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Abstract Predictive processing (PP) approaches to the mind are increasingly popu-

lar in the cognitive sciences. This surge of interest is accompanied by a proliferation

of philosophical arguments, which seek to either extend or oppose various aspects

of the emerging framework. In particular, the question of how to position predic-

tive processing with respect to enactive and embodied cognition has become a topic

of intense debate. While these arguments are certainly of valuable scientific and

philosophical merit, they risk underestimating the variety of approaches gathered

under the predictive label. Here, we first present a basic review of neuroscientific,

cognitive, and philosophical approaches to PP, to illustrate how these range from

solidly cognitivist applications—with a firm commitment to modular, internalistic

mental representation—to more moderate views emphasizing the importance of ‘body-

representations’, and finally to those which fit comfortably with radically enactive,

embodied, and dynamic theories of mind. Any nascent predictive processing the-

ory (e.g., of attention or consciousness) must take into account this continuum of

views, and associated theoretical commitments. As a final point, we illustrate how

the Free Energy Principle (FEP) attempts to dissolve tension between internalist and

externalist accounts of cognition, by providing a formal synthetic account of how

internal ‘representations’ arise from autopoietic self-organization. The FEP thus fur-

nishes empirically productive process theories (e.g., predictive processing) by which

to guide discovery through the formal modelling of the embodied mind.
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1 Introduction

Recent developments in cognitive science and neuroscience have led to a growth of

interest in “predictive processing” theories of mind and cognitive function (Clark

2013; Friston 2010; Hohwy 2013). These diverse approaches share a common ground

in situating top-down, error-minimising predictions as the key locus of information

processing, as opposed to more classical accounts which emphasize feed-forward

feature recognition (Marr 1982). Of these, some predictive approaches are strictly

cognitivist, emphasizing internal, modular representations. Other more recent variants

endorse connectionism to varying degrees. Perhaps counter-intuitively, predictive pro-

cessing has also appealed to concepts and mechanisms from embodied, enactive, and

dynamical systems theory approaches; particularly those that come under the rubric

of [en]active inference. While this plurality of approaches is a desirable product and

facilitator of scientific discourse, it can also lead to theoretical ambiguity. For exam-

ple, attempts to derive ‘predictive processing’ theories of consciousness, attention, or

social cognition are likely to diverge strongly depending on which variant and asso-

ciated commitments are taken as given; especially if there is erroneously assumed

to be one singular account of prediction in the brain. Here, we attempt to provide a

pacific overview of how these myriad approaches can be differentiated in terms of

their commitment (or lack thereof) to the embodied and enactive mind. Furthermore,

we argue that Active Inference, as entailed by the Free Energy Principle (FEP), is

not only fundamentally enactive and embodied, but further offers a synthetic, empir-

ically productive resolution to long-standing disagreements between internalist and

externalist viewpoints.

2 From modularity to the dynamic mind

The ability to predict future (sensory and embodied) states is essential for the efficient

control of perception and action. This notion has a long history in cognitive science;

for example, Helmholtz first suggested that to localize visual stimuli, the brain calls

upon an efference copy of oculomotor commands to predict gaze-position, rather than

by relying on the sensation of the ocular orbit1 (Miall and Wolpert 1996; Wolpert and

Flanagan 2001). Helmholtz then demonstrated this principle by performing a simple

experiment on his own sensorium, in which he found that pressing on his eyelid

could generate a false sensation of motion. Helmholtz reason that this simple trick

worked because it moved the eye without engaging the ocular muscles, causing the

1 The ability to accurately localize an object in external space depends not only the position of an object on

the retina, but must also account for the orientation of the retina with respect to the orbit (i.e., gaze position).
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Fig. 1 An early comparator-based predictive coding model of motor control, in which a forward model

of expected sensory consequences is compared with the intended consequences of an action. The result

discrepancy (‘Motor Error’) is then used to refine motor commands. Adapted from Miall and Wolpert (1996)

efference copy of eye position to incorrectly signal that the world had moved . Thus,

our perception of the world was as much inference as sensation.2

This notion of comparing predicted with actual sensory states to refine and con-

trol behavior has today grown into wide-reaching family of simple yet powerful

‘comparator’ models explaining motor control and awareness (Frith 2012; Miall and

Wolpert 1996, see Fig. 1 below). Comparator models suggest that action initiation

generates a copy of the efferent motor signal, which is passed to a specialized brain

module (a forward model) to compute ‘corollary discharge’; i.e., a predicted sen-

sory state if the motor command were enacted. This signal is then passed to another

module (a comparator), which compares the predicted outcome with actual sensory

(e.g., proprioceptive and tactile) inputs, which are sometimes computed by a separate

inverse-module. This simple computation can, for example, disambiguate internally

vs. externally generated signals, and acts as a training signal to refine motor com-

mands (Miall and Wolpert 1996; Wolpert and Flanagan 2001). Such models have a

long history in mechanical engineering, optimal control theory, and robotics, as they

elegantly and efficiently provide stable motor control under a variety of conditions

(Craik 1948, 1947).

The ability of motor-comparison accounts to distinguish between externally and

self-generated actions led to their widespread application in the cognitive sciences.

For example, one influential proposal holds that our conscious sense of agency depends

on the comparison of expected and actual states. Along these lines, Chris Frith and

others (Frith 2012, 1987; Frith and Done 1989; Synofzik et al. 2008) argued that the

sense of agency depends upon the interaction of two feed-forward comparators, one

comparing desired and predicted states to generate a feeling of control, and another

comparing predicted and estimate states to generate self-ascription. This model was

further expanded to explain schizophrenic delusions of thought insertion, presumed

2 As Helmholtz did, you can try this experiment for yourself; simply close one eye and (gently) press upon

the eyelid to move the retina. The world will erroneously appear to move, suggesting that visual locations

are determined using a prediction of eye position generated through efferent motor copy.
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to be driven by a disruption of the self-monitoring mechanism, i.e., the intentional and

motor-comparison modules which give rise to the sense of agency.3

Philosophically speaking, comparator-based models are unambiguously cogni-

tivist: information processing proceeds within the confines of the brain by compart-

mentalized modules, which compute sanitized representations of expected sensory

and motor states. This emphasis on functional localization and modularity led directly

to attempts to identify various comparators in the brain; for example, by using func-

tional magnetic resonance imaging (fMRI) to test the hypothesis that the cerebellum

or premotor cortex acts as a central comparator for motor activity (Blakemore et al.

