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Abstract

Robust and accurate visual localization is a fundamental

capability for numerous applications, such as autonomous

driving, mobile robotics, or augmented reality. It remains,

however, a challenging task, particularly for large-scale

environments and in presence of significant appearance

changes. State-of-the-art methods not only struggle with

such scenarios, but are often too resource intensive for cer-

tain real-time applications. In this paper we propose HF-

Net, a hierarchical localization approach based on a mono-

lithic CNN that simultaneously predicts local features and

global descriptors for accurate 6-DoF localization. We

exploit the coarse-to-fine localization paradigm: we first

perform a global retrieval to obtain location hypotheses

and only later match local features within those candidate

places. This hierarchical approach incurs significant run-

time savings and makes our system suitable for real-time

operation. By leveraging learned descriptors, our method

achieves remarkable localization robustness across large

variations of appearance and sets a new state-of-the-art on

two challenging benchmarks for large-scale localization.1

1. Introduction

The precise 6-Degree-of-Freedom (DoF) localization of

a camera within an existing 3D model is one of the core

computer vision capabilities that unlocks a number of re-

cent applications. These include autonomous driving in

GPS-denied environments [7, 29, 31, 5] and consumer

devices with augmented reality features [30, 22], where

a centimeter-accurate 6-DoF pose is crucial to guarantee re-

liable and safe operation and fully immersive experiences,

respectively. More broadly, visual localization is a key com-

ponent in computer vision tasks such as Structure-from-

Motion (SfM) or SLAM. This growing range of applica-

tions of visual localization calls for reliable operation both

indoors and outdoors, irrespective of the weather, illumina-

tion, or seasonal changes.

Robustness to such large variations is therefore critical,

along with limited computational resources. Maintaining

a model that allows accurate localization in multiple con-

1Code available at https://github.com/ethz-asl/hf_net
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Figure 1. Hierarchical localization. A global search first retrieves

candidate images, which are subsequently matched using powerful

local features to estimate an accurate 6-DoF pose. This two-step

process is both efficient and robust in challenging situations.

ditions, while remaining compact, is thus of utmost im-

portance. In this work, we investigate whether it is actu-

ally possible to robustly localize in large-scale changing en-

vironments with constrained resources of mobile devices.

More specifically, we aim at estimating the 6-DoF pose of a

query image w.r.t. a given 3D model with the highest possi-

ble accuracy.

Current leading approaches mostly rely on estimating

correspondences between 2D keypoints in the query and

3D points in a sparse model using local descriptors. This

direct matching is either robust but intractable on mo-

bile [48, 51, 41], or optimized for efficiency but fragile [27].

In both cases, the robustness of classical localization meth-

ods is limited by the poor invariance of hand-crafted local

features [8, 26]. Recent features emerging from convolu-

tional neural networks (CNN) exhibit unrivalled robustness

at a low compute cost [12, 13, 32]. They have been, how-

ever, only recently [49] applied to the visual localization

problem, and only in a dense, expensive manner. Learned

sparse descriptors [12, 36] promise large benefits that re-

main yet unexplored in localization.

Alternative localization approaches based on image re-

trieval have recently shown promising results in terms of

robustness and efficiency, but are not competitive in terms

of accuracy. The benefits of an intermediate retrieval step

have been demonstrated earlier [40], but fall short of reach-
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ing the scalability required by city-scale localization.

In this paper, we propose to leverage recent advances in

learned features to bridge the gap between robustness and

efficiency in the hierarchical localization paradigm. Sim-

ilar to how humans localize, we employ a natural coarse-

to-fine pose estimation process which leverages both global

descriptors and local features, and scales well with large

environments (Figure 1). We show that learned descrip-

tors enable unrivaled robustness in challenging conditions,

while learned keypoints improve the efficiency in terms of

compute and memory thanks to their higher repeatability.

To further improve the efficiency of this approach, we pro-

pose a Hierarchical Feature Network (HF-Net), a CNN that

jointly estimates local and global features, and thus maxi-

mizes the sharing of computations. We show how such a

compressed model can be trained in a flexible way using

multitask distillation. By distilling multiple state-of-the-art

predictors jointly into a single model, we obtain an incom-

parably fast, yet robust and accurate, localization. Such het-

erogenous distillation is applicable beyond visual localiza-

tion to tasks that require both multimodal expensive predic-

tions and computational efficiency. Overall, our contribu-

tions are as follows:

– We set a new state-of-the-art in several public bench-

marks for large-scale localization with an outstanding

robustness in particularly challenging conditions;

– We introduce HF-Net, a monolithic neural network

which efficiently predicts hierarchical features for

a fast and robust localization;

– We demonstrate the practical usefulness and effective-

ness of multitask distillation to achieve runtime goals

with heterogeneous predictors.

