in the next section. 

5.4 Multirate integration 

Ifthe system that is simulated is large, it is expected that most parts of the 
circuit are at rest at many time intervals. These parts at rest can be inte
grated with a much larger time step than the active components, without loss 
of accuracy. lt saves a considerable amount of computer time, if the imple
mentation can use this property. Using different integration steps at the same 
time point is called multirate integration. 

Splitting a system is applied with much success in simulators based on Wave
form Relaxation, where usually the system is statically divided into parts, 
and each part is solved independently of the others. The Waveform Relax
ation does not perform well on strong feedback systems, because these can not 
be partitioned in a profitable way. On these problems the method performs 
at best as a multirate method. 

Multirate integration can also be applied in direct integration methods, hut 
this is not a common practica. Only in recent years multirate integration has 
been investigated theoretically and practically (Gear and Wells 1984; de Al
meido et al. 1989; van Eijndhoven et al. 1990). In this section it is shown that 
multirate integration fits well to the piecewise linear models with a linear 
multistep integration method. The necessary partitioning is performed dy
namically, which is more attractive than a statie partitioning. 
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To explain the properties of multirate integration, consider a line ar dynamic 
system, whose solution can be split in two parts, a fast u1 and a slow u2 part: 

[ ~1] = [A11 A12](U1) + (
8

1) . (5.15) 
U2 A21 A22 u2 8 2 

For simplicity the Backward Euler integration rule will be applied, hut with 
two different step sizes for the two parts. To simplify the equations, t0 = 0 is 
chosen. Let h2 = Kh1, with Kinteger, so the grid points of the integration of 
u2 forma subset of those of u1. Applying the BE rule on (5.15) gives: 

{ 
(/ - h1A11) U1(h1) - h1A12 U2(h1) = U1(0) + h1a1 

- h2A21 U1(h2) + (/ - h2A22) U2(h2) = U2(0) + h2a2 . 
(5.16) 

-
Thiscan not be solved directly, because onlythevalues at the time point t = 0 
are known. It is, however, possible to find a good approximate solution. Two 
methods can be chosen: extrapolate u2, or extrapolate u1. In the first case u2 
is extrapolated in the time points t = kh1 for k = 1, 2, ... , K-1, and these val
ues are used to calculate u1 in these time points. Then u1 and u2 are calcu
lated at t = h2 . The alternative method is to extrapolate u1 to the time point 
t = h2, calculate u2(h2) and interpolate u2 on the interval [O, h2] to calculate 
u1. The first of these methods is called fastest-first, the second slowest-first 
(Gear and Wells 1984). 

Both alternatives differ theoretically not, because the coupling between the 
two parts is low, i.e. both A21 and A12 are small, so no large error is made. If 
the coupling is strong, only A12 can be large; if A21 is large, u2 will change if 
u1 changes, and it is therefore not slow. So the terms h2A21 and h1A12 can 
have comparable norm and the error made by the interpolation and extrapo
lation will be of the same size. 

There is, however, an important practical difference. First, in practical situa
tions the fast parts of the system are usually created by parasitic elements. 
Their effect on the slower parts of the circuit can mostly be ignored, i.e. A21 
is very small. The second difference shows up in the fastest-first scheme 
when the integration of the slow part is erroneous at the next time point h2• 

Then the extrapolation of u2 was also wrong, and (part of) the integration of 
u1 can be wrong. Therefore the integration should restart at the time point 
0 with a smaller h2• So the situation at time 0 had to be saved, which is very 
expensive. 

It is much easier to use a slowest-first scheme: if the integration of u2 be
comes erroneous halfway the interval [O, h2 ], its integration can restart from 
the current time point with an error equal to the interpolation error. There
fore only a slowest-first scheme bas been implemented in PLATO. This scheme 
is more compact than the scheme ofGear and Wells, because the first steps 
of both rates are calculated together. 
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The most important properties of a multirate integration are the same as 
those of traditional integration methods: the precision and the efficiency. 
These properties are compared to those of its basic integration method with 
a uniform step. 

The precision of a multirate integration method depends not only on the pre· 
cision of the basic integration method, hut also on the precision of the inter· 
polation and the extrapolation. It is shown (Gear and Wells 1984) that the 
LTE for the fast part contains two terms: the LTE of the basic integration 
method, ~ ~ u<2l(Ç) for BE, and the expression (/ - h1 A11)-1 h1 A12e2, with 
e2 the interpolation error. For other integration methods this second expres· 
sion has terms with comparable norm. Due to the factor h1 in this expression, 
the error in the interpolation scheme may be one order lower than the one in 
the basic integration method. 

The error in the slow method can be written as the LTE of the basic integra· 
tion method plus the expression (/ - h2A22) - 1 h2A21 e1, with e 1 the extrapola· 
tion error. This shows that the extrapolating polynomial can also be chosen 
one order lower than is expected from the integration method. 

In uniform-step integration methods the LTE is used to select a step size that 
maintains the error within user-specified bounds. In multirate integration 
this is not directly possible, because the LTE consists of two or three terms: 
the LTE of the basic integration method, the interpolation error, and the ex· 
trapolation error. 

Ifthe interpolating and extrapolatingpolynomials have the same order as the 
basicintegration method, for example linear interpolation with the first order 
BE method, the interpolation and extrapolation errors in the LTE may be 
neglected with respect to the integration error. Then the maxima! step size 
can be derived from the error specification. 

But if a linear interpolation and extrapolation are combined with a second or· 
der integration method (TR, BDF, or ACF), the interpolation and extrapola· 
tion introduce errors of the same order as the integration error. To ensure that 
these errors are within the user-specified bounds, the time steps are then 
chosen with a lower order accuracy method: in formula (5.14), the order qis 
taken 1, the order of the interpolation. 

The stability of a multirate integration method is related to the stability of 
its uniform-step variant. If the matrix in (5.15) is block triangular, the 
method is A(a)-stable if the basic integration method is A(a)-stable. Ifboth 
A12 and A21 are nonzero, the error in the extrapolation will dominate the LTE 
for a large step, so the step may not increase freely. The following proposition 
can be derived in that case (Gear and Wells 1984): there exists a K such that 
the method is A-stable if h2 Il A21 Il < K and if the basic integration method 
applied on the matrices A11 and A22 is strictly A-stable, i.e. the terms h1À1 
and h~ 2 , with À. 1 and ..t2 eigenvalues of A11 and A22, are in the interior of the 
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region of absolute stability. A multirate method is not A-stable if the basic 
integration method is not A-stable. 

Clustering 

The efficiency of a multirate method depends on the ratio of the steps that are 
taken, the costs of interpolation and extrapolation, and the overhead in the 
program. In the riext chapter it is shown that the chosen implementation of 
the interpolation and extrapolation is cheap with respect to the full calcula
tion of each variable at each time point. The overhead in the program consists 
of three parts: the check in the slow components, the selection of the time 
steps, and the selection of the varia bles at each time point. 

The slow components must be checked during their interpolation, to ensure 
that the error remains within the user-specified bounds. Usually the extra
polation of the fast components is accurate enough, so the integration of the 
slow components is accurate enough. But if this extrapolation is questionable, 
the error that is made should be kept bounded. Therefore the estimation of 
Il u(q+ 1 l(~) Il is monitored during the interpolation. Ifit grows during the inter
polation interval, the time step was chosen too large and sbould be decreased. 
As explained above, this is not easy, so the interpolation is stopped instead. 
This gives an error that is bounded by the interpolation error, because until 
this time point the interpolation was sufficiently accurate. The interruption 
of the slow integration happens not too often, and occurs in many cases if a 
component at rest becomes active. 

It is possible to give each u variable its own optimized time step, so the quo
tient of two time steps is not integer. This is the ultimate multirate method, 
hut it is not optima!. Because there exist in general clusters ofvariables, all 
coup led and with nearly the same time step, giving each variahle its own step 
introduces a waste of effort. Each varia bie in a cluster must be checked each 
time point, which leads to a large overhead. Also the solution of the linear 
equations at each time point gives the same nonzero entries in the x vector. 
Therefore the efficiency increases if varia bles with roughly the same step size 
are synchronized with each other to identical time points: they are clustered. 

The clustering of variables can be performed statically or dynamically. Be
cause a statie clustering is based on the situation before the integration 
starts, it is coarse and might not he suitable after several time steps. A dy
namic clustering is more interesting, because it can be fine-tuned and will 
put a variable in a different cluster if necessary, so that the clusters contain 
at each time point variables with equal step sizes. 

The clustering ofvariables in our simulator is based on restricting and order
ing the points of the time grid. The grid points are restricted to the values 
i- i = r 2 -1<r with integers k ~ 0 and 1 s: r < 21<, and T = te t0. The time 
step that is allowed is the distance between the current time point and a next 
grid point so that the specified error is not violated. This next grid point is the 
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one with the lowest k, so that in genera! the time step has also a value 
h; = r 2-kr, usually with r = 1. This clustering creates an integer grid on 
the time interval. Because the number of used grid points is unknown in ad
vance, the grid is recalculated for each time point and each time step. This 
recalculation is efficient, so no special implementation techniques are applied 
here. The calculations are given in Algorithm 5.1. 

With this algorithm the variables are not only implicitly dispatched over dif
ferent clusters, it also ensures that the time step of the slow variables is a 
multiple of the fast variables. Also, iftwo subsequent time steps are about the 
same, the same step is calculated. This increases the efficiency in the other 
parts of the simulator, as described earlier. By not choosing the maxima} al
lowed time step, the number of interruptions of the integration is also de
creased. 

Algorithm 5.1: Clustering ofvariables 

for i : = 1 to nu do 

od; 

hmax := maximal_step( u~q+ 1 ) ); 

max_time: currenLtime+ hmax; 
firsLtime : = t0 ; lasLtime : = t9 ; 

while /ast_time - firsLtime > hmax do 

mid_time: = (lasLtime first_time)/2; 
if mid_time < max_time then 

first_ time : = mid_time; 
else 

last_ time : = mid_time; 
fi; 

od; 

h;: = lasLtime - CUffenLtime; 

A final efficiency problem can show up when the variables must be selected 
for the next time point. A straightforward method is a linear scan over all 
variables and selecting those variables with the earliest time point. This is 
currently implemented in PLATO, and the overhead in this routine is reason
able, as is shown in Section 7 .5. U sing a partially ordered list is more efficient. 
An other possibility for efficient clustering is the application of an integer grid 
of time points, i.e. the time is scaled with a factor 2Nr, with 2N the maximal 
size of an integer, and only allowing integer values. 

The conclusion is that multirate integration is attractive, if the system is 
large and the connectivityis low. If the connectivity is high, multirate integra
tion is nota good alternative. But, as has been explained in Chapter 3, an elec-
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trical or digital circuit usually has a low connectivity. In Chapter 7, the effi
ciency of the multirate method is shown through some examples. 

