
 Open access Book Chapter DOI:10.1007/978-3-030-17659-4_18

From Collisions to Chosen-Prefix Collisions Application to Full SHA-1
— Source link

Gaëtan Leurent, Thomas Peyrin

Institutions: French Institute for Research in Computer Science and Automation, Nanyang Technological University

Published on: 19 May 2019 - Theory and Application of Cryptographic Techniques

Topics: Collision attack, Collision, MD5 and SHA-1

Related papers:

 From Collisions to Chosen-Prefix Collisions - Application to Full SHA-1.

 Quantum Collision Attacks on Reduced SHA-256 and SHA-512

 New Collision Attacks on SHA-1 Based on Optimal Joint Local-Collision Analysis

 Improving Local Collisions: New Attacks on Reduced SHA-256

 The first collision for full SHA-1

Share this paper:

View more about this paper here: https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-
4uxwyz2dkw

https://typeset.io/
https://www.doi.org/10.1007/978-3-030-17659-4_18
https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-4uxwyz2dkw
https://typeset.io/authors/gaetan-leurent-10jphw3esg
https://typeset.io/authors/thomas-peyrin-logv4lysgz
https://typeset.io/institutions/french-institute-for-research-in-computer-science-and-3k6jpcfg
https://typeset.io/institutions/nanyang-technological-university-3qh21pfu
https://typeset.io/conferences/theory-and-application-of-cryptographic-techniques-26i3y8m5
https://typeset.io/topics/collision-attack-1zyrxg0w
https://typeset.io/topics/collision-1454o7bl
https://typeset.io/topics/md5-1qb53ewd
https://typeset.io/topics/sha-1-7up0h92s
https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-1nz6tqf52r
https://typeset.io/papers/quantum-collision-attacks-on-reduced-sha-256-and-sha-512-v9nlxg3vo1
https://typeset.io/papers/new-collision-attacks-on-sha-1-based-on-optimal-joint-local-4ocr8y2f9h
https://typeset.io/papers/improving-local-collisions-new-attacks-on-reduced-sha-256-42va66xk1c
https://typeset.io/papers/the-first-collision-for-full-sha-1-1cd4ws5e96
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-4uxwyz2dkw
https://twitter.com/intent/tweet?text=From%20Collisions%20to%20Chosen-Prefix%20Collisions%20Application%20to%20Full%20SHA-1&url=https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-4uxwyz2dkw
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-4uxwyz2dkw
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-4uxwyz2dkw
https://typeset.io/papers/from-collisions-to-chosen-prefix-collisions-application-to-4uxwyz2dkw

HAL Id: hal-02424900
https://hal.inria.fr/hal-02424900

Submitted on 28 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Collisions to Chosen-Prefix Collisions
Gaëtan Leurent, Thomas Peyrin

To cite this version:
Gaëtan Leurent, Thomas Peyrin. From Collisions to Chosen-Prefix Collisions: Application to Full
SHA-1. Eurocrypt 2019 - 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, May 2019, Darmstadt, Germany. pp.527-555, 10.1007/978-3-030-17659-
4_18. hal-02424900

https://hal.inria.fr/hal-02424900
https://hal.archives-ouvertes.fr

From Collisions to Chosen-Prefix Collisions

Application to Full SHA-1

Gaëtan Leurent1 and Thomas Peyrin2,3

1 Inria, France
2 Nanyang Technological University, Singapore

3 Temasek Laboratories, Singapore

gaetan.leurent@inria.fr, thomas.peyrin@ntu.edu.sg

Abstract. A chosen-prefix collision attack is a stronger variant of a
collision attack, where an arbitrary pair of challenge prefixes are turned
into a collision. Chosen-prefix collisions are usually significantly harder
to produce than (identical-prefix) collisions, but the practical impact of
such an attack is much larger. While many cryptographic constructions
rely on collision-resistance for their security proofs, collision attacks are
hard to turn into a break of concrete protocols, because the adversary has
limited control over the colliding messages. On the other hand, chosen-
prefix collisions have been shown to threaten certificates (by creating a
rogue CA) and many internet protocols (TLS, SSH, IKE).
In this article, we propose new techniques to turn collision attacks into
chosen-prefix collision attacks. Our strategy is composed of two phases:
first a birthday search that aims at taking the random chaining variable
difference (due to the chosen-prefix model) to a set of pre-defined tar-
get differences. Then, using a multi-block approach, carefully analysing
the clustering effect, we map this new chaining variable difference to a
colliding pair of states using techniques developed for collision attacks.
We apply those techniques to MD5 and SHA-1, and obtain improved at-
tacks. In particular, we have a chosen-prefix collision attack against
SHA-1 with complexity between 266.9 and 269.4 (depending on assump-
tions about the cost of finding near-collision blocks), while the best-
known attack has complexity 277.1. This is within a small factor of the
complexity of the classical collision attack on SHA-1 (estimated as 264.7).
This represents yet another warning that industries and users have to
move away from using SHA-1 as soon as possible.

Keywords: hash function; cryptanalysis; chosen-prefix collision; SHA-1; MD5

1 Introduction

Cryptographic hash functions are crucial components in many information se-
curity systems, used for various purposes such as building digital signature
schemes, message authentication codes or password hashing functions. Infor-
mally, a cryptographic hash function H is a function that maps an arbitrarily

long message M to a fixed-length hash value of size n bits. Hash functions are
classically defined as an iterative process, such as the Merkle-Damg̊ard design
strategy [Mer90, Dam90]. The message M is first divided into blocks mi of fixed
size (after appropriate padding) that will successively update an internal state
(also named chaining variable), initialised with a public initial value (IV), using
a so-called compression function h. The security of the hash function is closely
related to the security of the compression function.

The main security property expected from such functions is collision resis-

tance: it should be hard for an adversary to compute two distinct messages M
and M ′ that map to the same hash value H(M) = H(M ′), where “hard” means
not faster than the generic birthday attack that can find a collision for any hash
function with about 2n/2 computations. A stronger variant of the collision attack,
the so-called chosen-prefix collision attack [SLdW07] is particularly important.
The attacker is first challenged with two message prefixes P and P ′, and its goal
is to compute two messages M and M ′ such that H(P ‖ M) = H(P ′ ‖ M ′),
where ‖ denotes concatenation. Such collisions are much more dangerous than
simple collisions in practice, as they indicate the ability of an attacker to obtain
a collision even though random differences (thus potentially some meaningful
information) were inserted as message prefix. In particular, this is an important
threat in the key application of digital signatures: chosen-prefix collisions for
MD5 were introduced in [SLdW07], eventually leading to the creation of colliding
X.509 certificates, and later of a rogue certificate authority [SSA+09]. Chosen-
prefix collisions have also been shown to break important internet protocols,
including TLS, IKE, and SSH [BL16], because they allow forgeries of the hand-
shake messages.

SHA-1 is one the most famous cryptographic hash functions in the world, hav-
ing been the NIST and de-facto worldwide hash function standard for nearly two
decades until very recently. Largely inspired by MD4 [Riv91] and then MD5 [Riv92],
the American National Security Agency (NSA) first designed a 160-bit hash func-
tion SHA-0 [Nat93] in 1993, but very slightly tweaked one part of the design two
years later to create a corrected version SHA-1 [Nat95]. It remained a standard
until its deprecation by the NIST in 2011 (and disallowed to be used for digi-
tal signatures at the end of 2013). Meanwhile, hash functions with larger output
sizes were standardized as SHA-2 [Nat02] and due to impressive advances in hash
function cryptanalysis in 2004, in particular against hash functions of the MD-SHA
family [WLF+05, WY05, WYY05b, WYY05a], the NIST decided to launch a
hash design competition that eventually led to the standardization in 2015 of
SHA-3 [Nat15].

There has been a lot of cryptanalysis done on SHA-1. After several first ad-
vances on SHA-0 and SHA-1 [CJ98, BCJ+05], researchers managed to find for
the first time in 2004 a theoretical collision attack on the whole hash function,
with an estimated cost of 269 hash function calls [WYY05a]. This attack was ex-
tremely complex and involved many details, so the community worked on better
evaluating and further improving the actual cost of finding a collision on SHA-1

with these new techniques. Collisions on reduced-step versions of SHA-1 were

2

computed [DMR07, KPS15], or even collisions on the whole SHA-1 compression
function [SKP16], which eventually led to the announcement in 2017 of the first
SHA-1 collision [SBK+17]. The best known results are listed in Table 1: the best
collision attack against SHA-1 has complexity 261 on CPU [Ste13], and 264.7 when
implemented on GPU [SBK+17], while the best chosen-prefix collision attack has
complexity 277.1 [SKP16].

Even though SHA-1 has been broken in 2004, it is still deployed in many
security systems, because collision attacks do not seem to directly threaten most
protocols, and migration is expensive. Web browsers have recently started to
reject certificates with SHA-1 signatures, but there are still many users with
older browsers, and many protocols and softwares that allow SHA-1 signatures.
Concretely, it is still possible to buy a SHA-1 certificate from a trusted CA, and
many email clients accept a SHA-1 certificate when opening a TLS connection.
SHA-1 is also widely supported to authenticate TLS handshake messages.

