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Abstract—In this paper, we investigate a method for con-
structing cascades of information co-occurrence, which is suitable
to trace emergent structures in information in scenarios where
rich contextual features are unavailable. Our method relies
only on the temporal order of content-sharing activities, and
intrinsic properties of the shared content itself. We apply this
method to analyse information dissemination patterns across
the active online citizen science project Planet Hunters, a part
of the Zooniverse platform. Our results lend insight into both
structural and informational properties of different types of
identifiers that can be used and combined to construct cascades.
In particular, significant differences are found in the structural
properties of information cascades when hashtags as used as
cascade identifiers, compared with other content features. We
also explain apparent local information losses in cascades in terms
of information obsolescence and cascade divergence; e.g., when a
cascade branches into multiple, divergent cascades with combined
capacity equal to the original.

Keywords—Information cascades, information theory, network
analysis, content analysis.

I. INTRODUCTION

Since its advent, the Web has continually re-defined how
content is shared. While sharing used to be person-to-person,
the over 3 billion digitally-connected individuals now most
routinely share content using social networks and sharing plat-
forms that have made mass-sharing the norm. When content
is now shared, it may be picked up serendipitously by one of
thousands of people who may not know the original sender,
and who may, in turn, re-share, re-purpose and re-target the
content to a another social group, thus causing the process to
repeat itself again. The resulting transmission of information
from one person to the next, referred to as information cas-
cades, information flow or information diffusion in interaction
networks, has been studied in order to understand the dynamics
of information sharing across various communities and in
many different settings.

Initially, the evolving blogosphere was the setting for much
of the work on information cascades on the Web, but more
recently attention has shifted to online communities. Most
Web-based online communities today support the construction
of “virtual social networks”, through friendship and follower-
following links, as well as several standard network-based
sharing and content promotion mechanisms, including explicit
targeted resharing,“retweeting”, “liking” and “favoriting” func-
tions. The propagation of content along social network lines
can be seen as the addition of explicit links between the shared
resources. Existing research has focused on exploiting such
link structures to determine whether a piece of information

has been shared in the same context as other sharing activities
(e.g. in direct response or motivated by), which we will refer
to as conditional information sharing. Existing work devised
accurate methods for representing such conditional cascades
and even predicting their growth and evolution, through a
comprehensive set of 36 features that are, to a large extent,
dependent on system-specific functionality (e.g. availability of
knowledge about the time spend looking at content) and some
existing sub-network (e.g. social network) [1].

Prior studies of information cascades have focused on
the modeling, interpretation, and prediction of conditional
information sharing activities, based on features derived from
social networks, personal data, and tracked user interactions
with a system. There are many settings online, however, where
such features are unavailable, either because they not public or
just not supported by the platform. A second difficulty occurs
when cascades cross system/platform boundaries, where few
of such features are unable to span. For example, while the
information gathering and mobilisation efforts of volunteers
during crises such as the Haiti 2010 earthquake often centres
about a primary artefact on a platform (such as an Ushahidi’
map) other coordination activities that support it crossed
Twitter, YouTube, social networks, and many other channels.
Individuals did not only talk with each other along explicit
social ties, but to others with no prior connection across
broadcast channels (especially in time-critical situations when
time to make decisions is rare). Consequently, the existing
cascade approaches will always be uncertain about some of
the relationships that may exist between shared information,
especially when borders of systems are crossed. Relationships
might be missed out because the trigger event for their creation
is not represented within the microcosm under investigation
(e.g. a word-of-mouth recommendation about a trending hash-
tag on a microblogging system causing people to use it).

We also ask the question if there is value — or ultimately
conditionality — in relationships that might appear to be ran-
dom, yet result from information being shared coincidentally
(e.g. two people having the idea to invent the same hashtag
in separate microblogging systems at exactly the same time)?
System-specific and feature-rich methods must be incomplete
to describe this macroscopic informational evolution and state
of the Web.

