
Copyright c© 2011 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).

From Co-saliency to Co-segmentation:

An Efficient and Fully Unsupervised Energy Minimization Model

Kai-Yueh Chang1,2 Tyng-Luh Liu1 Shang-Hong Lai2

1Institute of Information Science, Academia Sinica, Taiwan
2Department of Computer Science, National Tsing Hua University, Taiwan

Abstract

We address two key issues of co-segmentation over mul-

tiple images. The first is whether a pure unsupervised al-

gorithm can satisfactorily solve this problem. Without the

user’s guidance, segmenting the foregrounds implied by the

common object is quite a challenging task, especially when

substantial variations in the object’s appearance, shape,

and scale are allowed. The second issue concerns the effi-

ciency if the technique can lead to practical uses. With these

in mind, we establish an MRF optimization model that has

an energy function with nice properties and can be shown to

effectively resolve the two difficulties. Specifically, instead

of relying on the user inputs, our approach introduces a co-

saliency prior as the hint about possible foreground loca-

tions, and uses it to construct the MRF data terms. To com-

plete the optimization framework, we include a novel global

term that is more appropriate to co-segmentation, and re-

sults in a submodular energy function. The proposed model

can thus be optimally solved by graph cuts. We demonstrate

these advantages by testing our method on several bench-

mark datasets.

1. Introduction

Figure-ground segmentation has long been a challeng-

ing problem in computer vision. Apart from the difficul-

ties in establishing an effective framework to divide the im-

age pixels into meaningful groups, the notions of figure and

ground often need to be properly defined by providing either

user inputs, e.g., [10, 25, 28] or object models, e.g., [3, 19].

The idea of co-segmentation, first introduced by Rother et

al. [26], is another possibility to more explicitly cast the

problem as simultaneously segmenting an image pair to lo-

cate their common foreground object. However, as is illus-

trated in Figure 1, the ambiguity of what the foregrounds

should be may still exist and can confuse a fully automated

approach to correctly segment the desired object. On the

other hand, by including more images containing the com-

Figure 1. While humans would easily identify airplane (en-

closing with red boundary) is the common object between the two

images, the more consistent appearances in the sky areas (en-

closing with blue boundary) may cause an automatic segmentation

system to choose them as the more plausible foregrounds.

mon object, the co-segmentation formulation can become

more well-defined, but generally at the price of increasing

the appearance variations of the foregrounds as well as the

complexity to accomplish the task. The main focus of this

paper is to tackle the aforementioned difficulties in perform-

ing co-segmentation over two or more images.

Specifically, we aim to address two key issues of co-

segmentation: 1) Can a fully unsupervised approach sat-

isfactorily solve the problem? 2) Is there a general energy

minimization model to realize the co-segmentation process

with efficiency? In the first issue, one practical and often-

encountered scenario is that the appearance variations of

the common object are more substantial than those in some

areas of the backgrounds. (See Figure 1.) To overcome

the dilemma, most of the existing techniques [1, 6, 11, 21]

adopt an interactive scheme to guide the grouping process

through ambiguous situations. We instead consider a co-

saliency prior in the proposed energy function, and estab-

lish an unsupervised co-segmentation algorithm. The con-

cept of saliency has been extensively studied by psychol-

ogists [14, 24, 27, 30]. Roughly speaking, it is related to

the areas that most people may focus on when seeing a

view. For co-segmentation, we are motivated to define a

co-saliency model to generate image regions that are simi-

lar to each other across images, and meanwhile retain their

distinctness within each image. To that end, we adopt the

saliency results of Goferman et al. [8], and then filter out



the areas that infrequently appear in most images. In the

second issue, we observe that an important factor in solv-

ing the co-segmentation problem is the establishment of a

suitable consistency measure between the foreground ar-

eas from any two different images. For those techniques

based on MRF, the consistency check is often carried out

by introducing a global term in the energy function, e.g.,

[11, 21, 26]. Such a global term is typically defined by the

similarity of two histograms from two potential foreground

areas. Since the number of possible foreground regions in

an image is two to the power of the number of superpix-

els (or pixels, in the extreme case), evaluating the global

term over all the possible foreground pairs becomes piv-

otal concerning efficiency. This aspect of consideration is

even more critical when more images are included for co-

segmentation. In our approach, we have proposed a new

and effective global term that satisfies the submodular con-

dition [17]. The resulting energy minimization can thus be

optimally solved by the graph-cut algorithm [4].