5.5 Exponential integration 

From equation (5.2) it can be deduced that the solutions of problem (5.1) have 
usually exponential characteristics. The general solution allows other types 
of solutions, for example sine functions or linear functions. Because these 
types offunctions are not stiff, the number of time steps used to solve these 
functions is not large. But to determine the exponential-like solutions suffi
ciently accurate, the number of time steps used by the implicit integration 
methods is large. Therefore, the computational effort spent in these methods 
is large. This is not only due to the large number of steps, hut also to the im
plicit behavior. Because the system matrix depends on the step size, the ma
trix must be updated with each change of the time step. This also implies that 
the system matrix used in the Van de Panne algorithm depends on the time 
steps, which sometimes has negative consequences, as described in the next 
section. Therefore an explicit method, although it can not be very stable, still 
can be attractive to apply. In this section again t0 = 0 is chosen. 

Because exponential behavior exists in most problems, it may be profitable 
to apply an explicit exponential integration method. This will be most advan
tageous on problems in which the solutions are truly exponential. These prob
lems are of the form: 

{ 
û(~ = A u(t) + b ' (5.l7) 
u(O) = u0 

with A and b constant, and with all eigenvalues of A, À. i• negative real and sim
ple. This problem has the solution 

t 

u(t) = eAtu(O) + f eA(t-r)b dr = u(O) + (eAt /)û(O) , (5.18) 

0 

which can also be written as 
n 

u,{~ = L /3ij eÀit + Y;' 
j=1 

for some real coefficients f3 ii' À;, and y r 

Ifthe matrix Ais diagonal, (5.19) can be simplified to 

u,{~ = /3ii ( eÀ, t - 1 } + Y; . 

(5.19) 

(5.20) 

This equation is the basis of the exponential integration method that is inves
tigated. A simpler expression can not give better results, because it will not 
give valid results on a one-dimensional problem. 
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First consider a one-dimensional problem. The values /3 11 , À1 and y1 can be 
calculated from the equations: 

(û(0))2 ü(O) 
/311 = ü(O) ' À1 = û(O) , Y1 = u(O) . (5.21) 

With these values the one-dimensional explicit exponential method is intro
duced by: 

u(h) = u(O) + (elû 1 1)fj11 . (5.22) 

The n-dimensional explicit exponential method is now defined by: 

u(h) = u(O) + (eM - J)B , (5.23) 

whereB andA are diagonal matrices with 

l 
(ûj(0))2 

Bii = üi(O) 
Ü-(0) (5.24) 

A - I 
ii - ûi(O) 

If necessary, B andA are indexed with the time point at which they are calcu
lated. Notice that the values of û(O) and ü(O) need to be calculated by solving 
a matrix equation. 

The two main properties of this method that must be determined are its order 
and its stability. For this analysis, let y(~ be the calculated solution of the dif
ferential equation (5.17). The order of the method is determined by calculat
ing the Taylor series of the exact solution and comparing it with the solution 
of the integration method: 

{ 

u(t + h) = u(~ + hû(~ + ~h 2 ü(t) + ih3u< 3 >(~ + O(h4) 
(5.25) 

y(t + h) = y(~ + hY(~ + ~h2.Y(~ + ~h 3 A 2 Y(~ + O(h4) . 

So if u(O} = y(O}, û{O) = Y(O) and ü(O) = .Y{O), the LTE at time point h, 
u(h) y(h), is: 

L TE = i h3(A 2Y(O) u<3>) + O(h4) . (5.26) 

Therefore the order of the method is 2. Notice that the order of the method 
does not show its behavior on exponential solutions. lt is simple to show that 
the LTE vanishes for these solutions. 

The stability of an integration method is usually tested with the differential 
equation û = Ä u, with Re(,î) < 0. Because the explicit integration method 
solves this equation exactly for all time steps h, it seems that the method is 
A-stable. 1b analyze the stability more precisely, consider an n-dimensional 
problem with n > 1. Denote by d(t + h) the error made in the step from time 
tto t+ h, i.e. the LTE. The exact error made in a step, d(t + h), assuming 
u{t) = y{t), û{t) = Y(~. and ü(~ = y(t), is: 
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ó(t + h) = y(t + h) u(t + h) 

= y(t) u(t) + (eM{t) - l)A(t)- 1y(t) (ehA - /)A- 1û(t) 
(5.27) 

= ( (eM(t) - /)A(t) - 1 - (ehA - /)A 1) ü(t) 

Therefore the formula for ó(h) is: 

ó(h) = (ceM(O) l)A(0)- 1 - (ehA - /)A 1) û(O) . (5.28) 

With some slightly more difficult calculations the exact error after two steps 
can be determined, using j(h) = ü(h) + Aó(h), leading to: 

y(2h) - u(2h) = <J>1ó(h) + ó(2h) (5.29) 

with </> 1 = I + (eM(h) /)A(h)- 1A. 

From equation (5.29) the formula is deduced for the global error at the nth 
time point: 

n n-1 

y(nh> = u(nh> + I < n <l>j > ó(ih) • (5.30) 
Î= 1 j= i 

with <Pi = J + (eMUh) J)AUh) - 1 A. 

By using relation (5.26), the local truncation errors ó(ih) can be estimated, 
and thestephcan beadjustedsothat Il ó(ih) Il< eforgivene. Tokeeptheglobal 

n n-1 

error I ( n </> j ) ó ( ih) bounded, it is therefore necessary that Il </> j Il :S R for all 
i=1 j=i 

j for some R < 1. In that case the global error is bounded by e/(1 - R). The 
condition Il </> j Il :S R < 1 depends on the matrix A, the time step hand the esti
mate AUh) of the eigenvalues of A. Because the eigenvalues of A were as
sumed to have a negative real part, there is a region in which h can be chosen 
so that R < 1. If the matrix A is not diagonal, this region is bounded (as is 
shown in the next paragraphs), and the explicit exponential method is not 
A(a)-stable. 

A simple example shows that with a non-diagonal matrix the condition 
Il</> i Il :S R < 1 can not be fulfilled. The problem, given in equation (5.31), has 
the exact solution given in equation (5.32): 

ü = [ ~ -~] u + (ó) = 0 

u(O) - [ 0 ~i 
(5.31) 

u - [1 (5.32) 
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The method's estimate of the eigenvalues gives the exact result for the first 

one, while the second eigenvalue is estimated with À.2 = 2( . û2 • r This 
U1 U2 

eigenvalue decreases from -1 .5 to -1 for increasing time, if the exact solution 
is used. A contour map of Il ip1 Il as function of .12 and h is given in figure 5.1 
[calculated with Mathematica, version 1.2 (Wolfram 1988)]. Now, Il <jJ 1 Il> 1 in 
the region denoted with H, so it is clear that, even in the case of a good value 
for .12, the time step can not be chosen arbitrarily large. 
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Figure 5.1. Contour map of Il <PJ Il as function of h and À. 

Because the explicit exponential method is not very stable, its application is 
less attractive than it seemed to be. A second and major disadvantage is the 
instability of the calculation of A and B. Even with a slightly stiff system, a 
small error in the calculation of û or ü will introduce a large error in A and 
B. This showed up in numerical experiments, where the estimate for the large 
negativf.'l eigenvalue changed from step to step. Other disadvantages are that 
an other type of approximation needs to be employed if ü or üis close to zero, 
and that the method is not multirate, so part of the efficiency of the other in
tegration methods is lost. These reasons led to the conclusion that the method 
is too unstable to be suitahle in the simulator. 

5.6 The integration method and the Van de Panne algorithm. 

One of the most difficult parts of the simulator is the interaction of the in
tegration method with the Van de Pap.ne algorithm. In traditional analog sim
ulators, the integration method is applied first, and the current linearization 
is determined during the solution of the resulting nonlinear system. In PLATO, 

the current linearization is already known in a certafö. region. If the solution 
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at the next time point is still in this region, the integration method yields the 
solution immediately. Problems may occur at the boundary of a region, 
namely: 
- The time point at which the boundary is crossed is nota grid point of the 

integration method. 
- The integration method bas to he stopped properly at the boundary. 

The integration method bas to be restarted properly after a new region and 
linearization have been determined. 

The first problem, that the time point of crossing is nota grid point of the in
tegration method, can not be ignored. The time point tb denotes the (un
known) time point at which a facet is crossed. A simple hut erroneous method 
is to integrate with the old linearization over the boundary and calculate af
terwards a new linearization. Because the solution will not match the new li
nearization, it will change discontinuously at the next time point. lgnoring 
the boundary conditions introduces also an error in the solution that may be 
unacceptably large. This happens if the time step h is large, in which case tim
ing errors or large integration errors occur. 

'Th avoid these errors, the integration method must be stopped on the bound
ary. This can be performed by two methods: iteratively determining the time 
step until the solution at the next time point will be sufficiently close to the 
boundary, or stopping the integration in the middle of the integration step. 
The first method is expensive, because the integration step may have to be 
changed a number of times, and each change will need an update of the Axx 
matrix and the solution of the new linear equations. 

It is less expensive to stop the integration in the middle of the integration 
step. lnstead of performing the full step, the values are interpolated to the 
time point tb. The interpolating function can be chosen exactly in the begin 
and end points of the integration interval, and with an error smaller than the 
user-defined error bound in the other points of the interval. The time point 
tb can be found directly with such an interpolating function: the interpolation 
of the boundary variable is known explicitly, and only the zero point of this 
function must be determined. This is much simpler than the method de
scribed in the previous paragraph. So, depending on the integration method, 
an interpolation method is chosen to check if a boundary is crossed, before this 
step is performed. Notice that the implicit linear integration methods are 
transformed into an explicit method with equation (5.9), i.e. at the time point 
t(i) the values at tji+ 1l can already be inspected. So the existence of a break 
point tb is determmed before it is crossed. 

The second problem is the proper halting of the integration method and the 
start of the Van de Panne algorithm. With the use of the interpolating func
tion the values are updated up to the time point tb. The Van de Panne algo
rithm is initiated as described in Section 4.4, so that first the boundary must 
be crossed before the algorithm is finished. The first problem that is encoun-



5.6 The integration method and the Van de Panne algorithm 75 

tered, is the influence of implicit integration method on the Axx matrix. As 
shown in equation (5.13), this matrix depends on the time step h for an im
plicit linear multistep method. Because the Axxmatrix is also used in the Van 
de Panne algorithm, this gives some problems. 

There are three possible solutions: 
- Use two matrices and two LU decompositions. 
- Set the time step to zero before the Van de Panne algorithm is started. 
- Take into account the influence of the integration method on the Van de 

Panne algorithm. 

The first of these solutions is too expensive, while the second solution is only 
necessary if in the Van de Panne algorithm a step is taken, i.e. the pivot was 
negative or zero. The third possibility is simpler, because only locally the in
tegration method must be taken into account. lf the pivot is positive aft.er the 
correction, it is performed; otherwise the time step must be set to zero, 
because large errors are made, as a Van de Panne step can be considered as 
an instantaneous integration. Concluding, the Van de Panne algorithm is 
adapted slightly: the first time the sign of the pivot is calculated with a time
dependent local matrix. lf this sign is not positive and the time step is not 
zero, the time step is set to zero, the matrix is updated, and the sign is recalcu
lated. Because a multirate integration method is applied, a choice must be 
made whether the time steps of all u variables are set to zero, or only those 
that might be affected. In order to not disturb the unaffected variables, only 
the directly influenced u variables are set to zero. 