Main SHA-1 cryptanalysis techniques. Attacks against SHA-1 are based on
differential cryptanalysis, where an attacker manages to somewhat control the
output of the compression function. Several important ideas were used to turn
differential cryptanalysis into an effective tool against hash functions:

Linearization [CJ98]. In order to build differential trails with high probabil-
ity, a linearized version of the step function is used. Differential trails with
a low-weight output difference δO can be used to find near-collisions in the
compression function (i.e. two outputs that are close to a collision, the dis-
tance metric being for example the Hamming distance).

Message modification [BC04, WYY05a] In a differential attack against a
hash function, the attacker can choose messages that directly satisfy some
of the constraints of the path, because there is no secret key. While the
conditions in the first steps are easy to satisfy, more advanced techniques
have been introduced to extend the usage of these degree of freedom to later
rounds in order to speed-up collision search: neutral bits (firstly introduced
for cryptanalysis SHA-0 [BC04, BCJ+05]), message modifications [WYY05a]
and boomerangs/tunnels [Kli06, JP07].

Non-linear trails [WYY05a]. In order to get more flexibility on the differ-
ential trails, the first few steps can use non-linearity instead of following the
constraints of the linearized step function. This does not affect the complex-
ity of the search for conforming messages (thanks to messages modification
techniques), but it allows to build trails from an arbitrary input difference
to a good fixed output difference δO (or its opposite).

Multi-block technique [CJ98, WYY05a]. The multi-block technique takes
advantage of the Davies-Meyer construction used inside the compression
function. Indeed, it can be written as h(x,m) = x + Em(x) where E is a
block cipher, and + denotes some group operation. Because of this feed-
forward, an attacker can use several differential trails in E, and several near-
collisions blocks, to iteratively affect the internal state. In particular, using

non-linearity in the first steps, he can derive two related trails 0
δM
 δO and

3

δO
−δM
 −δO in E from a single linear trail, by swapping the message pair.

When conforming messages are found for each block, this leads to a collision
because the internal state differences cancel out (see Figure 1).

Birthday phase for chosen-prefix collisions [SLdW07, Ste13]. Differen-
tial techniques have also been used for chosen-prefix collision attacks. An
attacker can relax the last steps of the differential trail to allow a set D of
output differences rather than a single δO. He can also use several differen-
tial trails, and use the union of the corresponding sets. Starting from two
different prefixes P, P ′, the chosen-prefix collision attack has two stages (see
Figure 2):

– In the birthday stage, the attacker uses a generic collision search with
message blocks m0,m

′
0 to reach a difference δ = H(P ′ ‖m′

0)−H(P ‖m0)
in D with complexity roughly

√

π · 2n/|D|.

– In the near-collision stage, he builds a differential trail δ −δ using
non-linearity in the first steps, and searches a conforming message to
build the chosen-prefix collision.

Multi-block for chosen-prefix collisions [SLdW07]. If a collection of differ-
ential trails affecting separate parts of the internal state is available, chosen-
prefix collision attacks can be greatly improved. In particular, if an arbi-

trary input difference δR can be decomposed as δR = −
(

δ
(1)
O + δ

(2)
O + · · · +

δ
(r)
O

)

, where each δ
(i)
O can be reached as the output of a differential trail,

the attacker just has to find near-collision blocks with output differences

δ
(1)
O , . . . , δ

(r)
O (see Figure 3).

Alternatively, if this only covers a subset of input differences, the multi-block
technique is combined with a birthday stage.

Our contributions. In this work, we describe new chosen-prefix collision at-
tacks against the MD-SHA family, using several improvements to reduce the com-
plexity.

1. The main improvement comes from how we use multiple near-collision blocks.
For instance, using two blocks we can start from any difference in the set S :=
{δ1 + δ2 | δ1, δ2 ∈ D}, and cancel it iteratively with a first block following a
trail δ1 + δ2 −δ1 and a second block following a trail δ2 −δ2 (see
Figure 4). The set S grows with the number of blocks: this reduces the cost
of the birthday search in exchange for a more expensive near-collision stage.

While there are previous chosen-prefix collision attacks using several near-
collision blocks [LPRR07, Pey07, SLdW07, SSA+09, MRS15], these attacks
use a collection of differential trails to impact different parts of the state
(each block uses a different trail). On the opposite, our technique can be
used with a single differential trail, or a collection of trails without any
special property. In particular, previous chosen-prefix collision attacks based
on a single trail (against SHA-1 [Ste13] and MD5 [SSA+09, Section 6]) used
only one near-collision block.

4

IV H

m1 m2

〈δM 〉 〈−δM 〉

〈0〉 〈δI〉 〈δO〉 〈δO〉 〈−δI〉 〈−δO〉

〈0〉 〈δO〉 〈0〉NL1 NL2L L

Fig. 1. 2-block collision attack using a linear trail δI
δM
 δO and two non-linear trails

0 δI and δO −δI . Green values between bracket represent differences in the state.

cv

S

H

m
2

〈δM 〉

〈δ〉
〈δI 〉

〈−δ〉

〈δ〉

〈0〉

NL1

L

〈δR〉

m1

δ ∈ S

Fig. 2. Single-block chosen-prefix collision attack with a birthday stage. The linear
trail δI δO is relaxed to reach a set S of feasible differences.

cv · · ·

m1

〈δ
(1)
M 〉

〈δ
(1)
I 〉 〈δ

(1)
O 〉

〈δR〉 NL1 L

H

mr

〈δ
(r)
M 〉

〈δ
(r)
I 〉 〈δ

(r)
O 〉

〈δR +
∑

i δ
(i)
O 〉

〈= 0〉

NLr L

Fig. 3. Multi-block chosen-prefix collision attack. We assume that an arbitrary differ-

ence δR can be decomposed as δR = −
(

δ
(1)
O + δ

(2)
O + · · ·+ δ

(r)
O

)

, where each δ
(i)
O can

be reached as the output of a differential trail.

5

2. In addition, we use a clustering technique to optimize the near-collision stage,
taking advantage of multiple ways to cancel a given difference. For instance,
let’s assume that we have to cancel a difference δ in the internal state that can
be written in two different ways: δ = δ1+δ2 = δ′1+δ′2, with δ1, δ

′
1, δ2, δ

′
2 ∈ D,

knowing trails δ −δ1 and δ −δ′1 with the same message constraints.
Then, an attacker can target simultaneously −δ1 and −δ′1 for the first near-
collision block (and use either a trail δ2 −δ2 or δ′2 −δ′2 for the second
block, depending on the first block found). This can reduce the cost of finding
the first block by a factor two.
This technique can be seen as a generalization of an optimisation used for
collision attacks with two blocks, where the first is less constrained and
several output differences are allowed (for instance the SHA-1 collision attack
of [Ste13] allows 6 output differences, so that the first block is 6 times less
expensive than the second).

Using these techniques, we obtain significant improvements to chosen-prefix
collision attacks against MD5 and SHA-1.

Application to MD5. We use multiple near-collision blocks to improve the com-
plexity of the chosen-prefix collision attack with a single near-collision block
given in [SSA+09, Section 6]. We start with the same differential trail, and a
set D of size 225.2, built in the same way. Using two near-collision blocks, we
can target the set S := {δ1 + δ2 | δ1, δ2 ∈ D} which contains 237.1 elements. This
leads to an attack with complexity roughly

√

π · 2128/237.1 ≈ 246.3, while the
best previous attack with two blocks or less required 253.2 MD5 computations.
However, the best chosen-prefix collision attack against MD5 is still the attack
from [SSA+09] with complexity 239.1 using 9 near-collision blocks.

Application to SHA-1. For SHA-1, we start with the attack of Stevens [Ste13],
and after using several improvements we obtain a chosen-prefix collision attack
with estimated complexity between 266.9 and 269.4 SHA-1 computations. This
is within a small factor of the complexity of a plain collision attack, estimated
at 264.7 on average [WYY05a, SBK+17], and orders of magnitude better than
the 277.1 computations cost of the currently best known chosen-prefix collision
attack [Ste13] on SHA-1. We have conducted tests to check that our assumptions
are indeed verified in practice.

First, we use a more relaxed version of the differential trail than used in [Ste13],
so that we have a set S of size 8768 rather than 192. This directly reduce the at-
tack cost by a factor 6.75, down to 274.3. Next, we use the multi-block technique
to build a large set S and to reduce further the cost of the birthday stage. Using
a set S of size 229.4 with a near-collision cost at most 12× 264.7, this reduces the
cost of the attack down to 268.6 (with an optimistic estimate). Finally, we use
the clustering technique to reduce the near-collision cost. After optimization, we
have a set S of 232.67 differences that can be reached with a maximum cost of
3.5×264.7 (with an optimistic estimate), leading to a full attack with complexity
266.9 — about five time more expensive than the collision attack.

6

Function Collision type Complexity Ref.