2. Related Work

In this section we review other works that relate to dif-

ferent components of our approach, namely: visual local-

ization, scalability, feature learning, and deployment on re-

source constrained devices.

6-DoF visual localization methods have traditionally been

classified as either structure-based or image-based. The for-

mer perform direct matching of local descriptors between

2D keypoints of a query image and 3D points in a 3D SfM

model [48, 51, 41, 25, 49]. These methods are able to es-

timate accurate poses, but often rely on exhaustive match-

ing and are thus compute intensive. As the model grows in

size and perceptual aliasing arises, this matching becomes

ambiguous, impairing the robustness of the localization,

especially under strong appearance changes such as day-

night [42]. Some approaches directly regress the pose from

a single image [6, 20], but are not competitive in term of

accuracy [44]. Image-based methods are related to image

retrieval [1, 52, 53] and are only able to provide an approx-

imate pose up to the database discretization, which is not

sufficiently precise for many applications [42, 49]. They are

however significantly more robust than direct local match-

ing as they rely on the global image-wide information. This

comes at the cost of increased compute, as state-of-the-art

image retrieval is based on large deep learning models.

Scalable localization often deals with the additional com-

pute constrains by using features that are inexpensive to ex-

tract, store, and match together [8, 24, 37]. These improve

the runtime on mobile devices but further impair the ro-

bustness of the localization, limiting their operations to sta-

ble conditions [27]. Hierarchical localization [19, 30, 40]

takes a different approach by dividing the problem into a

global, coarse search followed by a fine pose estimation.

Recently, [40] proposed to search at the map level using

image retrieval and localize by matching hand-crafted local

features against retrieved 3D points. As we discuss further

in Section 3, its robustness and efficiency are limited by the

underlying local descriptors and heterogeneous structure.

Learned local features have recently been developed in at-

tempt to replace hand-crafted descriptors. Dense pixel-wise

features naturally emerge from CNNs and provide a power-

ful representation used for image matching [10, 13, 35, 38]

and localization [49, 42]. Matching dense features is how-

ever intractable with limited computing power. Sparse

learned features, composed of keypoints and descriptors,

provide an attractive drop-in replacement to their hand-

crafted counterparts and have recently shown outstanding

performance [12, 36, 16]. They can easily be sampled from

dense features, are fast to predict and thus suitable for mo-

bile deployment. CNN keypoint detections have also been

shown to outperform classical methods, although they are

notably difficult to learn. SuperPoint [12] learns from self-

supervision, while DELF [34] employs an attention mecha-

nism to optimize for the landmark recognition task.

Deep learning on mobile. While learning some build-

ing blocks of the localization pipeline improves perfor-

mance and robustness, deploying them on mobile devices

is a non-trivial task. Recent advances in multi-task learn-

ing allow to efficiently share compute across tasks without

manual tuning [21, 9, 47], thus reducing the required net-

work size. Distillation [18] can help to train a smaller net-

work [39, 55, 56] from a larger one that is already trained,

but is usually not applied in a multi-task setting.

To the best of our knowledge, our approach is the first

of its kind that combines advances in the aforementioned

fields to optimize for both efficiency and robustness. The

proposed method seeks to leverage the synergies of these

algorithms to deliver a competitive large-scale localization

solution and bring this technology closer to real-time, on-

line applications with constrained resources.
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Figure 2. The hierarchical localization with HF-Net is signifi-

cantly simpler than concurrent approaches [41, 48], yet more ro-

bust, accurate, and efficient.

3. Hierarchical Localization

We aim at maximizing the robustness of the localiza-

tion while retaining tractable computational requirements.

Our method is loosely based on the hierarchical localiza-

tion framework [40], which we summarize here.

Prior retrieval. A coarse search at the map level is per-

formed by matching the query with the database images

using global descriptors. The k-nearest neighbors (NN),

called prior frames, represent candidate locations in the

map. This search is efficient given that there are far fewer

database images than points in the SfM model.

Covisibility clustering. The prior frames are clustered

based on the 3D structure that they co-observe. This

amounts to finding connected components, called places,

in the covisibility graph that links database images to 3D

points in the model.

Local feature matching. For each place, we successively

match the 2D keypoints detected in the query image to the

3D points contained in the place, and attempt to estimate a

6-DoF pose with a PnP [23] geometric consistency check

within a RANSAC scheme [14]. This local search is also

efficient as the number of 3D points considered is signif-

icantly lower in the place than in the whole model. The

algorithm stops as soon as a valid pose is estimated.