The third problem is the restart of the integration method. First the derivates 
must be recalculated, because they have possibly been changed during the 
Van de Panne algorithm. If the pivot was positive, the time step has not 
changed, so the integration method can continue without too much difficul
ties. The linear one-step formulae determine possibly a new time step, up
date the matrices and start the integration. The linear multi-step formulae 
~~~~~~~~~~~~~~~~~ 

in the matrices. If the pivot was not positive, the integration must be re
started as described earlier. 

Special care must be given to the possibility that the (implicit) integration 
and the Van de Panne algorithm interfere with each other, i.e. the integration 
indicates that a boundary must be crossed, hut the Van de Panne algorithm 
does not find a dynamically valid new region. Because an invalid region is 
found, the Van de Panne algorithm is started again and is likely to find the 
original region. This is only possible in two situations: there is no valid 
dynamic region, as has been described in Section 2.4.3, or the time step has 
not been set to zero. In the first situation no solution can be found, and the 
simulator will fail. In the other situation, the time step for all u variables is 
forced to zero and a new try is performed. If this does not help, the simulator 
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will fail. The possibility that the Van de Panne algorithm will not find a solu
tion due to a bad choice of the e vector in this case, has never been observed. 



6 Aspects of the lmplementation 

6.1 Introduction 

In the previous chapters the basic algorithms have been described that are 
used in our simulator. In this chapter the main loop is specified, in which 
these algorithms are used to solve a problem specified by a user. Before this 
algorithm will be discussed, a short description of the user environment for 
PLATO is given. The introduction of divided diff erences, used for creating a 
more sparse problem, and the output processing are discussed. Also some nu
merical problems are discussed. A special topic is a possible parallel imple
mentation of PLATO and its effect on the run time. Some future extensions are 
discussed finally. 

6.2 U ser environment 

Although it is oflittle importance for the numerical aspects of a simulator, the 
user environment is still an important factor in the design of a simulator. 
Internally only the matrices and the initia! values of the u variables are 
needed to describe the problem. These values are determined from a descrip
tion of the network and the components. Furthermore, some parameters spe
cific to the simulation process must be given, like the simulation interval, the 
integration accuracy, etc. The creation ofboth the network and component de
scription and the simulation specific parameters should be simple and 
straightforward. 

Nowadays, a graphical user interface is preferred to relay this information to 
the simulator itself. Because a graphical user interface is not relevant for the 
simulator, the interface with the simulator is split in a simple and an 
advanced layer. The simple interface consists of two input files, one contain
ing a description of the circuit and one containing the specific simulation 
parameters. Several graphic programs, creating these two input files, are 
available as an advanced user interface for PLATO. 

The main graphic interface program is PLTASK, used to control the simulator 
as well as other graphic and auxiliary programs. The two other graphic pro-

77 
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grams are ESCAPE and PLOV. ESCAPE is a newly developed graphic editor and 
simulator of circuit schematics, based on the older schematic editor ESCHER 

(Lodder et al. 1986). With ESCAPE, a schematic diagram of the circuit can be 
drawn and checked for consistency. PLOV is a signal viewer, to draw and ex
amine the calculated signal values on the screen. All these graphic programs 
have the same 'look and feel', based on the OSF/Motifinterface (OSF 1990). 

The circuit description file that is used by PLATO, is written in a special lan
guage calledNDML (Janssen 1986; Buurman et al. 1990). To simplifythe (hier
archical) description of the circuit for a user, the language has two levels of 
description: 
- A high level specification with PASCAL-like statements (if-statements, 

for-loops, etc.) and data structures (arrays of nets). Circuits may be para
meterized, so properties of a circuit are determined by its parent. This spec
ification may be incomplete, i.e. referred sub-circuits are not in the descrip
tion. 

- A low level specification containing a complete specification of a circuit, in 
which the high level statements are expanded (loops unrolled, conditional 
statements executed, etc.) and the parameters are evaluated. This specifi
cation is a proper subset of the high level specification. 

The language compiler NDML can convert a high level description into a low 
level description that is understood by the simulator. Such a high level de
scription can be created with a text-editOr, hut the compiler can also extract 
the information from the graphical data of ESCAPE. Unspecified components 
are looked up in a library of previously created circuits and models. 

Because the output of the simulator can be very large, the graphic signal in
terpreter PLOV plays an important role in the interpretation of the results of 
a simulation. lt can be used to compare, both numerically and graphically, 
output signals from one run, from different runs, or from other input sources, 
like an output specification. The interpreter can also print a selection of sig
nals on a postscript printer. 

Furthermore, some auxiliary programs are available in the environment. To 
analyze new or complicated models, a simple model interpreter is available, 
which determines all possible regions and linearizations in a model. Various 
filters and signal comparators can also be used. This cluster of programs sim
plifies the use of the simulator in a design environment. Because these pro
grams are available, the simulator program contains a minimum set ofneces
sary features, allowing its use independently of the environment. All pro
grams are written in the language C (Kernighan and Ritchie 1988). 

6.3 The event driven simulator 

In the previous chapters the basic algorithms were explained, that are used 
in the circuit simulator PLATO. In this section these algorithms are integrated 
in the main event loop, the main algorithm of PLATO (Algorithm 6.1 ). This algo-
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rithm is rather straightforward, compared to some of the earlier described 
ones. At this point of the description, the practical efficiency of the algorithms 
is also important. Several methods will be described to increase this efficien
cy. 

The algorithm performs two tasks: finding an initia! solution and solving the 
nonlinear dynamic problem. First the routine initialize() is called to perform 
several tasks: 

Reading the simulation specific parameters. 
- Reading the circuit description. 
- Creating the data structures. 
- Sealing the equations. The purpose and effect of this task are described in 

Section 6.6. 

After the data structures have been created, a nodal analysis of the system 
is performed. As described in Section 3.2, during this analysis the number of 
equations and variables may decrease. So only hereafter the LU decomposi
tion is calculated. The initia} solution, either the DC solution or a simpler ini
tia} value problem, is determined now. Sometimes this is the only part of the 
simulation that the user is interested in, so then the next loop is skipped. This 
loop is the main event loop, in which the transient solution is calculated, i.e. 
the dynamic solution of the problem. 
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Algorithm 6.1: The main algorithm of PLATO 

var cluster: array of leafcell; 

initialize( ) ; 
nodal_analysis( ); 
LU_decomposition( ); 
DC_analysis(.); 
time:= t0 ; 

while time < te do 

od; 

<cluster, new_time, type> : = next_event( ); 
if oscillation( time, new_time) then 

exit unsuccessful; 
fi; 
if time< new_timethen 

output_variables( ); 
time:= new_time; 

fl; 
update( cluster, time); 
if type = pi then 

Van_de_Panne( cluster); 
else 

for i : = 1 to size( cluster) do 
new_time_step( cluster( i] ); 

od; 
fi; 
calculate_new_x_bar( ); 
for i : = 1 to size( cluster) do 

new _event( cluster[ i ] ) ; 
od; 
for i : = size( cluster) + 1 to related _leafs( ) do 

check_euent( cluster[ i] ); 
od; 

As has been explained in the previous chapter, the dynamic problem must be 
solved by a numerical integration method. To solve this problem efficiently, 
a multirate integration scheme is applied. This scheme introduces for each 
component a so called next event, i.e. a time point at which a new integration 
step must be taken. It is also possible, that between the current time point 
and the next integration time point a facet of the piecewise linear mapping 
is crossed. In this case, the integration must be performed by an interpolation 
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up to that time point, followed by the determination of a new mapping, after 
which the integration can be continued. 

The usage of the multirate integration scheme and the strict checking of the 
boundary conditions of the piecewise linear mapping introduce an event 
driven simulation scheme. The simulator repeatedly determines a cluster of 
components and a time point (event), at which the equations in the compo
nents of the cluster become invalid. The sequence of time points is processed, 
and at each time point a number of actions is performed as follows: 
- The values are calculated or updated, and printed. 
- If necessary, the linear equations are updated by the Van de Panne algo-

rithm or by the integration method. 
- The values, used for the interpolation, are calculated. 
- The new events are determined, and old events are checked. 

Here the advantage of using sparse techniques becomes most obvious. Be
cause during an event only the variables related to the leaf cells in the cluster 
might change, updating is restricted to this set of variables. This set is in most 
electric and logic circuits limited, because only a fraction of the leaf cells is 
member of the cluster, and hecause the connectivity is low. The interpolation 
of the other varia bles remains valid, so no intermedia te value at the current 
time point is calculated. Only in the last part of the loop, a subset of the leaf 
cells not in the cluster is checked. This subset contains those leaf cells whose 
next event might become invalid, because one of its varia bles changed direc
tion at this time point. 

Because the applied integration methods are restricted to order 1 or 2, a lin-. 
ear interpolation for the multirate integration and for the computation of the 
boundary crossings is used. For optimal use of the sparsity, the xvectoris cal
culated only once in the initialization phase, while in the other places, if it is 

necessary, it is updated with a divided difference, x i = X(i+ 1 > x(i). However, 
h 

the x vector is not used in the calculations, except in the initialization, be-
cause for the other vectors also a divided difference vector is maintained. 
These difference vectors are directly calculated from the vector x i• which is 
as simple as using the vector x. In the next section it is explained that using 
these difference vectors is more efficient compared to the application of nor
mal vectors. 

6.4 Sparse vectors by divided differences 

One of the major features of our simulator is the use of sparsity. This is par
tially implemented by using a sparse Axx matrix, a list ofleaf cells, and a list 
for connecting the entries of the x vector with the leaf cells. To use this spar
sity optimally, the calculations with the xvector should be also as sparse as 
possible. This can be accomplished in two steps, the first being the introduc
tion of divided differences: 
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- x(i+1) - x(i) 
X;= h 

- U(i+1) - U(i) 
U;= h 

Using these variables, equation (5.11) is transfonned into 

with 

[ ~: ~:: ][::] + ( a?,u) (g) 

A'ux = - h b_1 Aux 

A'uu = l - h b_1 Auu 
p 

a"u = I(aj (u(i-j) - u(i-j- 1)) + h {Jj (ü(i-j) - ü(i-j- 1))) 
j=O 

(6.1) 

(6.2) 

Because most variables change, ü and therefore x are not sparse vectors. So 
only the updates on these vectors are calculated: 

óX; = X;+ 1 X; 

ó ü i = ü i+ 1 - ü i . 
(6.3) 

