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Abstract: Despite the health benefits associated with the ingestion of the bioactive compounds in
cocoa, the high concentrations of polyphenols and methylxanthines in the raw cocoa beans negatively
influence the taste, confer the astringency and bitterness, and affect the stability and digestibility of
the cocoa products. It is, therefore, necessary to process cocoa beans to develop the characteristic
color, taste, and flavor, and reduce the astringency and bitterness, which are desirable in cocoa
products. Processing, however, affects the composition and quantities of the bioactive compounds,
resulting in the modification of the health-promoting properties of cocoa beans and chocolate. In
this advanced review, we sought to better understand the effect of cocoa’s transformational process
into chocolate on polyphenols and methylxanthine and the mechanism of action of the original
flavanols and methylxanthines. More data on the cocoa processing effect on cocoa bioactives are
still needed for better understanding the effect of each processing step on the final polyphenolic
and methylxanthine composition of chocolate and other cocoa products. Regarding the mechanisms
of action, theobromine acts through the modulation of the fatty acid metabolism, mitochondrial
function, and energy metabolism pathways, while flavanols mainly act though the protein kinases
and antioxidant pathways. Both flavanols and theobromine seem to be involved in the nitric oxide
and neurotrophin regulation.

Keywords: cocoa processing; chocolate; flavanol; polyphenol; methylxanthine; molecular mechanism

1. Introduction

Cocoa (Theobroma cacao L.) belongs to the family Malvaceae and the genus Theobroma.
The cocoa tree produces fruits, referred to as pods, along the trunk and branches. The
pods are oval and contain the seeds (about 30–40 seeds), commonly known as cocoa
beans, which are embedded in a sweet mucilaginous pulp. The pulp is rich in fermentable
sugars and high in acidity (pH 3.0–3.5). Chocolate is the most popular cocoa-derived
product, highly valued by consumers around the world [1–3]. Its consumption has received
increased global attention in recent years due to the biologically active components in cocoa
beans [1–4]. However, some adverse effects of chocolate consumption have also been
reported, as the final chocolate might be rich in sugar and fat [5]. This limits the use
of chocolate as a functional food product and opens a search for more “natural” and
unprocessed forms of cocoa. The components of the cocoa bean quality currently used on
the international cocoa market include the bean size and mass, moisture content, flavor
characteristics, low debris and bean defect levels, fat quality, and content [6,7]. There is a
growing global trend in the search for functional attributes in food as quality indicators. In
the case of cocoa beans, the final qualitative and quantitative content of the polyphenols
and methylxanthines might be considered as part of the quality indicators affecting the
final price of the beans.
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The present revision will focus on two different types of phytochemicals in cocoa, the
main cocoa polyphenols, flavanols, and the foremost cocoa methylxanthine, theobromine,
because this compound is as abundant in cocoa as the total of the flavonoids and is currently
the subject of an increasing number of studies [8–11]. Cocoa flavanols and methylxanthines
control the molecular pathways that regulate the cell signaling and function in most of
the tissues so far investigated. The main pathways studied include the mitogen-activated
protein kinase (MAPK) pathways and phosphoinositide-3-kinase-protein kinase B/protein
kinase B (PI3K/Akt), which are activated by several ubiquitous growth factors, such as
the insulin-like growth factor-1 (IGF-1) and fibroblast growth factor (FGF), among others,
and neuro-specific factors, such as the brain-derived neurotrophic factor (BDNF) and
nerve growth factor (NGF) [12,13]. Additionally, to the canonical signaling pathways,
the systemic factors and molecular/biochemical mechanisms, such as nitric oxide (NO),
toll-like receptors, apoptosis, and antioxidant and anti-inflammatory responses, are also
specifically involved in the biological effects of cocoa phytochemicals on the tissue and cell
function, and these will be discussed in this review. It is worth mentioning that most, if not
all, of these pathways are interconnected, and it results in being very difficult most times
to unravel and delineate the specific effects. Moreover, several polyphenols included in
a diet may affect more than one biomarker or pathway, which may confound conclusions
about the specificity of action [12–14]. Raw cocoa beans are bitter and astringent and
need to be processed to reduce the bitterness and astringency and develop the desired
flavors. The bitterness and astringency of raw cocoa beans are due to the phenolics and
methylxanthines in the beans [3]. During the cocoa bean processing, a wide range of
chemical reactions, including the aldol condensation, polymerization, cyclization, Maillard
reaction, and Strecker degradation, which enhance the flavor, color, and shelf stability of
cocoa products, have been reported [15–21]. According to some authors, the polyphenols
undergo a biochemical modification through the polymerization and complexation with
other compounds such as proteins [6,16], while theobromine and caffeine mainly diffuse
into the shells of the beans [22,23]. These result in a decrease in the concentration of the
phenolic and methylxanthine compounds and contribute to the reduction in the bitterness
and astringency of the beans [22,23]. However, there is no general agreement regarding the
negative effect of food processing on the content of the bioactive compounds in processed
cocoa products. In fact, as occurs with other processed foods, some authors have shown
that processing, far from reducing the biological activity of foods of plant origin, could
enhance their bioavailability and, beyond that, their bioactivity [24,25]. Moreover, during
processing, notably the fermentation and drying processes, flavor precursors (free amino
acids and reducing sugars) are formed, and these combine during the roasting process
through a complex series of thermal reactions, mainly the Maillard reaction and Strecker
degradation, and are converted into desirable aroma volatiles, such as pyrazines, aldehydes,
ketones, furans, and pyrroles [18–21]. Nevertheless, cocoa processing clearly affects the
flavanols and methylxanthine content of the final product and therefore will affect its
potential biological activity and the molecular mechanisms that mediate it.

The purpose of this review is to provide a better understanding of the various pro-
cessing steps of cocoa beans, from harvesting to chocolate production, emphasizing the
changes in the main bioactive compounds in cocoa: the polyphenols (mainly flavanols) and
methylxanthines (mainly theobromine) during processing that will affect the mechanism of
action implicated in their biological activity. The research gaps are also identified to aid in
the planning of future studies. Because this review aims to be an update of the information
regarding the flavanols and methylxanthines of cocoa, most of the results reported up to
2020 will be briefly summarized and largely referred to comprehensive reviews; henceforth,
we will mainly focus on recent data from the last couple of years, in which, despite the
pandemic, research on this topic has been rather productive.
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2. Cocoa Bean Processing

The processing of cocoa beans can be categorized into primary and industrial process-
ing. The primary processing of cocoa entails all the processes cocoa pods go through, from
harvesting to obtaining the final dried beans (Figure 1). They play a significant role in the
development of the final color, flavor profile, and composition of the bioactive compounds
of the dried beans as well as the shelf stability of the beans during transportation and stor-
age [26,27]. These include harvesting, pod storage (as a means of pulp pre-conditioning),
pod breaking, fermentation, and drying. Although cocoa bean quality is greatly influenced
by the genetic makeup and origin of the cocoa, inadequate or poor primary processing
could result in beans with a poor quality and shelf stability.
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The industrial processing of cocoa can also be sub-classified into secondary and tertiary
processing. The secondary processing involves all the processes the dried fermented
beans are taken through to obtain semi-finished products, such as cocoa liquor (cocoa
mass), cocoa butter, cocoa powder, etc. The secondary processing includes cleaning,
breaking and winnowing, sterilization, alkalization, roasting, nib grinding, and liquor
processing (Figure 1). The tertiary processing involves the use of the semi-finished cocoa
products and other ingredients to produce chocolates, cocoa/chocolate beverages, and
other confectionery products.