Another aspect of our effort is to investigate how to come

up with a good feature representation for co-segmentation.

In particular, we focus on the global energy term for the rea-

son just described. As in our formulation the potential fore-

ground regions evaluated by the global term are represented

as histograms of visual words, it is constructive to explore

whether enforcing the clustering criterion to consider the

property that the images share a common object would re-

sult in a more effective vocabulary. That is, we may prefer

that pixels (or sampled pixels) are grouped to form a visual

word owing to not only having similar descriptor values but

also spreading over different images. This point will be dis-

cussed in detail in Section 4. We summarize the main con-

tributions of this paper as follows:

• Introduce a co-saliency prior to make the unsupervised

co-segmentation possible.

• Establish a new global energy term to effectively solve

co-segmentation over multiple images.

• Propose a useful regularization term in K-means ob-

jective function to encourage gathering pixels with

similar appearance across different images.

2. Related work

Co-segmentation techniques most relevant to ours are

those heavily relying on the regularity of a global energy

term in their MRF model. Rother et al. [26] and Mukherjee

et al. [21] respectively use the L1 and the L2 norm to mea-

sure the dissimilarity between foreground histograms. The

main drawback of both is that solving the whole model be-

comes NP-hard. Hochbaum and Singh [11] subsequently

propose a “reward” model that satisfies the submodular

condition and therefore can be efficiently solved by graph

cuts. However, the inner product of two unnormalized his-

tograms representing the reward model is hard to give a

meaningful explanation of why it yields a suitable simi-

larity measure. Namely, a large inner product value by

their model does not imply that the two unnormalized his-

tograms are more similar. In [29], without directly com-

paring two histograms, Vicente et al. propose a new global

model to favor a co-segmentation result that all pixels asso-

ciated with a visual word are either uniformly from back-

ground or foreground. The criterion is reasonable when

the desired foregrounds of both images are indeed instances

of the same object with possible scale changes. It is not

clear if the model can be extended to handle more chal-

lenging backgrounds, viewpoint changes, and appearance

variations pertaining to the foreground object. While the

above methods [11, 21, 26, 29] all include a global term

in their MRF model and test on co-segmentation with only

two images containing identical or similar objects, Joulin et

al. [15] consider co-segmenting more than two images with

different instances from a more general concept of the same

object class. Their formulation treats co-segmentation as a

two-cluster problem, and yields impressive results. How-

ever, since the goodness of clustering depends on the ac-

curacy in evaluating the similarity between every two local

patches (or superpixels), the framework seems to require

fine over-segmentation, say, around 500 superpixels per im-

age to give satisfactory performances, and therefore results

in a less efficient implementation.

As is mentioned earlier, a number of co-segmentation

methods need user inputs to facilitate the process. The ap-

proaches by Mukherjee et al. [21] as well as by Hochbaum

and Singh [11] both require providing some scribbles (sim-

ilar to those in GrabCut [25]). Instead of suggesting the

scribbles at first, Batra et al. [1] propose to guide the user

to input additional strokes on the area that is the hardest

to decide the pixel labels. Without relying on the scribble

cues, Cui et al. [6] assume that one of the images is hand-

segmented. Rother et al. [26] add a constant penalty for

assuming the background label to avoid the trivial solution

that all pixels are labeled as background. Joulin et al. [15]

divide pixels into two clusters, and let the user choose which

cluster is more likely to be the common object cluster.