This paper is contextualised with these questions and
investigates properties of transcendental information cascades,
which are inspired by Kleinberg’s work on bursty characteris-
tics of document streams [2], [3]. This method requires only

www.ushahidi.com



the temporal order of content-sharing activities that happen
on the Web, combined with inherent properties of the shared
resources. Hence, it is configured by a stream of time-stamped
resources to be analysed, and a set of matching methods ap-
plied to generate relational links from their inherent properties.
We applied this approach to the active online citizen science
project Planet Hunters, hosted on the Zooniverse platform.
The system is an excellent example to study this organic
information evolution: it does not support any typical social
networking functionality; there is evidence that also no virtual
social network emerged from people’s interactions implicitly;
content sharing contributes to cooperative hypothesis testing.

Using this method cascade generation, we conducted ex-
periments to investigate the following research questions: (R1)
Which changes in the resulting cascades can be observed
when parameters of the matching methods are varied,
while the input data stays stable? (R2) Is there a char-
acteristic structural difference in cascades generated by
our transcendental model compared to other approaches
for the construction of information cascades? (R3) What
is the role of cascade motifs?

Our results give insight into how the structure of transcen-
dental cascades can be affected by changing parameters of
the matching methods. We find significant differences in the
structures and properties of resulting cascades when hashtags
are used as cascade identifiers, compared with other content
features. We also explain apparent local information losses in
cascades in terms of information obsolescence and cascade
divergence; e.g., when a cascade branches into multiple, di-
vergent cascades with combined capacity equal to the original.
This complements Kleinberg’s work by adding insight into the
adaptation of his approach for Web content and substantially
informs about how to configure experiments on the structural
and informational properties of such coincidental information
sharing activities.

The remainder of this paper is structured as follows: first,
we start with a brief overview of related literature. We then
describe our model of transcendental information cascades and
a generic method of constructing them. We then describe our
sample dataset and analysis methods applied to test our cascade
model, followed by experimental results. Finally, these results
are discussed alongside a set of final questions we lay out for
future work.

II. RELATED WORK

According to Kleinberg et al. [2], bursts refer to peri-
ods of significantly high activity in continuous, time-stamped
sequences of documents. They have become an accepted
indicator for the appearance of a topic [4] and can be used
to infer meaning by analysing the content in documents that
belong to a particular burst. This method has significantly
influenced research studying the temporal properties of human-
generated digital content (e.g. [S], [6]) but also been related to
studies of human behaviour at scale [7]. We expand upon this
approach, that is, centred on bursts in flat document streams,
and seek to understand the role of reoccurring substructures of
branching and merging flows of information.

A. Information cascades

Information cascades have been used to model a variety of
information sharing practices online, spanning, for example,
information propagation across blogs, the viral spread of news,
memes and other content online, and influence and reach in
political campaigns, to name a few [8], [9], [10]. Cascades
are typically modelled as dynamic networks [11]. One or
more undirected sub-networks represent structures of explicit
relationships between entities along which information could
possibly diffuse (e.g. users forming a following or friendship
graph) and the actual diffusion processes are represented as
overlays over those networks [12], [13], [14], [1]. We, in con-
trast, assume that there is a natural information transmission
capability on the World Wide Web that is not necessarily
conditioned by any preexisting sub-network. This allows for
abstracting the social context away from the technological sub-
strate to understand the Webs intrinsic information cascades,
considering not only local understanding of its use but also a
global view.

B. Collective Intelligence

By contextualising our alternative model with purposeful
collaborative work, we also touch the field of collective in-
telligence, human computation, and social computing. Work
in this area typically focuses on the intelligence and problem
solving capability that results from virtually organised groups
working together towards a particular outcome, as well as on
coordination methods for making such collective processes run
effectively efficiently [15], [16], [17], [18]. We instead want
to expose the intelligence that lies in information on the Web
that is linked because of coincidence rather than pre-configured
conditionality, or necessary a priori planning.