Discussion. In the work of [40], a large state-of-the-art

network for image retrieval, NetVLAD [1], is distilled into

a smaller model, MobileNetVLAD (MNV). This helps to

achieve given runtime constraints while partly retaining the

accuracy of the original model. The local matching step is

however based on SIFT [26], which is expensive to com-

pute and generates a large number of features, making this

step particularly expensive. While this method exhibits

good performance in small-scale environments, it does not

scale well to larger, denser models. Additionally, SIFT is

not competitive with recent learned features, especially un-

der large illumination changes [16, 36, 12, 32]. Lastly, a

significant part of the computation of local and global de-

scriptors is redundant, as they are both based on the image

low-level clues. The heterogeneity of hand-crafted features

and CNN image retrieval is thus computationally subopti-

mal and could be critical on resource-constrained platforms.

4. Proposed Approach

We now show how we address these issues and achieve

improved robustness, scalability, and efficiency. We first

motivate the use of learned features with a homogeneous

network structure, and then detail the architecture in Sec-

tion 4.1 and our novel training procedure in Section 4.2.

Learned features appear as a natural fit for the hierar-

chical localization framework. Recent methods like Su-

perPoint [12] have shown to outperform popular baseline

like SIFT in terms of keypoint repeatability and descriptor

matching, which are both critical for localization. Some

learned features are additionally significantly sparser than

SIFT, thus reducing the number of keypoints to be matched

and speeding up the matching step. We show in Section 5.1

that a combination of state-of-the-art networks in image re-

trieval and local features naturally achieves state-of-the-art

localization. This approach particularly excels in extremely

challenging conditions, such as night-time queries, outper-

forming competitive methods by a large margin along with

a smaller 3D model size.

While the inference of such networks is significantly

faster than computing SIFT on GPU, it still remains a large

computational bottleneck for the proposed localization sys-

tem. With the goal of improving the ability to localize on-

line on mobile devices, we introduce here a novel neural

network for hierarchical features, HF-Net, enabling an ef-

ficient coarse-to-fine localization. It detects keypoints and

computes local and global descriptors in a single shot, thus

maximizing sharing of computations, but retaining perfor-

mance of a larger baseline network. We show in Figure 2 its

application within the hierarchical localization framework.

4.1. HFNet Architecture

Convolutional neural networks intrinsically exhibit a hi-

erarchical structure. This paradigm fits well the joint pre-

dictions of local and global features and comes at low ad-

ditional runtime costs. The HF-Net architecture (Figure 3)

is composed of a single encoder and three heads predicting:

i) keypoint detection scores, ii) dense local descriptors and

iii) a global image-wide descriptor. This sharing of com-

putation is natural: in state-of-the-art image retrieval net-

works, the global descriptors are usually computed from the

aggregation of local feature maps, which might be useful to

predict local features.

The encoder of HF-Net is a MobileNet [39] backbone, a

popular architecture optimized for mobile inference. Sim-

ilarly to MNV [40], the global descriptor is computed by
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Figure 3. HF-Net generates three outputs from a single image:

a global descriptor, a map of keypoint detection scores, and dense

keypoint descriptors. All three heads are trained jointly with multi-

task distillation from different teacher networks.

a NetVLAD layer [1] on top of the last feature map of

MobileNet. For the local features, the SuperPoint [12] ar-

chitecture is appealing for its efficiency, as it decodes the

keypoints and local descriptors in a fixed non-learned man-

ner. This is much faster than applying transposed convolu-

tions to upsample the features. It predicts dense descriptors

which are fast to sample bilinearly, resulting in a runtime

independent from the number of detected keypoints. On

the other hand, patch-based architectures like LF-Net [36]

apply a Siamese network to image patches centered at all

keypoint locations, resulting in a computational cost pro-

portional to the number of detections.

For its efficiency and flexibility, we thus adopt the Super-

Point decoding scheme for keypoints and local descriptors.

The local feature heads branch out from the MobileNet en-

coder at an earlier stage than the global head, as a higher

spatial resolution is required to retain spatially discrimina-

tive features, local features are on a lower semantic level

than image-wide descriptors [13].

4.2. Training Process

Data scarcity. Local and global descriptors are often

trained with metric learning using ground truth positive

and negative pairs of local patches and full images. These

ground truth correspondences are particularly difficult to

obtain at the scale required to train large CNNs. While

global supervision naturally emerges from local correspon-

dences, there is currently no such dataset that simulta-

neously i) exhibits a sufficient perceptual diversity at the

global image level, e.g. with various conditions such as day,

night, seasons, and ii) contains ground truth local corre-

spondences between matching images. These correspon-

dences are often recovered from the dense depth [36] com-

puted from an SfM model [45, 46], which is intractable to

build at the scale required by image retrieval.