2.1. Primary Processing of Cocoa Beans
2.1.1. Harvesting

The harvesting of ripe, matured cocoa pods initiates the primary processing of cocoa.
For optimal processing and the production of high-quality beans for cocoa-based prod-
ucts, only matured, ripe, or at least semi-ripe, and disease-free pods are harvested. The
Studies have reported on the direct influence of harvesting cocoa pods at an appropriate
maturity stage on the flavor characteristics of the cocoa beans [28]. The cocoa beans ob-
tained from unripe pods have been found to have low sugar contents and do not ferment
properly, while over-ripe ones, on the other hand, are easy to germinate and be infected
by microorganisms [29,30]. In terms of the bioactive compounds in cocoa beans, studies
have shown that cocoa beans obtained from immature or over-ripe fruits contain fewer
bioactive compounds than beans from fully mature fruits [30,31]. A recent study by Dang
and Nguyen [32] showed that the maturity at harvesting and the fermentation conditions
significantly increased the flavanol and methylxanthine contents, together with the an-
tioxidant capacity of the cocoa beans (Table 1). Earlier studies by Zheng et al. [33] and
Pereira-Caro et al. [30] found the theobromine and caffeine contents appeared at maturity
when the cocoa beans started to develop their seed coats, which continued to increase until
the cocoa fruits were fully ripe. Zheng et al. [33] also explained that the increase in the
alkaloid compounds could be due to their transport from the pericarp to the cocoa bean
during fruit maturation, resulting in their increased concentration in the beans of matured
fruits. Pereira-Caro et al. [30] noted that because the alkaloid compounds were located
in the same storage cell as the phenolics, they could develop together with the phenolics
during maturation.

Table 1. Processing effects on polyphenolic and methylxanthines composition in cocoa beans
and chocolate.

Stage Process Changes Occurring Antioxidant Capacity References

Primary processing

Harvesting

Increased proanthocyanidins,
CF, and TBR with increasing
pod maturation and ripening

at harvest.

Increase in the antioxidant
capacity with an increase in

pod maturation and ripening.
[30,32]

Pod storage
Reduction in TP, EC, C, TBR,

and CF with increasing
duration of pod storage.

Decrease in the antioxidant
capacity with increasing
duration of pod storage

during fermentation.

[18,34–36]

Fermentation

Decrease in the concentrations
of EC, C, anthocyanins,

phenolic acids, and TP with
increasing duration of

fermentation. Moreover, a
decrease in the TBR and

CF concentrations.

Decrease in the antioxidant
capacity of cocoa beans with

increasing duration
of fermentation.

[18,22,23,37–42]

Drying

Degradation of TP, EC, C, and
anthocyanins. Decrease in the

alkaloids (TBR and
CF) content.

Reduction in the antioxidant
capacity during the drying of

cocoa beans.
[39,40,42–45]
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Table 1. Cont.

Stage Process Changes Occurring Antioxidant Capacity References

Industrial processing

Roasting

Reduction in the amounts of
TP, EC, procyanidin B2 and C1,

anthocyanins, quercetin
glycosides, TBR, and CF. An

increase in C due to
epimerization of EC.

A general reduction in the
antioxidant capacity during

cocoa bean roasting.
[22,23,30,40–42,45–52]

Alkalization

Reduction in TP, EC, C,
procyanidin B2 and

C1, quercetin,
quercetin-3-glucuronide,
quercetin-3-arabinoside,

isoquercetin, TBR, and CF.

Antioxidant activity
is reduced. [20,21,40,42,47,53,54]

Conching

Decrease in TP
during conching.

No significant change in the
polyphenol content

during conching.

Decrease in the
antioxidant capacity. [52,55–60]

NB: TP—Total polyphenols; EC—Epicatechin; C—Catechin; TBR—Theobromine; CF—Caffeine.

2.1.2. Pod Storage

The cocoa pulp is the substrate sequentially metabolized by microorganisms during
the fermentation process. The properties of the substrate determine the type and quantities
of the microbial development and metabolism during the fermentation, hence changes in
the pulp may affect the production of alcohols by the yeasts and the subsequent production
of acids by the lactic acid and acetic acid bacteria [6]. Pod storage (PS) is storing harvested
cocoa pods for a period before opening the pods and fermenting the beans. The harvested
cocoa pods are living tissues and undergo metabolic activity, such as respiration and
transpiration, using the sugars in the pulp. This activity leads to decreased sugar content
in the pulp for yeasts to utilize during the start of the microbial phase of fermentation,
resulting in reduced alcohol production by the yeasts. The reduced alcohol production in
turn results in a reduction in the acetic acid production by the acetic acid bacteria, which will
diffuse into the beans to initiate the biochemical reactions. The post-harvest storage of cocoa
pods has been reported to reduce the nib acidification during the subsequent fermentation,
result in a reduction in acid notes, and increase the cocoa flavors in the resulting cocoa
beans [26]. The pod storage of cocoa has also been found to cause a significant reduction
in the polyphenolic and methylxanthine content of cocoa beans after the fermentation
and drying (Table 1), thereby reducing the astringency and bitterness in the cocoa and
cocoa products.

2.1.3. Pod Breaking

In general, the pod breaking involves opening the harvested pods to extract the wet
beans for fermentation, and it is important not to damage the beans in this process. Cutting
the beans will allow insects or molds to enter the bean.

2.1.4. Cocoa Bean Fermentation

Cocoa bean fermentation is crucial in making cocoa beans more valuable and stable.
It also influences the marketability and acceptability of the beans. It is conducted for the
development of the characteristic brown cocoa color and modification of the polyphenolic
and pH, leading to a reduction in the astringency and bitterness of the final dried beans.
The fermentation also generates the flavor precursors, namely the free amino acids and
peptides, from the enzymatic degradation of the cocoa proteins, reducing sugars from the
enzymatic degradation of the sucrose [27] from which the typical cocoa aroma is generated
during the subsequent roasting process.
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During the fermentation, the beans are removed from the pods and subjected to
various activities of various microorganisms, which are prevalent within the surrounding
environment. The changes in the cocoa beans produced by the fermentation occur in
two stages: the microbial fermentation, which takes place in the pulp, and biochemical
changes, which occur in the beans following the death of the embryo. Following the
death of the embryo and the breakdown of the cell walls in the bean, endogenous seed
enzymes (e.g., proteases, polyphenol oxidases, glycosidase, and invertase) and substrates
(e.g., polyphenols, proteins, and sugars) interact and react in a specific manner [18,61].

The bioactive compounds in the beans are subjected to a biochemical modification
through the polymerization and complexation with protein, hence decreasing the solubility
and astringency [6]. Polyphenols generally decrease as the fermentation degree increases
(Table 1). The activity of the polyphenol oxidases (PPOs) during the fermentation is
associated with the reduction in the polyphenols [18]. Studies have also shown that
the loss of polyphenols during fermentation is not only due to the oxidation process
but also caused by the diffusion of the polyphenols into fermentation sweating [62]. The
methylxanthine contents of cocoa beans have also been found to diffuse into the shells of the
beans during fermentation, thus causing a reduction in the concentration and contributing
to the reduction in the bitterness of the beans [22,23]. The purple-colored anthocyanins
located in the specialized vacuoles within the cotyledon are hydrolyzed by glycosidases
to anthocyanidins [63]. Thompson et al. [64] observed that the enzyme cleaves the sugar
moieties galactose and arabinose attached to the anthocyanins. This results in the bleaching
of the purple color of the beans to brown as well as the release of reducing sugars that can
participate as precursors to reactions during the roasting. In general, different cocoa types
require different degrees of fermentation, but usually, it takes from 4 to 7 days.

2.1.5. Drying of Fermented Cocoa Beans

The moisture content of the cocoa beans after fermentation is about 60%, and this
needs to be reduced to around 7% by drying [65,66] to prevent a mold infestation and the
subsequent formation of Ochratoxins during storage. Cocoa bean drying is, however, more
than just reducing the moisture content of the beans as it also allows some of the chemical
changes, which occurred during the fermentation stage, to continue and improve the bean
color and flavor development [42,67]. During the drying of fermented cocoa beans, the
active polyphenolic oxidase catalyzes the polyphenols oxidation reactions into quinones,
which are subjected to further condensation with free amine and sulfhydryl groups, which
leads to the synthesis of brown polymers, development of new flavor components, and
loss of membrane integrity [6]. This helps to further reduce the bitterness and astringency
and develop the chocolate brown color of well-fermented cocoa beans. The timing of the
drying process is crucial as the rapid drying of the beans results in case hardening which
prevents the outward migration of acetic acid from the beans, thus leading to a build-up
of acidity in the beans [68,69]. On the other hand, if the drying is too slow, molds and off
flavors can develop [68,70].