2001, 2002; Blakemore and Sirigu 2003). Crucially, comparator models are agnostic

regarding the specific mathematical computation underlying their function, which can

be explained by a variety of Bayesian (e.g., variational Bayes, Kalman filtering) or

non-Bayesian mechanisms (e.g., reinforcement learning) (Friston 2011; Peters and

Schaal 2008; Wolpert et al. 1995). Such models are thus ultimately functionalist in

nature; particular behaviours are explained by appeal to a revision of modality-specific

prediction errors, as computed by encapsulated, physically localized brain modules,

without specifying a particular computational implementation (Fodor 1983). This is

an appealing explanatory feature from the perspective of experimental psychology

and neuroscience, as cognitive functions can be dissembled into their dependence on

individuated modules, as determined by the logic of pure insertion and related iden-

tification of maximal functional contrasts (Friston and Price 2011). For example, the

contrast of expected versus unexpected social norm violations can hypothetically be

used to reveal the putative social-norm prediction error region of the brain (Koster-

Hale and Saxe 2013). Further, through factorial experimental design, hypothetical

interactions between classes of predictions can be tested,4 allowing for nonlinearity

and context sensitivity in basic predictive processing. Thus, although the elegance of

comparator models has led to experimental and clinical applications across a vari-

ety of cognitive (Frith 2012), social (Kilner et al. 2007; Koster-Hale and Saxe 2013)

and affective domains (Seth 2013; Seth et al. 2012), it should be clear that they are

predictive-processing revision of cognitivism, rather than a radical new paradigm.

3 Radical predictive processing: a connectionist approach

The predictive coding implicit in comparator models of motor (or social) control is

clearly cognitivist; rich internal models, which explain a world hidden from the agent,

do the functional work of cognition. Such applications of predictive coding at best

ignore embodied and enactive cognition and are at worst irreconcilable.5 More gener-

3 Though see Gallagher (2004) for a critique of the application of motor comparison to thought insertion.

4 For example, the sense of agency was hypothesized to depend upon the integration of motor feedback

and intentional goals; experimentally, this corresponds to a hypothetical factorial interaction between these

sub-components, and these can be experimentally manipulated independently of one another (Synofzik

et al. 2008).

5 Certainly the strong emphasizes on internal forward models precludes them from any radical enactive or

embodied theory. Hohwy goes further to argue that predictive processing deflates embodied and enactive

cognition entirely (Hohwy 2016).
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ally, while comparator-style models provide much needed ‘guidelines for discovery’

(Chemero 2011), they do not evoke the revolutionary views espoused by philosophers

like Andy Clark, who writes:

Predictive processing plausibly represents the last and most radical step in this

retreat from the passive, input-dominated view of the flow of neural processing

(Clark 2015, p. 2).

Indeed, the close association of comparator schemes with strictly modular internal

predictions may lead many to intuit that all predictive processing approaches are

inherently disembodied. Some have already argued exactly this point (Hohwy 2016).

To better appreciate the revolution envisioned by Clark, one must envision a ‘mas-

sively predictive’ brain, in which neurons ubiquitously encode either predictions or

prediction errors in a globally inter-connected hierarchy. Such a framework has been

described by Clark and others as ‘radical predictive processing’ (Clark 2013, 2015);

note that this is distinct from, though not exclusionary of the ‘Bayesian Brain Hypoth-

esis’, which denotes the more specific ascription that not only is the brain massively

predictive in nature, but also that prediction error minimization operates according to

probabilistic Bayesian inference (Friston and Kiebel 2009; Knill and Pouget 2004). In

either case RPP posits that a localized comparator region of the brain does not (neces-

sarily) carry out the comparison of expected and actual sensory information for a given

domain. Instead, cognition is accomplished by a canonical, ubiquitous microcircuit

motif replicated across all sensory and cognitive domains in which specific classes of

neurons reciprocally pass predictions and prediction errors across the global neuronal

hierarchy (Bastos et al. 2012; Douglas et al. 1989). Depending on whether one sub-

scribes to the Bayesian Brain theory, the integration of these signals may also follow

the law of Bayesian inference, in which both predictions and prediction errors are

weighted by their precision or confidence.6

Thus the move to RPP championed by Clark, Hohwy, and others revises the classical

view of information processing as the passive recollection of environmental features,

to instead emphasize the global top-down cascade of predictions across the neuronal

hierarchy.7 RPP constitutes a strong form of connectionism, in which it is the over-

all dynamics of the nervous system8 that accomplish information processing rather

than compartmentalized modules. Further, for Clark the predictive brain constitutes

an interlocking tapestry of ‘action-oriented’ representations, which are well-poised

to efficiently exploit the morphological structure of the body and immediate environ-

ment, ultimately providing a mechanistic account of sensorimotor views of perception

(O’Regan and Noë 2001) and the extended mind hypothesis:

6 In some cases, precision is said to be encoded by the post-synaptic gain of neural circuits, as controlled by

neuromodulators such as dopamine, serotonin, and acetylcholine (Bastos et al. 2012; Friston et al. 2012a, b;

Moran et al. 2013).

7 Heuristically, one can think of this as a move to perception-as-inference (or synthesis) rather than by

recollection.

8 As we shall see shortly, sometimes the essential dynamics include not only the central nervous system,

but also peripheral and wider embodied organism (and beyond).
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… the selection of task-specific inner neural coalitions within an interaction-

dominated PP economy is entirely on a par with the selection of task-specific

neural–bodily–worldly ensembles. The recruitment and use of extended (brain–

body–world) problem-solving ensembles now turns out to obey many of the

same basic rules, and reflects many of the same basic normative principles (bal-

ancing efficacy and efficiency, and reflecting complex precision estimations) as

does the recruitment of temporary inner coalitions bound by effective connec-

tivity. In each case, what is selected is a temporary problem-solving ensemble

(a “temporary task-specific device”—see Anderson et al. 2012) recruited as a

function of context-varying estimations of uncertainty. (Clark, EP p. 16)