SHA-1 free-start collision 257.5 [SKP16]
collision 269 [WYY05a]

264.7 [Ste13, SBK+17]a

chosen-prefix collision 277.1 [Ste13]
266.9 — 269.4 New

MD5 collision 240 [WY05]
216 [SSA+09]

chosen-prefix collision (9 blocks) 239.1 [SSA+09]
(3 blocks) 249 [SSA+09]
(1 block) 253.2 [SSA+09]
(2 blocks) 246.3 New

Table 1. Comparison of previous and new cryptanalysis results on MD5 and SHA-1. A
free-start collision is a collision or the compression function only, where the attacker
has full control on all the primitive’s inputs. Complexities in the table are given in
terms of SHA-1 equivalents on a GTX-970 GPU (when possible).

a The attack has a complexity of 261 on CPU, and 264.7 on GPU

Our result is surprising since we show that the cost to find a chosen-prefix
collision for SHA-1 is not much more than a simple collision search. Moreover our
work has a strong impact in practice as chosen-prefix collision attacks are much
more dangerous than simple collisions (see for example the case of MD5 [SSA+09]).
This is yet another warning that SHA-1 should be totally removed from any
security product as soon as possible. The thinking “a collision attack is not
directly exploitable, thus we are fine” is clearly wrong for SHA-1, and we give a
proof here.

Our method is in essence quite generic, even though a lot of details have to
be taken care of in order to make it work. Since most collision attacks on mem-
bers of the MD-SHA family are built on the same principles as SHA-1 attacks, we
believe similar ideas would apply and a collision attack can probably be trans-
formed into a chosen-prefix collision attack for a reasonable extra cost factor.
We do not foresee any reason why this technique would not apply to non MD-SHA
hash functions as well (except wide-pipe hash functions which would make the
birthday part too costly).

Outline. We first consider the impact of this result and give some recommen-
dations in Section 2. Then, we describe SHA-1 and previous cryptanalysis works
on this hash function in Section 3. The generic high-level description of our at-
tack is given in Section 4, while the details regarding its application to MD5 and
SHA-1 are provided in Sections 5 and 6, respectively. Eventually, we conclude
and propose future works in Section 7.

7

2 Implications and Recommendations

Our work shows that finding a chosen-prefix collision is much easier than previ-
ously expected, and potentially not much harder than a normal collision search
for SHA-1. As a real collision has already been computed for this hash func-
tion, one can now assume that chosen-prefix collisions are reachable even by
medium funded organisations. Since a chosen-prefix collision attack can break
many widely used protocols, we strongly urge users to migrate to SHA-2 or SHA-3,
and to disable SHA-1 to avoid downgrade attacks.

Cost Estimation. We use the same estimation process as in [SBK+17]. With
an optimistic spot-price scenario on g2.8xlarge instances of Amazon EC2, the
authors estimated that the workload spent to find the SHA-1 collision was equiv-
alent to a cost of about US$ 110 K, with 263.4 SHA-1 equivalent calls on GTX-970
GPUs. We recall that they found the collision with less computations than ex-
pected. Using expected computational cost, the average workload required to
find a SHA-1 collision is equivalent to a cost of about US$ 275 K, or 264.7 SHA-1

calls. An optimistic analysis of our attack leads to a complexity of 266.9 SHA-1

equivalent calls on GTX-970 GPUs, corresponding to a cost of US$ 1.2 M, while
a more conservative analysis yields a complexity of 269.4, or a cost of US$ 7M.

Hardware will improve as well as cryptanalysis and we can expect that colli-
sion together with chosen-prefix collision attacks will get cheaper over the years.
Migration from SHA-1 to the secure SHA-2 or SHA-3 hash algorithms should now
be done as soon as possible, if not already.

Impact of Chosen-prefix Collisions. Chosen-prefix collision attacks have
been demonstrated already for MD5, and they are much more dangerous that
identical-prefix collision attacks, with a strong impact in practice. In particular,
chosen-prefix collision attack on MD5 have been used to generate colliding X.509
certificates [SLdW07] and later a rogue certificate authority [SSA+09], undermin-
ing the security of websites. They have also been shown to threaten important
internet protocols, including TLS, IKE, and SSH using forgery of handshake
messages. The SLOTH attacks [BL16] can break various security properties of
these protocols using MD5 chosen-prefix collisions, such as client impersonation
in TLS 1.2. MD5 has now been removed from most security applications, but the
very same threats are now a reality for SHA-1.

However, after these attacks were demonstrated with MD5, countermeasures
have been implemented that make the attacks harder to exploit. In particular,
CAs are now expected to randomize the serial number of X.509 certificates,
which prevents the attack against certificates. Similarly, IKEv2 implementa-
tions randomize the SPI of each connection, forcing an attacker to compute the
chosen-prefix collision online, after receiving the SPI. Many implementations are
also more strict with suspicious looking messages and parameters (such as the
cookies used in the IKEv2 attack), and SHA-1 has been depreciated from some
protocols (in particular, RFC 8247 depreciates SHA-1 in IKEv2, and SHA-1 has
been removed from TLS 1.3).

8

As far as we understand, attacks with an online chosen-prefix collision should
still be possible against the SSH and TLS 1.2 handshake. This is still far from
practical4, but it is nonetheless significantly easier than it should be with sound
cryptographic primitives. Moreover, the IKEv2 and X.509 attacks might still
be possible against implementations that still use SHA-1 and don’t use proper
countermeasures, but this requires a careful analysis of every implementation.

Usage of SHA-1. Even if practically broken only very recently, SHA-1 has been
theoretically broken since 2004. It is therefore surprising that SHA-1 remains
deployed in many security systems. In particular, as long as SHA-1 is allowed,
even if it is not used in normal operation, an attacker can use weaknesses in
SHA-1 to forge a signature, and the signature will be accepted.

First, SHA-1 is still widely used to authenticate handshake messages in secure
protocols such as TLS, SSH or IKE. As shown with the SLOTH attack [BL16],
this allows various attacks using chosen-prefix collision, such as breaking authen-
tication. These protocols have removed support for MD5 after the SLOTH attack,
but SHA-1 is still widely supported. Actually, more than5 5% of the web servers
from Alexa’s top 1M (including skype.com) prefer to use SHA-1 to authenticate
TLS handshake messages.

An important effort is underway to remove SHA-1 certificates from the Web,
and major browsers are now refusing to connect to servers still using SHA-1-based
certificates. Yet SHA-1-based certificates remains present: according to scans of
the top 1 million websites from Alexa by censys.io, there are still about 35 thou-
sand6 servers with SHA-1 certificates out of 1.2 million servers with HTTPS
support. SHA-1-based certificates are also used with other protocols: for instance
700 thousand7 out of 4.4 million mail servers (with IMAPS) use a SHA-1 cer-
tificate. Actually, it is still possible to buy a SHA-1 certificate from a trusted
root8! Even though recent web browsers reject those certificates, they are ac-
cepted by older browsers and by many clients for other protocols. For instance,
the “Mail” application included in Windows 10 still accepts SHA-1 certificates
without warnings when opening an IMAPS connection.

Unfortunately, many industry players did not consider moving away from
SHA-1 a priority, due to important costs and possible compatibility and bug
issues induced by this move. An often-heard argument is that a simple collision
attacks against a hash function is not very useful for an attacker, because he

4 Using our attack, it would take a computation power similar to the full bitcoin
network to compute a SHA-1 chosen-prefix collision within one minute, and some
parts of the attack will be hard to parallelize to such a degree.

5 https://censys.io/domain?q=tags:https+and+443.https.tls.signature.hash_

algorithm:sha1
6 https://censys.io/domain?q=tags:https+and+443.https.tls.certificate.

parsed.signature_algorithm.name:SHA1*
7 https://censys.io/ipv4?q=tags:imaps+and+993.imaps.tls.tls.certificate.

parsed.signature_algorithm.name:SHA1*
8 https://www.secure128.com/online-security-solutions/products/

ssl-certificate/symantec/sha-1-private-ssl/

9

https://skype.com
https://censys.io/domain?q=tags:https+and+443.https.tls.signature.hash_algorithm:sha1
https://censys.io/domain?q=tags:https+and+443.https.tls.signature.hash_algorithm:sha1
https://censys.io/domain?q=tags:https+and+443.https.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://censys.io/domain?q=tags:https+and+443.https.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://censys.io/ipv4?q=tags:imaps+and+993.imaps.tls.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://censys.io/ipv4?q=tags:imaps+and+993.imaps.tls.tls.certificate.parsed.signature_algorithm.name:SHA1*
https://www.secure128.com/online-security-solutions/products/ssl-certificate/symantec/sha-1-private-ssl/
https://www.secure128.com/online-security-solutions/products/ssl-certificate/symantec/sha-1-private-ssl/

doesn’t have much control over the colliding messages. Therefore, there seemed
to be a long way to go before really useful collision attacks would be found for
SHA-1, if ever. Indeed, the current best chosen-prefix collision attack against
SHA-1 requires 277.1 hash calls [Ste13], thus orders of magnitude harder than
the cost of finding a simple collision. Similarly, in the case of MD5, the cost
goes from 216 to 239 for the currently best known collision and chosen-prefix
collision attacks. However, this is a dangerous game to play as the history showed
that cryptanalysis only keep improving, and attackers will eventually come up
with ways to further improve their cryptanalysis techniques. For example, in the
case of MD5, collisions for the compression function were found [dB94] in 1993,
collisions for the whole hash function were found [WY05] in 2004, colliding X.509
MD5-based certificates were computed [SLdW07] in 2007, and rogue Certificate
Authority certificate [SSA+09] was eventually created in 2009.

3 Preliminaries

3.1 Description of SHA-1

We describe here the SHA-1 hash function, but we refer to [Nat95] for all the
complete details.