In passing, we notice that more recently Chen [5] has

proposed a scheme to find the common salient objects be-

tween a pair of images by enhancing the similar and pre-

attentive patches. However, it appears to be hard to gener-

alize the formulation to the case of handling more than two

images. Also, Rahtu et al. [22] and Ramanathan et al. [23]

both take account of the saliency information in segmenting

meaningful objects from a single image. Direct and feasi-

ble extensions of their approach to co-segmentation of two

or more images are not obvious in view of the difficulty in

sifting the saliency information from each image.
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3. Co-segmentation energy function

Given a set of M images {Ii}Mi=1 for co-segmentation,

the foreground of Ii is simply the area containing an

instance of the common object. We apply the over-

segmentation technique provided in [7] to each image, and

partition Ii into ni superpixels. Then, the foreground and

the background of Ii can be approximately represented by

a binary label vector xi ∈ {0, 1}ni. It follows that in the

context of the proposed MRF model, co-segmenting these

M images is to find the binary labels {xi}Mi=1 minimizing

the following energy function:

F ({xi}) =
∑

i

Li(x
i) + λ · E({xi})

=
∑

i

Li(x
i) + λ

∑

i,j

G(xi,xj , Ii, Ij) (1)

where Li(x
i) is the within-image MRF energy of the label-

ing xi on Ii, G(xi,xj , Ii, Ij) is the between-image energy

measuring the inconsistency between Ii and Ij under the

labelings xi and xj , and λ weighs the importance of the

global energy term E({xi}). In what follows, we shall first

explain how the co-saliency prior is derived, and how to use

the information to construct {Li}. We then focus on the de-

tails of G and its useful property to complete the proposed

energy minimization model.

3.1. Cosaliency prior

Saliency detection is often formulated as the search of

the distinct areas in an image, e.g., [8, 12, 13] since human

eyes are easily attracted by the unusual things with respect

to the whole view. Our co-segmentation model assumes that

in most of the images {Ii}Mi=1, their detected salient areas

contain at least parts of the foreground object. The assump-

tion is reasonable as the object of interest usually has some

distinguishable appearances from the rest and draw one’s

attention. This will be termed as the distinctness property

within an image. On the other hand, the repeatedness prop-

erty among images is also important for co-segmentation.

Namely, we prefer that a salient area in an image can be

repeatedly detected in others. Based on these observations,

we consider the single-view saliency model of Goferman et

al. [8], and concentrate on those parts of saliency maps that

frequently repeat in most images, i.e.,

Co-saliency = Saliency × Repeatedness.

Let Si and S̃i be the saliency and the co-saliency maps of

Ii, and their value at pixel j is denoted as sij and s̃ij , respec-

tively. To obtain the co-saliency map S̃i, we adjust each sij
by multiplying a weight wi

j that can be thought as the like-

lihood of repeatedness over {Ik}k 6=i. More specifically, we

Original images {Ii}

Saliency maps {Si}

Co-saliency maps {S̃i}
Figure 2. Saliency versus co-saliency. Within the second image to

the left, the can is salient. However, most pixels of that area have

less repeatedness weights due to that the can does not appear in

other images. It follows that the corresponding co-saliency map

would have smaller co-saliency values around that area.

focus on those image pixels whose saliency value is larger

than 0.6 × simax where simax is the maximal saliency value

of Ii. And in such distinct areas, we sample a point every

five pixels and describe it by a SIFT feature [20]. Let gi
j be

the SIFT feature of point j on image Ii. For each gi
j , we

compute the distance to its most similar point on image Ik

by

d(gi
j , I

k) = min
l

‖gi
j − gk

l ‖. (2)