However, here it is worth illustrating a few points of caution. On the one hand, the

fundamental explanatory locus of RPP is indeed the global minimization of predic-

tion error. This implies that the relevant generative model is not ‘contained’ in any

single neuron or module, but instead embodied in the entire pattern of connection

weights as distributed across the nervous system and potentially, the body itself.9 This

can be understood by analogy to Ashby’s ‘good regulator theorem’ which states that

every good regulator (i.e., a control system which maintains integrity in the face of

change) must be a model of its environment (Conant and Ashby 1970). However,

even considering the above, RPP does not necessarily commit one against all func-

tional localization or modularity. This is because individual elements of the overall

neuronal network may be more or less compartmentalized according to their specific

pattern and probabilistic density of feed-forward, feedback, and lateral connections;

the fusiform face area may be relatively specialized for faces (or other features) in

lieu of this connection asymmetry. It does however contrast in a substantive way with

comparator-based formulations in the sense that the entire neuronal architecture within

the brain becomes one forward or generative model with a deep hierarchical struc-

ture. Here there are no functionalist ‘goals’, ‘desired outputs’ or ‘motor commands’

(compare Fig. 3 with Figs. 1, 2); the entire system is in the game of predicting the

sensorium—and nothing more (even if prediction excites physical movements through

motor reflexes—see below).

To further illustrate this principle, consider the visual system, which receives

specialized inputs from the retina conveying spatial patterns of visual information.

Neurons at the lower levels of the visual hierarchy, in virtue of having few lateral con-

nections to other primary sensory areas, are therefore specialized for predicting visual

features. Similarly, at the highest level of the cortex, domain general, supra-modal

expectations generate predictions that are unpacked hierarchically—all the way down

to modality specific levels. This deep processing may provide a formal placeholder for

the dissociation of personal and sub-personal mechanisms, which is sometimes levied

as a critique against RPP. For example, we are notoriously poor at folk-psychological

physics judgements, and our explicit judgements in this domain are typically incor-

rect or biased (rather than being Bayes-optimal Bowers and Davis 2012; Marcus

and Davis 2013). However, even if sub-personal partitions of the hierarchy calculate

(e.g.,) a Bayesian visual algorithm, higher levels may necessarily incorporate self-

9 And potentially, the wider brain-body-environment organism, as we will argue shortly.
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Fig. 2 The comparator model of sense of agency, in which discrete modules compute motor, intentional,

and self-related prediction errors. The central monitoring of these signals is then thought to underlie the

overall sense of agency for thought and action. Adapted from Synofzik et al. (2008)

referential information in the form of prior beliefs or long-term memory,10 to produce

the biases that characterize explicit (posterior) beliefs. For similar reasons, while neu-

romodulation of post-synaptic gain via (e.g.,) dopamine, norepinephrine, and other

neurotransmitters are argued to communicate the fidelity or precision of beliefs (Feld-

man and Friston 2010; Friston et al. 2014a, b, 2012a, b; Kanai et al. 2015; Moran

et al. 2013), individually these systems can be more or less specialized for a collo-

quial role in virtue of the neural partitions they interact with; for example, dopamine

may modulate precision of beliefs about controllable, potentially rewarding outcomes,

whereas norepinephrine may modulate sensory precision to orchestrate (endogenous)

attentional selection.

Finally, it should be noted that RPP does not commit one to radical empiricism,

or negate all possibility of functional nativism. As RPP emphasizes a more global,

connectionist understanding of brain function, it may seem that all function must

be learned in development sui generis. On the contrary, RPP emphasizes that it is

the overall pattern of connections within and between hierarchies that constitutes the

form of the generative model. This implies that genetically pre-specified connection

patterns—laid down during foetal development—pre-ascribe some functional specifi-

10 In some cases culture itself is consider a source of such ‘sub-optimal priors’. Note that any action or

percept is only optimal insofar as it satisfies some prior belief, however ‘irrational’ that belief might be. This

has been levied as an account of maladaptive (yet ‘optimal’) inference in psychosis (Friston et al. 2014a, b;

Schwartenbeck et al. 2015).
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Fig. 3 Depiction of the global, centrifugal predictive hierarchy according to radical predictive processing.

Individual sub-components are distinguished by a feed-forward specialization as determined by the statistics

of sensory inputs. Lateral connections and global precision-carrying signals (e.g., dopamine, norepinephrine,

highlighted in red) link the network into a ‘centrifugal’ hierarchy with ‘inner’ and ‘outer’ layers. In some

cases the ‘inner layer’ may be described as a global or self-model, which predicts the internal (visceral and

neural) dynamics of the organism (adapted from Friston 2005). (Color figure online)

cation prior to (empirical) learning.11 This ultimately suggests that the nervous system

is itself selected by evolution to minimize prediction error within a particular ecolog-

11 Technically, these are empirical priors, if one regards the phenotype as the product of a model selection

process that inherits prior constraints from a higher evolutionary level.
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ical niche, and may more speculatively support a role for epigenetic mechanisms

in propagating cortical function from one generation to the next. Indeed, the notion

that evolution is itself a predictive processing engine is receiving greater attention in

theoretical biology; e.g., Fisher’s fundamental theorem and replicator formulations

as Bayesian filters (Fernando et al. 2012; Harper 2011). Thus, according to RPP,

prediction error unfolds not only at ontogenetic but also phylogenetic timescales; if

the brain (and body) constitute a generative model, than those embodied graphs best

suited to their environmental niche will be selected by evolution. In this way, nature

itself minimizes prediction error by selecting organisms whose structure and morpho-

genesis best predicts their environment (and the actions needed to survive within it).

In short, natural selection is nature’s way of performing Bayesian model selection,

offering phenotypes to the environment as plausible hypotheses for explaining sen-

sory exchange with an econiche—and selecting those that survive as the hypotheses

with the most evidence (i.e., least free energy). Clearly, the enactivist stance can also

be invoked at this level; especially when we consider phenotypes create their own

(designer) environments, leading to a circular causality between natural (or Bayesian

model) selection and the (designed) econiche that itself becomes subject to selective

pressure.

4 Interoceptive and embodied predictive coding

These considerations raise several important questions regarding embodiment and

predictive processing. If the brain itself is taken to constitute a generative model

subject to evolutionary pressure, can this metaphor be extended to the body? To what

extent can predictive processing be considered ‘embodied’; can the morphology of

the body, and its possibilities for action themselves be construed as an ‘embodied

prior belief’ guiding inference? What roles do affective and interoceptive cues play

in hierarchical inference? Can one sensibly speak of embodied cognition, and still

endorse the notion that the ultimate function of the brain is to recover ‘hidden’ causes,

sampled vicariously through sensory epithelia?