Data augmentation. Self-supervised methods that do not

rely on correspondences, such as SuperPoint, require heavy

data augmentation, which is key to the invariance of the lo-

cal descriptor. While data augmentation often captures well

the variations in the real world at the local level, it can break

the global consistency of the image and make the learning

of the global descriptor very challenging.

Multi-task distillation is our solution to this data problem.

We employ distillation to learn the representation directly

from an off-the-shelf trained teacher model. This alleviates

the above issues, with a simpler and more flexible training

setup that allows the use of arbitrary datasets, as infinite

amount of labeled data can be obtained from the inference

of the teacher network. Directly learning to predict the out-

put of the teacher network additionally eases the learning

task, allowing to directly train a smaller student network.

We note an interesting similarity with SuperPoint, whose

detector is training by bootstrapping, supervised by itself

through the different training runs. This process could also

be referred as self-distillation, and shows the effectiveness

of distillation as a practical training scheme.

The supervision of local and global features can origi-

nate from different teacher networks, resulting in a multi-

task distillation training that allows to leverage state-of-the-

art teachers. Recent advances [21] in multi-task learning

enable a student s to optimally copy all teachers t1,2,3 with-

out any manual tuning of the weights that balance the loss:

L = e−w1 ||dg
s − d

g
t1
||2
2
+ e−w2 ||dl

s − dl
t2
||2
2

+ 2e−w3CrossEntropy(ps,pt3) +
∑

i

wi,
(1)

where dg and dl are global and local descriptors, p are key-

point scores, and w1,2,3 are optimized variables.

More generally, our formulation of the multi-task distil-

lation can be applied to any application that requires mul-

tiple predictions while remaining computationally efficient,

particularly in settings where ground truth data for all tasks

is expensive to collect. It could also be applied to some

hand-crafted descriptors deemed too compute-intensive.

5. Experiments

In this section, we present experimental evaluations of

the building blocks of HF-Net and of the network as a

whole. We want to prove its applicability to large-scale

localization problems in challenging conditions while re-

maining computationally tractable. We first perform in Sec-

tion 5.1 a thorough evaluation of current top-performing

classical and learning-based methods for local feature de-

tection and description. Our goal is to explain how these in-

sights influenced the design choices of HF-Net presented in

Section 5.2. We then evaluate in Section 5.3 our method on

challenging large-scale localization benchmarks [42] and
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demonstrate the advantages of the coarse-to-fine localiza-

tion paradigm. To address our real-time localization focus,

we conclude with runtime considerations in Section 5.4.

5.1. Local Features Evaluation

We start our evaluation by investigating the performance

of local matching methods under different settings on two

datasets, HPatches [3] and SfM [36], that provide dense

ground truth correspondences between image pairs for both

2D and 3D scenes.

Datasets. HPatches [3] contains 116 planar scenes con-

taining illumination and viewpoint changes with 5 image

pairs per scene and ground truth homographies. SfM is a

dataset built by [36] composed of photo-tourism collections

collected by [17, 50]. Ground truth correspondences are

obtained from dense per-image depth maps and relative 6-

DoF poses, computed using COLMAP [45]. We select 10

sequences for our evaluation and for each randomly sam-

ple 50 image pairs with a given minimum overlap. A met-

ric scale cannot be recovered with SfM reconstruction but

is important to compute localization metrics. We therefore

manually label each SfM model using metric distances mea-

sured in Google Maps.

Metrics. We compute and aggregate pairwise metrics de-

fined by [12] over all pairs for each dataset. For the detec-

tors, we report the repeatability and localization error of the

keypoint locations. Both are important for visual localiza-

tion as they can impact the number of inlier matches, the re-

liability of the matches, but also the quality of the 3D model.

We compute nearest neighbor matches between descriptors

and report the mean average precision and the matching

score. The former reflects the ability of the method to re-

ject spurious matches. The latter assesses the quality of the

detector and the descriptor together. We also compute the

recall of pose estimation, either a homography for HPatches

or a 6-DoF pose for the SfM dataset, with thresholds of

3 pixels and 3 meters, respectively.

Methods. We evaluate the classical detectors Difference of

Gaussian (DoG) and Harris [15] and the descriptor Root-

SIFT [2]. For the learning-based methods, we evaluate

the detections and descriptors of SuperPoint [12] and LF-

Net [11]. We additionally evaluate a dense version of

DOAP [16] and the feature map conv3_3 of NetVLAD [1]

and use SuperPoint detections for both. More details are

provided in the supplementary material.

Detectors. We report the results in Table 1. Harris exhibits

the highest repeatability but also the highest localization er-

ror. Conversely, DoG is less repeatable but has the lowest

error, likely due to the multi-scale detection and pixel re-

finement. SuperPoint seems to show the best trade-off be-

tween repeatability and error.