These updates are calculated with the matrix of equation (6.2), using only a 
different a'' u: 

p 

a"'u = I(aj (u(i-j+ 1) - 2u(i-j) + u(i-j- 1)) 
j=O 

+ h {Jj (û(i-j+1) - 2û(i-j) + û(i-j-1))) 

(6.4) 

Notice that to solve ó x; the same matrices are used as in equation (5.11), so 
the method outlined in Section 5.3 is also applied in these calculations. The 
gain in using updates on divided differences is twofold. First, the solution of 
the equation A' xx x(i+ 1) = a' x is in general more expensive to calculate than 
the solution of A 'xx ó x; = a' ''x, because the vector a' ''x has less entries than 
a' x. and as a result the vector ó x; has less entries than x(i+ 1 )" Secondly, be
cause ó x; has less entries, the number ofrelated leaf cells is only a fraction 
of the total number ofleaf cells. In the case of a multirate integration method, 
the gain is even larger, because a'' 'x and ó x; contain only a limited set of en
tries. The divided differences are also employed in the calculation of the time 
step. 

This combination of a multirate integration method with a sparse update 
method fully exploits the sparsity of the problems. The components that 
change are used in the calculations, while the other components are only 
checked when necessary. Because the exploitation of the sparsity is the only 
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method to simulate efficiently large circuits, the divided difference method is 
implemented in PLATO. It is straightforward to calculate also the divided dif
ferences of wand z with the values of ü and :X. 

To maintain the values of x and ü up to date during the simulation, they 
must be recalculated when a facet is crossed, i.e. during or after the Van de 
Panne algorithm. A direct calculation of ü is expensive and not necessary, he
cause in many situations only a few entries of ü change when a boundary is 
crossed. Instead, an update vector o ü is calculated during the Van de Panne 
algorithm. This vector is updated at several points in the algorithm: 

On initialization, the time, and therefore x and u, has been changed, so o ü 
is calculated accordingly. 

- If the Van de Panne algorithm finds a negative or zero pivot, the step size 
is set to zero, and o ü is updated. 

- If the Van de Panne algorithm takes a step, x and u may change, so ó ü is 
updated. 

- If a pivot is performed, the matrices change. Then x and ü may change, 
and this effect on o ü is calculated. 

The effect of these updates on the vector o ü is always restricted to those ele
ments that have been affected in the Van de Panne algorithm. Because this 
number is small, the vector is as sparse as with a dynamic event. The gain in 
computer time for these calculations is, compared with the direct calculation 
of ü, about 15 % of the total computer time. 

6.5 Output processing 

With the use of divided differences, the value of x is calculated only once, at 
the beginning of the time interval. A new strategy can be developed to create 
the output also efficiently. The verb print will be used to describe the process 
of creating the output, although the results are not directly available on a 
printer, hut only in raw form in a file, and must be interpreted graphically 
with a postprocessor. The choice which of these x variables are printed is 
made by the user, and this choice bas some influence on the actual calcula
tions, as described in Section 3.2. 

The actual act of printing is expensive with respect to other calculations and 
actions, because the storage or printing device can handle much less data per 
second than the processor. Therefore it is useful to decrease the data output 
as much as possible, without decreasing the accuracy. This is possible, for ex
ample if one output variable is constant for some time, when only the signal 
val ues at the begin time and the end time are necessary to describe the signal 
perfectly. Ifhowever a signal has many fluctuations, the signal value must be 
known at many intermediate points. In this case there is more information, 
so it is reasonable to use more data to describe the signal. Because the in
formation is not known for fut ure time points, it is not easy to describe a signal 
otherthan with a number of pairs (time, value). Note that then also a mathe-
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matical function with an explicit formula must be described with many 
points. Although the output could be reduced if the numerical results are 
approximated with a set of mathematical functions, this option is not ex
plored in PLATO. 

Traditionally, the time points at which variables are printed are on a regular 
grid. This has the advantage that the postprocessing can be simple. This 
method has however two drawbacks: first, to ensure that fast changes in 
value can be noticed, the distance between the time points must be small. Sec
ondly, many piecewise linear variables (for example the output of simple 
dynamic logic gates) are printed and calculated too many times. These vari
ables can be printed exactly if the 'corners' of the time function are printed, 
i.e. the points at which the direction of the signal changes or at which the sig
na! is discontinuous. These time points do not exactly fit the chosen grid, and 
in genera! the value of a signal is checked or printed at many intermediate 
time points. To avoid this numerous checking and printing, the output proces
sing of PLATO is based on changes in the values of the signals. 

This is possible, because a user of a simulator requires two seemingly contra
dicting properties. The simulation must be accurate enough to be sure that 
the modeled behavior is well approximated, hut on the other hand this accu
racy does not need to be shown explicitly in the output. The user is more inter
ested in the 'global' behavior of the different signals. Therefore in PLATO an 
accuracy for printing is introduced: ifthree successive values of a variable are 
(nearly) on a straight line, the middle one need not to be printed. In this way, 
constant signals are printed only at the begin and the end, and piecewise lin
ear functions are printed only at their 'corners'. For analog types of signals, 
the accuracy of the output is still good, while less points are printed. 

The second choice is to create the time grid at which the results are printed 
dynamically. This grid is chosen to be equal to the events of the event-driven 
simulator. So a variable is only checked if the integration method indicates 
that its direction has changed, or ifit changes due toa Van de Panne step. Be
cause only a limited set of variables must be checked, this method is efficient. 
A second advantage is that also fast varying signals will be printed nearly ex
actly. In the implementation, the signa! is checked for printing in two cases: 
if oxî :;;t!; 0 after a dynamic or a pl event, or if xî ';é 0 during the Van de Panne 
algorithm. 

6.6 Numerical accuracy 

In a large program like a circuit simulator, several numerical problems show 
up. The main problems are the accuracy and stability of the integration, and 
the accuracy of the LU decomposition. In our case, also several accuracies of 
the Van de Panne algorithm are important. The accuracy and stability of the 
integration were discussed in the previous chapter. Here some additional re-
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marks are made on the numerical precautions made in the LU decomposition 
and the Van de Panne algorithm. 

The accuracy and stability of the LU decomposition and the solution of the 
linear equations depend on the condition number of the matrix Axx and the 
pivoting strategy. The condition number c(A) of a matrix is defined as 
c(A) = 11 A 11 ·Il A - 1 Il· It is a measure for the error made in the solution of the 
equations, i.e. the error bas a value in the order of c(A) times the initia! error. 
For line ar equations originating from circuit equations, the condition number 
is relatively small for most circuits. Therefore the accuracy and stahility of 
the LU decomposition and the solution of the linear equations suffice in those 
cases. If the condition number of the matrix is large, and the accuracy de
grades, this indicates that the system is difficult to solve. Using amore elaho
rate solution method will not really solve the problem, because the other algo
ritbms in the simulator will also have difficulties to find a solution, i.e. the 
numerical problems are inherent to the circuit. 

To enlarge the accuracy and stability of the LU decomposition, the condition 
number of the matrix should be lowered. This can sometimes he accomplished 
by sealing or equilibrating the matrix, i.e. dividing the rows and columns by 
suitahly chosen numbers. A reasonable sealing creates a matrix where the 
largest entry in eacb row and column is 0(1 ). 

Sealing allows loosening the criterion for choosing the LU pivot. A small pivot 
now always denotes a nearly singular system. After the sealing, it is also pos
sible to keep the sparsity of the matrix up to date by deleting entries with very 
small values. Instead ofusing a situation-dependent norm to determine the 
meaning of"very small", an absolute value is used to define this notion. This 
same definition is used to determine if an entry of a vector can be ignored. 

The determination of a good sealing depends on the problems that are solved 
with the simulator. If nothing is known about the matrix, sealing is difficult 
and may yield worse results (Golub and Van Loan 1989). In PLATO, some 
knowledge of the problem is available, and the applied sealing is based on it. 
In an analog or digital system, usually the variables of one kind (voltage, eur
rent, signal) have the same magnitude. For example, currents are 0(10-4) 

(ampere), voltages are 0(1) (volt), and signals are 0(1 ). Therefore a heuristic 
sealing is performed: each column of the A.x matrices is multiplied by a norm 
factor, depending on the type of the related variable. Then each variahle 
should be 0(1) during the simulation. Because it is not directly known in 
which units the problern is given, the user can specify these norm factors. Af
ter sealing the columns of the matrices, the rows Oinear equations) are equili
brated. The Il· Il"" norm of each row is used as sealing factor, to set the entries 
in the matrix on a reasonable value. 

To maximize the stability and accuracy of the remaining algorithms, their re
lated variables and equations are also normalized. The time-dependent u 
variahles are scaled so that they are also 0(1). The time is scaled with the 
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length of the integration interval, so the determination offast and slow com
ponents can be done on a global base, and the integration methods can be ap
plied with usually a larger time step. 

A last sealing is performed on the wand z variables. Any positive numher 
may be chosen as normalization factor. The most important variable is w, de
termining the region, soit is normalized to be at least 0( 1 ). To keep the entries 
on the diagonal of Azz the same, z is scaled with the inverse of the scale factor 
of w. 

After the last normalization, the accuracy used in the Van de Panne algorithm 
can be determined. Because this algorithm is combinatorial by nature, an im
plementation in a floating point program must take care of the precision. The 
main problem is the decision which row is blocking, i.e. for which <P > 0: 
w + <jJw 0 for given wand w. To guard the computation against rounding 
errors, wi is independent of the active varia bie if 1 wil < e p- Therefore, e p is 
also used to determine whether a Van de Panne pivot is zero. 

6. 7 Parallelism 

One of the new techniques to decrease the time spent in programs is the use 
of more computing devices (processors) to solve one problem. This will de
crease the time a user must wait for the solution, hut requires more computer 
resources, used in the communication between the processors. The applica
tion of more processors is calledparallelization, because the different proces
sors work in parallel (concurrently) on one prohlem. The computing devices 
can be processors of one specially devised computer (called a parallel com
puter), or can be several loosely coupled computers in a network. Another pos
sibility to increase the performance of a program is the use of vector comput
ers, that can handle blocks of data (vectors) more effi.ciently than ordinary 
(scalar) computers. The application of vector and parallel operations in a pro
gram is called vectorization respectively parallelization of the program. 