A bevy of recent neuroscientific and philosophical work aims to address these

questions (Ainley et al. 2016; Allen et al. 2016a, b; Apps and Tsakiris 2014; Barrett

and Simmons 2015; Bruineberg and Rietveld 2014; Chanes and Barrett 2016; Clark

2015; Gu et al. 2013; Limanowski and Blankenburg 2013; Seth 2013, 2014a; Seth

et al. 2012). Like predictive processing itself, so-called ‘embodied’ or ‘interoceptive’

predictive coding (a.k.a. interoceptive inference) ranges in scope from straightforward

extensions of comparator-based approaches (Seth et al. 2012), to treatments couched

in dynamical systems theory, enactivism, and ecological psychology (Bruineberg and

Rietveld 2014; Kirchhoff 2016). Although it is difficult to summarize these views

under a single banner, all share a common emphasis on the importance of body-related

inferences in cognition, whether to lend affective content to perception or provide a

deeper understanding of the predictive mind.

An early example is found in the “interoceptive predictive coding” (IPC) hypoth-

esis put forward by neuroscientist Anil Seth (Seth 2013; Seth et al. 2012). Seth and
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colleagues frame the conscious sense of presence12 as depending upon interactions

between an interoceptive-comparator integrating ascending visceral signals13 with

top-down autonomic control, and the motor-agency comparator previously described.

Seth further argues that it is the integration of feed-forward motor and visceral expec-

tations which generates bodily and affective experience:

… Our model proposes that presence is the result of successful suppression by

top-down predictions of informative interoceptive signals evoked (directly) by

autonomic control signals and (indirectly) by bodily responses. According to the

model, disorders of presence follow from pathologically imprecise interoceptive

predictive signals. The model integrates presence and agency… offers a novel

view of emotion as “interoceptive inference”, and is relevant to emerging models

of selfhood based on proprioception and multisensory integration (Seth et al.

2012, p. 2).

This comparison is argued to depend upon the anterior insular cortex acting as an

“[interoceptive] comparator underlying the sense of presence” (Seth et al. 2012, p.

6) in interaction with motor signals arising from the agency-comparator (see Fig. 4).

This proposed role for the insula as a core module in the interoceptive hierarchy is a

key motif appearing in a variety of related approaches (Barrett and Simmons 2015;

Gu et al. 2013; Seth 2013). To better understand why this region is so emphasized, we

briefly review the relevant neuroscience.

Anatomically, the insular cortex is a scallop-shaped structure folded deep within

the lateral sulcus, where it lies nestled between the temporal, parietal, and frontal

lobes. Convergent functional, connectivity, and cytoarchitectonic evidence suggests

that the region is important for integrating a wide range of bottom-up sensory inputs

with top-down predictions or control signals (Allen et al. 2016a; Klein et al. 2013).

When the physiologist Constantin Von Economo first mapped the region’s cellular

anatomy, he found a posterior zone with densely concentrated granular cells (special-

ized for integrating diverse inputs), and an agranular anterior zone dense with ‘Von

Economo’ neurons (specialized for modulating distant cortical areas) (Gu et al. 2013;

Klein et al. 2013). He further noted that no obvious demarcation between the posterior

and anterior zones could be found. Instead, the two areas merged together in a con-

tinuous gradient from one cell-type to another, suggesting an integrative function of

the region. This notion of the insula as integrating across the hierarchy is now further

supported by functional activation and connectivity studies (Cerliani et al. 2012; Mar-

gulies et al. 2016), which also demonstrate a continuous gradient from multisensory

and embodied input-integration to complex behavioural regulation as one moves along

the posterior-to-anterior axis. Thus, whereas the posterior insula exhibits mostly multi-

12 Presence denotes the feeling of veridicality that typically accompanies experience. For example, as I

write this paper I have an implicit feeling that this is an actual experience in my waking life. The sense of

presence is typically disrupted, for example, during hallucination or dreaming.

13 Interoception denotes the sensation and perception of homeostatic signals arising from the viscera (i.e.,

the heart, blood, gut, and lungs). Neurophysiologically, specialized peripheral and central nervous pathways

communicate changes in blood pressure, glucose, heart rate, gut peristalsis, air hunger, and so on. These

signals are projected principally to the posterior insula, which contains fine-grained visceral-maps (Craig

2003; Critchley and Harrison 2013).
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Fig. 4 The interoceptive predictive coding model. An interoceptive and motor comparator integrating

visceral and agentic signals, respectively, are combined together to produce an overall feeling of conscious

agency and presence. The presence comparator is proposed to be within the insular cortex, and is also

argued to underlie ‘emotional inference’. Adapted from (Seth et al. 2012)

sensory responses14 and is broadly connected to thalamic and primary sensory regions,

the anterior insula is instead responsive to attentional (salience, response inhibition)

and affective (emotion regulation and awareness) conditions and sends projections to

the parietal-frontal control regions and brainstem nuclei (Allen et al. 2016a; Cerliani

et al. 2012; Klein et al. 2013; Uddin 2015), with both profiles being freely mixed

in the middle insula. Interoceptive predictive coding thus argues that the insular cor-

tex15 integrates low-level sensory prediction errors with interoceptive and attentional

expectations to regulate affective salience and emotion (Barrett and Simmons 2015;

Seth 2013; Seth et al. 2012).

A closely related approach is the ‘embodied predictive interoceptive coding’ or

EPIC model (Barrett and Simmons 2015; Chanes and Barrett 2016).16 EPIC begins

from the viewpoint of hierarchical interoceptive processing proposed by IPC, which is

then extended to a general RPP model of cortical function. On this account, the agran-

ular ‘visceromotor’ cortex sits at the centre of the centrifugal hierarchy, modulating

the precision or salience of perception and action across the hierarchy.17 In describing

14 Though crucially, with an emphasis on visceral, tactile, and nociceptive modalities (Craig 2003; Critchley

and Harrison 2013).

15 The cingulate possesses similar pattern cellular and connectivity gradient, is also argued to play a similar,

albeit more action-oriented role in conjunction with the insula.

16 See also recent work by Seth and colleagues, which expands IPC into a more general theory of sensori-

motor contingencies and counter-factual prediction error (Seth 2014a, b).