SHA-1 is a 160-bit hash function based on the well-known Merkle-Damg̊ard
paradigm [Dam89, Mer89]. The message input is first padded (with message
length encoded) to a multiple of 512 bits, and divided into blocks mi of 512 bits
each. Then, each block is processed via the SHA-1 compression function h to
update a 160-bit chaining variable cvi that is initialised to a constant and public
initial value (IV): cv0 = IV . More precisely, we have cvi+1 = h(cvi,mi+1). When
all blocks have been processed, the hash output is the last chaining variable.

The compression function is similar to other members of the MD-SHA family of
hash functions. It is based on the Davies-Meyer construction, that turns a block
cipher E into a compression function: cvi+1 = Emi+1

(cvi) + cvi, where Ek(y) is
the encryption of the plaintext y with the key k, and + is a word-wise modular
addition.

The internal block cipher is composed of 80 steps (4 rounds of 20 steps each)
processing a generalised Feistel network. More precisely, the state is divided
into five registers (Ai, Bi, Ci, Di, Ei) of 32-bit each. At each step, an extended
message word Wi updates the registers as follows:

Ai+1 = (Ai≪ 5) + fi(Bi, Ci, Di) + Ei +Ki +Wi

Bi+1 = Ai

Ci+1 = Bi≫ 2
Di+1 = Ci

Ei+1 = Di

where Ki are predetermined constants and fi are boolean functions (in short:
IF function for the first round, XOR for the second and fourth round, MAJ
for the third round, see Table 2). Since only a single register value is updated

10

(Ai+1), the other registers being only rotated copies, we can express the SHA-1

step function using a single variable:

Ai+1 = (Ai≪ 5) + fi(Ai−1, Ai−2≫ 2, Ai−3≫ 2)

+ (Ai−4≫ 2) +Ki +Wi.

For this reason, the differential trails figures in this article will only represent
Ai, the other register values at a certain point of time can be deduced directly.

step i fi(B,C,D) Ki

0 ≤ i < 20 fIF = (B ∧ C)⊕ (B ∧D) 0x5a827999

20 ≤ i < 40 fXOR = B ⊕ C ⊕D 0x6ed6eba1

40 ≤ i < 60 fMAJ = (B ∧ C)⊕ (B ∧D)⊕ (C ∧D) 0x8fabbcdc

60 ≤ i < 80 fXOR = B ⊕ C ⊕D 0xca62c1d6

Table 2. Boolean functions and constants of SHA-1

The extended message words Wi are computed linearly from the incoming
512-bit message block m, the process being called message extension. One first
splits m into 16 32-bit words M0, . . . ,M15, and then the Wi’s are computed as
follows:

Wi =

{

Mi, for 0 ≤ i ≤ 15

(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16)≪ 1, for 16 ≤ i ≤ 79

3.2 Previous Works

Collision attacks on SHA-1. We quickly present here without details the pre-
vious advances on SHA-1 collision search. First results on SHA-0 and SHA-1 were
obtained by linearizing the compression function and constructing differential
trails based on the probabilistic event that difference spreads will indeed hap-
pen linearly. These linear trails are generated with a succession of so-called local
collisions (small message disturbances whose influence is corrected with other
message differences inserted in the subsequent SHA-1 steps) that follows the
SHA-1 message expansion. However, with this linear construction, impossibili-
ties might appear in the first 20 steps of SHA-1 (for example due to the fIF
boolean function that never behaves linearly in some specific situations) and the
cheapest linear trail candidates might not be the ones that start and end with
the same difference (which is a property required to obtain a collision after the
compression function feed-forward). Thus, since [WYY05a], collision attacks on
SHA-1 are performed using two blocks containing differences. The idea is to sim-
ply pick the cheapest linear trail from roughly step 20 to 80, without paying any
attention to the fIF constraints or to the input/output differences. Then, the
attacker will generate a non-linear differential trail for the first 20 steps in order

11

to connect the actual incoming input difference to the linear part difference at
step 20. With two successive blocks using the same linear trail (just ensuring
that the output difference of the two blocks have opposite signs), one can see in
Figure 1 that a collision is obtained at the end of the second block.

Once the differential trail is set, the attacker can concentrate on finding a pair
of messages that follows it for each successive block. For this, he will construct
a large number of messages that follow the trail up to some predetermined step,
and compute the remaining steps to test whether the output difference is the
required one. The computational cost is minimized by using a simple early-abort
strategy for the 16 first steps, but also more advanced amortization methods such
as neutral bits [BCJ+05], boomerangs [JP07] or message modification [WYY05a]
for a few more steps. Usually, the first 20 or so steps do not contribute the
complexity of the attack.

Chosen-prefix collision attacks. The first concrete application of a chosen-
prefix collision attack was proposed in [SLdW07] for MD5. This work was also
the first to introduce a birthday search phase in order to find such collisions.
The idea is to process random message blocks after the challenged prefixes, until
the chaining variable difference δ belongs to a large predetermined set S. Since
the message blocks after each prefix are chosen independently, this can be done
with birthday complexity

√

π · 2n/|S|. Then, from that difference δ, the authors
eventually manage to reach a collision by slowly erasing the unwanted difference
bits by successfully applying some near-collision blocks. We note that the starting
difference set S during the birthday phase must not be too small, otherwise
this phase would be too costly. Moreover, the near-collisions blocks must not
be too expensive either, and this will of course depend on the cryptanalysis
advancements of the compression function being studied.

Finally, using also this two-phase strategy, in [Ste13] is described a chosen-
prefix collision attack against the full SHA-1, for a cost of 277.1 hash calls. The
improvement compared to the generic 280 attack is not very large, due to the
difficulty for an attacker to generate enough allowable differences that can later
be erased efficiently with a near-collisions block. Indeed, the compression func-
tion of SHA-1 being much stronger than that of MD5, few potential candidates are
found. Actually, Stevens only considers one type of near collision block, following
the best differential trail used for the collision attack. By varying the signs of
the message and output differences, and by letting some uncontrolled differences
spread during the very last steps of the compression function, a set S of 192
allowable differences is obtained. However, having such a small set makes the
birthday part by far the most expensive phase of the attack.

In this article, we will use essentially the same strategy: a birthday phase
to reach a set S of allowable differences and a near-collision phase to remove
the remaining differences. We improve over previous works on several points.
First, we further generalise for SHA-1 the set of possible differences that can
be obtained for a cheap cost with a single message block. Secondly, we propose
a multi-block strategy for SHA-1 that allows to greatly increase the size of the
set S. Finally, we study the clustering effect that appears when using a multi-

12

block strategy. This can be utilised by the attacker to select dynamically the
allowable differences at the output of each successive blocks, to further reduce
the attack complexity. Notably, and in contrary to previous works, our set S
is not the direct sum of independent subspaces corresponding to distinct trails.
On the opposite, our applications use the same core differential trail for all the
near-collision blocks. Overall, we improve substantially previous attack [Ste13]
from 277.1 SHA-1 calls to only 266.9. Surprisingly, our attack is very close to some
sort of optimal since its cost is not much greater than that of finding a simple
collision. Our attack being rather generic, we believe that this might be the case
for many hash functions, which contradicts the idea that chosen-prefix collisions
are much harder to obtain than simple collisions.

One can mention other parallel researches conducted on finding chosen-prefix
collision attacks for various hash functions. For example, in [Pey07], the author
explains how to compute collisions with random incoming differences in the
internal state for the GRINDAHL hash function, the strategy being to slowly re-
move these differences thanks to the many degrees of freedom available every
step. Such a divide-and-conquer technique is not applicable at all to SHA-1 as
the degrees of freedom are much fewer and only available at the beginning of
the compression function. In [MRS15], inspired by the second-preimage attack
against SMASH [LPRR07], the authors proposed a chosen-prefix collision attack
on a reduced version of the GROSTL hash function. However, this attack strongly
relies on the ability of the attacker to perform a rebound attack, which seems
really hard to achieve in the case of SHA-1.

4 From Collision to Chosen-Prefix Collision

4.1 The Chosen-prefix Collision Attack

We assume that the hash function considered is an n-bit narrow pipe primitive,
based on a Merkle-Damg̊ard-like operating mode. In addition, we assume that
the compression function is built upon a block cipher in a Davies-Meyer mode.

Preparing the attack. The attacker first builds a set S and a graph G; S cor-
responds to a set of differences that can be cancelled with near-collision blocks,
and G is used to find the sequence of blocks needed to cancel a difference in S.
We first explain how to execute the attack when S and G are given, and we will
explain how to build them in Section 4.2.

The prefixes (stage 1 of Figure 4). The attacker receives the two challenge
prefixes and pads them to two prefixes of the same length, to avoid differences
in the final length padding. After processing the two padded prefixes starting
from the IV, he reaches states cv/cv′, and we denote the corresponding difference
as δR.

13

sta
g
e
1

p
re
fi
x

sta
g
e
2

b
irth

d
a
y

sta
g
e
3

n
ea
r-co

llisio
n
b
lo
c
k
s

I
V

〈0
〉

cv
〈δ

R
〉

P
/
P

′
S

m
1〈δ

(1
)

M
〉

〈δ
(1

)
I

〉
〈δ

(1
)

O
〉

〈δ〉
N
L

1
L

···

H

m
r〈δ

(
r
)

M
〉

〈δ
(
r
)

I
〉
〈δ

(
r
)

O
〉

〈δ
+

∑

i
δ
(
i)

O
=

0
〉

N
L

r
L

u

δ
∈
S

F
ig
.
4
.
H
ig
h
-lev

el
v
iew

o
f
th
e
ch
o
sen

-p
refi

x
co
llisio

n
a
tta

ck

14

The birthday search (stage 2 of Figure 4). The goal of the attacker is now
to find one message block pair (u, u′) to reach a chaining variable pair with a
difference δ that belongs to S, the set of acceptable chaining variable differences.