2.2. Industrial Processing of Cocoa Beans
2.2.1. Cleaning

Cocoa beans for processing are first evaluated for quality, which is important to the
final product quality. The beans are then subjected to a cleaning process which involves
the removal of all the extraneous materials from the cocoa beans. The process involves
a sieving operation to remove all the extraneous materials, such as stones, strings, coins,
wood pieces, soil particles, nails, etc. Cleaning before processing is essential to ensure
the production of quality products devoid of extraneous materials and to also reduce the
wear on machinery, as pieces of metal or stone can cause extensive abrasion on some of
the equipment [15,71].
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2.2.2. Breaking and Winnowing

Processing cocoa beans into semi-finished products, such as cocoa liquor, powder,
and butter, requires the use of the essential part of the beans: the nibs (cotyledon). Thus,
the nibs need to be separated from the shells. Breaking and winnowing entail applying
pressure on the cocoa beans to loosen the shells (breaking) and subsequently separating the
shells from the nibs so that only the nibs remain (winnowing). A thorough separation of
the shells from the nibs is necessary to ensure a high-quality product devoid of a bitter and
unpleasant taste with a gritty texture. Breaking and winnowing can be performed after
roasting the beans (the traditional process) or before roasting. When the latter is performed,
the nibs can easily be treated with an alkali solution (alkalization) [72].

2.2.3. Sterilization

Cocoa beans are exposed to microbial contamination during the primary processes of
fermentation, drying, bagging, and transportation. Cocoa beans or nibs are thus subjected
to saturated steam under pressure for a sufficiently long time to reduce the microbial
load [15]. This process is referred to as sterilization and can be performed before or after
roasting. In the latter situation, sterilization after roasting is used to ensure the destruction
of heat-resistant bacteria and spores that might have survived the high temperatures of
the roasting process [15,73]. During sterilization, an exposure time of seconds, rather than
minutes, in the hot, low-pressure steam is sufficient to sterilize the bean [73]. This might be
insufficient to cause any change in the flavanols and methylxanthine content. No work has
reported changes in the flavanols and methylxanthine contents during sterilization.

2.2.4. Alkalization (Dutching)

Alkalization, also known as Dutching, is an optional step in the processing chain where
cocoa nibs are treated with an alkali solution, such as potassium bicarbonate or sodium
bicarbonate, to increase the pH to 7–8 with the purpose of modifying the color and taste
and improve the dispersibility of the powder solids in water [15,20,45,54,74]. Alkalization
has been found to influence the composition of the flavonoids and methylxanthines in
cocoa products [45,75]. Alkalization has been found to result in the oxidation and polymer-
ization of flavonoids, leading to a reduction in the astringency in alkalized cocoa nibs and
powder [20,47]. High losses of polyphenols and changes in their composition have been
reported in alkalized cocoa nibs and powder [20,42]. Work by Urbańska et al. [42] observed
over a 60% loss of total polyphenols, and according to Giacometti et al. [47], the greatest
losses were observed for epicatechin and catechin (up to ca. 98 and 80%, respectively)
as well as for quercetin (ca. 80%). Earlier studies by Andres-Lacueva et al. [24] reported
a reduction of 67% of epicatechin and 38% of catechin in cocoa powder after alkalization.
Alkalization has also been found to decrease the amount of methylxanthine in the cocoa
nib, thereby reducing the bitterness of alkalized cocoa powder [20,21,53]. The reduction
in the methylxanthine content increases with an increasing degree of alkalization, and Li
et al. [38] observed the greatest losses for theobromine (over 20%).

Alkalization can be performed in three main ways which include: nib alkalization,
cake alkalization, and liquor alkalization [72,76]. Nib alkalization is the most common
alkalization method, and it involves subjecting the cocoa nibs to an alkali treatment before
the roasting and subsequent milling into liquor [72]. In cake alkalization, the cocoa nibs are
first roasted and milled into liquor. The liquor is then pressed to extract the cocoa butter
and the resultant cake is then kibbled (i.e., broken down into gravel-sized pieces) and
subjected to an alkali treatment in a reaction vessel. Liquor alkalization involves subjecting
the cocoa liquor to an alkali treatment to modify the color and flavor.

2.2.5. Cocoa Bean Roasting

Cocoa bean roasting involves subjecting the dried fermented cocoa beans to high
temperatures, usually between 120 and 150 ◦C [47,77,78] for 15–45 min [79], and it is
an important technological step that results in the production of flavor and aroma com-
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pounds, as well as the color changes that are desirable in cocoa products [6,42,77,80]. The
time–temperature combination used in roasting depends on factors such as the type of co-
coa (Criollo or Forastero), the intended final product, and the cocoa material (whole beans,
nibs, or liquor) [69]. Several physiochemical changes occur during cocoa bean roasting due
to the heat penetration into the beans. These changes include the loss of moisture from the
beans (to ~2%), evaporation of volatile acids that contribute to acidity and bitterness, and
loosening of the bean structure, which facilitates the removal of the shells and pressing
of the butter during the liquor processing [15,42]. The heat also serves as a sterilization
treatment which results in a further reduction in the number of microorganisms present in
the beans [15,80].

Roasting significantly affects both the amount and composition of the polyphenols in
cocoa beans [42,49,81]. It reduces the amounts of the total polyphenols, (−)-epicatechin, and
proanthocyanidin in cocoa beans [50,51]. Żyżelewicz et al. [49], however, found increased
catechin content during 20 min of roasting at 135 and 150 ◦C, which was attributed to
the epimerization of the flavan-3-ol monomers and proanthocyanidins. Polyphenols are
known to be thermolabile molecular compounds, and their content decreases with high
temperatures and a prolonged roasting time. Ioannone et al. [82] believed that a low
temperature and short roasting duration are better to preserve the polyphenolic content,
with a concomitant improvement in the antioxidant activity of the roasted beans [51].
Temperatures below 140 ◦C have thus been recommended by Urbańska et al. [42] to
preserve the polyphenolic content. Roasting has also been found to reduce the alkaloid
content in cocoa beans. Aprotosoaie et al. [48] explained that during roasting, theobromine
and caffeine could bond with diketopiperazines, resulting in a lower concentration of
free alkaloids.

Cocoa beans can be roasted in three different ways, namely whole beans, nib, or
liquor/mass roasting [15]. Cocoa beans are usually roasted using the whole-beans roasting
method to produce the cocoa mass/liquor. This facilitates the removal of the shells during
the subsequent breaking and winnowing stages. Nib roasting involves the removal of the
shells before subjecting the nibs to roasting. Removing the shells before roasting enables
the nibs to be treated with an alkali solution to change the color of the final cocoa powder
or be treated with water or a sugar solution for flavor enhancement [15,20]. Liquor/mass
roasting involves removing the shells and grounding them into liquor. The liquor/mass is
then roasted, and the roasting can be performed using relatively inexpensive and simple
equipment employing a scraped surface heat exchanger.

2.2.6. Cocoa Nib Grinding and Liquor Processing

Cocoa nibs are milled into a low-viscous mass referred to as cocoa liquor or cocoa
mass. The viscosity of the liquor produced is greatly influenced by the degree of roasting
and the moisture content of the nib. Cocoa liquor consists of the cocoa solid particles
suspended in the cocoa butter [83]. The nibs are ground in a two-stage process: coarse
grinding and fine grinding. The coarse or pre-grinding involves transforming the nibs
from a solid to a thick paste, and this can be carried out in hammer mills, disc mills, or
pin mills. Fine grinding, on the other hand, is performed to transform the thick paste
into a smooth low-viscous mass, and it determines the end fineness and quality of the
cocoa liquor. It is carried out in bead or ball mills. In small-scale processing, a kitchen
blender can be used for coarse grinding, while the melanger is used for fine grinding. The
desired end fineness of cocoa liquor is reported to be 15–70 µm [84] or 99.5% of the particles
should be ≤75 µm [85]. Grinding cocoa nibs into liquor involves the application of shear
under a controlled temperature. Changes in the polyphenols and methylxanthine contents
during grinding have not been reported. Future studies can focus on the effects of the
coarse and fine grinding of cocoa nibs on the polyphenols and methylxanthine composition
of the final liquor produced. Cocoa liquor can be used directly in the manufacture of
chocolate or processed by pressing to obtain two main products—cocoa butter and cocoa
pressed cake (with a fat content between 10 and 24%) [15]. The extracted cocoa butter is
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used in the manufacture of chocolate and pharmaceutical and cosmetic products, whereas
the cocoa press cake is further broken down into kibbles and pulverized to form cocoa
powder. The pulverized cocoa powder is sieved to obtain a powder with a standardized
particle size which is then used as the main ingredient in cocoa drinks and/or chocolate-
flavored beverages. Anoraga et al. [86] noted that the yield of cocoa liquor pressing was
influenced by the temperature, cocoa beans moisture content, particle size, and pressing
time. However, the extent to which the bioactive compounds in cocoa liquor are affected
during pressing remains unclear as no study has reported on it yet.