These actions are only possible if the data are used independent in the algo
rithms. 

In PLATO, most algorithms can not be directly parallelized or vectorized. It is 
clear that both the Van de Panne algorithm and the integration method must 
be solved step by step. The LU decomposition and the rank m update are well 
vectorizahle for non-sparse matrices, hut for sparse problems it is usually not 
effi.cient. The sparse data structure can not be used directly in the vector op
era,tions, and applying a scalar algorithm with a sparse data structure is more 
effi.cient than the application of a vector algorithm on a non-sparse data 
structure. Parallelization of the algorithms is possible, hut the data depen
dencies in the algorithms imply that in using more than one processor, the 
cost of cooperation is high and the gain is low. It might easily be possible that 
only one or two processors are active, while the other processors are waiting 
for data. Another possihility is that many processors are busy, updating the 
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data used in the cooperation, instead of performing calculations used for sol v
ing the problem. Some experiments led to the conclusion that a straightfor
ward parallel implementation was much slower than the standard sequentia! 
implementation, due to these reasons. However, a vector-parallel imple
mentation on a non-sparse data structure gave the expected gain. This imple
mentation is used in the neural network simulator PLANNET, as described in 
Section 7.3. 

Parallelism can be applied with success in one part of the simulator, namely 
in the leaf cell routines. Both in the integration method and in the Van de 
Panne algorithm, a fraction of the leaf cells is used to calculate and update 
several vectors. During these calculations, there is no dependency between 
the leaf cells, so the calculations in each leaf cell can be done in parallel on 
different processors. This is not implemented in PLATO, because the time spent 
in these routines, although large, is not the major part of the run time: it is 
typically 30 to 50 %. Therefore parallelization will yield a gain ofmaximally 
about 45 % on a system with 10 processors, provided the overhead costs are 
sufficiently low. This gain is in most situations not large enough to be accept
able. 

6.8 Multilevel simulation and functional modeling 

One drawback of the simulator is its inability for simulating circuits contain
ing complex models, both at the device level and at the behavior level of de
scription. This is explained by the properties of the piecewise line ar modeling 
technique, which is not suitable for these types ofmodels. Two methods can 
be used to overcome this disadvantage: multi-level simulation and functional · 
modeling. In multi-level simulation, PLATO is coupled to a second simulator 
that is used to simulate an other part of circuit. With functional modeling, the 
group of models is extended with functions that behave like standard piece
wise linear models. 

'lb examine multi-level simulation with PLATO, the simulator has been 
coupled to the behavioral simulator ESCAPE (Fleurkens and Buurman 1992). 
The resulting compound simulator has the following properties: 
• It is a master-slave relation, with ESCAPE the master and PLATO the slave. 

This is the most practical solution, because the high level simulator ESCAPE 

has much less events than PLATO. 

• ESCAPE sends a circuit description to PLATO, with several input and output 
terminals that are used for the communication between both parts of the 
circuit. 

• ESCAPE determines a value at the input terminals of the PLATO circuit and 
a time slot. The circuit is simulated by PLATO, and at the end of the time slot 
the values at the output terminals are returned to ESCAPE. This ensures 
that no oscillation between the two simulators occurs. 

• The previous step is repeated as many times as necessary. If two subse
quent values on an input terminal differ, at the begin of the second time slot 
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a discontinuity in the input is generated for PLATO. Other variables keep 
their current value. Notice that discontinuities at the inputs are no prob
lem at all for PLATO, as nonnal components can also create them. 

Several mixed behavioral/pl circuits have been simulated with this simulator 
with good results on convergence and efficiency. More experiments are cur
rently being prepared. 

The other method to incorporate more models into the simulator is by apply
ing functional models. Because the creation of complex models is difficult, a 
second method to implement a model is sometimes interesting. The internal 
data structure splits the implementation of the leaf cells from the imple
mentation of the algorithms, so it is simple to use internally in a leaf cell a 
different model. Such a model should satisfy several basic properties: 
• The model should fit into the event driven simulation loop. Therefore it 

must determine at each event a time interval during which its lineariza
tions will remain valid. 

• At each event a linearization based on the internal equations and the in
tegration method is exported to the global equations. 

• The model should mimic a standard leaf cell during the Van de Panne algo
rithm. This is a complicated algorithm, so a good understanding of its be
havior and its internals is necessary to accomplish this mimicry. 

lf these conditions are fulfilled, it should be possible to create several complex 
models that are not easily modeled with piecewise linear models. These are 
for example a large block of memory, an analog multiplier, or an accurate 
model of a MOSFET. 
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7.1 Introduction 

In this chapter three circuits are given that have been simulated with PLATO. 

These circuits are specially chosen to show the behavior of PLATO. These exam
ples will be discussed in more detail in the next sections, after which some 
program statistics are given to show the behavior of several algorithms and 
assumptions. Some other circuits, simulated with an earlier version of PLATO, 

are described in (van Stiphout 1990). 

The analog-digital converter is a prototype of a mixed level circuit. This cir
cuit has many properties that make it suitable as a benchmark to test the sim
ulator. lts behavior can be checked easily, while it is complex enough to catch 
most errors in modeling, programming and simulation. The effects of small 
or large changes internally in the simulator can be noticed directly. The size 
of the circuit is large enough to investigate the behavior of the simulator on 
larger circuits. 

The neural network is a special case: it started as a test to investigate its be
havior. However, the special structure of these problems, involving large fully 
connected networks, is not suitable for PLATO. Because the preliminary re
sults were good, a special version of PLATO has been developed for neural net
works. 

An important class of simulators for mixed-level circuits are the switch ca
pacitor filters. They are (in the ideal case) linear dynamic circuits, that are 
switched at regular time intervals to create a complementary linear circuit. 
This switching involves a strong nonlinear and dynamic behavior. One such 
switch capacitor filter has been simulated with PLATO. 

7.2 An analog-digital converter 

An analog-digital converter is really a mixed-level circuit. It contains an ana · 
log part to sample and stabilize the analog input (sample-and-hold). A series 
of 1-bit analog-to-digital converters determine the digital representation of 

89 
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the sampled value. Furthermore some digital components are used to control 
the sample-and-hold and create a digital 'ready' signal. 

This converter is embedded in a larger circuit, with additional components to 
create the analog input signals for the converter. This larger circuit contains 
two analog multiplexers to create an analog signal, and an operational ampli
fier to subtract both analog values. Furthermore, a number of digital compo
nents control the behavior of all subcircuits. The most important parts of the 
circuit are given in Figure 7 .1. 

analog-digital converter circuit 
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analog multiplexer analog-digital converter 

Figure 7.1. An analog-digital converter circuit 
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The behavior of the circuit is shown from its output, consisting of a number 
of analog and digital signals. Aselection of these signals is given in Figure 7 .2. 

mux1/out 

;, ! 
b 

:, 
:Il ' ' 1 ~ 

~1 '1'"1 H\, il ~. :! 
:! ;~ ~ 

adc/capacttor 

~Il 
1 

adcJblt2/carryout 

w:,:1~:: ;! \/':" "l 1 'll';CIMll~lllii ,::ç O~t,, ~f:l! .. ,,illB~." ~ 

0 
. 
9 

adclbit6/carryout 

,I~AÇWy 
adc/bils2 

JIJ D ~I 

:r ~non~~ o 1 o , ID D f, ,, ' ' . rl 
0 

Figure 7.2. Some signals of the analog/digital converter circuit. The grey 
'bar code' denotes the points at which a value is printed. 

First the two outputs of the analog multiplexers (mux1 /out and mux2/out) are 
shown, followed by the value of the sample-and.,,.hold (adc/capacitor). This 
value is the input to the 1-bit converters, each processing the analog output 
(carry out) ofits predecessor. Two of these carryouts are given: of the third (adel 
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bit2) and the seventh (adc/bit6) converter. It shows that the value of the latter 
carryout is unstable fora long period of time, so the eighth and last converter 
will determine a valid value for the last bit only at a late time point. This is 
also clear from the digital outputs of the converters. The third bit (adc/bits2) 
has a fixed value shortly after the sample value is fixed by the sample-and
hold. However, the last bit ( adc/bits 7) is determined just when the next val ue 
is sampled. Of course, the circuit is designed with exactly this timing specifi
cation . 

. In the plot of the signals (Figure 7 .2), the time points at which a value is 
printed are denoted with a grey bar. For this figure, the accuracy for printing, 
as described in Section 6.5, was set to 10 -4. The plot clearly shows that some 
signals are calculated and printed regularly throughout the full simulation 
interval, while other signals are printed only at a few time points. 

To show some of the effects of the previously described algorithms, especially 
the influence of nodal analysis and output specification, the analog-digital 
converter circuit has been simulated for five different output specifications. 
These five specifications range from no output, via specific and more genera}, 
to output of all variables. Some relevant parameters of each simulation are 
shown in Figure 7 .3. The column "muit. per fw/bw sub" denotes the number 
of multiplications per forward and backward substitution. 

matrix 
size 

(149x149) 

Legend 

nonzero muit. per changed 
elements fw/bw sub elements 
, (394) (9.0) (16.3) 

no output 
outputs muxes + bits 

output 
si ze 

(472 kB) 

outputs muxes + all of analog digital converter 
lmllllll all voltages and signals 
- all variables 

run 
time 

(4.09 s) 

Figure 7.3. Parameter values for five output specifications. The values are 
relative to the maxima! value (between parentheses). 
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From Figure 7 .3 it is clear that specifying to print all variables is expensive. 
The amount of work done for the trivia! case of no output shows that the nodal 
analysis can not remove a large part of the circuit. Therefore PLATO still simu
lates in this case half of the circuit. 
A comparison of the number of nonzero elements in the matrix with the num
ber of multiplications per forward and backward substitution shows that not 
all elements are relevant, especially when all variables are printed. 
The average number of matrix elements that change in the rank m update of 
the LU decomposition (Algorithm 3.3) shows that the number of effected ele
ments depends not heavily on the matrix, hut mostly on the update vectors. 
The large value for the trivial case is due to the removal of several simple com
ponents, so the average length of the update vectors is larger. 

The conclusions ofthis experiment are: 
- It is useful to specify which variables must be printed. A very precise output 

specification gives only slightly improved results, hut of course much less 
output. 

- The rank m update depends not on the size of the matrix, hut on the connec
tivity in the system and the components. 
The output processing is efficient. 