For this stage, we use the parallel collision search algorithm of van Oorschot
andWiener [vW99]. When a memoryM ≫ C is available, this algorithm can find
C collisions in a function f : {0, 1}k → {0, 1}k with complexity

√

π/2 · 2k · C,
and is efficiently parallelizable. It computes chains of iterates of the function f ,
and stops when the end point is a distinguished point, i.e. it satisfies some easy to
detect property. In practice, we stop a chain when x < 2k · θ, with θ ≫

√

C/2k,

and we store on average the starting points and end points of θ ·
√

π/2 · 2k · C
chains (the expected length of a chain is 1/θ). When colliding end points are
detected, we restart the corresponding chains to locate the collision point, with
an expected cost of 2C/θ, which is small compared to the total complexity if
θ ≫

√

C/2k.
In our case, we are looking for message blocks (u, u′) such that h(cv, u) −

h(cv′, u′) ∈ S. Therefore, we need a function f such that a collision in f corre-
sponds to good (u, u′) with high probability. First, we consider a truncation func-
tion τ : {0, 1}n → {0, 1}k, so that pairs (x, x′) with x−x′ ∈ S have τ(x) = τ(x′)
with high probability:

p = Pr
x,x′

[τ(x) = τ(x′) | x− x′ ∈ S] ≈ 1.

For functions of the MD-SHA family, the group operation + is a word-wise mod-
ular addition, and we build τ by removing bits that are directly affected when
adding a value in S, and bits that are affected by a carry with a relatively
high probability. This typically leads to p close to one (as seen in previous at-
tacks [SSA+09, Ste13], and the new attacks in this paper). Then, we build f
as:

f(u) :=

{

τ(h(cv , pad(u))) if u[0] = 1;

τ(h(cv′, pad(u))) else.

The probability that a collision in f corresponds to a pair (u, u′) with h(cv, u)−
h(cv′, u′) ∈ S can be estimated as:

pf =
1

2
· Pr
x,x′

[x− x′ ∈ S | τ(x) = τ(x′)] =
p

2
·
|S|/2n

2−k

Finally, we need 1/pf collisions in f , and the total complexity of the birthday
stage is on average:

√

π

2
·
2k

pf
=

√

π · 2n

p · |S|
≈

√

π · 2n

|S|
.

The multi-block collision search (stage 3 of Figure 4). The attacker now
uses the graph G to build a sequence of near-collision blocks that ends up with
a collision. Each node of the graph represents one chaining variable difference

15

in the set S. To each node i of the graph is associated a cost value wi that
represents the cost an attacker will expect to pay from this particular chaining
variable difference i in order to reach a colliding state (with one or multiple
message blocks). Of course, a null cost will be associated with the zero difference
(w0 = 0). A directed edge from node i to node j represents a way for an attacker
to reach chaining variable difference j from difference i with a single message
block. Note that the graph is acyclic, as we will ensure that the edges will always
go to strictly lower costs (i.e. an edge from i to j is only possible if wj < wi). To
each edge is attached the details of the differential trail and message difference
to use for that transition to happen. However, a very important point is that
all edges going out of a node i will share the same core differential trail (by
core differential trail, we mean the entire differential trail except the last steps
for which one can usually accept a few divergences in the propagation of the
differences). For example, during the attack, from a chaining difference i, an
attacker can potentially reach difference j or difference k using the same core
differential trail (and thus without having to commit in advance which of the two
differences he would like to reach). Thus, in essence, the details of the differential
trail and message difference to use can be directly attached to the source node.

Once the attacker hits a starting difference δ ∈ S in the birthday phase, he
will pick the corresponding node in G, and use the differential trail and message
difference attached to this node. He will use this differential trail until he reaches
one of the target nodes (which has necessarily a lower expected cost attached
to it). As explained in the next section, targeting several nodes simultaneously
reduces the cost of the attack, because it is easier to hit one node out of many
than a fixed one. We call this the clustering effect, because we use a cluster of
paths in the graph. When a new node is reached, the attacker repeats this process
until he eventually reaches the colliding state (i.e. null difference). Overall, the
expected computational cost for this phase is the cost attached to the node δ (in
practice, when actually computing one collision, he might pay a slightly lower
or higher computational cost as the wi’s are expected values).

We note that any suffix message blocks that do not contain differences can of
course be added after this colliding state, as the Merkle-Damg̊ard-like mode will
maintain the collision throughout the subsequent compression function calls.

4.2 Building the Set S and the Graph G

We now describe how the set S and the graph G can be built during the prepara-
tion of the attack. For that, we first need to describe what an adversary can do
when he tries to attack the compression function. We consider that the attacker
knows some good core differential trails for the internal block cipher E, that is
differential trails that go from early steps to late steps of E. For each core differ-
ential trail CDTi there are several possible output differences δ

i
j for E. This is typ-

ically what happens in the chosen-prefix collision attack on SHA-1 [Ste13] where
some differences in the very last steps can be allowed to spread differently than
planned, thus generating new output differences. We denote the set of all possible

16

output differences as D (in particular, we have 0 ∈ D, and δ ∈ D ⇐⇒ −δ ∈ D
because of symmetries).

We finally assume that any input difference for E can be mapped to any of
the core differential trails inside the primitive. In the case of a SHA-1 attack,
this is achieved with the non-linear part of the trail in the first steps of the
function. As shown in previous works, it allows to map any input difference to
any internal difference. The non-linear part has a low probability, but during the
near-collision search this is solved using the many degrees of freedom available
in the first steps of the function.

Building the graph G′. The attacker will first build a graph G′ and filter
it later to create G. The graph G′ is similar to the graph G: each node will
represent a chaining variable difference. A directed edge from node i to node
j represents again a way for an attacker to reach chaining variable difference
j from difference i with a single message block, stored with the details of the
differential trail attached to it, and the cost to find the corresponding block. The
differences with G are that (see Figure 5):

– G′ can potentially be cyclic, as we do not ensure that an edge goes from a
higher to a strictly smaller cost;

– all outgoing edges from a node i will not necessarily share the same core
differential trail;

– there can be several edges from i to j, with different core differential trails.

In order to build the graph G′, starting from the colliding state δ = 0, we
will simply proceed backward. We go through all possible core differential trails
for E and their possible output differences δij . Due to the feed-forward of the
Davies-Meyer construction, all these differences can be used to reach the colliding
state by simply forcing their respective opposite −δij as input difference of the
cipher (since we assumed that any input difference for E can be mapped to any
of the core differential trails inside the primitive, this is always possible). Thus,
for each such difference δij coming from a core differential trail CDTi, we will

add a node −δij in the graph G′, and an edge going from this new node to the
colliding state. If a node with that difference already exists in the graph, we add
the edge between this node and the colliding state. This means that nodes can
have several incoming and outgoing edges.

We iteratively repeat this process again with all the newly created nodes
as starting points (instead of the collision state). This will create a bigger and
bigger graph as we keep iterating, and the attacker can simply stop when he
believes that he has enough nodes in the graph (alternatively, he can set an
upper limit on the cost of the nodes to consider, or on the depth of the search,
which will naturally limit the size of the graph).

The clustering effect. A simple way to build a graph G for the attack is to
keep only the minimal cost paths in the graph G′ (the corresponding edges form
a tree), and to set the cost of the nodes to cost of the minimal path. However,

17

0

2α

α

−α

−2α

4α

3α

−3α

−4α

11

1

1

11

1

1

1

1

11

1

1

11

2

2

2

2

2
2

22

2
2

2

2

2

2

Fig. 5. Example of a graph G′, with
a bundle {α, 2α} with costs 1 and
2 (solid green lines), and a bundle
{−α,−2α} with costs 1 and 2 (dashed
red lines). The corresponding set S is
{−4α,−3α,−2α,−α, 0, α, 2α, 3α, 4α}.

0 : 0

2α : 4/3

α : 1

−α : 1

−2α : 4/3

4α : 64/27

3α : 17/9

−3α : 17/9

−4α : 64/27

1

1

2

1

2

1

2

1

2

1

2

1

2

1

Fig. 6. The graph G corresponding to G′.
We show the cost of each edge and each
node. In particular, note that use of clus-
tering reduces the cost of node 4α from 4
to 64/27 ≈ 2.37

the attack cost can be greatly improved with the clustering effect : during the
last phase of the attack, when the attacker is currently located at a node N ,
he does not necessarily need to choose in advance which outgoing edge of N he
will try to follow. Indeed, the only commitment he needs to make at this point
is which core differential trail he will use to go to the next node. Thus, he can
simultaneously target several output differences corresponding to the same core
differential trail, and the cost to reach one difference out of many is significantly
lower than the cost of reaching any given output difference. For instance, when
computing the first block of a SHA-1 collision, Stevens [Ste13] allows six output
differences with a similar cost, so that the cost to reach one of them is one sixth
of the cost to reach a predetermined one.