2.3. Chocolate Production

Chocolates are semisolid suspensions of fine solid particles from sugar and cocoa (and
milk solids, depending on the type) in a continuous fat phase [15]. The conventional or
industrial chocolate manufacture generally consists of the mixing of ingredients (the cocoa
liquor/masse, sugar, cocoa butter, and milk component, depending on the chocolate type),
refining (to reduce the particle size of the mixed chocolate paste), conching of chocolate
paste, tempering (to form the stable fat crystals in the cocoa butter), casting and molding,
cooling and de-molding, and finally, wrapping and packaging. The quality characteristics,
such as the melting and rheological behavior, flavor, and sensory perception of chocolates
as well as the bioactive compounds compositions, are influenced largely by the ingredient
composition and processing method used [87].

One of the chocolate processing steps which could have a probable influence on the
composition of the bioactive compound is conching. Conching consists of the mixing,
shearing, and aeration of the chocolate mass during heating at a certain temperature
(usually > 40 ◦C) to produce liquid chocolate, where all the solid particles are coated with
fat [48,88]. It is an important stage for improving the quality of the chocolate. The main
purpose of the conching process is to thoroughly combine all the ingredients to obtain
a homogeneous mass [89]. It is also performed to evaporate the residual volatile compounds
(e.g., acetic acids) and moisture to improve the color, texture, and flow characteristics of the
chocolate mass [90]. Different time/temperature combinations are used in the conching
process, depending on the chocolate type. Konar et al. [91] and Owusu et al. [92] have
noted that temperatures ranging from 70 to 90 ◦C can be used to conch dark chocolates,
while other studies have reported conching temperatures between 50 and 60 ◦C for milk
chocolates to avoid the formation of Maillard compounds [89,93,94].

Limited studies have been conducted on the influence of conching on the polyphenolic
and methylxanthine content of chocolates and their antioxidant properties, with varying
opinions. Barišić et al. [52] noted that volatile polyphenols are lost during the initial stage
of conching due to evaporation, together with water and short-chain fatty acids. Earlier
studies by Afoakwa et al. [56] established that the content of the volatile polyphenols is
reduced by 80% in this process. Sulistyowati and Misnawi [55] also observed a significant
decrease in the concentration of the polyphenol and antioxidant activity due to the conching
temperature. However, other studies found no significant variations (3%) in the phenolic
content and pattern, as well as the antioxidant activity during the conching, regardless of
the time/temperature combination applied [58–60]. The same results were reported by Di
Mattia et al. [57] for the total polyphenol content.

Tempering is one of the most critical processing steps for making quality chocolate. It
involves cooling while stirring the chocolate mass derived from the conching (from 40–50
to 18–28 ◦C) to obtain a stable form of the crystalline fat (polymorphic form V) responsible
for the good melting properties and the glossy surface of good-quality chocolate [42,95].
However, changes in the polyphenols and methylxanthine contents at this stage have not
been reported. Studies are needed to understand the influence of tempering on the phenolic
and methylxanthine composition of chocolates.
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3. Mechanisms of Action of Cocoa Flavanols
3.1. Recent Advances in Cocoa Flavanols on Signaling Pathways

In the last two decades, an emerging topic has been the study of the effect of flavonoids
on MAPK and upstream/downstream-related proteins, receptors, or enzymes that control
the cellular processes, such as proliferation, differentiation, apoptosis, and stress responses,
under both normal and pathological conditions. MAPK signaling is activated in response to
intra- and extracellular signals that activate the transmembrane glycoproteins of the tyrosine
kinase receptor type, leading to the regulation of target genes. Three MAPK families have
been reported in mammalian cells: extracellular signal-regulated kinase (ERK), c-Jun N
terminal kinase/stress-activated protein kinase (JNK/SAPK), and p38 kinase [6–8]. The
cyclic AMP-responsive element-binding protein 1 (CREB), a ubiquitous transcription factor, is
activated by phosphorylation and is involved in the regulation of many cell processes [12–14].
The family of PI3Ks are enzymes involved in cell growth, proliferation, differentiation,
survival, and intracellular trafficking. The activation of PI3K generates phosphatidylinositol
(3,4,5)-trisphosphate (PIP3) and phosphatidylinositol (3,4)-diphosphate. Upon activation
by upstream effectors such as PIP3 or phosphoinositide-dependent kinase-1 (PDK1), Akt
translocates to the cell membrane and induces an enhancement of the mammalian target of
rapamycin (mTOR) and the stimulation of cellular activities. Another family of signaling
proteins involved in metabolic regulation that are regulated by flavonoids is the sirtuins
(SIRT), especially SIRT1, that function as histone deacetylases [12–14].

The specific effect of cocoa flavanols, catechins, and procyanidins on MAPKs and
PI3K/Akt signaling pathways has been frequently reported in different cell types and
tissues [96]. Pioneer studies showed that epicatechin plays a role in liver cell survival,
partially mediated by the induction of the AKT/PI-3-kinase and ERK1/2 pathways at
micromolar concentrations [97,98]. A similar result was observed when a phenolic extract
of cocoa was tested; thus, cocoa flavanols upregulated the antioxidant enzyme activity via
the ERK1/2 pathway to protect against oxidative stress-induced apoptosis in hepatoma
HepG2 cells [99]. Simultaneously, the same authors demonstrated that epicatechin-induced
NF-κB, activator protein-1 (AP-1), and nuclear transcription factor erythroid 2p45-related
(Nrf2) via the PI3K/AKT and ERK signaling in the same cell line [100]. A year later, the
same group showed that cocoa procyanidin B2 and a cocoa polyphenolic extract inhibited
the acrylamide-induced apoptosis in human colonic Caco-2 cells by the activation of
the JNK pathway [101]. In the same human colonic cells, procyanidin B2 induced the
Nrf2 translocation and glutathione-S-transferase P1 expression via ERKs and p38-MAPK
pathways [102]. A year later, it was reported in cultured liver hepatoma cells that cocoa
flavonoids improved the insulin signaling and repressed the glucose production [103]
and protected those cells against high glucose-induced oxidative stress [104] via AKT
and AMPK.