III. COINCIDENCE IN INFORMATION SHARING

Transcendental information cascades were introduced in
[3] as a 4-tuple TC = (V,E, R, F), representing a directed
network consisting of a set of nodes, V, and edges, E. This
network is constructed by applying a set of matching functions,
F ={f1, fa, ..., fn} toaset of resources, R = {r1,72, ..., "m }»
where every resource is given as r; = (ug, t;,¢),7 € [1,m],
where wu; is a unique identifier of resource r;, shared at
time ¢;, with content c¢;. Nodes in the network are those
resources from R that contain a set I; of one or multiple
cascade identifiers. A cascade identifier is any unique infor-
mational pattern that is recognised by applying a matching
tunction, fr, € F, to either the content of a resource,
or any other inherent properties of it. Nodes, V, are then
given as V' = {v1,v2,...,0p}, vy = (uy,ty, I,), while edges
are given as E = {e1,e2,...,e},65 = (Uq,up,A;), with
Ii = {ir,iz,io} = fi(ci) U fa(ei) U ... U fu(ci) being
the result of the concatenation of all identifiers found by
all matching functions. Under the assumption that the time
difference between nodes is always positive, an edge exists
between any two nodes that were created at times ¢, and ¢,
(with t, < t), and share a unique subset A, of all their
individual cascade identifiers. We furthermore assume that A,
and none of the subsets of A, is part of the identifiers found
for any node v, in the set V' containing all nodes that were
created at any time t. with ¢, < t. < tp.



A node that contains a cascade identifier that was not
detected for any other nodes before is called the identifier
root. Similarly, a node without any incoming edges, we refer
to as a network root, and a node with no outgoing edges a
stub. Our cascade model, thus clearly yields different structures
depending on both the data at hand (e.g. determined by the
extent of the Web crawl), and the matching functions applied,
which serve to generate the particular cascade identifiers (e.g.
based on hashtags, URIs, quotes, keywords, images, or even
semantic features such as sentiment), as depicted in Figure 1.
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Fig. 1. Depending on the applied matching functions, different transcendental
information cascade representations can be generated for the same input data.

To perform a topological analysis of a bounded set of
motifs in transcendental information cascades we define 15
primitive node types depending the kind of incoming and
outgoing edges as shown in Figure 2. We differentiate edges
that are straight, indicating an exact match of the entire set
of identifying patterns for two consecutive nodes, and those
that branch/merge, reflecting a match of only a subset of the
identifying patterns. Node type 1 in this model, for example,
means that a node has no preceding node, and is followed by a
node that features exactly the same set of identifying patterns
like this one (e.g. if in a node we find the hashtags #A and #B,
then we find the same two hashtags in the linked consecutive
node). A node of type 2 is different from type 1 because the
node the edge targets at features only a subset of all identifiers
of the node before (e.g. with reference to our example before
the consecutive node now only features hashtag #A or #B).
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Fig. 2. Overview of distinct nodes types in our cascade model

IV. EXPERIMENTAL SETUP
A. Research data

For our study, we use a dataset that contains the contents
of the discussion forums from the Planet Hunters® project,
which is part of the Zooniverse citizen science platform. The
dataset consists of 427,917 posts that have been contributed
by participants between the time period of 15/12/2010 and
16/07/2013. The Planet Hunters forums support regular forum
posts, unlimited in length, and microposts, which are limited
to 140 characters and account for more than 90% of all content
elements [19].