7.3 A neural network simulator 

One of the advantages of the simulator PLATO is the use of models of non-elec
tronic components. To show this and to investigate the possibilities of paralle
lizing and vectorizingthe program, a Hopfield neural network has been simu-. 
lated with an adapted version of PLATO, called PLANNET (Buurman et al. 1991). 
First the characteristics and applications of a Hopfield neural net are given, 
followed by some implementation features and some results. 

A neural network is a network consisting of only one type of module. The 
structure of a neural network is similar to the structure of a (human) brain, 
with many components and many interconnections between them. The basic 
modules (cells) are called neurons, which have many inputs and one output. 
The output of every neuron is connected to the inputs of many cells. Each in
put has a weight connected to it, to model the influence of the connected cell 
on this cell. Each weight may change under influence of the inputs and an ex
ternal force, which process is called learning. The output of a cell is adjusted 
according to the sum of the weighted inputs, hut is always clipped between 
0 and 1. This output models the activity of a cell: if its value is 0, the cell is 
not active; if it is 1, the cell is active. In the human brain and in the neural 
structures of other animals, this activity is the frequency of the so-called 
spikes (Figure 7.4) on the output of a cell: more spikes per second mean a high
er activity. 

Neural networks are used to solve two types ofproblems: to emulate human 
decision problems or to solve optimization problems. The human decision 
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Figure 7.4. Neural activity in a tarsal sensory hair of the cabbage fly 
(Delia radicum) [Roessingh, Oxford, private communication] 

problems are modeled by using a network with a given structure, and to train 
it. The training consists of offering an input to the network, calculating the 
output and adjusting the weights on the connections according to the differ
ence between the calculated output and the desired output. In this way, prob
lems like pattern matching and prediction problems can be solved. A trained 
network is capable of recognizing not only the training patterns, but also 
noisyvariants. Some recent applications are for example the deduction of geo
logie rock types from seismic data (Cardonet al. 1991), and a trouble forecast
ing system in the steel industry (Tanaka and Endo 1991). 

The other main application of neural networks is their use in sol ving optimi
zation problems. Most optimization problems are hard to solve, and many are 
NP-hard. Neural networks can be used to find a nearly optima} solution in 
a limited time. This is done by selecting an appropriate network and setting 
the weights on the inputs to a predefined fixed value. The neurons are put in 
a random initia} state, and usually converge to a stable state. The complete 
network will then represent a solution to the problem, that usually is close 
to the optimal solution. The behavior of the network is explained by the fact 
that the optimal solution is a stable state of the network. Many optimization 
problems are solved with a Hopfield neural network as presented in (Hopfield 
1984; Hopfield arid Tank 1985 ). This is a fully connected network, where each 
neuron is connected with all other neurons. Each neuron in a Hopfield neural 
network is aso called Hopfield neuron, i.e. it is modeled as a dynamic and ana-
log component. ~ 

Most optimization problems have the form: find an x satisfying g(x) 2: 0 so 
that f(x) minimal is. To solve such problems, the weights of the neurons 
depend on both functions f and g: one part of the weights is determined to ful
fill the condition g(x) 2: 0, while the other part of the weights is determined 
to force the network to an optima} solution. The ratio hetween these two parts 
determines whether it is more important to satisfy the feasibility condition 
g(x) 2: 0, or to find an optimal solution, possihly not in the specified area. 
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One of the most interesting problems to solve with neural networks is the fa
mous Traveling Salesman problem (TSP) (Garey and Johnson 1979). It is the 
problem how to determine the shortest tour between n given cities, where 
each city must be visited once, and the tour finishes in the city where it began. 
One can map this problem on a Hopfield neural network with n2 neurons. 

This map ping is explained as follows: put the neurons in a matrix of size n x n. 
A high output in row i and column j means that the ;th town will be visited as 
number jin the tour. The conditions of the problem indicate that each valid 
tour has exactly one neuron high in each row and in each column, while all 
other outputs are low. This is equivalent to the condition that the matrix of 
neurons is a permutation matrix (Figure 7.5). 
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Figure 7 .5. Permutation matrix of neurons 

The weights of the connections can be determined relatively easy. The condi
tions of a valid tour are translated in to the weights of the connections of a cell 
with all cells in the same row and in the same column. The optimization prob
lem, to find the shortest tour, has influence on the weights of a cell with the 
cells in the two adjacent columns. These weights depend on the distance be
tween the related cities. To ensure that the network will converge to a stable 
state, all weights in all cells are biased to force that the sum of all outputs is 
equal to the number of cities. Because every weight is nonzero, the resulting 
network is a fully connected network. 

7 .3.1 Modeling a Hopfield neuron 

To simulate a neural network, first a model of a neuron must be developed. 
Because in the future different types of neurons might be used, several mod
els are created. The models are built with two or three connected blocks: a 
summation block, an integration block and a nonlinearity (see Figure 7.6). 

The summation block multiplies each input value with its weight, sums these 
values, and adds an offset to it. This value is the input to the integration block, 
which implements the dynamic behavior of the neuron. For neurons without 
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summation integration nonlinearity 

Figure 7 .6. Piecewise line ar dynamic model of a neuron 

delay this block is omitted. The output ofthis block is magnified and clipped 
by the nonlinearity. This is the same block as used in the logic gates, and may 
be either a simple clipping (analog) function, as in equation (2.19), or a discon
tinuity like in equation (2.23). Ina Hopfield neural network used to solve opti
mization problems, the neuron is dynamic and analog, so the clipping func
tion is continuous. The equations of these three blocks are: 

Sout = I W; · in; + offset 

out 

1 
L1 (Sout - Dout) • Dout(O) = Do 

{ 

0 if Dout s; 0 

= G · D out if 0 < D out < 1 / G 
1 if D out ;:::: 1 / G 

(7.1) 

The behavior of a neuron is determined by the parameters W;, offset, L1 , and 
G. The convergence of the network in optimization problems depends on these 
parameters. lt is found experimentally that the delay time L1 and the gain G 
only depend on the magnitude of the weights, and can be determined indepen
dent of the actual circuit. The weights W; and the parameter offset depend on 
the problem that is solved. 

7.3.2 PLANNET, a new neural net simulator 

With the model described in Figure 7.6 and equation (7.1), a number ofTSP 
problems have been simulated with PLATO. In the next subsection, lhe results 
indicate that this model is satisfactory for these kind of problems. A disadvan
tage is the long simulation time. This is to be expected, because PLATO is a sim
ulator whose speed is largely based on the use of the sparse structure of elec
trical circuits by applying specialized methods. All these techniques have a 
large overhead when applied to a fully connected network. 

Therefore a specialized version of PLATO has been developed, called PLANNET, 

an acronym for Piecewise Linear Analysis ofN eural NETworks. It is a paral
lelized version, specially adjusted to an Alliant FX/8 computer, a multi-
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processor shared memory machine, where each processor has vector calcula
tion capabilities. PLANNET uses the same algorithms as discussed in the pre
vious chapters, with the exception of the multirate integration methods: the 
standard (uniform-step) integration method is applied instead. 

Because in a fully connected network the matrix Axx becomes full if an im
plicit integration method is applied, the matrix is not stored in a sparse data 
structure. As a consequence, the sparse versions of the matrix algorithms 
have been changed to work with this structure. To use the advantages of the 
sparse implementation, the rank m update (Algorithm 3.3) is optimized for 
a rank 1 update of one row of the matrix. Also the leaf cell routines are ad
justed to the neuron model of Figure 7.6 and equation (7.1). 

These basic changes are independent of a specific computer architecture. To 
use the full power of the Alliant, it is sufficient to modify the simulator and 
the compilation process on a few points: 
- The model evaluation routines are called in parallel. This is possible be

cause the neuron data are independent of each other and do not directly 
change the global data. 

- All vector and matrix routines that are vectorizable or parallelizable are 
vectorized and parallelized automatically by the compiler. 

7 .3.3 Results 

The behavior of the neural network can be explained by some typical outputs, 
as are shown in Figure 7. 7. The output values of all neurons initially drop to· 
a certain value, depending on the problem at hand. The differences between 
the various output values are small, and this state of the network is meta 
stable: applying a DC analysis on the network yields also this state. However, 
this state is dynamically approached, so the network finally diverges from it. 
At this point, many neurons have the same behavior as neuron 78: their out
puts drop to zero, the nonlinearity clips, and they remain in this state. At the 
same time, a competition starts between those neurons that still have a posi
tive output value. Some ofthem win easily (neuron9), some win with more dif
ficulties (neuron56), some loose straightforward (neuron66) and some loose 
after a promising start (neuron93). In the end, a stable state is found and the 
simulation stops. 

The simulation of TSP problems shows that the neural network nearly al
ways converges toa stable and feasible solution. Convergence and feasibility 
are sometimes a problem in other simulators, most likely because the calcula
tions are perf ormed neuron by neuron. In PLANNET, the neurons are treated 
all at the same time, which introduces more stability in the calculations. The 
results of the simulations are also in most cases close to the optimal solution. 
This solution depends on the initia! states of the neurons and on the integra
tion accuracy used in the simulation. Because the neural network has more 
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Figure 7. 7. Some outputs of neurons 

than one optimal solution (the starting city and the direction are not pre
scribed), this is not surprising. 

A second important result is the fact that it is not necessary to apply an im
plicit integration method to solve the TSP. The explicit Forward Eulermethod 
yields the same results as the Trapezoidal Rule. Because the explicit method 
is much cheaper (the global matrix remains the identity matrix all through 
the simulation), this method is used to benchmark the simulator. However, 
it is not sure ifthe Forward Euler method can be applied in all neural network 
simulations. The method is applicable here, because the problem is not stiff. 

A third important result is the fact that there is no significant difference in 
the numerical solution calculated by PLATO and by the vector-parallel 
PLANNET. This is not trivial, because in the vectorizing and parallelizing of 
loops the rounding errors differ from the straightforward loops. In the signals 
a difference is found ofless than 10 - 5 , which has no significant effect on the 
results. 

The.performance of PLANNET is much better, compared to the performance of 
PLATO. The results are summarized in Table 7. L The run times are measured 
on an Alliant FX/8 vector-parallel computer with four processors calculating 