17 Note that EPIC argues that viscero-motor cortices send ‘low-dimensionality predictions of predictions’,

mathematically speaking these corresponded to expected precision (or hyper-priors).
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EPIC, Barrett and Simons appeal to a specific role of the insula, yet explicitly rule out

a modular story, appealing instead to a connectionist (graph theoretical) view of the

brain:

It may be tempting to view the interoceptive system, as outlined in the EPIC

model, as a modular system. However, the brain has a small-world architec-

ture… augmented by ‘rich-club’ hubs (that is, highly connected nodes), which

… serve as the brain’s ‘backbone’ for neural communication and synchrony.

Several agranular visceromotor regions—including the anterior insula and cin-

gulate cortices—are rich-club hubs, prompting the hypothesis that agranular

visceromotor cortices send predictions to and receive prediction-error signals

from cortices with greater laminar differentiation in an effort to create the kind

of synchronized brain activity that is necessary for consciousness (Barrett and

Simmons 2015, p. 425)

According to EPIC, bodily predictions act as a binding ‘pacemaker’ signal to create a

core neuronal workspace synchronizing cortical representations to give rise to embod-

ied, conscious awareness (Allen et al. 2016a; Dehaene et al. 2014). This notion of a

predictive core or ‘embodied’ global neuronal workspace as the basis of the minimal

self (Gallagher 2000) appears frequently in the embodied and interoceptive predictive

coding literature, where it is typically leveraged to explain multisensory phenomenon

such as the rubber-hand illusion, in which a conflict of exteroceptive and bodily sig-

nals results in a dynamic alteration of the body-schema (Apps and Tsakiris 2014;

Limanowski and Blankenburg 2013; Park et al. 2014; Park and Tallon-Baudry 2014;

Salomon et al. 2016; Suzuki et al. 2013).

In summary, interoceptive and embodied predictive coding models not only extend

predictive coding to explain body-awareness; rather, they go beyond this weaker claim

to argue that body-related predictions coordinate and contextualize global brain func-

tion. In other words;

The picture emerging here is one in which neural representations of the world that

underlie perception and action are, in many cases, directed more by the homeo-

static relevance of information than by the need for accuracy and completeness

in representing the outside world. (Barrett and Simmons 2015, p. 7)

In support of this argument, recent evidence indicates that unexpected, unconscious

surges of interoceptive arousal reverse the impact of sensory noise on perceptual

awareness (Allen et al. 2016b). This inferential weighting of sensory representation by

interoceptive precision is a clear departure from the strictly cognitivist stance described

earlier. Instead of the brain being solely defined by veridical representation, perception

and action are now fundamentally affective and embodied in nature, possessing a

salience (epistemic) or inherent (pragmatic) value for the organism in homeostatic

terms (see also Gallagher and Allen 2016). The brain is in the game of predicting the

world, but only as a means to the end of embodied self-preservation. If this view is

right, the Bayesian brain is only there to infer the right sorts of (epistemic or pragmatic)

affordance necessary to predict the right sort of embodied engagement with the world.

Is this then the answer to our question; if cognition is defined according to the need

to recover a hidden world through a generative model, can it also be embodied? Inte-
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roceptive predictive coding suggests that information is embodied in a contextualizing

sense; internal signals encode the embodied state of the organism to imbue sensory

perception and action with affective salience. One should exercise caution however;

here, ‘embodiment’ is only in virtue of an internal (neuronal) model, which integrates

interoceptive and exteroceptive ‘representations’. The ‘body’ in question is squarely

inside the head—absent are the dense causal, dynamical couplings between inter-

nal and external phenomenon that characterize enactive views of embodied cognition

(Chemero 2011; Gallagher 2000; Varela et al. 1991). Whether such representations are

connectionist or modular in nature is of little concern; both views paint a homunculus

into the picture.

Philosopher Alvin Goldman (Goldman 2012) provides a useful metric by which

to characterize the spectrum of ‘embodiment’ found in predictive processing. Here

Goldman proposed categorizing theories as ‘conservative’ (no embodiment at all, as

in the case of strict modularity, nativism, etc), moderate or ‘lightly’ embodied (bodily

information—encoded in B-formatted representations—influences cognition), or ‘rad-

ical’ (i.e., enactive and extended approaches arguing that the brain-body-environment

is a dynamical system which constitutes cognition sans representation). Moderately

embodied cognition thus invokes the ‘massive redeployment’ (c.f., Anderson 2007)

of bodily representations (b-representations) to contextualize cognition:

Embodied cognition is a significant and pervasive sector of human cognition both

because: (1) B-formats in their primary uses are an important part of cognition,

and (2) B-formats are massively redeployed or reused for many other cognitive

tasks, including tasks of social cognition. (Goldman 2012, p. 81)

This notion of b-representation clearly applies to ‘embodied predictive coding’ as

described by its proponents. Information processing is done in the brain; perception,

action, and cognition are ‘embodied’ insofar as they lend contextualizing information

by body-format predictions (B-predictions) to cognition. Thus, although ‘embodied

predictive coding’ may represent a productive compromise between embodied cogni-

tion and information processing, it is likely to leave proponents of more radical views

unsatisfied.

5 Escape from the body snatchers?

While the intermixing of b-representations and predictive coding motivates unique

behavioural and neuroscientific hypotheses, we should also ask if something is lost

in the appeal to B-predictions. Philosopher Shaun Gallagher provides a compelling

critique,18 describing ‘moderate embodied cognition’ as an ‘invasion of the body-

snatchers’:

… The body snatchers …devise a version of embodied cognition that leaves the

body out of it… Rather, the real action, all the essential action, occurs in the

brain. Indeed, the body, in this version of embodied cognition, is the “body in

18 See Gallagher (in preparation) for a more rigorous philosophical treatment of this issue.
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the brain”. In effect, body snatchers have invaded theories of embodied cogni-

tion and have replaced bodies with “sanitised” body-formatted (or B-formatted)

representations in the brain. (Gallagher 2015, pp. 97–98)

By appealing solely to the representational mixing of bodily and cognitive informa-

tion, Gallagher suggests that proponents of ‘moderate’ embodied cognition actually

argue for something that is not particularly embodied at all. Indeed, according to mod-

erate (or weak) embodied cognition, such an agent could easily be simulated from

within a vat, provided reasonable simulacra of bodily signals were provided. Accord-

ing to the moderate view, the body is just “a better designed container that delivers

information to the brain in its own peculiar way”, rather than a constitutive element

of information processing. What then should a radical theory of embodied prediction

provide? Gallagher suggests that (bodily) anatomy, affect, sensory-motor contingen-

cies, and environmental couplings—all of the things that weak EC reduces to neural

representations—should be considered relevant to cognition.