HPatches SfM

Rep. MLE Rep. MLE

DoG 0.307 0.94 0.284 1.20

Harris 0.535 1.14 0.510 1.46

SuperPoint 0.495 1.04 0.509 1.45

LF-Net 0.460 1.13 0.454 1.44

Table 1. Evaluation of the keypoint detectors. We report the

repeatability (rep.) and mean localization error (MLE).

HPatches SfM

(detector / descriptors) Homography MS mAP Pose MS mAP

Root-SIFT 0.681 0.307 0.651 0.700 0.199 0.236

LF-Net 0.629 0.305 0.572 0.676 0.221 0.207

SuperPoint 0.810 0.441 0.846 0.794 0.418 0.488

Harris / SuperPoint 0.669 0.448 0.737 0.684 0.404 0.397

SuperPoint / DOAP - - - 0.838 0.448 0.554

SuperPoint / NetVLAD 0.788 0.419 0.798 0.800 0.374 0.423

Table 2. Evaluation of the local descriptors. The matching score

(MS) and mean Average Precision (mAP) are reported, in addition

to the homography correctness for HPatches and the pose accuracy

for the SfM dataset.

Descriptors. DOAP outperforms SuperPoint on all metrics

on the SfM dataset, but cannot be evaluated on HPatches as

it was trained on this dataset. NetVLAD shows good pose

estimation but poor matching precision on SfM, which is

disadvantageous when the number of keypoints is limited

or the inlier ratio important, e.g. for localization. Overall, it

stands that learned features outperform hand-crafted ones.

Interestingly, SuperPoint descriptors perform poorly

when extracted from Harris detections, although the latter

is also a corner detector with high repeatability. This hints

that learned descriptors can be highly coupled with the cor-

responding detections.

LF-Net and SIFT, both multi-scale approaches with sub-

pixel detection and patch-based description, are outper-

formed by dense descriptors like DOAP and SuperPoint. A

simple representation trained with the right supervision can

thus be more effective than a complex and computational-

heavy architecture. We note that SuperPoint requires signif-

icantly fewer keypoints to estimate a decent pose, which is

highly beneficial for runtime-sensitive applications.

5.2. Implementation Details

Motivated by the results presented in Section 5.1, this

section briefly introduces the design and implementation of

HF-Net. Below, we explain our choices of the distillation

teacher models, training datasets and improvements to the

baseline 2D-3D local matching.

Teacher models. We evaluate the impact of the two best

descriptors, DOAP and SuperPoint, on the localization in

Section 5.3. Results show that the latter is more robust to

day-night appearance variations, as its training set included

low-light data. We eventually chose it as the supervisor

teacher network for the descriptor head of HF-Net. The

global head is supervised by NetVLAD.
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Training data. In this work, we target urban environments

in both day and night conditions. To maximize the perfor-

mance of the student model on this data, we select training

data that fits this distribution. We thus train on 185k im-

ages from the Google Landmarks dataset [34], containing

a wide variety of day-time urban scenes, and 37k images

from the night and dawn sequences of the Berkeley Deep

Drive dataset [54], composed of road scenes with motion

blur. We found the inclusion of night images in the training

dataset to be critical for the generalization of the global re-

trieval head to night queries. For example, a network trained

on day-time images only would easily confuse a night-time

dark sky with a day-time dark tree. We also train with pho-

tometric data augmentation but use the targets predicted on

the clean images.

Efficient hierarchical localization. Sarlin et al. [40] iden-

tified the local 2D-3D matching as the bottleneck of the

pipeline. Our system significantly improves on the effi-

ciency of their approach: i) Spurious local matches are

filtered out using a modified ratio test that only applies

if the first and second nearest neighbor descriptors cor-

respond to observations of different 3D points, similarly

to [33], thus retaining more matches in highly covisible ar-

eas. ii) Learned global and local descriptors are normalized

and matched with a single matrix multiplication on GPU.

Additional implementation details and hyperparameters are

provided in the supplementary material.

5.3. Largescale Localization

Under the light of the local evaluation, we now evalu-

ate our hierarchical localization on three challenging large-

scale benchmarks introduced by [42].

Datasets. Each dataset is composed of a sparse SfM model

built with a set of reference images. The Aachen Day-Night

dataset [43] contains 4,328 day-time database images from

a European old town, and 824 and 98 queries taken in day

and night conditions respectively. The RobotCar Seasons

dataset [28] is a long-term urban road dataset that spans

multiple city blocks. It is composed of 20,862 overcast ref-

erence images and a total of 11,934 query images taken in

multiple conditions, such as sun, dusk, and night. Lastly,

the CMU Seasons dataset [4] was recorded in urban and

suburban environments over a course of 8.5 km. It contains

7,159 reference images and 75,335 query images recorded

in different seasons. This dataset is of significantly lower

scale as the queries are localized against isolated submod-

els containing around 400 images each.