Thus, according to (2), each gi
j is now associated with

M − 1 distances {d(gi
j , I

k)}k 6=i. We then average the first

half smallest distances to derive d̄ij , and use the sigmoid

function to define the weight wi
j by

wi
j =

1

1 + exp
(

−
µ−d̄i

j

σ

) (3)

where µ and σ are the parameters related to the shape of the

sigmoid function. (µ = 0.8 and σ = 0.2 in all our experi-

ments.) While the above procedure yields only the weights

of the sampled points, the weights of all the remaining pix-

els of Ii can be approximated by interpolation from those

of their closest sampled points. Finally, we rescale the co-

saliency values of S̃i to [0, 1]. (See Figure 2.)
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3.2. Withinimage MRF energy

We are now ready to define the within-image energy

Li(x
i) in (1) of binary labeling xi over superpixels {pi

j}

of Ii. Like in most of the conventional MRF models, Li

contains a data term and a pairwise smoothness term. To

specify the two terms, we need two additional definitions.

The first pertains to the cost of labeling a superpixel, say,

pi
j as foreground, and is given by

αi
j =

∑

k∈p
i
j

τ − s̃ik (4)

where τ is a parameter to be adjusted and its discussions

will be provided in Section 5.1. The second definition con-

cerns the cost of assigning different labels to two adjacent

superpixels. Let E i be the edge set that encodes the ad-

jacency relations of {pi
j} and βi

j,k be the cost of different

labels between pi
j and pi

k, (j, k) ∈ E i. In particular, we

have

βi
j,k =

∑

(l,m)∈Bi
j,k

exp

(

−
‖vi

l − vi
m‖2

2σ2
RGB

)

(5)

where vi
l and vi

m are the respective RGB values of pixels

l and m, and Bi
j,k includes all the pairs of adjacent pixels

across the boundary of superpixels pi
j and pi

k. (In our im-

plementation σRGB is set to 20/256.) With (4) and (5), the

exact form of Li(x
i) can then be stated as follows:

Li(x
i) =

ni
∑

j=1

αi
jx

i
j +

∑

(j,k)∈Ei

βi
j,kδ[x

i
j 6= xi

k] (6)

where ni is the total number of superpixels in Ii, and δ is

an indicator function that outputs 1 when the statement is

true. The fact that βi
j,k > 0 for all (j, k) ∈ E i ensures the

following important regularity about Li(x
i).

Property 1 The within-image MRF energy Li(x
i) defined

in (6) is submodular.

3.3. Global energy term

In evaluating the global energy term E({xi}) in (1),

like [11, 21, 26], we represent each superpixel by an un-

normalized histogram h. It follows that the summation of

the histograms of all the superpixels within an area also

forms this area’s representation. Given a binary labeling

xi over image Ii, the implied foreground and background

can be respectively represented by

Hi
f =

ni
∑

k=1

hi
kx

i
k and Hi

b =

ni
∑

k=1

hi
k(1− xi

k). (7)

We further denote the histogram of Ii as

Hi =

ni
∑

k=1

hi
k = Hi

f +Hi
b. (8)

From (1), establishing the global term can be reduced to

specifying the between-image energy G(xi,xj , Ii, Ij). We

observe that good co-segmentation results often share two

important attributes—not only the foregrounds are similar

to each other but also each of them should be dissimilar to

its respective background. We thus define

G(xi,xj , Ii, Ij) = ‖Hi
f−H

j
f‖

2
2−

∑

k∈{i,j}

ck1‖H
k
f−ck2H

k
b‖

2
2

(9)

where c∗1 decides the influence of the dissimilarity, and c∗2 is

to balance the foreground and the background histograms;

otherwise, directly comparing these two un-normalized his-

tograms may not be reasonable, since their corresponding

areas can be of very different sizes. Note that the dis-

similarity measure in (9) is between the entire foreground

and background areas, which is different from the pairwise

terms of Li in (6) measuring only the local dissimilarities

between superpixels. For simplicity, we assume hereafter

c∗1 and c∗2 are respectively set to the same values c1 and c2.