Because pure phenolic compounds are unlikely to avoid metabolism before reaching
the cells, the study of cocoa flavanols metabolites has been an emerging topic during the last
decade, in particular colonic microbiota metabolites from catechin and epicatechin. Thus, it
has been later reported that microbial phenolic metabolites from cocoa flavanols improved
the glucose-stimulated insulin secretion via ERKs and PKC pathways [105]. More recently,
it has been reported that epicatechin and its colonic metabolite 3,4-dihydroxyphenylacetic
acid protects the renal proximal tubular cell against high glucose-induced oxidative stress
by modulating the NADPH oxidase (NOX)-4/SIRT1 signaling [106]. Most of that informa-
tion regarding the ERK 1/2/CREB/TrkB-PI3K/Akt/mTOR signaling on all polyphenols,
including cocoa flavanols, has been recently updated in comprehensive reviews [13,14,107].
New data have since been added to this particular topic that seem to mainly support previ-
ous evidence on the unambiguous effect of flavanols on these crucial signaling pathways.
Thus, Camellia fascicularis extract, one of whose major components is epicatechin, could
markedly inhibit the phosphorylation of p65, ERK, and JNK, thereby suppressing the
activation of the NF-κB and MAPK signaling pathways, which may induce the secretion of
pro-inflammatory cytokines [108].
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Recent data also claim flavanols, through MAPK and related pathways, are potent
inhibitors of neuroinflammation [109]. A recent study has reported that anti-inflammation
properties of epicatechin on cultured macrophages were achieved, at least partly, by inhibit-
ing the phosphorylation of the signal proteins (p65 and p38) involved in the MAPKs/NF-κB
pathways [110]. In another recent study of cocoa flavanols, epicatechin and catechin have
shown a significant docking capacity to TLR-4, JNK, NF-kB, and AP-1 through the for-
mation of multiple hydrophilic and hydrophobic interactions [111]. Finally, epicatechin
plays a protective effect on cardiac fibrosis, preventing myofibroblasts transformation,
a process that involves the activation of the sumoylation of SIRT1 through SP1. Further-
more, SIRT1 inhibited the Ang II-induced fibrogenic effect via the AKT/glycogen synthase
kinase (GSK3b) pathway [112]. Despite this plethora of data in support of the specific
effect of flavanols on major signaling pathways and its potential preventive/therapeutic
benefit in life-threatening diseases such as cancer or diabetes, the reported effect of co-
coa flavanols has been inconceivably obviated in recent reviews on health effects of
diet polyphenols [113–118].

3.2. Recent Advances in Cocoa Flavanols on Nrf2 Pathway/Antioxidant Defenses and
Inflammatory Process

Although polyphenols exert their antioxidant capacity mainly through the direct
neutralization of free radicals and chelating metals, such as Fe2+ and Cu+ [119,120], there
are other mechanisms that have been reported, such as the stimulation of mitochondrial
biogenesis through the activation of the SIRT1 and Nrf2 signaling pathways [120,121].
Nrf2, a transcription factor that regulates antioxidant responses, remains in the cytoplasm
bound to the Kelch-like ECH-associated protein 1 (Keap1). Oxidative stress and some
bioactive products disrupt the binding to Keap1 and release Nrf2 to translocate into the
nucleus, where it binds to the antioxidant response element (ARE) in the promoter region
of many antioxidant genes and initiates their transcription [121]. These antioxidant pro-
teins include phase I antioxidant defense enzymes; phase II drug-metabolizing enzymes,
such as glutathione-S-transferase (GST), NAD(P)H-quinone oxidoreductase-1 (NQO1),
hemeoxygenase-1 (HO-1), and UDP-glucuronosyl transferase (UGT); or phase III trans-
porters (multidrug resistance-associated proteins (MRPs) [121].

In particular, cocoa and its flavonoid compounds exert their protective effect against
oxidative stress by targeting the transcription factor Nrf2 and Keap1, which participate
in the regulation of the ARE. Thus, the regulation of Keap1 can lead to the nuclear accu-
mulation of Nrf2 and the subsequent ARE activation [96]. The first reports on the role of
cocoa flavanols on Nrf2 described that epicatechin increased the reduced glutathione (GSH)
content, stimulated Nrf2 via the AKT/PKB in the astrocytes [122], and induced the Nrf2
translocation and phosphorylation in cultured hepatoma cells [100]. Similarly, procyanidin
B2 evoked a dose-dependent increase in the glutathione peroxidase (GPx), glutathione re-
ductase (GR), and GST, which improved the antioxidant response to an oxidative challenge
in colonic Caco-2 cells [102]. In addition, procyanidin B2 induced the Nrf2 translocation
and GST P1 expression to protect human colonic Caco-2 cells against oxidative stress [102].
Finally, catechin decreased the lipid peroxidation and reactive oxygen species (ROS) and
increased the activity of GPx, the GR total sulfhydryl groups, and the expression of Nrf2
and heme oxygenase-1 in intestinal Int-407 cells [123].

Later, results on mouse cortical neuron cultures suggested that a combination of epi-
catechin and quercetin activated the Akt- and Ca(2+)-mediated signaling pathways that
converge on nitric oxide synthase (NOS) and CREB; this effect results in synergistic improve-
ments in the neuronal mitochondrial performance which confer the profound protection
against ischemic injury [124]. Ramírez-Sánchez and colleagues [125] have demonstrated
that epicatechin reverses the negative effects that high glucose or simulated type 2 diabetes
has on NOS function in the diabetic heart. More recently, cocoa catechins were shown to
improve the cellular redox state, resulting in the Nrf2 nuclear migration and upregulation
of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion, and
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ultimately improved the β-cell function [126]. Most of these previous results have been
recently reviewed [127,128], although data concerning cocoa flavanols have been ignored
in other reviews [129]. A recent study has reported that epicatechin reduced the cardiac
fibrosis in an aged female rat model of pre-heart failure, which correlates with significant
reductions in oxidative stress and cytokine levels in the absence of changes in contractile
function [130]. Another study by Daussin et al. [131] also showed that the administration
of cocoa flavanols to mice for 15 days stimulated the NAD metabolism which enhanced
the SIRT metabolism and improved the mitochondrial function [131]. In addition, sup-
plementation with a cocoa–carob blend diet rich in flavanols to Zucker diabetic fatty rats
counteracted the oxidative stress in diabetic hearts by downregulating the NADPH oxi-
dases, reducing the ROS generation, and modulating the SIRT1/Nrf2 signaling pathway,
overall improving the antioxidant defense. Moreover, the supplemented diet suppressed
the inflammatory and fibrotic reactions by inhibiting the NF-kB and pro-inflammatory and
pro-fibrotic cytokines [132]. While testing a flavanol-rich cocoa supplementation during
training on exercise performance, the results showed that the oxidative stress was lower
in the cocoa-treated group than in the control group, together with lower interleukin-6
levels, an effect that might be mediated by the decrease in the expression of nuclear factor
Nrf2 [133]. Finally, the administration of a 10% cocoa-enriched diet for 25 days to rats was
able to prevent the excessive oxidative stress induced by intensive exercise, although it was
not enough to avoid the immune function impairment due to exercise [120].

3.3. Recent Advances in Cocoa Flavanols on Cognitive Function

Cognitive function is defined as the mental performance that enables information pro-
cessing, applying knowledge, and changing preferences [134]. Cognitive capacities, espe-
cially memory, attention, execution, and processing speed, gradually deteriorate throughout
the adult lifespan, and lifestyle tactics such as diet may represent a favorable opportunity
to delay or prevent the progressive cognitive decline [135,136]. In this context, numerous
pieces of evidence from human clinical studies have strongly suggested that cocoa and
cocoa-derived product consumption can be an effective, safe, and attractive approach to
improving general cognition and working memory, especially among older people at risk
or with cognitive decline [137,138].

Perhaps the first approach in the field was the finding of the uptake and metabolism of
epicatechin and its access to the brain after oral ingestion [139]; then, the effect of flavanol-
rich cocoa on the functional magnetic resonance imaging (fMRI) response to a cognitive
task in healthy young people was reported [140]. Upon the discovery of the translational
control by MAPK signaling in long-term synaptic plasticity and memory [141], Schroeter
and colleagues [142] observed that epicatechin stimulated an ERK-dependent cyclic AMP-
response element activity in the cortical neurons; this positive effect of epicatechin on
MAPK was later confirmed in other tissues [104]. Perhaps due to this molecular mechanism,
intervention assays in humans, such as the CoCoa Study, showed significant benefits in
the cognitive function, blood pressure, and insulin resistance through cocoa flavanol
consumption in elderly subjects with mild cognitive impairment [143]. A year later, in
a randomized controlled trial (RCT), a very low dose of cocoa polyphenols enhanced
positive mood states but not cognitive performance [144], and a positive effect of flavanol-
rich cocoa on cognitive capacity was further observed on cerebral perfusion in healthy older
adults during the conscious resting state [145]. Considering all previous data, it is now
widely assumed that cocoa monomeric flavanols, catechin, epicatechin, and their microbial
metabolites, cross the blood–brain barrier and localize in the brain areas connected to
learning and memory, such as the hippocampus, cerebral cortex, cerebellum, and striatum,
which could potentially lead to cognitive enhancement. All these reports were exhaustively
reviewed in 2020 [146–151] and more recently last year, with a focus on the molecular
mechanisms and cognitive endpoints [13].