Consider, then, the key features of embodied cognition as envisioned by its radical

proponents; a causally constitutive role for sensorimotor contingencies, an enactive

coupling of the organism to its body and environment, an ecological account of percep-

tual affordances, and a quality of affect and social meaning that pervades perception

at the lowest level of information processing. Can predictive processing pass this high

bar?

6 Active inference & the free energy principle: bridging the divide

To resolve the tension between embodied cognition and predictive processing, we need

to go beyond a mere description of the nervous system as an organ of prediction error

minimization. Any account of cognition which appeals solely to predictive processing,

will never fully escape the confines of the skull. For some, the moderate embodiment

implied by interoceptive and embodied predictive coding is likely satisfactory, insofar

as the framework provides an empirically testable model explaining how internal

states breach modular encapsulation to lend affective warmth to perception. Yet, even

allowing for this substantive progress, RPP (interoceptive or otherwise) are subject to a

variety of critiques; which charge for example that they constitute circular/tautological

reasoning (Bowers and Davis 2012), are unfalsifiable (Wiese 2014), and are merely

convenient post-hoc or ‘just-so’ explanations (see Jones and Love 2011 for review,

and various responses). Can enactivism save RPP from these pitfalls?

Indeed, the FEP tackles these issues head-on by providing a normative account

of why—through active inference—the brain must necessarily engage in embodied

predictive processing if it is to maintain its own enactive integrity. In doing so, the

theory provides an empirical bridge between the computational and enactive views

of the mind cashed out in terms of specific neuronal and embodied dynamics. To

illustrate the link between these issues, consider that the commonly levied critiques

(e.g., circularity, genesis of priors, and the definition of optimality) of RPP arise from

a common problem; from what do the brain’s prior beliefs arise? This problem can be

reformulated in a variety of ways. If our only imperative is to minimize prediction error,

why do we not seek out the confines of a dark room? A simple solution is something

123



Synthese (2018) 195:2459–2482 2473

like; because the brain has a prior which says “brains don’t like to be alone”. Here,

we can see the circularity inherent to Bayesian decision theory; any behaviour can be

described as optimal, because one can always write down a prior that prescribes any

behaviour in a ‘just so’ fashion.19 For an acute example of this tautology, consider

the case of reinforcement learning for values based-decision making, where a cost

function guides ‘optimal’ behaviour, and cost is defined operationally by whatever an

agent chooses.20

It is this ‘just so’ circularity that the FEP seeks to resolve by appeal to enactivism.

Rather than the post-hoc definition of priors or cost functions, the FEP derives a

normative, a priori first principle from a provable definition of living systems. To

do so, the FEP highlights the necessary tendency of living organisms to resist the

second law of thermodynamics; i.e., to maintain an internal structure or dynamics

in the face of constant change. That is to say, by definition, living beings are those

that maintain an upper bound on the entropy of their possible states. One can see

this by considering a candle flame or snowflake; although both have some degree of

persistent local dynamics, these do not resist the constant flux of the physical universe;

they instead dissipate rapidly in the face of environmental fluctuations (a gust of air or

the warmth of the sun). In contrast, to live is to visit some states more frequently than

others—and visit their neighbourhoods time and time again (for example, our daily

routine). However, before these imperatives can even be considered, the very existence

of a system mandates the separation between the system and its external milieu (e.g.,

the environment in an evolutionary setting or heat bath in statistical physics). It is the

separation or boundary that lies at the heart of the enactivist imperatives for predictive

processing.

For example, a cell persists in virtue of its ability to create and maintain a boundary

(cell-surface), through which it interacts with the environment, thereby maintaining

the integrity of the boundary. It is this autopoiesis, or self-creation, which enables the

system to limit the possible states it visits, and thus to survive (Varela et al. 1974).

The FEP recasts this as a kind of self-fulfilling prophecy, in which an organism itself

constitutes, in the generative sense, a belief that it will prevail within certain embodied

and environmental conditions. In short, the very existence of a system depends upon

conserving its boundary, known technically as a Markov blanket, so that it remains

distinguishable from its environment—into which it would otherwise dissipate. The

computational ‘function’ of the organism is here fundamentally and inescapably bound

up into the kind of living being the organism is, and the kinds of neighbourhoods it

must inhabit.

From this fundamental property of existence, it follows that any biological organism

will possess the following characteristics:

– Ergodicity By placing an upper bound on entropy, an organism will necessarily

occupy (the neighbourhood of) some states more often than others. This means

that the average probability of being in a given state is equal to the probability of

19 Technically, this is known as the complete class theorem (Brown 1981).

20 Note the lack of falsifiability, which is inherent to any normative explanation in which I, as external

observer, write down some condition for optimal behavior, rather than grounding that explanation in the

necessary preconditions for the existence for that organism.
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the system being in that state when observed at random. Note that this is simply a

reformulation of the overall principle; to live (resp. be) is to revisit (resp. occupy)

some characteristic states over time.

– A Markov blanket The boundary (e.g., between internal and external states of the

system) can be described as a Markov blanket. The blanket separates external

(hidden) from the internal states of an organism, where the blanket per se can be

divided into sensory (caused by external) and active (caused by internal) states.

– Active inference The Markov blanket induces a circular causality because sensory

states depend on hidden states that depend on active states, which depend upon

internal states. In other words, the sensory and active states (that constitute the

Markov blanket) mediate perception and action that are locked into a perpetual

cycle to upper bound the entropy of both. Because the entropy of the Markov

blanket is, by ergodicity, the time average of surprise or negative Bayesian log

model evidence, sensory and active states will appear to maximise Bayesian model

evidence. This means internal states can always be cast as representing external

(hidden) causes—and thereby constitute a generative model of the causal forces

that impinge upon them—while active states change the external states to make

this job easier (e.g., avoid dark rooms).