The use of four particular content matching patterns, which
are based upon the characteristics of the Zooniverse platform,
form the foundation for our study. We use an exact string
matching approach, applying pre-defined regular expressions
as done in previous work [2]. The first pattern, Al, is based
upon the use of hashtags within posts made by users. Hashtags
are natively supported by the Zooniverse platform as a way
for participants to easily group posts with similar topics, just
as commonly done on many social media and microblogging
platforms such as Twitter. This means that whenever a “#” is
directly prepended to a character sequence without whitespace,
a link to a list of all posts using this identifier is created.
Participants in Planet Hunters make extensive use of hashtags,
which are either invented by themselves or recommended by
the science team running the project. The second pattern,
A2, is used to match content that refers to specific object
identifiers related to the images shown in Planet Hunters.
Over the course of the Planet Hunters project, participants
started to link posts to related objects they were presented
with during task completion by explicitly including their
identifiers. These identifiers feature a consistent pattern of the
form “APH[0-9]*”, so we developed a second string matching
algorithm to use these patterns as cascade identifiers. Pattern
A3 is related to another type of identifier used by the Planet
Hunter community to refer to objects in external datasets.
In the process of collaboratively identifying exoplanets, some
Planet Hunter community members started using Kepler IDs (a
pattern matching “KID[0-9]*”), which are codes that uniquely
identify exoplanets and other celestial bodies in standard as-
trononomical indices, to hypothesise correspondences between
transits seen in light curves and corresponding exoplanets in
these databases. Analogous to the matching of internal object
identifiers, we implemented a string matching algorithm for
KID patterns. Finally we selected a pattern matcher A4 that
matches all HTTP URIs.

B. Methods for the Analysis of Cascade Properties

Based on the research data and the cascade types, we
derived four different cascade networks, one for each of the
four types of matching functions (Al, A2, A3, and A4) just
described, each applied independently. For each of the four
datasets, we then computed a number of measures representa-
tive of basic structural properties of the resulting cascades. In
particular, we computed the number of nodes, edges, cascades,
roots and stubs as well as the cascades sizes. In addition to
this, we investigated two measures that are meant to further
expand our understanding of the relevance of more complex
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[ [ Al [A2 [ A3 [ Ad ]

Nodes 66,616 11,061 16,380 24,412
Links 73,595 8,510 9,060 46,842
Cascades 185 1,707 3,233 2,074
Identifier roots 1,458 10,045 14,105 32,922
Network roots 404 3.924 1.901 2.504
Stubs 406 3.899 2.426 2,377
Nodes without any 539 3,054 4,416 14,014
links
Avg. Links-per-Node 1.11 0.77 0.55 1.92
TABLE L. OVERVIEW OF THE FOUR CASCADE NETWORKS

and potentially reoccurring sub-structures. First, we determine
the Wiener index for each cascade, as proposed in [20]. We
refer to the original definition of the Wiener index in [21],
givenas W= 13", > j—1 dij. Analysing the Wiener index
with reference to cascade size allows us to understand whether
particular cascades grow in depth or breadth. Second, we
compared the constructed cascades in the four datasets with
reference to the 15 single node types shown in Figure 2. To
complement this structural analysis, our final method focused
on informational properties of these cascades. We compute
the identifier entropy for all our cascades. Identifier entropy is
defined as the Shannon Entropy H(X) = — Zij\!ol pilogap;,
where p; is the probability of an identifier occurring in nodes
of a particular cascade it has been found at least once within.

V. RESULTS

Table I shows an overview of the four generated cascade
networks, based on the four cascade pattern matching methods
Al, A2, A3, and A4. These basic statistics show, while the
number of nodes in hashtag cascades is significantly higher
than when using other identifiers, the number of cascades
formed by hashtags (Al) is much lower. This seems to
differentiate hashtags from all other three chosen identifiers.
However, the average links per node puts A2 and A3 into
a joint category (with values of 0.77 and 0.55 respectively)
but is by far the largest for URI cascades (A4) with almost
two links per node (1.92). Computing the roots and stubs, we
find equally both cases, systems with more network roots than
stubs (A2, A4) as well as the opposite (Al, A3). The latter
case means that more sub-paths of cascades are absorbed over
time by merges, than new paths are created by the introduction
of new cascade identifiers. Since there were significantly more
identifier roots than network roots for all four datasets, it is
common for new identifiers to be introduced over the course
of any particular cascade in each.

Taking these statistics into consideration, hashtag (A1) and
URI (A4) cascades, which are characterised by a high number
of nodes, links, and links per node in proportion to the number
of cascades and roots, feature a structure that contains many
nodes that combine multiple identifiers. The result are many
merging and dividing cascade branches. In comparison to this,
cascades derived by A2 and A3 tend to feature an initial root
node with many outward links (e.g. a initial post with multiple
identifiers), which then subsequently diverge and form their
own individual cascades without merging again.