By substituting Hi
b = Hi −Hi

f into (9), and taking the

definition of Hi
f in (7), we obtain

G(xi,xj , Ii, Ij) = C − 2
∑

l,m

〈

hi
l ,h

j
m

〉

xi
lx

j
m+

2c1c2(1 + c2)×
∑

k∈{i,j}

nk
∑

l=1

〈

hk
l ,H

k
〉

xk
l +

(1− c1(1 + c2)
2)×

∑

k∈{i,j}

∑

l,m

〈

hk
l ,h

k
m

〉

xk
l x

k
m

(10)

where C is a constant term. Indeed the first three terms in

the RHS of (10) satisfy the submodular condition. Whether

G is a submodular function only depends on if the coeffi-

cient 1−c1(1+c2)
2 of the last term is not greater than 0. We

let c1 = 1
(1+c2)2

so that G can be submodular, and mean-

while assume a simpler form. Finally, by setting c = c2
1+c2

,

G(xi,xj , Ii, Ij) becomes

C − 2
∑

l,m

〈

hi
l ,h

j
m

〉

xi
lx

j
m + 2c×

∑

k∈{i,j}

nk
∑

l=1

〈

hk
l ,H

k
〉

xk
l .

(11)

From (11), we find that the global energy term in

Hochbaum and Singh [11] is a special case of our model

when c = 0 (i.e., c2 = 0). On the other hand, when c is set
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Vocabulary A

Vocabulary B

Figure 3. Two examples of visual vocabularies. K-means clustering with the proposed regularization term would more likely yield vocab-

ulary A, which, compared with vocabulary B, is more compact and has two representative visual words (clusters).

to 1, it implies that c1 is close to 0, and the proposed model

is close to that based on L2 norm used in [21]. Indeed, by

introducing only one extra parameter in our approach, we

are able to establish a more appropriate global energy term,

and effectively tackle co-segmentation over more than two

images, which is a much more complicated problem than

co-segmenting an image pair.

Property 2 The total energy function F defined in (9) is

submodular, and hence the proposed energy minimization

can be optimally solved by the graph-cut algorithm.

4. Learning visual vocabulary

Our discussions in the previous section point out that the

histogram representation of a superpixel plays an important

role in formulating the global energy term. Since such a his-

togram is simply composed of the frequencies of the visual

words [18], how these words are derived should, in turn, be

a key factor. In our implementation, we have considered

two different schemes. The first is standard that the visual

words (clusters) are obtained by carrying outK-means clus-

tering over sampled pixels, and it indeed gives satisfactory

implementation of our method. In addition, we also explore

the assumption that the images contain instances of a com-

mon object in the clustering process. Suppose for the mo-

ment that in each image Ii we have a region Ri intersecting

the underlying foreground. (Ri will be discussed in Sec-

tion 5.2.) We then consider devising a clustering scheme to

prefer: 1) across-image, similar pixels of {Ri} assigned to a

same cluster should come from as many different images as

possible, and 2) within-image, similar pixels of Ri should

fall into the same cluster. Clearly, the set of visual words

containing pixels from {Ri} would become more represen-

tative and compact. (See Figure 3 for an illustration.)

So, the other clustering scheme used in our implementa-

tion is to take account of the above two useful properties. To

this end, we add a regularization term in the K-means ob-

jective function by utilizing the effects of L1 and L2 norm.