Large scale model construction. SfM models built with

COLMAP [45, 46] using RootSIFT are provided by the

dataset authors. These are however not suitable when local-

izing with methods based on different feature detectors. We

thus build new 3D models with keypoints detected by Su-

perPoint and HF-Net. The process is as follows: i) we per-

form 2D-2D matching between reference frames using our

features and an initial filtering ratio test; ii) the matches are

further filtered within COLMAP using two-view geometry;

iii) 3D points are triangulated using the provided ground

truth reference poses. Those steps result in a 3D model with

the same scale and reference frame as the original one.

Comparison of model quality. The HF-Net Aachen model

contains fewer 3D points (685k vs 1,899k for SIFT) and

fewer 2D keypoints per image (2,576 vs 10,230 for SIFT).

However, a larger ratio of the original 2D keypoints is

matched (33.8% vs 18.8% for SIFT), and each 3D point is

on average observed from more reference images. Match-

ing a query keypoint against this model is thus more likely

to succeed, showing that our feature network produces 3D

models more suitable for localization.

Methods. We first evaluate our hierarchical localization

based on learned features extracted by NetVLAD [1] and

SuperPoint [12]. Named NV+SP, it uses the most pow-

erful predictors available. We then evaluate a more effi-

cient localization with global descriptors and local features

computed by HF-Net. We also consider several localiza-

tion baselines evaluated by the benchmark authors. Active

Search (AS) [41] and City Scale Localization (CSL) [48]

are both 2D-3D direct matching methods representing

the current state-of-the-art in terms of accuracy. Den-

seVLAD [52] and NetVLAD [1] are image retrieval ap-

proaches that approximate the pose of the query by the

pose of the top retrieved database image. The recently-

introduced Semantic Match Consistency (SMC) [51] relies

on semantic segmentation for outlier rejection. It assumes

known gravity direction and camera height and, for the

RobotCar dataset, was trained on the evaluation data using

ground truth semantic labels. We introduce an additional

baseline, NV+SIFT, that performs hierarchical localization

with RootSIFT as local features, and is an upper bound to

the MNV+SIFT method of [40].

Results. We report the pose recall at position and orien-

tation thresholds different for each sequence, as defined by

the benchmark [42]. Table 3 shows the localization results

for the different methods. Cumulative plots for the three

most challenging sequences are presented in Figure 4.

Localization with NV+SP. On the Aachen dataset, NV+SP

is competitive on day-time queries and outperforms all

methods for night-time queries, where the performance

drop w.r.t. the day is significantly smaller than for direct

matching methods, which suffer from the increased ambi-

guity of the matches. On the RobotCar dataset, it performs

similarly to other methods on the dusk sequence, where

the accuracy tends to saturate. In the more challenging se-

quences, image retrieval methods tend to work better than

direct matching approaches, but are far outperformed by
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Aachen RobotCar CMU

day night dusk sun night night-rain urban suburban

distance [m]

orient. [deg]

.25/.50/5.0

2/5/10

0.5/1.0/5.0

2/5/10

.25/.50/5.0

2/5/10

.25/.50/5.0

2/5/10

.25/.50/5.0

2/5/10

.25/.50/5.0

2/5/10

.25/.50/5.0

2/5/10

.25/.50/5.0

2/5/10

AS 57.3 / 83.7 / 96.6 19.4 / 30.6 / 43.9 44.7 / 74.6 / 95.9 25.0 / 46.5 / 69.1 0.5 / 1.1 / 3.4 1.4 / 3.0 / 5.2 55.2 / 60.3 / 65.1 20.7 / 25.9 / 29.9

CSL 52.3 / 80.0 / 94.3 24.5 / 33.7 / 49.0 56.6 / 82.7 / 95.9 28.0 / 47.0 / 70.4 0.2 / 0.9 / 5.3 0.9 / 4.3 / 9.1 36.7 / 42.0 / 53.1 8.6 / 11.7 / 21.1

DenseVLAD 0.0 / 0.1 / 22.8 0.0 / 2.0 / 14.3 10.2 / 38.8 / 94.2 5.7 / 16.3 / 80.2 0.9 / 3.4 / 19.9 1.1 / 5.5 / 25.5 22.2 / 48.7 / 92.8 9.9 / 26.6 / 85.2

NetVLAD 0.0 / 0.2 / 18.9 0.0 / 2.0 / 12.2 7.4 / 29.7 / 92.9 5.7 / 16.5 / 86.7 0.2 / 1.8 / 15.5 0.5 / 2.7 / 16.4 17.4 / 40.3 / 93.2 7.7 / 21.0 / 80.5