concurrently on the simulation. On this machine, the vectorization can yield 
a speed-up factor 3, and with 4 processors a maxima} speed-up factor of 12 
can be expected. This is comparable with the speed-up factor 7 of the larger 
problems, which is the best performance one can expect, due to the overhead 
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when running in vector-parallel mode. Unfortunately, the larger problems 
could not be run with PLATO, due to the network description size (more than 
30 Mbyte) and memory consumption (more than 120 Mbyte). 

The quality of the solution can be deduced from the last two columns ofTable 
7 .1. A good solution is obtained with a few runs of the simulator. From inspec
tion by hand the shortest tours are nearly optimal. For the 7 and 10 city prob
lems the optimal solution is found. 

Table 7.1.Mean run times for several runs and results for various problem 
sizes. Between parentheses the number of runs. 

lnum- run time (in seconds) speed- me an shortest 
her 

PLATO PLANNET PLANNET 
up tour tour 

of line ar vector- factor length length 
cities parallel found 

7 245 (5) 143 (5) 47 (5) 3.0 2.49 2.47 

10 480 (5) 271 (10) 106 (10) 2.6 2.77 2.69 
20 11400 (1) 3930 (10) 1059 (10) 3.7 3.66 3.40 

30 26466 (4) 1 4627 (10) 5.7 4.91 4.25 

40 128852 (1) 18264 (5) 7.1 6.54 6.22 

Some conclusions of these experiments are: 
- Neural networks, used in optimization problems, can be modeled and simu

lated well with PLATO or PLANNET. A good or optimal solution is always found. 
- A TSP can be simulated well with the simple Forward Euler integration 

method. 
- Large networks can be simulated with PLANNET, and parallel and vector 

computing yield a considerable speed up in run time. 
- Solving a TSP with a Hopfield neural network is not efficient. 

7.4 A switch capacitor filter 

A third example is the simulation of a switch capacitor filter described in 
(Hegt 1988). This is a circuit containing switches, capacitors and operational 
amplifiers. lts schematic diagram is shown in Figure 7 .8. The circuit acts as 
a filter, i.e. an input signal is transfonned to an output signal according to a 
so called transfer function. The amplitude transfer function ofthis circuit is 
given in Figure 7.10 (solid line). The behavior of the circuit is determined not 
only by its composure, hut also by the clock frequency at which the switches 
are opened and closed. The dynamic behavior of the filter is therefore charac
terized by two values: the clock frequency and the time to load the capacitors 
after a switch. The filter will only behave properly, ifthe former one is much 
larger than the latter one. So the dynamics of the filter are strong: at the 
switching points large currents flow through the circuit, and during the time 
interval between the switching the circuit is nearly at rest. 
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Figure 7 .8. A switch capacitor filter 

The filter of Figure 7 .8 is simulated with idealized components. Because in 
that case several node voltages in the network are undetermined, and one 
node voltage is overdetermined, a few parasitic components are added to the 
circuit to be able to solve the circuit equations. The behavior of the circuit 
introduces a numerical problem: the characteristic times of the switches and 
the clock may diff er with a factor 104. This implies that much effort must be 
put into the simulation to ensure that all variables are calculated with 
enough precision. Ifthe error in a derivative can be neglected on the fast time 
scale, it can not on the slow time scale. Notice that this bas nothing to do with 
a stiffintegration problem, because the clock and the internal switch time are 
not related. 

The result of the simulation is an amplitude transfer function. To determine 
this function, the circuit bas been simulated with 10 different input functions. 
The input functions are sines with different frequencies. A sample-and-hold 
subcircuit is added to the filter, in order to stabilize the input for the filter. To 
measure the amplitude of the output of this filter, in practice another filter 
is used, because the output only slightly resembles a sine (see Figure 7.9). 
However, we have used a different technique to determine the amplitude. The 
output signal is sampled, and with a numerical Fourier transform the lowest 
part of the frequency spectrum is determined. Of this spectrum, -the higher 
components are set to zero. An inverse Fourier transformation yields a sine, 
whQse frequency is the same as the input frequency. The quotient of the am
plitudes of both sines is plotted in Figure 7.10 (dashed line with x denoting 
measured points). These calculations have been performed with Mathema
tica (Wolfram 1988). 

The measured points of the transfer function match very good with the exact 
transfer function. Only for in puts with a high frequency a deviation is found. 



7.4 A switch capacitor filter 

The signals are denoted by their relative frequencies. The amplitude of the input 
sines is 2. 

Figure 7 .9. Several outputs of the filter for different inputs 
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Figure 7 .10.Ideal and simulated amplitude transfer function of the filter 
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This can be explained by the sample-and-hold subcircuit in front of the filter: 
this acts as a filter with a sin(x)/x transfer function, so the resulting transfer 
function of the full circuit is a combination of both transfer functions. 

Concluding, a system which a complex dynamic behavior can be simulated 
with PLATO without too many difficulties. The application of idealized compo
nents gives both advantages (less computer time) and disadvantages (some 
parasitic components must be added). 

7.5 Program statistics 

'lb show the effect of the methods and techniques described in the earlier 
chapters, some statistical data have been gathered (Table 7 .2). These data are 
divided into four area's: the size of the problem, the number of calls to the 
main algorithrns, the connectivity in the problern, and the time spent in some 
(possibly overlapping) parts of the simulator. The timing data are measured 
with the profiling technique available on the computer (Graham et al. 1982). 
Profiling a program means that each call to a routine is recorded, and that 
also at regular time intervals the currently executed routine is recorded. 
However, because this time interval is (for the used computer) rnuch longer 
than the time spent in a routine, quantization errors occur. Therefore, the 
time percentages are only indications of the real time spent in the indicated 
parts. 

The circuits of which the data are shown, were described earlier: adc is the 
analog-digital converter, filter is the switch-capacitor filter, and nn20 is a neu
ral network for sol ving the 20 city TSP. Two versions of the analog-digital con
verter are used: adc is the circuit described in Figure 7 .1, and adc2 is the sarne 
circuit, in which the digital components in the main circuit are replaced by 
some inputs. Also two versions of nn20 are simulated: nn20a is the circuit with 
neurons as descrihed in Figure 7 .6, while the neurons in nn20b are split in a 
linear sumrnation component and a dynamic piecewise linear component 
with one input and one output. The expectation is that the second version sim
ulates faster, because the neurons in the first version are (too) large, and the 
leaf cell routines will become inefficient. The neural network is not simulated 
with PLANNET, hut with PLATO. This implies that the sparse implementation 
for the vectors and matrices is used, and that no uniform integration step is 
applied. 

Some data in Tahle 7 .2 need an explanation. The unit of sparsity is the num
ber of elements of the LU decomposition per row, which is limited between 1 
(a diagonal matrix) and nx (a full matrix). This number of elements also 
includes spurious elements (both the matrix entry and the Lor U entry are 
negligible), hecause these elements are not removed. This is the reason forthe 
high number of elements per row for the filter. About 25 % of the entries 
changes from zero to nonzero or vice versa at the switching time point. It is 
also clear, that nn20a uses a diagonal matrix (each xvariable depends only 
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on u and z variables), hut that in nn20b a full block is created with a size of 
400x400. 

The number of rank m updates (nearly all are rank 1 updates) is zero for the 
neural network, because the applied explicit Forward Euler integration does 
not change the linear equations. 
The high number ofleaf cells reached in an event for the filter is explained by 
the fact that all cells are connected through the currents in the circuit 
The run times are measured on a HP 9000/750 computer, a fast workstation 
running 76 MIPS (million instructions per second) and 22 MFLOPS (million 
floating point operations per second). The run time for nn20a includes 38.9 
seconds to process the 5.5 Mbyte circuit description file and 39.3 seconds to 
simplify (in vain) the large neurons. The same circuit simulated with PLANNET 

used only 162 seconds total run time, because this simulator knows the model 
of the neurons. The run time for nn20b includes 38.8 seconds to process the 
5.6 Mbyte circuit description file and 149.6 seconds to swap the (sparsely 
stored) rows during the LU decomposition. This circuit was not simulated 
with PLANNET, because the split neurons could not be created. 

The relative time spent in several routines is the last part ofTable 7 .2. Some 
results can be noticed. The rank m update is efficient with respect to the other 
routines. The matrix is solved many times, which accounts for the time spent 
in this routine. In the leaf cell routines most of the calculations are performed, 
which is the reason for them using a large part of the time. For the neural net
works, it is clear that with the very large neurons of nn20a nearly all time is 
spent in the leaf cell calculations. For nn20b, the large neurons are split, and 
the large summation block causing the difficulties is handled more efficiently 
in the global matrix. The efficiency of the output processing is shown by the 
small amount of time spent in it. The list processing, i.e. the construction of 
a list ofleaf cells related to a sparse vector takes some time, hut saves much 
more time. Finally, the time spent in selecting the leaf cells for the next event 
is not negligible, hut it is not large enough to take action. 
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Table 7 .2. Program statistics for several circuits. 
#is an abbreviation for 'number of'. 

adc adc2 filter nn,20a nn20b 
# leaf cells 74 58 39 400 800 

nx 97 85 46 400 800 

nu 61 45 14 400 400 

nz 280 170 34 800 800 
sparsity [elements/row] 2.3 2.4 6.5 1 201 
# rank m updates 3381 2421 69485 0 0 
# matrix solutions 20370 11788 57586 5743 5741 
# pl events 2456 1393 119 384 384 
# dynamic events 3216 2722 52815 4590 4588 
av. # leaf cells / event 3.4 3.0 2.4 166.1 166.1 
av. # leaf cells reached 7.6 5.4 22.5 284.4 284.3 
run time [s] 2.7 1.8 39.6 787.8 502.6 
% rank m update 3.6 2.2 24.8 0.0 0.0 

% matrix solution 10.1 18.1 14.6 0.2 35.4 
% leaf cell routines 47.7 43.4 33.9 84.5 17.7 
% output processing 5.2 6.0 0.5 0.3 0.4 
% list processing 2.6 1.7 4.9 3.6 0.9 
% clustering 4.2 8.8 2.1 0.2 0.3 
% Van de Panne 36.1 28.7 7.5 0.6 0.8 



8 Conclusions 

In this thesis, the development of PLATO, a piecewise linear circuit simulator, 
has been sketched. The following topics have been discussed: 
- The piecewise linear modeling technique, introducing linear, piecewise lin

ear and dynamic equations. 
- The solution of the linear equations with a sparse LU decomposition, and 

the rank m update on these equations. 
- The Van de Panne algorithm, applied in solving the piecewise linear equa

tions, with particular attention to the DC solution. 
- The integration methods, for solving the dynamic equations. 
- The multirate integration and clustering methods, exploiting latency. 

Several implementation techniques to exploit the efficiency in these algo
rithms. 

The combination of all these methods and algorithms has created a simulator 
with the following properties: 
- It has strong convergence properties, based on the strong convergence of 

the Van de Panne algorithm. lt is therefore robust, and can handle mixed
level circuits that other simulators can not simulate. 

- lt is efficient, due to the sparse matrix techniques combined with the multi
rate integration method and the application of divided diff erences. 