As described in [2], an L1-norm regularization term tends

to concentrate values on several entries of a vector while

an L2-norm regularization term instead spreads values over

whole entries. Suppose that we uniformly sample J pixels

from each image, and represent each pixel by a SIFT fea-

ture vector z. To cluster all these pixels over {Ii}Mi=1 into

K visual words, we consider an assignment table A of size

M × J ×K , and the following optimization problem:

min
{µ

k
}K
k=1

,A

K
∑

k=1

M
∑

i=1

J
∑

j=1

(‖zi,j − µk‖ ·Ai,j,k)+

η ×
K
∑

k=1

√

√

√

√

√

M
∑

i=1





∑

j∈Ri

Ai,j,k





2

subject to Ai,j,k ∈ {0, 1},
∑

k
Ai,j,k = 1, ∀i, j

(12)

where {µk} are the cluster centers and η controls the influ-

ence of the regularization term. (η = 4 in all our experi-

ments.) The justification of the regularization term in (12)

can be best understood by first marginalizing A over Ri to

obtain an M ×K matrix. Now, each column of the matrix

records the frequencies of a specific visual word (cluster)

appearing in the M images. While the L2 norm signaled by

taking a square root is to make this visual word spread over

all images, the L1 norm implied by the outmost summation

is to derive a compact set of visual words. For convenience,

we will call this an L1,2 regularization term.
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Num. of Without global term K-means K-means + L1,2Dataset
images

[15]
Saliency Co-Saliency Saliency Co-Saliency Saliency Co-Saliency {c2, τ}

Cars front 6 87.65% 77.01% 79.01% 83.27% 88.50% 88.04% 90.78% 90.46%

Cars back 6 85.10% 76.22% 77.63% 79.72% 81.86% 85.34% 85.76% 85.76%

Bike 30 63.30% 70.90% 72.38% 75.06% 76.67% 75.52% 76.76% 76.60%

Cat 24 74.40% 83.06% 79.80% 85.78% 86.36% 86.34% 86.68% 86.68%

Plane 30 75.90% 85.91% 86.22% 86.58% 86.80% 86.92% 87.66% 87.21%

Face 30 84.30% 78.54% 78.96% 84.41% 85.51% 85.08% 87.27% 85.76%

Cow 30 81.60% 88.40% 88.71% 91.25% 91.30% 91.10% 91.36% 90.92%

Horse 30 80.10% 78.72% 76.59% 85.30% 86.00% 85.57% 86.36% 84.36%

Gnome 4 89.29% 93.56% 93.28% 95.21% 95.00% 95.29% 95.12%
Table 1. Co-segmentation accuracy. The results by our method, measured in the pixel accuracy, are reported in the rightmost seven columns.

When the global energy term E in (1) is included, visual words can be obtained either by K-means or by K-means with L1,2 regularization.

Analogous to K-means clustering, we adopt an EM pro-

cedure to find {µk}
K
k=1 and A in (12). In E-step, we first re-

lax Ai,j,k to [0, 1] so that an NP-hard problem can be trans-

formed into a convex optimization problem. We then use

the cvx toolbox [9] to solve A, and discretize its entries to

{0, 1} by setting Ai,j,k to 1 if k = argmaxl Ai,j,l and 0,

otherwise. In M-step, we compute µk by the mean of the

feature vectors of the pixels assigned to cluster k.

5. Experimental results

For the sake of comparison, we test our method with

the challenging datasets used in [15] which contain the

Weizman horses and MSRC database. We also include the

Gnome dataset in our experiments as it contains images

with large illumination and viewpoint changes of the same

object. Figure 4 shows some examples of these images and

the co-segmentation results. (Note that the images in Weiz-

man horses are resized to have the same larger dimension.)

5.1. Parameters

Our model has three parameters, {λ, τ, c}. τ appears in

(4), and its value is decided by running our algorithm with-

out the global term. λ and c are introduced in (1) and (11),

respectively. Recall that c = c2/(1 + c2) and from (9),

c2 can be thought of the ratio of the average area of fore-

grounds to the average area of backgrounds over {Ii}
M
i=1.

For each dataset, we uniformly sample c2 from a given

range, adjust λ heuristically, and then report the best re-

sult. Indeed, the set of parameters can be reduced to {τ, c}
with slight decrease in accuracy, as λ can be tuned unsu-

pervisedly by checking whether the co-segmentation results

match the foreground-background ratio implied by c2.