SMC - - (53.8 / 83.0 / 97.7) (46.7 / 74.6 / 95.9) (6.2 / 18.5 / 44.3) (8.0 / 26.4 / 46.4) 75.0 / 82.1 / 87.8 44.0 / 53.6 / 63.7

NV+SIFT 82.8 / 88.1 / 93.1 30.6 / 43.9 / 58.2 55.6 / 83.5 / 95.3 46.3 / 67.4 / 90.9 4.1 / 9.1 / 24.4 2.3 / 10.2 / 20.5 63.9 / 71.9 / 92.8 28.7 / 39.0 / 82.1

NV+SP (ours) 79.7 / 88.0 / 93.7 40.8 / 56.1 / 74.5 54.8 / 83.0 / 96.2 51.7 / 73.9 / 92.4 6.6 / 17.1 / 32.2 5.2 / 17.0 / 26.6 91.7 / 94.6 / 97.7 74.6 / 81.6 / 91.4

HF-Net (ours) 75.7 / 84.3 / 90.9 40.8 / 55.1 / 72.4 53.9 / 81.5 / 94.2 48.5 / 69.1 / 85.7 2.7 / 6.6 / 15.8 4.7 / 16.8 / 21.8 90.4 / 93.1 / 96.1 71.8 / 78.2 / 87.1

Table 3. Evaluation of the localization on the Aachen Day-Night, RobotCar Seasons, and CMU Seasons datasets. We report the recall [%]

at different distance and orientation thresholds and highlight for each of them the best and second-best methods. X+Y denotes hierarchical

localization with X (Y) as global (local) descriptors. SMC is excluded from the comparison for RobotCar as it uses extra semantic data.

Figure 4. Cumulative distribution of position errors for the Aachen night (left), RobotCar night-all (center) and CMU suburban (right)

datasets. On Aachen, HF-Net and NV+SP have similar performance and outperform approaches based on global retrieval and on feature

matching. On RobotCar, HF+Net performs worse than NV+SP, which suggests a limitation of the distillation process. On CMU, the

hierarchical localization shows a significant boost over other methods, particularly for small distance thresholds.

NV+SP in both fine- and coarse-precision regimes. On the

difficult CMU dataset, NV+SP achieves an outstanding ro-

bustness compared to all baselines, including the most re-

cent SMC. Overall, NV+SP sets a new state-of-the-art on

the CMU dataset and on the challenging sequences of the

Aachen and RobotCar datasets. The superior performance

in both fine- and coarse-precision regimes shows that our

approach is both more accurate and more robust.

Comparison with NV+SIFT. We observe that NV+SIFT

consistently outperforms AS and CSL, although all meth-

ods are based on the same RootSIFT features. This shows

that our hierarchical approach with a coarse initial prior

brings significant benefits, especially in challenging con-

ditions where image-wide information helps disambiguate

matches. It thus provides a better outlier rejection than com-

plex domain-specific heuristics used in AS and CSL. The

superiority of NV+SP highlights the simple gain of learned

features like SuperPoint. On the Aachen night and Robot-

Car dusk sequences, which are the easiest ones, NV+SIFT

performs marginally better than NV+SP for the fine thresh-

old. This is likely due to the lower localization accuracy

of the SuperPoint keypoints, as highlighted in Section 5.1,

since DoG performs a subpixel refinement.

Localization with HF-Net. On most sequences, HF-Net

performs similarly to its upper bound NV+SP, with a recall

drop of 2.6% on average. We show qualitative results in

Figure 5. In the RobotCar night sequences, HF-Net is sig-

nificantly worse than NV+SP. We attribute this to the poor

performance of the distilled global descriptors on blurry

low-quality images. This highlights a clear limitation of our

approach: on large, self-similar environment, the model ca-

pacity of HF-Net becomes the limiting factor. A complete

failure of the global retrieval directly translates into a failure

of the hierarchical localization.

Distance thresh. NV+SP NV+HF-Net NV+DOAP HF-Net

Day

0.25m 79.7 81.2 80.0 75.7

0.5m 88.0 88.2 88.5 84.3

5m 93.7 94.2 93.3 90.9

Night

0.5m 40.8 40.8 34.7 40.8

1m 56.1 56.1 52.0 55.1

5m 74.5 76.5 72.4 72.4

Table 4. Ablation study on the Aachen Day-Night dataset. We

report the recall [%] of the hierarchical localization with diffrent

gloabal descriptors (NetVLAD and HF-Net) and local features

(SuperPoint, DOAP, and HF-Net).