In order to consider the structural properties of our four
cascade types with respect to existing measures of virality, we
computed the Wiener index. Row 1 of Figure 3 shows the
value of the Wiener index plotted against the number of links

in a cascade. The graphs clearly show that the A2, A3, and
A4 cascades resulted in a more sporadic result, with lower
virality for larger cascades. In contrast, the virality of the
hashtag cascades (Al) constantly increases with the size of
the cascade.

The node type statistics show the specific characteristic
of the hashtag cascades (Al). Not only that a proportionally
low number of network roots and stubs was identified, but
the overall amount of nodes with outgoing edges that merge
or branch out (types 5 and 6) is significantly higher than
when other matching functions are applied (A2, A3 and
A4). However, the overall dominant node type is the straight
path (type 4), which correlates with the observation of an
exponentially growing Wiener index, because it is more likely
that cascades grow in depth. It is noteworthy to highlight the
specific role of node type 10 in the A4 cascades; this node type
indicates that the exactly identifier set recurred intermittently.

Finally, our measurements of the identifier entropy reveal a
specific role of hashtag cascades again, and similar profiles for
the other three matching functions. In particular, it is shown
that most of the hashtag cascades feature even information
distributions, which is most likely because they only contain
one, or a small number, of identifiers, all with equal probability.
Very large hashtag cascades, in contrast, become very random,
meaning that even though many identifiers may be included
(indicating many informational items being represented in the
cascade) the informativeness of the entire cascade overall is
minimal. The other three entropy distribution profiles, however,
show that there is a more even distribution of information in
non-trivial cascades with multiple identifiers, with the largest
cascades still falling into the same category as the largest,
hashtag cascade.

VI. DISCUSSION
A. Summary of Experiments

Our experiments show that it is possible to generate
structurally different cascades from a single source dataset,
depending on the pattern matching used. By exploring sub-
structures within each of the four resulting cascade networks,
we found that in comparison to cascades that use actual object
identifiers (KID, APH, URIs), cascades which are based on
hashtags tend to be either trivial (single identifier cascades) or
consist of multiple roots that are merging and diverging so that
they form one massive connected component.

For instance, in Al cascades, there may be two hashtags,
#A and #B, which originate in different, independent posts, by
different users. However, over the course of the evolution of the
cascade, these hashtags merge, most likely as a consequence of
a user bringing them together in a single post. These hashtags
then may become part of several merges and diverges, which
can end up located within a single stub. As a consequence of
this, information can be perceived as lost, as they do not remain
present in a distinct cascade, but are subsumed by another. This
is reflected in row 2 in Figure 3, where a large proportion of
the node types are those that represent merging or diverging
cascade paths.

In contrast, the results of cascade types A2 and A3 reveal
cascades which are less structurally viral (i.e. exhibit a lower
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Wiener index), thus tending to form shorter chains of single
or fewer identifier cascades. As a consequence, information
is rarely lost or gained as cascades do not merge often. It
is more likely, in such cascades, that when a branch node is
observed (for instance node type 3 in 2) it is the root node
containing multiple identifiers, which will subsequently form
their own sub-cascades. Such cascades will likely branch at
the root node, and remain isolated.

B. Structural Properties of Transcendental Cascades

Central to this investigation was the use of different string
matching patterns in order to understand how the captured in-
formation flows differently. In the context of our dataset, which
contains discussions of citizen scientists, the examined patterns
were based on domain-specific internal and external identifiers
of objects of interest as well as hashtags. The analysis of the
different patterns revealed varying structural properties when
different matching methods are applied. Most significant was
the difference of hashtags versus the other object-driven types
of identifiers. We found that unlike hashtag cascades, object
identifier cascades (A2, A3) tended to interact less with each
other. URI cascades were an exception from this rule, as they
could be considered object identifier cascades, which featured
particular identifier sets that were seen intermittently. In our
findings, A2 and A3 cascades had structural characteristics
which featured long chains of consistent occurrences of the
same identifier, rather than interconnecting and diverging in-
teractions.