For a given node, we call bundle of a core differential trail CDTi the grouping
of all outgoing edges of that node that use CDTi (see Figure 5). Let BN stand for
the set of all bundles of a node N , where each bundle β ∈ BN corresponds to
a distinct core differential trail CDTi. Then, for each node of G′, we compute its

18

assigned cost as follows9:

wN = min
β∈BN

1 +
∑

(N,j)∈β|wj<wN

(

wj/c
β
j

)

∑

(N,j)∈β|wj<wN

(

1/cβj

)

, (1)

where for an edge (N, j) of the bundle β, cβj represents the cost to find a con-
forming message pair with difference output j − N for E, and wj is the cost
assigned to the node j.

We initialize the costs of the nodes in G′ using the shortest path in the
graph, and update them iteratively until we can’t find any more opportunity for
improvement.

Building S and G. The graph G is obtained from G′ by only keeping the edges
that goes from a higher to a strictly lower cost (in order to render the graph
acyclic), and by only keeping for each node the outgoing edges for the bundle
that minimizes the cost wN in (1).

The set S is then finally deduced by harnessing all the differences corre-
sponding to every node in G (one node in G will correspond to one differ-
ence in S). In particular, if G′ includes all nodes at depth at most r, then
S = {δ1 + δ2 + · · ·+ δr | δ1, δ2, . . . , δr ∈ D}.

5 Application to MD5

Our techniques can easily be applied to MD5, to build an alternative chosen-
prefix collision attack. We can’t reach an attack complexity as low as 239 (the
best attack from [SSA+09]), because this would require to build a set S and
graph G of size roughly 250, which is impractical. However, when the number of
blocks available for the chosen-prefix collision is limited, the complexity of the
best-known attack grows; for instance, the chosen-prefix collision used to create
a rogue certificate was limited to 3 blocks, and this increased the complexity to

9 In order to explain this formula, we consider that when the adversary uses a bundle
β, he has to perform Cβ operations to find a pair conforming to the core differential
trail up to some intermediate step, and those pairs lead to an output difference j−N
(i.e. to node j) with probability pβj (with pβj = Cβ/c

β
j). If none of the predetermined

output differences is reached (or if the target node reached has a cost wj ≥ wN),
then he stays at node N and will have to still pay wN to reach the colliding state.
Thus, we have that:

wN = Cβ +
∑

j∈β|wj<wN

(

pβj · wj

)

+

1−
∑

j∈β|wj<wN

pβj

 · wN

which leads to (1) with cβj = Cβ/p
β
j .

19

249. In this scenario we can improve the currently best-known attack with our
multi-block technique using a single differential trail.

We start from the single-block chosen-prefix collision attack given in [SSA+09,
Section 6]: this attack uses a high probability trail for MD5 collisions, where the
last steps are relaxed to allow a set D of size 223.3. Therefore the birthday stage
has complexity roughly

√

π · 2128/223.3 ≈ 253.2, and the near-collision block is
found with a complexity of 240.8. In our analysis, we recomputed the set D used
by Stevens et al., but we actually found a set of size 224.2 using the same trail,
with a maximum cost of 226 · 214.8 (following [SSA+09], we only consider out-
put differences with δa = −25, δd = −25 + 225, δc = −25 mod 220). Then, we
extend D by adding the zero value and the opposite of each value, to generate
D′ := D∪−D∪{0}. Finally, we build the set S and the graph G′ corresponding
to an attack with at most 2 blocks, with S := {δ1 + δ2 | δ1, δ2 ∈ D′}. Since the
cost of the near-collision stage is negligible (at most 2 · 240.8), we do not need to
use clustering, and we can just use the minimal cost paths of G′ as the graph G.

We find that the set S contains 237.1 elements, so that the birthday stage
has a complexity of roughly

√

π · 2128/237.1 ≈ 246.3. Therefore, we have a sim-
ple chosen-prefix collision attack with two near-collision blocks with complexity
246.3, while the best previous attack with two blocks or less requires 253.2 MD5
computations, and even the best attack with three blocks requires 249 MD5
computations.

6 Application to SHA-1

For the attack on SHA-1, we directly recycle the details of the collision attack
from [SBK+17]: we will use the same linear part for our successive near-collision
blocks (even though the very last steps might behave slightly differently as we
will explain in this section). We assume that the attacker can generate non-linear
parts on the fly and can apply amortization methods just like in [SBK+17]. In
order to validate this assumption, we have tried to generate a non-linear part
with several random input differences from S and random input chaining values.
In our experiments, we have successfully generated such non-linear part, and
we could even make it limited to the very first SHA-1 steps. We discuss this
assumption and our experiments in more details in Section 6.3.

We now explain how to apply the framework of Section 4 to a chosen-prefix
collision against SHA-1. As mentioned, our attack uses the best core trail known
for attacks against SHA-1, as used in previous attacks [Ste13, Ste12, SBK+17].
This allows us to have a relatively good complexity estimation for the attack,
because this trail has been well studied, and a full collision attack with this trail
was recently implemented. In the following we denote the complexity to find a
block conforming to the trail (with an optimal output difference) as Cblock. In
the case of the recent collision attack, this cost was estimated as Cblock = 264.7

SHA-1 evaluations on a GTX-970 GPU [SBK+17, Section 5.7]. In this work, we
consider several hypothesis for the cost of finding near-collision blocks: an opti-
mistic hypothesis with Cblock = 264.7 (following [SBK+17]) and a conservative

20

hypothesis with Cblock = 267.7. This parameter depends on the difficulty of link-
ing an arbitrary input difference to the core trail, and will be discussed in more
detail below.

As in the previous chosen-prefix collision attack on SHA-1 [Ste13], we consider
several variants of the core trail by changing some of the message constraints in
the last steps (in particular, we flip the sign of some message bits), and we relax
the last steps to reach a larger set of output difference. However, we do this more
exhaustively than Stevens: he only describes a set D of size 192 with cost at most
1.15 ·Cblock, but we found a set of size 8768 with cost at most 8 ·Cblock, including
576 values with cost at most 1.15 · Cblock. In particular, this directly leads to
an improvement of the single-block chosen-prefix collision from [Ste13], with
complexity roughly

√

π · 2160/8768 ≈ 274.3, rather than
√

π · 2160/192 ≈ 277

(ignoring some technical details of the birthday step).

More precisely, we allow the signs of the message differences to not necessar-
ily follow local collision patterns in the last steps. Instead, we consider variants
of the trail where each of those constraints is either followed or not. In addition,
we fix the sign of some additional state bits to reduce the cost to reach a given
output difference. Table 3 compares our message constraints with those used
for the second-block of the attack from [SBK+17]. This leads to 288 differences
with optimal probability (2−19.17 in steps 61 to 79), and 288 with almost opti-
mal probability (2−19.36 in steps 61 to 79), as listed in Table 4. Moreover, we
consider output differences whose cost is higher than the optimal cost Cblock, up
to roughly 8 · Cblock (we allow a probability up to 2−22 in steps 61 to 79).

Instead of building the corresponding set of output differences and their prob-
ability analytically, we used a heuristic approach. For each choice of the message
constraints zi in Table 3 (up to some symmetries), we generated 230 interme-
diate states at step 60, and we computed the corresponding output differences
in order to identify high probability ones. We also keep track of the differences
reached with the same constraints, to build the corresponding bundles of differ-
ences. Next, we used symmetries in the set of differences to verify the consistency
of the results, and to increase the precision of the heuristic probabilities. This
strategy leads to a set of 8768 possible output differences, grouped in 2304 bun-
dles. We list the output differences with (almost) optimal probability that we
have identified in Table 4, with the corresponding bundles (we do not give the
set with all considered differences due its large size).

Next, we build the set S of acceptable differences, and the graph G that
indicates the sequences of near-collision blocks to use to cancel the differences
in S. We first build the graph G′ as explained in Section 4.2. We use a limit
on the cost of the nodes added to graph: we only consider nodes that have a
path with cost at most 18 · Cblock in the graph G′ (where this cost is computed
with a single path, without using clustering). This yield a set of 233.78 unique
differences. After optimizing the cost with clustering, most of the nodes have a
cost at most 4.5 ·Cblock, and we use a subset of the graph by bounding the cost
of the near-collision stage. We describe various trade-offs in Table 5: a larger set

21

Stevens et al. constraints [SBK+17] Our constraints

W
[5]
68 = W

[0]
67 ⊕ 1 W

[5]
68 = W

[0]
67 ⊕ 1

W
[30]
72 = W

[0]
67 ⊕ 1 W

[30]
72 = W

[0]
67 ⊕ 1

W
[6]
71 = W

[1]
70 ⊕ 1 W

[6]
71 = W

[1]
70 ⊕ 1

W
[5]
72 = W

[0]
71 ⊕ 1 W

[5]
72 = W

[0]
71 ⊕ 1

W
[30]
76 = W

[0]
71 ⊕ 1 W

[30]
76 = W

[0]
71 ⊕ 1

W
[7]
74 = W

[2]
73 ⊕ 1 W

[7]
74 = W

[2]
73 ⊕ 1, W

[2]
73 = z1

W
[6]
75 = W

[1]
74 ⊕ 1 W

[6]
75 = W

[1]
74 ⊕ 1

W
[6]
76 = W

[1]
75 ⊕ 1 W

[6]
76 = W

[1]
75 ⊕ 1

W
[1]
76 = W

[0]
76 ⊕ 1 W

[1]
76 = z2, W

[0]
76 = z3

W
[1]
77 = W

[0]
77 ⊕ z1 W

[1]
77 = z4, W

[0]
77 = z5

W
[2]
77 = W

[1]
77 ⊕ 1 W

[2]
77 = z6

W
[8]
77 = W

[3]
76 ⊕ 1, W

[3]
76 = z2 W

[3]
76 = z7, W

[8]
77 = z8

W
[0]
78 = W

[7]
74 W

[0]
78 = z9

W
[3]
78 = z3 W

[3]
78 = z10

W
[7]
78 = z4 W

[7]
78 = z11

W
[2]
79 = z5 W

[2]
79 = z12

W
[4]
79 = z6 W

[4]
79 = z13

Table 3. Message constraints in the final steps. The zi are fixed to 0 or 1 to define
variant of the trail with distinct output differences. We use three more constraints
than [SBK+17].

reduces the cost of the birthday stage, but increase the cost of the near-collision
stage.