- lt is flexible, because the modeling allows mixing different types of compo
nents in one circuit that can be simulated immediately. Also the connection 
with other programs is straightforward. 

Several circuits are given as examples that have been simulated. These cir
cuits are specially chosen to show the above mentioned properties of the simu
lator. One of these examples, a neural network, has led to a simulator spe
cially suited to solve fully connected neural networks. 

Future developments for improving the performance, stability and flexibility 
of the simulator will most likely be concentrated on the following fields: 
• The concept ofleaf cells will be abandoned. This concept is natura! in a hier

archical simulator, hut it bas sorne serious disadvantages in our simulator: 
the sparse vectors must be linked with the leaf cells, and in the leaf cells 
a full matrix is used. Because this matrix is in many cases rather sparse, 
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much work is done in vain. Using sparsely implemented leaf cells, the cells 
itself become useless. 

• New higher order integration methods, e.g. the Backward Difference for
mulae, could be employed in dynamic problems, i.e. in cases where the cur
rent integration method uses many steps, while no nonlinearities are en
countered. Because the efficiency ofmultirate integration might easily get 
lost in the combination with a high order implicit integration method, the 
gain in employing such integration methods is uncertain. 

• The connection with ESCAPE will be intensified. Because in the near future 
ESCAPE will have the possibilities to connect to a range of different simula
tors, to simulate functionally or behaviorally described components and to 
use a network of computers to solve a large problem in parallel, those cir
cuits that can not simulated with PLATO can be simulated with a combined 
ESCAPE-PLATO simulator. The first tests show good results. 

• The simulator will be used to solve problems that are not directly electronic 
circuits. AI; a problem can also be se en as a dynamic LCP, it is trivial to solve 
a linear programming problem with PLATO. By adding a time relation to the 
system, it is possible to determine the relation between two varia bles of the 
original problem in one simulation. Some tests on known problems show 
that such a relation can be determined fast and accurate. 

• On the lowest level of the implementation, the data structure for the ma
trices may become more flexible, in order to solve several problems more 
efficiently. If it is known that (part of) the system matrix has some specific 
properties, a specially tuned data structure is chosen. This could imply that 
the neural network simulator PLANNET will be incorporated in PLATO. 
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Appendix 

A Mapping a four-segment 

function on a 2x2 matrix 

In this appendix, some results are presented about the mapping on a 2x2 
matrix of an arbitrary four-segment piecewise linear function f: 1R - R. Al
though this seems theoretically trivia!, because 2n, regions can be modeled, 
the matrix bas only a limited freedom. There are in principle only 
(nz+1) x (nz+2) free parameters (matrix entries) to model a continuous 
function from 1R to JR. Because the wand z varia bles may be divided by any 
positive value, there are 2nz free parameters less, resulting in ~ + nz + 2 
free parameters. This implies that a four-segment function, which bas 8 pa
rameters, might be mapped on a 2x2 matrix, having 8 free parameters. In 
genera!, the number of free parameters of the matrix limits the number of 
segments of the function. Only if dependency between the regions exists, 
more segments might be possible. 

The function fis described by 

!
do x + b0, x s x0 
d1 X + b1, Xo S X S x1 

y = f(X) = d
2 

X + b
2

, x
1 

S X S x
2 

' 

d3 X + b3, x2 :S X 

(A.1) 

witb x0 < x1 < X2. 

The idea is to map this function with the matrix 

[

-1 Boo Bo1 Bo2][ Yl [a0] [ o l 
O a10 a11 a12 ~ + a1 = :1 . 
0 B20 B21 a22 Z2 a2 2 

(A.2) 

Because wand z may be scaled arbitrarily, the rows are scaled such that a10 
and a20 are + 1 or -1. These values can not be 0, because valid regions must 
be defined. The columns of the matrix are scaled such that a 11 and a22 are 
+ 1 or -1. Then 8 parameters are left, which might be determined by the 8 
parameters of the function. 
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The initia! state of(A.2) will map the second segment of the function. A posi
tive pivot on 8 11 yields the first segment, a positive pivot on 8 22 yields the 
third segment. A positive block pivot on 8 11 and 8 22 yields the last segment. 

The construction starts in the second segment of the function ( y = d1 x + b1 
for x0 s x s x1). This implies 

8 00 = d1 and 8 0 = b1 . 

Furthermore the boundaries must be defined: 
8 10 = 1 and 8 1 = - x0 ; 

8 20 = -1 and 8 1 = x1 . 

Two positive pivots must be performed, which implies 

8 11 = 1 and 8 22 = 1 . 

The matrix bas become: 

[ ~ 1 ~1 8~1 =~:1[:.] + [!~o] = [~11 
0 -1 821 1 z2 X1 W2 

Perform the pivot on 8 11 to find the first segment: 

[ ~ 1 d1 = :01 8~1 
8

02 = =~~ 8

12j[f.] + [b1 
+ x:0a01] = [:11 

0 1 821 821 1 - 812821 z2 X1 + Xo821 2 

The linearization is y = d0 x + b0, so 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

801 = d1 do . (A.8) 
In order to eliminate the possibility at this point that w2 becomes negative 
for x - - oo, the condition -1 - 8 21 < 0 must be fulfilled. 

Using the linearization y = d2 x + b2, 8 02 is found: 

8 02 = d2 d1 . (A.10) 

Next a positive pivot on 8 1 

11 must be performed, equivalent with crossing the 
boundary x = x2. This is only possible if 1 - 8 128 21 > 0 and 

X2 - Xo (A.11) 
8 12 = x

2 
x1 ' 
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Now a12 < 1, so the pivot on a 11 can be p.erformed. Introduce 
d = det(Azz) = 1 - a 12a21 , then d > 0 (the last positive pivot) also implies 
-1 - 821 < 0. 

At last, perform the pivot on a' 11 and match the linearization. This gives the 
following expression for a21 : 

(x1 - x0)(d1 - d0) - (x2 - x1)(d3 - d2) 
a - (A.12) 

21 - (x2 - x0)(d3 - d1) - (x2 - x1)(d2 - d
1
) 

This expression is used to calculate d: 

d = X1 - Xo • Y2 - y' 2 

X2 - X1 Yo - y' o , 
where 

!
Yo = f(xo) 

Y2 = f{x2) 

Y'. o : Y2 ds (x2 - xo) 
Y 2 - Yo - do (x2 - Xo) 

(A.13) 

So the inequality d > 0 implies y2 > y' 2 /\ Yo > y' 0 or Y2 < y' 2 /\ Yo < y' o· 
This is equivalent to the fact that the extrapolations of the first and the last 
line segment intersect each other in the interval [x0, x2]. See Figure A.1 for 
a graphic interpretation of the situation. The conclusion is that not all four
segment functions can be mapped with a 2x2 matrix. 

Figure A.I. Graphic implication of d > 0 



Appendix 

B Notation 

Symbols 

x 

u 

w, z 

A 

Apq 

Bp 

A,.., A.; 

(Aq) 

ü 

w~O 

vector oflinear variables 

vector of dynamic variables 

vectors of pl varia bles 

length of vectors x, u and z; wand z have the same length 

system matrix 

(p,q) part of matrix A, with p, q E { x, u, z} 

ppartofthevectora, with p E {x,u,z} 

row, column with index i of matrix A 

matrix, composed from all elements of matrix A with row index 
and column index in a given set 

time derivative of u 

value of x at time point t0 + i h 

divided difference: X; = x(i+ 1)h- x(i) 

W; ~ 0 for all indices i 
00 

I ~, the exponential of a matrix 
0 

117 



118 Appendix B 

Abbreviations 

LCP Linear Complementarity Problem 
TSP Traveling Salesman Problem 
LTE Local Truncation Error 
ACF A-Contractive Formula 
BDF Backward Difference Formula 
BE Backward Euler 
TR Trapezoidal Rule 

Algorithms 

The algorithms are described in a language, which resembles some features 
of ALGOL. However, no function headers are given, and only array variables 
are specified. To differentiate between function calls, variables, constants 
and keywords, they are printed in different fonts: 

Van_de_Panne() function call 
xvec variable 
successful constant 
whlle keyword 

Text between braces ( { } ) is comment. To denote a field in a compound variable 
(record), the PASCAL dot notation is used. 

A few non-standard statements are the following: 

< var1 , vat2> : = func( ); Both var1 and vat2 are assigned a value by the 

f or var : = vafl to val2. 
[ whenever cond ]] 

do Sod; 

if cond1 then S1 
[ elslf cond2 then S2 ] + 
[ else S3] 
fl; 

function func. 

Assign each (integer)value from va/1 upto and 
including va/2. to var, and perform the state
ments S if the condition cond is true. The 
whenever part is usually omitted, and then 
the statements S are always performed. 

lf condition cond1 is true, perform statements 
S1 . Else, if condition cond2 is true, perform 
statements S2. Eise, perform statements S3. 
The elsif part may be omitted or repeated, the 
else part may be omitted. 
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Stellingen 

behorende bij het proefschrift 
"From Circuit to Signa[ - development of a piecewise linear simulator" 

van H. W. Buurman 

1. Het gebruik in een simulator van een modellering die veel vrijheid geeft, moet 
vergezeld gaan van een algoritme dat ook alle modellen kap evalueren. 

2. De opmerking dat de circuit-simulator PLATO een fastest-first multirate inte
gratie schema gebruikt (p. 53), wordt in een volgend hoofdstuk gelogenstraft. 
(STIPHOUT, M.T. VAN, 1990, PLATO-A Piecewise Linear Analysis Tuol {or Mixed 
Level Circuit Simulation, Ph.D. Thesis, Eindhoven, The Netherlands] 

3. Het gebruiken van een circuit-hiërarchie om de effecten van ijlheid te exploi
teren is niet nodig. Deze effecten kunnen ook op andere manieren geëxploi
teerd worden, terwijl een hiërarchie duidelijke nadelen heeft. [Dit proef
schrift; KEVENAAR, T.AM. en D.M.W. LEENAERTS, 1991, "AFlexible Hierarchical 
Piecewise Linear Simulator", INTEGRATION, the VLSI Journal, vol. 12, pp. 
211-235] 

4. Een symbolisch wiskunde manipulatie programma is zinvol als hulp bij het 
uitrekenen van moeilijke sommen. De beperkingen die aan de huidige versies 
van dit soort programma's kleven ondermijnen echter soms wel het vertrou
wen in de uitkomst. [WOLFRAM, S" 1988, Mathematica ™ -A System {or Doing 
Mathematics by Computer, Addison-Wesley, Redwood City, Calif.] 

5. Het 'backwards compatible' houden van systemen is niet handig. Het oude· 
systeem is niet voor niets vervangen door een (hopelijk) heter systeem. 

6. Een van de handigste mogelijkheden om te onderzoeken of een computerpro
gram.ma sneller gemaakt kan worden is het meten van de gebruikte tijd in de 
diverse routines met behulp van 'profilen'. Aangezien de hierin gebruikte 
sample-tijd op de nieuwste machines vele malen groter is dan de gemiddelde 
tijd die een routine gebruikt, verdient het aanbeveling om een oude trage 
machine te bewaren als 'profile' machine. [GRAHAM, S.L" P.B. KEssLER, and M.K. 
McKusICK, 1982, "gprof: A Call Graph Execution Profiler", SIGPLAN Notices, 
vol. 17, no. 6 (Proc. SIGPLAN '82 Symp. on Compiler Construction), pp. 120-
126] 

7. Indien een eigenschap van een electronisch circuit is gemeten in een proefop
stelling, dan verdient het aanbeveling om bij publikatie van de meetresultaten 
ook de meetmethode en andere relevante gegevens te vermelden, zoals in 
andere takken van de wetenschap allang standaard is. 

8. Het feit dat veel mensen niet begrijpen dat één computerprogramma op twee 
verschillende computers verschillende resultaten oplevert, geeft aan dat er 
meer onderwijs in numerieke wiskunde moet komen. ["comp.lang.c Answers 
to Frequently Asked Questions <FAQ List)", newsnet, group comp.lang.c, ed. 
S. Summit, monthly, Question 15.1] 



9. Vele economische theorieën houden ten onrechte geen rekening met de kosten 
van communicatie. Aangezien een informele sfeer in een koffiekamer de on
derlinge communicatie zeer ten goede komt, is het afschaffen hiervan vaak 
contra-produktief. 

10. Er zijn computerprogramma's die zeer goed kunnen schaken of dammen, maar 
bridgende computerprogramma's worden makkelijk verslagen. Dit kan ver
klaard worden uit het feit dat een goed plan, gebaseerd op ervaring en aanna
mes, noodzakelijk is voor een goed resultaat bij het bridgen. 

ll. Tijdens een wandeling ziet men het meest van de omgeving. Als iemand zijn 
werk in wandeltempo uitvoert, kan men dus verwachten dat hij goed over 
eventueel aanwezige problemen heeft nagedacht. 

12. Het vangen van een vlieg in het halfdonker heeft een Heisenberg onzeker
heidsrelatie met een zeer grote coëfficiënt: als hij stilzit, weetje niet waar; als 
hij beweegt, kun je hem niet pakken. 