– Autopoiesis Because active states change external (hidden) states, but are not

changed by them, they will place an upper (free energy) bound on the entropy

of biological states. This is because they are caused by internal states, and will

therefore appear to maintain the structural and functional integrity of the internal

states and their Markov blanket.

Simply put, an organism persists in virtue of having internal states which cause

surprise-minimizing, evidence maximising actions; these in turn maintain the par-

titions described above, which is a necessary precondition for existence: c.f., the

self-evidencing brain (Hohwy 2016). One can formulate this in another way; the

organism’s internal states constitute probabilistic beliefs about what actions are the

most likely to provide evidence for the organism’s existence (survival). My actions are

not merely the output of an internal dynamic; the FEP argues that if I am to survive,

they will actively bring about the conditions for my survival. The point is that the

boundary itself is constituted by an ergodic dynamical interchange between ‘internal’

and ‘external’, rather than a cognitivist predominance of internal processing.

This notion is at the heart of autopoietic views of life and mind, insofar as it induces

a deeply circular causality between internal and external states, to provide a norma-

tive principle by which to understand all action and perception. If an organism is

endowed with the belief that it will maximize the evidence for its existence, then

it will act in ways that are consistent with that belief. In other words, if survival is

synonymous with minimizing surprise—i.e. maximizing evidence or self-evidencing

(Hohwy 2016)—then it follows that the only possible prior belief an agent can enter-

tain is that it will behave so as to minimize surprise. This is easy to see through

reductio ad absurdum: if I believe I will be surprised, the only way I can be sur-

prised is if I am not surprised. More exactly, the organism, body-brain-and-world

itself constitutes the ‘belief’ or generative model that it will survive; in a very con-

crete sense, the kinds of limbs and morphological shape one has will constrain the
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probabilities of the kinds of actions one can engage in. This can be considered by

analogy to the notion of an Umwelt, in which an organism’s world is itself a consti-

tuting and constraining feature of its embodiment (e.g., the isomorphism between

the wavelength selectivity of our photoreceptors and ambient radiation from the

sun).

This deep reciprocity between the embodied and environmental facts of the organ-

ism is embedded in the pattern of neural patterns which preconfigure the entity to

best survive within its living world. Even seemingly ‘representationally hungry’ oper-

ations will be enmeshed within these looping, self-sustaining dynamics. For example,

the organism will choose options that minimize its surprise, where free energy provides

a tractable bound on surprise; hence the FEP. This bound is not absolute, computed

solely in the head, but instead relative to the embodied nature of the organism as

selected (via evolution) by the type of body and environmental niche inhabited by the

organism. The implication is that my internal representations—the generative model

of the world embodied in the web of neural connections—are causally coupled to my

homeostatic needs and the environmental niche within which my brain has evolved.

Heuristically, this means that I will behave in ways consistent with my survival—

which is itself consistent with or constrained by the type of body that I have, the

econiche within which I have co-evolved, etc. If I am a cave bat, I will hang around

in dark caves. If I am a human being, I will seek out other human beings and read

articles on philosophy. The body itself is thus a prior boundary condition, or a con-

ditioning factor, in the overall generative model defined by my Markov blanket. My

body directly shapes my possibilities for (active) inference. The body-brain system

has evolved to constitute a generative model, which specifies the types of behaviours,

and environments in which I am likely to engage. Where one draws the boundaries is

a matter of the question one wishes to ask; any living organism will be defined by a

nearly infinite matryoshka embedding of blankets-within-blankets.21

The FEP thus provides a formal, information theoretic framework within which to

explain the constitutive coupling of the brain to the body and the environment. The ‘cost

function’ or imperative priors arise directly from the interoceptive, homeostatic needs

of the body in exchange with the environment. My brain and body themselves con-

stitutes a ‘belief’, in the generative sense about the kinds of states (e.g., homeostatic

set points such as temperature, blood glucose) I must inhabit if I am to survive.22

The imperative to reduce free energy renders any action, which improves my sur-

vival inherently ‘desirable’—in the sense it brings me back to the attracting states

prescribed by my generative model. Where, crucially, my self-evidencing generative

model is learned or inherited from the environment; the capacities of my limbs for

action preconfigure the nature of my active-inference.

Clearly, the active inference account satisfies the criteria for a radically embodied

theory of mind. According to the free energy principle, an organism is best under-

21 It is worth noting the strong resembles here to the epistemic view of enactivism as ‘mutually constrained,

interlocking dynamics at all (bio/social/geo) levels envisioned by Varela (1991).

22 One can here pick up a debate about whether this notion of ‘belief’ resembles anything like the technical

definition of ‘representations’ to which most enactivists object. Rather, they seem better suited to a dynamical

system analysis. See Bruineberg et al., this issue for arguments on this issue.
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stood as a system of mutually interlocking systems; the body, mind and environment

are inextricably bound up in the organism’s free energy minimization: in fact, all the

heavy lifting done by active inference is in preserving a degree of (statistical) sepa-

ration between the body, mind and environment (by maintaining the integrity of their

respective Markov blankets). Perception is enactive and affective; through the reduc-

tion of surprise and uncertainty, perceptual and active states are selected to maximize

the evidence for my existence. The body itself is a part and parcel of the computational

machinery that leads to my survival. By elucidating these principles down in a formal,

computational framework, the FEP provides an understanding of these issues that is

amenable to experimentation and formal analysis. Although the FEP provides a nor-

mative, teleological essence to the synthesis of biology and information, the specifics

of compliant (neuronal and behavioural) process theories must be discovered and

verified empirically.

This is because, as a process theory, the specific couplings of action and body are

left unspecified; which systems in the brain encode the uncertainty of some cognitive

domain? What are the functional dissociations themselves; e.g., what solution has

nature found to optimize the brain-body-econiche ensemble? In what specific ways

do the affordances disclosed by these relations impact the cortical hierarchy, and

vice-versa (Bruineberg and Rietveld 2014)? By providing much needed guideline to

discovery (Chemero 2011), FEP renders a productive union of the embodied cognition

and information theory, allowing the enactivist not only to describe the importance of

the body, but to also build models of the brain-body-world relationship (See Friston

et al. 2012a, b for one illustrative example).