5.2. Accuracy

We test our co-segmentation method in seven different

settings. First, the within-image energy Li(x
i) can be im-

plemented with the cost of assigning a foreground label ac-

cording to either the co-saliency prior used in (4) or the

saliency prior by replacing s̃ik with sik. Second, to single

out the effect of the global term E in (1), the experiments

are also performed with or without this global term. In case

that E is included, the histogram representation will be used

to describe a superpixel or an area of superpixels, and we

further consider the two ways of constructing visual vocab-

ularies described in Section 4. When the co-saliency prior

and the L1,2 regularization are used, we additionally test

our method by tuning only τ and c. The respective results

are reported in the rightmost seven columns of Table 1.

It can be inferred from the results in Table 1 that the

co-saliency prior tends to yield better co-segmentation per-

formances than the saliency prior, except implementing our

model without using the global term to test the two datasets,

Cat and Horse. And, such few exceptions are expected

since the between-image factors are not considered here.

We next look into the importance of using the global en-

ergy term E in co-segmentation. In Table 1, the results

by including E are those in the rightmost five columns,

and they are uniformly superior to those without using the

global term. However, considering the global term means

the necessity of the two parameters λ and c, where the

former controls its contribution, and the latter enables our

model to tackle the high complexity of co-segmentation

over more than two images.

The last factor discussed here that has a bearing on the

co-segmentation accuracy is how the visual words are ob-

tained. Recall that in Section 4, the L1,2 regularization term

is formulated based on the assumption that we have a region

Ri that has a higher probability of intersecting the underly-

ing foreground in image Ii. In practice, we have no access

to such knowledge in an unsupervised approach. Neverthe-

less, a reasonable way to yield Ri is as follows. Besides

the co-saliency map S̃i, we also apply the Gaussian center

prior [16] to Ii and generate, say, Oi. The superpixels inter-

secting the areas with the top 20% values of S̃i×Oi are then

included in Ri. The strategy is general in the sense that the

ratio between the area of the resulting Ri to the area of Ii
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Avg. Total Time
Dataset

superpixels superpixels (in second)

Cars front 96.83 581 0.65

Cars back 104 624 0.85

Bike 96.9 2907 215.40

Cat 75.71 1817 19.84

Plane 90.67 2720 62.77

Face 87.73 2632 110.88

Cow 46.03 1381 6.96

Horse 94.03 2821 150.18

Gnome 77.50 310 0.22
Table 2. Inference time for each dataset.

can range from 35.70% to 68.56% in our test datasets. More

importantly, it can reduce the unexpected effect of applying

the L1,2 regularization to the backgrounds, as is justified by

the improved accuracy in the rightmost three columns.

5.3. Time complexity

We run our algorithm on a PC with Intel i7 CPU @ 2.8

GHz. In Table 2, the inference time in optimizing {xi} with

the energy defined in (1) is reported for each dataset. Com-

pared with the technique of Joulin et al. [15], where the av-

erage number of superpixels is around 500 per image, and

the inference time is about 8 minutes for a pair of images

and 4 to 9 hours for 30 images, our method is more efficient.

In particular, the proposed co-segmentation approach does

not require over-segmenting each image into large number

of superpixels, and can efficiently accomplish the task via

an optimal labeling derived by the graph-cut algorithm.

6. Conclusion

Our main contribution is to introduce a new energy min-

imization model that is general enough to deal with the high

complexity of simultaneously segmenting multiple images,

and meanwhile, can be efficiently and optimally solved. In

addition, we have proposed a useful regularization term for

K-means clustering in learning the visual words for co-

segmentation. If the inclusion of the three parameters (or

two, for slight decreases in the co-segmentation accuracy)

in our method is not considered, we have come close to

establish a fully-unsupervised algorithm. Still, there are

several issues remained to be explored. In particular, we

would make efforts to further improve the quality of the

saliency and co-saliency detection, extend co-segmentation

to a more general concept, and bring in new applications.
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