We note that the memory requirements of our attack are rather limited: one
just has to store the graph, and the chains for the birthday phase. With the
parameters we propose, this represents less than 1TB.

6.1 Limiting the number of near-collision blocks

The attack above is optimized to minimize the time complexity of the attack,
but this can result in long paths in the graph. For instance, when starting from
a random difference with cost at most 3.0 ·Cblock, a random path has on average
15.7 near-collision blocks, but the maximal length is 26 near-collision blocks. This
might be impractical for some applications of chosen-prefix collision attacks, and
the work needed to generate all the differential trails for the near-collision blocks
might also be an issue.

Therefore, we propose an alternative attack where we limit the length of the
paths in the graph G. This result in a slightly higher complexity, but might be
better in practice. More precisely, we first construct a graph with only paths
of length 1, and we iteratively build graphs by increasing the length of allowed
paths. Note that a given difference can often be reached by many paths of varying
length, and the cost of a node decreases when allowing longer paths.

22

Bundle Output difference Proba (− log)

B1 0xffffedea 0xffffff70 0x00000000 0x00000002 0x80000000 19.17
0xffffedee 0xffffff70 0x00000000 0x00000002 0x80000000 19.17
0xffffefea 0xffffff80 0x00000000 0x00000002 0x80000000 19.17
0xffffefee 0xffffff80 0x00000000 0x00000002 0x80000000 19.17
0xffffe5ec 0xffffff30 0x80000000 0x00000002 0x80000000 19.36
0xffffe7ec 0xffffff40 0x80000000 0x00000002 0x80000000 19.36

B2 0xffffedea 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17
0xffffedee 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefea 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefee 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17
0xffffe5ec 0xffffff30 0x80000000 0xfffffffe 0x80000000 19.36
0xffffe7ec 0xffffff40 0x80000000 0xfffffffe 0x80000000 19.36

B3 0xffffedea 0xffffff70 0x00000000 0x00000002 0x80000000 19.17
0xffffedee 0xffffff70 0x00000000 0x00000002 0x80000000 19.17
0xffffefea 0xffffff80 0x00000000 0x00000002 0x80000000 19.17
0xffffefee 0xffffff80 0x00000000 0x00000002 0x80000000 19.17
0xfffff5ec 0xffffffb0 0x80000000 0x00000002 0x80000000 19.36
0xfffff7ec 0xffffffc0 0x80000000 0x00000002 0x80000000 19.36

B4 0xffffedea 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17
0xffffedee 0xffffff70 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefea 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefee 0xffffff80 0x00000000 0xfffffffe 0x80000000 19.17
0xfffff5ec 0xffffffb0 0x80000000 0xfffffffe 0x80000000 19.36
0xfffff7ec 0xffffffc0 0x80000000 0xfffffffe 0x80000000 19.36

B5 0xffffedaa 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17
0xffffedae 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17
0xffffefaa 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17
0xffffefae 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17
0xffffe5ac 0xffffff2e 0x80000000 0x00000002 0x80000000 19.36
0xffffe7ac 0xffffff3e 0x80000000 0x00000002 0x80000000 19.36

B6 0xffffedaa 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17
0xffffedae 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefaa 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefae 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17
0xffffe5ac 0xffffff2e 0x80000000 0xfffffffe 0x80000000 19.36
0xffffe7ac 0xffffff3e 0x80000000 0xfffffffe 0x80000000 19.36

B7 0xffffedaa 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17
0xffffedae 0xffffff6e 0x00000000 0x00000002 0x80000000 19.17
0xffffefaa 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17
0xffffefae 0xffffff7e 0x00000000 0x00000002 0x80000000 19.17
0xfffff5ac 0xffffffae 0x80000000 0x00000002 0x80000000 19.36
0xfffff7ac 0xffffffbe 0x80000000 0x00000002 0x80000000 19.36

B8 0xffffedaa 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17
0xffffedae 0xffffff6e 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefaa 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17
0xffffefae 0xffffff7e 0x00000000 0xfffffffe 0x80000000 19.17
0xfffff5ac 0xffffffae 0x80000000 0xfffffffe 0x80000000 19.36
0xfffff7ac 0xffffffbe 0x80000000 0xfffffffe 0x80000000 19.36

Table 4. Bundles of trails with (near) optimal cost and the corresponding probability
for steps 61–79. For each bundle Bi in the table, there are 32 related bundles where we
flip some of the messages bits, that can be constructed as:
B0 = {Bi}
B1 =

{

{β + (25, 0, 0, 0, 0) | β ∈ B}
∣

∣ B ∈ B0

}

∪B0

B2 =
{

{β + (23, 0, 0, 0, 0) | β ∈ B}
∣

∣ B ∈ B1

}

∪B1

B3 =
{

{β + (213, 28, 0, 0, 0) | β ∈ B}
∣

∣ B ∈ B2

}

∪B2

B4 =
{

{β + (29, 24, 0, 0, 0) | β ∈ B}
∣

∣ B ∈ B3

}

∪B3

B5 =
{

{β + (26, 2, 0, 0, 0) | β ∈ B}
∣

∣ B ∈ B4

}

∪B4.
The set used in [Ste13] corresponds to bundles B1 to B4, with extension rules B1 to
B4. Note that most output differences appears in several bundles.

23

We have constructed exactly the graph with all paths of length at most
4, and all paths of length at most 8 and cost at most 3.5 · Cblock; for larger
parameters, we cannot build the full graph, but we can build an approximation
by limiting the set of values as in the previous construction. We give the size
of the corresponding sub-graphs in Table 6. As we can see, with 8 near-collision
blocks we already have a set S almost as large as the set corresponding to the
previous attack (cf. Table 5), so that limiting the attack to 8 blocks has a small
impact on the complexity. We can even find chosen-prefix collisions with just 4
near-collision blocks with a small cost increase, using a larger threshold on the
maximum cost per block. We evaluate the complexity of such attacks in detail
in Table 7.

We can also study the sparseness of the values in S to better understand the
difficulty of building the differential trails for the near collision blocks. Using the
set of size 229.71 with a limit of 8 near-collision blocks and a maximum cost of
3.0 ·Cblock, the maximum weight in the differences is 26, and the average is 15.4
(using the non-adjacent form — NAF).

6.2 Birthday Stage

For the birthday stage of the attack, we follow the approach given in [Ste13]:
we consider a truncation of the SHA-1 state by keeping bits which are likely to
contain a difference, and we use the distinguished points technique of [vW99].
Parameters for the birthday step with various choice of G are given in Table 5;
we now explain in detail the case where the maximum cost of the near-collision
stage is set to 3.0 · Cblock. First, we truncate the state to 98 bits10 so that for a
random pair of values with their difference in S, there is a probability 0.78 that
the values collide on 98 bits (this probability has been computed with the tools
from [Leu12]). Reciprocally, if two truncated SHA-1 outputs are equal, then their
difference is in the set S with probability 2−31.97. Therefore, the birthday stage
will require on average 2 · 231.97 collisions in the following function:

f(r) :=

{

τ(h(cv , pad(u))) if u[0] = 1;

τ(h(cv′, pad(u))) else.

In order to keep the cost of rerunning the trail low, we use chains of average
length 231 (i.e. a point u is distinguished when u < 298−31). Therefore, the
expected complexity of the birthday stage is11:

T =
√

π/2 · 298 · 232.97 ≈ 265.81 SHA-1 computations

M = 265.81/231 · 19 bytes ≈ 570GB,

and the cost to re-run the chains to locate collisions is only 232.97 ·2 ·231 ≈ 264.97.
Finally, we can evaluate the complexity of the full attacks as: 265.81 + 264.97 +
3.0 · Cblock.

10 Given by mask 0x7f800000, 0xfffc0001, 0x7ffff800, 0x7fffff80, 0x7fffffff
11 To store a chain, we use 40 bits for the starting point, 40 bits for the length, and

98− 31 = 67 bits for the output, i.e. 19 bytes in total.