Ever since these comprehensive reviews, some new studies have mostly confirmed
or substantiated the beneficial effect of cocoa flavanols on cognitive function. Epicatechin
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supplementation prevented short-term recognition memory impairment in high-fat diet-
induced obese mice [152]. In a human study with healthy male volunteers, acute flavanol
intake improved the efficiency of blood oxygenation (amplitude and speed) during hyper-
capnia in the frontal cortical areas of young healthy subjects; this is likely to contribute
to improvements in cognitive function, but only when cognitive demands are high [153].
Additionally, in a crossover RCT, where 30 healthy men ingested a cocoa flavanol beverage
(high-flavanol 150 mg vs. low-flavanol < 4 mg epicatechin) 1.5 h before an 8 min mental
stress task, the flavanols were effective at counteracting the mental stress-induced endothe-
lial dysfunction and improving the peripheral blood flow during stress [154]. In a recent
comparative study between (−) and (+) epicatechin, on the mouse frontal cortex, both
enantiomers, but more effectively (+)-epicatechin, upregulated the neurogenesis markers,
likely through the stimulation of the capillary formation and NO triggering, resulting in
improvements in memory [155]. Earlier this year, a randomized, double-blind, parallel-
group study was performed on 60 healthy volunteers between 50 and 75 years old who
consumed cocoa powder, and the results showed an improvement in executive function,
without any change in neurotrophin levels [156]. In a recent review on cocoa flavanols
and the aging brain, the authors concluded that neuropsychological ameliorations after
cocoa intake were preceded by increases in the cerebral blood flow [157]. These results
are in line with those of animal experimentation because improvements have been found
in the motor and spatial performances of young and aging mice or rats as well as animal
models of Alzheimer’s disease and Parkinson’s disease [158]. Considering that normal
age-related memory decline is now considered an impending cognitive epidemic, dietary
cocoa flavanols may offer meaningful benefits to cognitive health.

Nonetheless, cocoa/flavanol/chocolate treatment has also proved ineffective for cogni-
tive function in some recent studies. In an eight-week RCT (FlaSeCo study), the short-term
use of dark chocolate naturally high in flavanols showed no benefit in the studied cognitive
parameters in cognitively healthy older adults [159]. In addition, the most recent clinical
assay, a COSMOS-mind study with over 5000 participants, has concluded that a daily
intake of cocoa extract for 3 years had no effect on cognition [160]. Moreover, over a median
follow-up of 11.8 years, the results of the Framingham offspring cohort failed to declare a
clear association between flavanol intake and a slower decline in cognitive function [161].
Despite these disappointments, most recent reviews have strongly claimed an overall en-
hancement of cognitive function by cocoa flavanols. In a systematic review/meta-analysis
published in 2021, Gardener and colleagues [162] reported that of the 15 studies reviewed,
11 (2 observational studies, 6 chronic, and 3 acute intervention studies) found improve-
ments in at least one cognitive domain following flavanol consumption. Of these 11 studies,
flavanol intake was associated with improvements in global cognition as well as the cog-
nitive domains of visual-spatial memory and organization, working memory, abstract
reasoning, accuracy, reaction time, executive function, episodic memory, verbal fluency,
and recognition memory [163]. A comparable conclusion is reached in recent systematic
reviews and meta-analyses on polyphenols and cognition in humans [163]. It seems that
cocoa’s long-term cognitive protection could particularly affect populations at risk or with
early cognitive decline compared to old people who are cognitively intact [164,165]. How-
ever, we should bear in mind the fact that sugar content in chocolate and cocoa products is
in general not declared and could in fact be a confounding factor in neurocognition studies.
Sugar could affect cognition function and thus the inclusion of sugar-controlled studies
would be desirable.

3.4. Recent Advances in Cocoa Flavanols in Cardiovascular Function

Perhaps the best established benefit of cocoa flavanols on health is their positive
effect on cardiovascular function; in fact, the European Food Safety Authority (EFSA) has
published two claims in support of the bioactivity of cocoa flavanols: cocoa flavanols
help maintain normal blood pressure [166] and endothelium-dependent vasodilation [167],
which contribute to normal blood flow. Moreover, to obtain the beneficial effect, a daily



Int. J. Mol. Sci. 2022, 23, 14365 14 of 28

intake of 200 mg of cocoa flavanols is recommended, a quantity provided by 2.5 g of
high-flavanol cocoa powder or 10 g of high-flavanol dark chocolate, both of which can be
consumed in the context of a balanced diet. A recent meta-analysis provides evidence that
cocoa flavanols could significantly improve endothelial function, with an optimal effect
observed with 710 mg total flavanols, 95 mg (−)-epicatechin, or 25 mg (+)-catechin [168].

An overall agreement on the beneficial effects of cocoa flavanols on cardiovascular
function has been proclaimed since the pioneer studies from two decades ago [169–175],
through the first human trials [176–178] and first meta-analysis of controlled trials [179–181],
up to the recent reviews [182–188]. Actually, a recent systematic review, meta-analysis, and
dose–response analysis of RCTs have shown that the chronic consumption of dark chocolate
and flavanols increased the flow-mediated dilatation (FMD); also, the acute consumption
of dark chocolate and both dark chocolate and flavanols had beneficial effects on the FMD.
The consumption of more than 40 g/day of dark chocolate increases the FMD with the
highest mean of FMD in doses around 40–60 g/day [176]. In addition, a more recent review
and dose–response meta-analysis of RCTs indicated the beneficial effect of the acute and
chronic consumption of cocoa-based products ingestion on platelet function and arterial
stiffness in healthy adults, regardless of age and the pattern of consumption (4 weeks) in
the chronic intake (4 weeks) and in the acute intake (120 min) [189]. However, not all data
have been so positive. Last year, a meta-analysis restricted to diabetic patients suggested
that there is weak evidence for a reduction in diastolic but not systolic blood pressure
after mid/long-term cocoa flavanol administration. These effects seem stronger in females,
younger, and hypertensive when cocoa flavanols are ingested in one daily intake and when
the epicatechin content is high enough [190].

Within the very last years, some new data have been added to the general knowledge;
thus, an acute crossover RCT was conducted in 20 healthy males, adding further evidence
that epicatechin is a causal vasoactive molecule within flavanol-containing foods/beverages.
Interestingly, the data revealed that intake levels as low as 0.5 mg/kg body weight are
capable of inducing acute improvements in vascular function, evaluated as the FMD, in
healthy volunteers [191]. In the same line, in a cohort of healthy young and elderly sub-
jects, the twice-daily consumption of 450 mg of cocoa flavanols during a two week period
decreased the endothelial compared to the cocoa flavanol-free control. This decrease is
inversely correlated with FMD improvements, which indicates that flavanol consumption
can improve the endothelial functional integrity in healthy humans [192]. Moreover, data
from 25,618 participants of the European Prospective Investigation into Cancer (EPIC)
Norfolk cohort showed that hypertensive participants had a stronger inverse association
between flavanol biomarkers and systolic blood pressure when compared to normotensive
participants. Therefore, flavanol intake could have a role in the maintenance of cardiovas-
cular health in the general population [193]. In a trial published early this year, 20 healthy
middle-aged men consumed cocoa flavanols (twice daily, 450 mg) or control drinks for
1 month, and the results showed that flavanol consumption may mediate the vascular
protective effects by modulating the gene expression and DNA methylation and by preserv-
ing the integrity of the immunological–endothelial barrier functions [194]. Moreover, in
this current year, an RCT with cocoa extract supplementation (500 mg flavanols, of which
included 80 mg epicatechin, daily) among 21,442 US adults reported that cocoa extract
supplementation did not significantly reduce the total cardiovascular events among older
adults but reduced the cardiovascular disease death by 27% [195].