This raises questions about the specific nature and in-
herent features of an entity such as a hashtag, which leads
to the observed structural and informational differences to
other identifiers. We speculate that this is a result of the

A3 M

e

anrer e intes.

Rz Iype hedz Ipaz

It er erivapy drni croTEy

Overview of the results of the cascade comparison. Wiener index is plotted on a log-log scale; identifier entropy is plotted with a log scale on the

socially created conceptual knowledge embodied in hashtag
folksonomies, which varies from too generic (e.g. help) to very
specific (e.g. ecplipsingbinary) without any boundary between
theses two ontological spheres. We suggests that such collapses
of the informativeness of cascades can be used to reinforce the
respective matching functions by contextual refinement (e.g.
only treat hashtags as similar information when additional
inherent properties of the resources are similar or equal) to
derive meaningful results.

Informed by our analysis, we believe that there is large
value in not only studying the sub-structures that emerge from
transcendental information cascades, but even more by explor-
ing the repetitive patterns of sub-structures which seem to form
motifs. This differs from existing research [2]. Rather than
examining just the time difference between individual content
elements, studying burstiness with respect to repetitive motifs
seems to be promising for investigating phenomena like topic
promotion, drift or oppression over time. This can become
an important means to understand the evolution of online
campaigns, and virtual mass coordination and mobilisation
strategies from a macroscopic viewpoint, independent from
preconceived social determinants.

C. Informational Properties of Transcendental Cascades

The analysis of the experiments raised questions about
information gain and loss, and if information cascades are
a way to observe and measure this. In our experiments, we
found that depending on the pattern matched, there are varying
distributions of roots and stubs. In some cases, we see more
roots than stubs, which suggests that information that goes
into cascades as distinct input, does not come out. This means
there is information loss or information gets absorbed when



a particular hashtag wins over others on a particular topic
(convergence) for example.

We suggest that an information cascade can be considered
as an entity that flows through the Web, channelling and
preserving information across time. It therefore has storage and
transfer capacity, and as a result is an important aid particu-
larly for distributed communities with few communally-created
information storage facilities capable of allowing access to
information in a timely manner at the point at which it is
needed. Some, but not all, input signals become output signals,
so a body of information can evolve over time. Information
loss may correspond to information ceasing to be current,
or alternatively, a cascade might branch to create divergent
cascades whose combined capacity may make up for apparent
local losses.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we took a further step towards an alternative
theory for information diffusion online. Rather than focusing to
prove conditionality with probabilistic methods, we examined
the suitability of using simple, common properties of shared
content. Such a transcendental information cascade is thus the
results of content that is set out within a specific information
architecture and the technical capabilities at hand to analyse
that content for patterns of similarity. Our experiments fo-
cused on the characteristics of different measures to assess
the structural and informational properties of transcendental
information cascades. In particular, we have shown how the
Wiener index, the identifier entropy, and the distribution of
particular single node motifs feature varying patterns when
different matching functions are applied to the same content.
We find significant differences when hashtags are used as cas-
cade identifiers, compared with other content features. We also
explain apparent local information losses in cascades in terms
of information obsolescence and cascade divergence; e.g.,
when a cascade branches into multiple, divergent cascades with
combined capacity equal to the original. With our study we
inform any future application of the transcendental information
cascade approach by outlining a basic analytical framework as
well as baselines for the interpretation of analysis results.

As part of our future work, we will focus on formalising
the interconnections on all levels of transcendental information
cascades as represented in Figure 1: (1) nodes and edges in
a cascade, (2) full cascades, (3) the system of all cascades
derived by applying a particular set of matching functions,
and (4) the relationship of any cascade system to all possible
other cascade systems representing the same input sequence
from a different viewpoint. We ultimately seek to determine
which cascade systems are the outcome of (potentially unin-
tended) sequential collective actions. We will approach this by
modeling the observed cascades as stochastic processes, and
testing the plausibility of different hypotheses about underlying
behavioural processes.
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