FEP or active inference does not do this job for free; rather it provides a state

theory, under which to develop specific process theories. One might here ask; if the

FEP is unfalsifiable—in the sense that Hamilton’s principle of least action is not, in

itself, falsifiable—is it uninformative? The FEP is uninformative in the sense that

the principles of natural selection do not explain a particular species or phenotype;

however, they inform the viability and sufficiency of any process theories. For exam-

ple, expected utility theory and reinforcement learning are not sufficient theories of

behaviour because they do not link utility or reward to free energy. Conversely, the the-

ory of evolution by natural selection is free energy compliant (through its formulation

as Bayesian model selection).

7 Hiding beneath the Markov blanket

We note however, that not all are likely to agree with this interpretation. Some theo-

rists take the Markov blanket to imply a strong partitioning, and this has led arguments

directly contravening this type of claim; if my survival depends upon separating inter-

nal from external states, then I must infer through mental representation (i.e., Bayesian

inference) the causal nature of those hidden, external states (Hohwy 2016).

There are at least two responses to this; first, the aim of the FEP, and the account

sketched here, is not to deny the causal importance of the internal states. Indeed,

an organism survives in virtue of its nervous system constituting (a partition of) a

generative model, which can infer those actions most likely to maximize the evidence
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for its survival, as sampled indirectly through sensations. However, the delineation

of the boundaries of a Markov blanket is essentially relative and variable; indeed any

organism will be defined not by a singular blanket, but instead by a near-infinite regress

of causally interacting Markov blankets within Markov blankets (and indeed of Markov

blankets). In other words, the brain does not constitute a single blanket, but rather

innumerable systems that are at once modular and dynamic, creating internal states in

virtue of their interactions with one another. There will be a brain-body blanket, which

describes the same circular causality. One can go still further; in an ecological sense,

my ‘econiche’ or self-creating environment of tools and cultural settings—and my

interaction within it—constitutes another blanket (See Bruineberg et al., this issue).

Furthermore, blankets of blankets may change over many timescales; for example,

with developmental cycles. This begs interesting questions about the timescales over

which ergodicity applies—and whether these timescales are nested. Where one draws

the causal demarcation is simply a matter of the question at hand. At all levels of

description there will be a constant interaction between an emergent generative model

and a coupled interaction thereof.

In short, the Markov blanket does not provide a cover from which to hide from

external states in a radically sceptical fashion. On the other hand, the Markov blanket

does not admit a radically realist position; in the sense a living system can never know

what is ‘out there’—it can only infer, with a greater or lesser degree of accuracy, the

causes of sensory impressions on the blanket. Perhaps it is best to construe Markov

blankets as ‘gluing’ the brain to its body and the body to its econiche; however, by

definition, this glue never comes with ‘phenomenologically transparent’ on the tin.

This is not to say that the Markov blanket precludes direct perception in the sense of

delivering an ‘optimal grip’ on the affordances offered by inferred external (hidden)

states (Bruineberg and Rietveld 2014). In active inference, everything is in the service

of predicting action, no matter how deep the hierarchical processing.23

Clearly, the explanatory scope of the FEP goes far beyond that of B-representations.

Bodily information, and inference over those signals, is not only a contextual contrib-

utor. Rather, it is a part of the causal tapestry, which defines the agent and its viability

as a ‘model’ of its environment. Another way to say this is: the causal machinery

of the brain and its representations are enslaved within the brain-body-environment

loop of autopoiesis—which is reminiscent of the circular causality that underwrites

the slaving principle in synergetics (Haken 1977). This is an important point here; the

FEP is not eliminating representations,24 nor is it hiding the body within the brain.

Rather, the FEP directly explains the organism: the embodied brain becomes a model

of its environment in virtue of exactly the kinds of autopoietic, dynamics espoused by

proponents of radical embodiment.

23 This follows from the simple fact that action is the only way to underwrite an upper bound on the entropy

of sensations. On the other hand, perceptual inference is the only way to inform action.

24 A possible argument here could be that it doesn’t have to since there are no such things, except in the

eye of the external observer (scientist)—the brain itself doesn’t need them—or so the enactivist would say.

So maybe one could say the FEP doesn’t eliminate the desire or need or feasibility or practicality on the

part of the scientist to talk about representations, but instead renders a framework to understand the circular

inter-relation between parts and whole, in a hermeneutic sense.
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8 Conclusions and future questions

Predictive processing promises to revolutionize our understanding of how the brain—

in conjunction with the body and environment—persists in the face of uncertainty.

Here, we have reviewed a continuum of views; all of which can be gathered under

predictive processing. Our intention was not to exhaustively cover all possible contri-

butions; given the exponential growth of prediction-related theoretical and empirical

work, such an effort would beyond the scope of the present issue. Instead, we have

focused on how—rather than constituting a single, monolithic framework—predictive

processing involves a wide range of theoretical commitments, with respect to the phi-

losophy of mind. As we have shown, depending upon where one falls along this

spectrum, competing modular, connectionist, or embodied/enactive theories can eas-

ily arise. Nevertheless, the FEP accommodates many of these disparate views within

a single framework, whilst motivating novel empirical work.

Here we have sketched the enactive and embodied underpinnings of the FEP. Much

work remains to be done on this issue. For example, although we here argue that the FEP

resolves the tension between internalist and externalist approaches, we recognize that

some may remain dissatisfied. We look forward to discourse concerning, for example,

the notion of the brain-body-econiche as a kind of generative model, and whether one

can sensibly speak of ‘representations’ under such a framework. If representation is

distributed all around the brain and beyond, does it remain a representation in any

meaningful sense? Similarly, many aspects of predictive processing suggest a role for

‘emergent’ or global processes (See Kim 1999 for critique), which constraints local

processes in a kind of hermeneutic circle. It remains to be seen whether these are

at tension with the account given here, and whether they lend themselves to a more

cognitivist or representational view. Again, rather than delve deeply into these issues,

our intention as to instead paint a general picture. For those who are interested, this

special issue contains substantive views arguing for example, that the FEP does not

require any ‘inference’ or ‘internal models’ (Bruineberg et al. this issue).

In summary, the FEP offers a formal path forward for enactivism. By providing a

guideline to discovery, the normative principles embedded within the approach allow

enactivists to go beyond arguing about the demarcations of the organism, to instead

develop empirical theories of how brain, body, and world interact with one another.

Ultimately it is this pragmatic ability to motivate testable hypothesis about ‘enactive

computation’ that may most benefit cognitive science.
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