However, not all the studies have shown beneficial effects; thus, a recent meta-analysis
showed a significant inverse association between cocoa consumption and systolic/diastolic
blood pressure, but the analysis could not conclude any beneficial effect of cocoa consump-
tion on blood pressure in normotensive/elevated blood pressure subjects [196]. Moreover,
200 mg daily of monomeric and oligomeric flavanols for three months on top of habitual
diet and usual care did not reduce the plasma markers of endothelial dysfunction compared
to the placebo in patients with long-term type 2 diabetes [197]. Finally, early this year,
a crossover trial with type 2 diabetic (T2DM) and non-diabetic subjects that received 790 mg
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of cocoa flavanols daily reported that no beneficial effects of cocoa flavanols were detected
on the vascular reactivity parameters in T2DM and non-diabetic participants [190].

4. Mechanisms of Action of Cocoa Methylxanthines
4.1. Recent Advances in Mechanisms of Action of Cocoa Theobromine

Methylxanthines show important biological activities that have several benefits for
human health, acting against respiratory and cardiovascular diseases, cancer, obesity
and diabetes, human infertility, neurological, and neurodegenerative diseases [198,199].
Theobromine (3,7-dimethylxanthine) is the main alkaloid of cocoa and its biological effects
have been usually considered secondary to those of the main cocoa polyphenols, flavanols.
However, recent studies in rats fed with cocoa or only theobromine have reported that this
methylxanthine is the main factor responsible for cocoa’s effects on body weight gain as
well as on lipid and glucose metabolism [200]. This and other results have raised interest in
the study of the cocoa compound and synthetic chemical derivatives, such as pentoxifylline,
formed by introducing a hexanone group to the theobromine molecule. This derivative
is a non-selective phosphodiesterase inhibitor that has shown promising results, and it is
being widely used as a therapeutic agent [201]. Some of the advances in the knowledge of
the biological effects and mechanisms of action of theobromine are discussed below.

4.2. Recent Advances in Theobromine on Signaling Pathways

Many reported effects of theobromine are related to its role as a phosphodiesterase
inhibitor. In high concentrations, which cannot be reached by nutritional intake but through
pharmaceutical administration, theobromine and other methylxanthines lead to the in-
hibition of cyclic nucleotide phosphodiesterases and high-affinity ATP-dependent cyclic
nucleotide transporters. This inhibition results in an increase in the cellular cyclic AMP
levels and mobilization of intracellular calcium and, as a consequence, a modulation of the
gamma-aminobutyric acid (GABA) receptors [202]. Still, in the last century, a pioneer study
reported that theobromine acted as a purinergic receptor antagonist on tumor-induced
angiogenesis in BALB/c mice [203]. The results of this study suggested that theobromine
reduces neovascularization, tumor progression, and metastasis via the adenosine A2a
receptor inhibition in ovarian cancer cells. Some years later, but still within the last century,
another study described the influence of theobromine on the angiogenic activity and proan-
giogenic cytokines production of human ovarian cancer cells [204]. A later study showed
that theobromine prevented malignant glioblastoma proliferation by negatively regulating
phosphodiesterase-4, extracellular signal-regulated kinases (ERK), Akt/mTOR kinase, and
nuclear factor-κB (NF-κB) [205]. A year later, new data suggested that theobromine inhib-
ited the adipocyte differentiation during the early stages of adipogenesis by regulating the
expression of peroxisome proliferator-activated receptor (PPAR)γ and CCAAT/enhancer-
binding proteins (C/EBPs)α through the AMPK and ERK/JNK signaling pathways in the
3T3-L1 preadipocytes [206]. Simultaneously, theobromine was observed to increase the
NAD+/SIRT1 activity protecting the kidney under diabetic conditions [207].

Two years later, a study reported that theobromine presented anti-proliferative activity
against colorectal cancer cells HT-29 by modulating the gene expression associated with cell
growth pathways. In fact, the Bax/Bcl-2 ratio was strongly upregulated in cells exposed
to theobromine, significantly decreasing the cell proliferation [208]. The following year,
Yoneda and colleagues showed that theobromine upregulates the cerebral brain-derived
neurotrophic factor (BDNF) and augmented the cAMP/CREB/BDNF pathways and motor
learning in mice [209]. Still, in 2017, theobromine suppressed the adipocyte differentiation
and induced the C/EBPβ degradation by increasing its post-translational modification
by sumoylation. Furthermore, it has been shown that the inhibition of AR1 signaling is
important for theobromine-induced C/EBPβ degradation [210]. In a recent study, theo-
bromine inhibited dimethylhydrazine-induced colon cancer through the downregulation of
the Akt/mTOR and JAK2/STAT3 pathways and an increment of the Smad2 tumor suppres-
sor [211]. Additionally, theobromine supplementation upregulated multiple thermogenic
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adipocyte marker genes in subcutaneous adipose tissue. Furthermore, in mouse-derived
primary adipocytes, theobromine upregulated the expression of the uncoupling protein
(UCP)1 and mitochondrial mass in a peroxisome proliferator-activated receptor γ (PPARγ)
ligand-dependent manner, and it also increased the phosphorylation levels of the PPAR
γ coactivator 1 α. These results indicate that dietary supplementation with theobromine
induces browning in subcutaneous white adipose tissue and suggests its potential to
treat obesity [212].

Theobromine downregulated the sterol regulatory element-binding protein (SREBP)-
1c, fatty acid synthase (FASN), and upregulated the PPARα and CPT1a mRNA and protein
levels in cultured hepatocytes and improved non-alcoholic fatty liver disease by inhibiting
lipogenesis and fatty acid uptake and promoting fatty acid oxidation in the liver, which
might be associated with its suppression of the mTOR signaling pathway [213]. Recent
research provided evidence that methylxanthines can induce changes in lipid profiles
that might be beneficial with respect to neurodegenerative diseases, such as Alzheimer’s
and other diseases affected by lipid alterations [214]. Similarly, theobromine, from the
cocoa shell, enhanced the ERK1/2 phosphorylation and fibroblast growth factor (FGF)21
release via PPAR activation. The increase in the phosphorylation of the insulin receptor,
AKT, AMPK, mTOR, and ERK1/2 conduced to the regulation of hepatic mitochondrial
function and energy metabolism [215]. Regarding the redox status and inflammatory
process, a motivating study from 2015 in mice fed a theobromine-rich diet for 20 days
showed that the main methylxanthine of cocoa is able to stimulate the Nrf2 activation and,
consequently, the expression of both superoxide dismutase (SOD)-1 and GPx by itself [216].
More recently, theobromine displayed a preventive effect against interleukin (IL)-1β-induced
chondrocyte dysfunction through the reduction in the IL-1β-induced production of cellular
ROS and inflammatory mediators, including ciclooxigenase 2 (COX-2), prostaglandin E2, and
NF-KB [217].

4.3. Recent Advances in Cocoa Theobromine on Cardiovascular Function

One of the first reports showed that the acute consumption of high-flavanol/high-
theobromine chocolate increased the plasma epicatechin and theobromine concentrations
and decreased the arterial stiffness, with no effect on the endothelial function and a marginal
increase in the diastolic blood pressure. However, the chronic intake increased the plasma
theobromine, though it did not have positive impacts on the endothelial function, arterial
stiffness, or blood pressure in pregnant women at risk of preeclampsia [8]. On the other
hand, the results show that the regular consumption of a theobromine/flavanols-rich cocoa
product may contribute to the changes in cholesterol (and indirectly the HDL cholesterol)
observed after the regular intake in healthy and cardiovascular risk subjects. The data
also suggest that theobromine and 7-methylxanthine (the main theobromine metabolite),
together with its content in insoluble dietary fiber, may be responsible for the decrease in
IL-1β and the hypoglycemic effects observed [218]. In a study from last year, theobromine
protected against the glutamate toxicity-induced GABAergic decline in the brain of rats
with transient global cerebral ischemia injury. These findings suggested that theobromine
could alleviate the chances of stroke by preventing acute episodes of cerebral ischemia [9].