Ablation study. In Table 4, we evaluate the influence

of different predictors within the hierarchical localization

framework. Comparing NV+SP with NV+HF, we note that

local HF-Net features perform better than the SuperPoint

model that was used to train them. This demonstrates the

benefits of multi-task distillation, where the supervision sig-

nal from the global teacher can improve intermediate fea-

tures and help local descriptors. We also observe that the lo-

calization with DOAP is significantly worse at night, which
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Figure 5. Successful localization with HF-Net on the Aachen

Day-Night dataset. We show two queries (left) and the retrieved

database images with the most inlier matches (right).

might be due to the complex augmentation schemes Su-

perPoint is based on. Finally, the comparison of HF-Net

with NV+HF-Net reveals that HF-Net global descriptors

have a somewhat limited capacity compared to the original

NetVLAD and are limiting the performance.

5.4. Runtime Evaluation

As our propose localization solution was developed

keeping the computational constraints in mind, we analyze

its runtime and compare it with baselines presented in Sec-

tion 5.3. These were measured on a PC equipped with an

Intel Core i7-7820X CPU (3.60GHz) CPU, 32GB of RAM

and an NVIDIA GeForce GTX 1080 GPU. Table 5 presents

the detailed timings.

Datasets Methods Features Global Covis. Local PnP Total

A
ac

h
en

Day

AS 263 - - 112 375

NV+SIFT 92+263 7 8 1220 29 1356

NV+SP 92+26 7 5 9 9 148

HF-Net 15 7 5 9 9 45

Night

AS 263 - - 132 395

NV+SIFT 92+263 7 8 1492 56 1655

NV+SP 92+26 7 5 10 18 158

HF-Net 15 7 5 10 18 55

R
o
b
o
tC

ar

Dusk

AS 189 - - 283 472

NV+SIFT 92+189 13 3 264 14 575

NV+SP 92+26 13 1 3 4 139

HF-Net 15 13 1 3 4 36

Night

AS 189 - - 1021 1210

NV+SIFT 92+189 13 3 389 149 835

NV+SP 92+26 13 1 6 38 176

HF-Net 15 13 1 6 38 73

Table 5. Timings [ms] for the different steps of hierarchical local-

ization: feature extraction, global search, covisibility clustering,

local matching, and pose estimation with PnP. Feature extraction

with SIFT or CNN and matching of learned descriptors are per-

formed on the GPU, and other operations on the CPU. We high-

light the fastest method for each sequence. Localizing with HF-

Net is 10 times faster than with AS, the fastest method available.

Hierarchical localization. Timings of NV+SP and HF-Net

show that our coarse-to-fine approach scales well to large

environments. The global search is fast, and only depends

on the number of images used to build the model. It success-

fully reduces the set of potential candidate correspondences

and enables a tractable 2D-3D matching. This strongly de-

pends on the SfM model – the denser the covisibility graph

is, the more 3D points are retrieved and matched per prior

frame, which increases the runtime. NV+SIFT is there-

fore prohibitively slow, as its SfM model is much denser,

especially on Aachen. NV+SP significantly improves on

it, as the sparser SfM model yield clusters with fewer 3D

points. The inference of NetVLAD and SuperPoint how-

ever accounts for 75% of its runtime, and is thus, as pre-

viously mentioned, the bottleneck. HF-Net mitigates this

issues with an inference 7 times faster.

Existing approaches. CSL and SMC are not listed in

Table 5 as they both require several tens of seconds per

query, and are thus three orders of magnitude slower than

our fastest method. AS improves on this, but is still slower,

especially in case of a low success rate, such as on Robot-

Car night. Overall, our localization system based on HF-

Net can run at 20 FPS on very large-scale environments. It

is 10 times faster than AS, designed for efficiency, and is

much more accurate on all datasets.

6. Conclusion

In this paper, we have presented a method for visual lo-

calization that is at the same time robust, accurate, and runs

in real-time. Our system follows a coarse-to-fine localiza-

tion paradigm. First, it performs a global image retrieval

to obtain a set of database images, which are subsequently

clustered into places using the covisibility graph of a 3D

SfM model. We then perform local 2D-3D matching within

the candidate places to obtain an accurate 6-DoF estimate

of the camera pose.

A version of our method is based on existing neural net-

works for image retrieval and feature matching. It out-

performs state-of-the-art localization approaches on several

large-scale benchmarks that include day-night queries and

substantial appearance variations across weather conditions

and seasons. We then improve its efficiency by proposing

HF-Net, a novel CNN that computes keypoints as well as

global and local descriptors in a single shot. We demon-

strate the effectiveness of multitask distillation to train it in

a flexible manner while retaining the original performance.

The resulting localization systems runs at more than 20 FPS

at large scale and offers an unparalleled robustness in chal-

lenging conditions.
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