Other authors observed a reduction in the brain oxidative stress, inflammatory in-
termediaries (tumor necrosis factor α (TNF-α), interleukin-1β, and -6, NF-κB), markers
of cell damage (lactate dehydrogenase and caspase-3), acetylcholinesterase activity, and
improvement in γ-aminobutyric acid quantity in rats that were given theobromine for
14 days daily after cerebral hypoperfusion [10]. Similarly, theobromine, as the most abun-
dant component of a cocoa shell extract, showed vasodilator properties associated with
increased NO bioavailability, suggesting that such a cocoa by-product is a potential fool
ingredient for diseases related to endothelial dysfunction [219]. However, not all studies
have supported the beneficial effects of theobromine or its derivatives. Thus, trying to
decipher whether the beneficial effects of cocoa were partly due to theobromine, Talbot and
coworkers [220] designed an RCT with 30 overweight and 14 obese men and women that
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consumed daily 500 mg of theobromine or placebo for 4 weeks. The goal was to unravel
whether the effects of theobromine are mediated through the effects on HDL-mediated
cholesterol efflux, which may be affected by the microRNA (miRNA) levels in the HDL
particles. The results showed that theobromine did not improve the fasting and postpran-
dial ATP-binding cassette subfamily A Member 1-mediated cholesterol efflux capacity but
decreased the fasting miR-92a levels. The authors concluded that 4 weeks of theobromine
consumption did not change the HDL-mediated cholesterol efflux capacity at baseline and
postprandially [220]. In another study, theobromine consumption did not improve the
fasting and postprandial endothelial function but increased the postprandial peripheral
arterial diameters and decreased the augmentation index. These findings do not support the
contribution of theobromine alone to the proposed cardioprotective effects of cocoa [221].

4.4. Recent Advances in Cocoa Theobromine on Cognitive Function and Other Effects

Until recently, cocoa’s effects on cognitive function were plainly associated with the
polyphenolic fraction, especially flavanols [13]. In fact, most of the previous studies dealing
with the effect of theobromine on cognitive and other brain functions failed to show signifi-
cant changes [222]. However, it has been known for some years that theobromine blocks
adenosine receptors to reduce the endogenous inhibitory adenosine and evoke a stimu-
latory effect on the CNS; thus, increased dopaminergic activity in the brain is suggested
to mediate the psychostimulant effect [202]. This significant effect raised interest in the
specific effects of theobromine independently from those already reported for flavanols.

The first encouraging results were published still in the last century. Pioneer studies
showed that theobromine ingestion caused an increase in the brain levels of A1-adenosine
receptors [223]. No more positive results were reported until ten years later when the admin-
istration of 30 mg/kg of theobromine to mice increased the ambulatory activity [224]. Some
years later, in an animal experiment, Fernández-Fernández and coworkers [216] observed
an enhanced modulatory effect on both cholinergic and catecholaminergic transmissions on
mice fed 20 days with a theobromine-rich diet. The enhancing effect of theobromine on the
levels of acetylcholine-related enzymes, dopamine, and especially noradrenalin confirms
its beneficial role on the “cognitive reserve” and, consequently, a possible reducing effect
on the cognitive decline underlying aging and Alzheimer’s disease [216]. In a study with
volunteers to unravel the differential contributions of theobromine and caffeine on mood,
psychomotor performance, and blood pressure, the authors concluded that caffeine might
have more CNS-mediated effects on alertness, while theobromine might be acting primarily
via peripheral physiological changes [225]. Moreover, in 2015, in a study of patients with
Alzheimer’s disease, theobromine was found to be associated with a favorable Aβ profile
in the cerebrospinal fluid [226].

Somewhat later, a study using a fat-enriched diet to induce a long-term deterioration
in cognitive and memory functions showed that theobromine, at realistic concentrations
in drinking water, restored the A1 receptor levels and improved the cognitive functions
and Aβ levels [227]. Still, in 2017, the results in experimental animals strongly suggested
that in mice orally administered 0.05% theobromine for 30 days, a phosphodiesterase
inhibitor effect in the brain was produced, and it augmented motor learning through
the cAMP/CREB/BDNF pathways (see also the section on signaling pathways), which
play a crucial role in memory and learning [209]. In a comprehensive review from 2019
exploring the potential of theobromine as a cognitive regulator, the authors concluded that
animal and human studies suggested a potential neuroprotective action of the long-term
consumption of theobromine through a reduction in the Aβ amyloid pathology, which is
observed in Alzheimer’s disease patients’ brains [222]. Early this year, treatment with theo-
bromine significantly attenuated the neurological deficits and improved the sensorimotor
functions and memory in rats with cerebral hypoperfusion. The authors suggested that the
findings in the parameters regarding the oxidative stress, inflammatory intermediaries, and
histopathological analysis substantiated the attenuation of neurodegenerative changes by
theobromine [10]. Moreover, in this current year, a cross-sectional study on a representative
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American population aged ≥60 years has shown that a daily intake of theobromine tended
to be associated with a better cognitive performance [11].

Regarding other biological effects recently attributed to theobromine, it is worth
mentioning that methylxanthine plays a relevant role in some effects related to cocoa intake,
such as the lower proportion of IgA-coated bacteria. Moreover, theobromine modifies
the gut microbiota, although other cocoa compounds could also act on intestinal bacteria,
attenuating or enhancing the theobromine effects [228]. Finally, research from this current
year supports the use of methylxanthines, in particular theobromine, as a SARS-CoV-2
inhibitor as compared to chloroquine [229].

5. Conclusions

Cocoa bean processing is important as it improves both the economic and techno-
logical values of the beans. The primary and secondary processing of cocoa develops
the characteristic flavor and color desired in chocolate and other cocoa-related products.
However, processing, including chocolate production, affects both the composition and
quantities of the flavanols and methylxanthines, mainly the theobromine. Cocoa bean
processing mainly results in the reduction in the flavanols and theobromine content of
cocoa beans and cocoa-related products. This modifies the taste and flavor as well as the
health-promoting properties of cocoa beans and chocolates. Most of the work conducted
on the influence of processing on the flavanols and methylxanthine contents in cocoa have
focused mainly on the primary processes, with few processing steps during the industrial
processing (mainly roasting and alkalization). No studies have reported on the impact of
cocoa nib grinding, liquor pressing, and chocolate tempering on the composition of the
bioactive compounds. Limited studies have been reported on the influence of conching.
Considering the increased consumer interest in cocoa and cocoa-related products due to the
presence of bioactive compounds, and the effect processing might have on their bioactivity
and mechanisms of action, a holistic study of the entire processing steps (from beans to
chocolates and other related products) and its impact on the bioactive compounds would
have significant technological and commercial implications. Again, most of the studies
reviewed here deal with cocoa beans, cocoa shells, cocoa powder, or black high-cocoa choco-
lates in which mainly flavanols and theobromine coexist. In this sense, it is challenging,
in most cases, to attribute the activity and the mechanisms of action to one fraction or the
other. However, we can conclude that theobromine seems to be effective, mainly through
the regulation of the fatty acid metabolism, mitochondrial function, and energy metabolism
pathways. Flavanols, however, seem to work through the protein kinases MAPKs and
PI3K/Akt signaling pathways but also by regulating oxidative stress via targeting the
transcription factor Nrf2 and Keap1, which participate in the activation of the antioxidant
response element. Both flavanols and theobromine might be responsible for the nitric oxide
regulatory effect of cocoa and dark chocolate for the neurological activity through this
pathway and the regulation of neurotrophic factors and neuroplasticity pathways.

Taking all of the above into account, it would be interesting to investigate the effects
that the transformation of cocoa into chocolate produces on the original cocoa bioactive
compounds and on the molecular mechanisms associated with their intake. On the other
hand, there is a clear need to search for a final product that eliminates, if not completely,
most of the sugar content that chocolates currently have on the market. This would allow for
enhancing the health benefits associated with the consumption of chocolate by eliminating
the risk associated with the consumption of added sugars and by selectively increasing the
bioactive compounds of interest by modifying the technological food processes.
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40. Oracz, J.; Żyżelewicz, D.; Nebesny, E. The content of polyphenolic compounds in cocoa beans (Theobroma cacao L.), depending on
variety, growing region, and processing operations: A review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1176–1192. [CrossRef]

41. Hernández-Hernández, C.; Viera-Alcaide, I.; Morales-Sillero, A.M.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Bioactive
compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chem. 2018, 240, 831–839. [CrossRef]
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