24

Set S Birthday parameters

Max cost Size Mask Proba # coll. Chain len. # chain Attack cost

2.0 · Cblock 224.66 106 bits 0.71 230.83 234 234.74 268.74 + 265.83 + 2.0 · Cblock

2.5 · Cblock 228.59 102 bits 0.65 231.03 232 234.84 266.84 + 264.03 + 2.5 · Cblock

3.0 · Cblock 230.95 98 bits 0.76 232.44 231 234.55 265.55 + 264.44 + 3.0 · Cblock

3.5 · Cblock 232.70 98 bits 0.76 230.70 230 234.68 264.68 + 261.70 + 3.5 · Cblock

4.0 · Cblock 233.48 98 bits 0.74 229.95 230 234.30 264.30 + 260.95 + 4.0 · Cblock

4.5 · Cblock 233.66 98 bits 0.74 229.77 230 234.21 264.21 + 260.77 + 4.5 · Cblock

Table 5. Trade-offs between the cost of birthday phase and the near-collision phase.

Max Cost 1 bl. 2 bl. 3 bl. 4 bl. 5 bl. 6 bl. 7 bl. 8 bl.

2.0 · Cblock 29.17 216.30 219.92 222.05 223.13 223.95 224.44 224.55

2.5 · Cblock 210.17 216.62 221.04 223.76 225.50 226.58 227.38 227.92

3.0 · Cblock 210.17 217.10 221.76 224.66 226.58 227.95 228.96 229.71

3.5 · Cblock 212.53 217.89 222.47 225.62 227.70 229.18 230.29 231.22

4.0 · Cblock 212.53 218.60 222.97 226.34 ≥ 228.68 ≥ 230.35 ≥ 231.55 ≥ 232.15

5.0 · Cblock 212.53 219.65 224.18 227.44 ≥ 229.83 ≥ 231.64 ≥ 232.95 ≥ 233.04

6.0 · Cblock 212.53 219.79 224.81 228.26 ≥ 230.74 ≥ 232.55 ≥ 233.59 ≥ 233.59

7.0 · Cblock 213.09 220.37 225.30 228.82 ≥ 231.33 ≥ 232.93 ≥ 233.77 ≥ 233.77

8.0 · Cblock 213.09 220.62 225.72 229.27 ≥ 231.72 ≥ 233.09 ≥ 233.81 ≥ 233.81

Table 6. Size of the set S with various limits on the maximum cost and on the number
of near-collision blocks. We give a lower bound when we couldn’t compute the full set.

Set S Birthday parameters

Max bl. Max cost Size Mask Proba # coll. Chain len. # chain Attack cost

4 4.0 · Cblock 226.34 106 bits 0.48 229.70 233 235.18 268.18 + 263.70 + 4.0 · Cblock

4 5.0 · Cblock 227.44 102 bits 0.67 232.14 232 235.40 267.40 + 265.14 + 5.0 · Cblock

4 6.0 · Cblock 228.26 102 bits 0.65 231.35 232 235.00 267.00 + 264.35 + 6.0 · Cblock

4 7.0 · Cblock 228.82 102 bits 0.64 230.82 232 234.74 266.74 + 263.82 + 7.0 · Cblock

4 8.0 · Cblock 229.26 102 bits 0.63 230.39 232 234.52 266.52 + 263.39 + 8.0 · Cblock

8 2.0 · Cblock 224.55 106 bits 0.71 230.94 234 234.80 268.80 + 265.94 + 2.0 · Cblock

8 2.5 · Cblock 227.92 102 bits 0.63 231.75 232 235.20 267.20 + 264.75 + 2.5 · Cblock

8 3.0 · Cblock 229.71 98 bits 0.73 233.73 231 235.19 266.19 + 265.73 + 3.0 · Cblock

8 3.5 · Cblock 231.22 98 bits 0.72 232.23 230 235.44 265.44 + 263.23 + 3.5 · Cblock

Table 7. Trade-offs between the cost of birthday phase and the near-collision phase
with a limited number of near-collision blocks (4 or 8).

25

6.3 Near-Collision Stage

i Ai Wi

-4: 10110011001011000101111011010101

-3: 110110001100001000100111un01un01

-2: 001010100011010111011unnn1011n11

-1: 00101010111000011un1nn0010n0u111

00: 1010111000111un1u0110n1u0nn0un1n 1011un01010001010101111110-10-u0

01: 10100u101u0u10101n1nu0111n-u1-1u nu1110011101100011110-00-00n0110

02: 1u1u0nn010nuunnu11011uuuu0001uu1 u1nn0u000100010001010111---unn00

03: u1un01uunn1u1010u0u101101nu11uu1 00uuun1111010111100111010000-u1-

04: n0110unnnnnnnnnnnnnn11nu1000u1n1 n0nunu00----001----0---1000uu0u1

05: un0n011100--11001--111-1u1uu1u11 10u-1--101110-000-1100-0110n-00-

06: 1101-0-101101011110101-10nun01uu --u--u1----------------0101uun--

07: 0nuu-00----------------0100100uu xun-nu------------1-1----11u0u--

08: ---u01----------------0--0n010-u ----un------------------------u0

09: 0n--------------------0--1-1--0u xn----------------------0--n-0--

10: 1--1-1------------------0---1--- x-nx-x-------------1-------uxx--

11: -1n-----------------------0----- --u0nn-------------------1-1-u--

12: ----0---------------------1----- n-nxxu---------------------un---

13: n---1--------------------------- x-uu-0---------------------u----

14: --n----------------------------- --------------------------1-un--

15: u-1-1--------------------------- x-nxn----------------------n----

16: un0-0--------------------------- ----u----------------------nu---

Table 8. Example of a SHA-1 non-linear differential path generated for one of the
differences in S. Notations follow [DMR07]. δ = [−217 − 215 +210 − 28 +25 +26 − 22 +
20,−213 + 211 + 210 + 25 − 23,−25 + 20,−24 − 20, 0], with cost 2.954 · Cblock.

An important parameter to evaluate the cost of the attack is Cblock, the
complexity to find near-collision blocks. An optimistic hypothesis is that we can
find them with same complexity as in the attack of [SBK+17], i.e. Cblock = 264.7.
As mentioned earlier, we have conducted tests to verify that one can easily find
short non-linear differential paths, regardless of the input chaining difference
and value, to allow for a good use of neutral bits (one path example is given in
Table 8).

We note that our trails are somewhat more constrained than the trails used
in the collision attack, because we have denser chaining value differences and we
have a few more conditions in the last round, as seen in Table 3. This could lead
to fewer degrees of freedom than in the collision attack of Stevens et al., and
increase the cost of finding a conforming block. In particular, this can affect the
use of accelerating techinques such as neutral bits and boomerangs; boomerangs
are the most powerful technique, but they require significant degrees of freedom
in the path construction. Therefore, we also consider a conservative complexity
estimate, where we assume that boomerangs are no longer available. Since there
are three boomerangs in the trail of [SBK+17], this would give Cblock = 267.7.

Our experiments show that that those assumptions are reasonable. The path
given in Table 8 is about as constrained as the path used for the second block
of the collision attack [SBK+17] in the first round. In particular, most condition
are in the first 6 steps, and don’t affect the use of neutral bits, and the same

26

three boomerang are available. In general we expect similar results with a few
boomerangs, but this might of course vary depending on the exact chaining input
diffence/value.

Finally, with the optimistic hypothesis, the best trade-off is to use a limit of
3.5 · Cblock, for a total complexity of

264.68 + 261.70 + 3.5 · Cblock ≈ 266.9 (using Cblock = 264.7)

With the conservative hypothesis, the best trade-off is to set the limit at 2.5 ·
Cblock, for a total complexity of

266.84 + 264.03 + 2.5 · Cblock ≈ 269.35 (using Cblock = 267.7)

There are other trade-offs possible between the various parameters of attack.
For instance, we discussed attacks with a limited number of near-collision blocks
in Section 6.1; we can now evaluate the complexity of the resulting attacks. If we
limit the attack to 8 near-collision blocks, the best trade-offs give the following
complexities for the optimistic and conservative hypothesis respectively:

265.44 + 263.23 + 3.5 · Cblock ≈ 267.2 (using Cblock = 264.7)

267.20 + 264.75 + 2.5 · Cblock ≈ 269.5 (using Cblock = 267.7)

Even with a limit of only 4 near-collision blocks, we have a relatively small
increase of the complexity, with the following trade-offs:

266.74 + 263.82 + 7.0 · Cblock ≈ 268.3 (using Cblock = 264.7)

268.18 + 263.70 + 4.0 · Cblock ≈ 270.2 (using Cblock = 267.7)

7 Conclusion and Future Works

This work puts another nail in the SHA-1 coffin, with almost practical chosen-
prefix collisions, between five and twenty-six times more expensive than the
identical-prefix collisions recently demonstrated. This shows that continued us-
age of SHA-1 for certificates or for authentication of handshake messages in TLS,
SSH or IKE is dangerous, and could already be abused today by a well-motivated
adversary. SHA-1 has been broken since 2004, but it is still used in many security
systems; we strongly advise users to remove SHA-1 support to avoid downgrade
attacks.

More generally, our results show that, for some hash functions, chosen-prefix
collision attacks are much easier than previously expected, and potentially not
much harder than a normal collision search.

Our research opens several new directions. Obviously, future work will have
to implement this attack to demonstrate a real chosen-prefix collision for SHA-1.
While the computation cost of our attack is somewhat practical, SHA-1 attacks
still require a huge computation power (thousands of GPUs in order to obtain the
chosen-prefix collision in a reasonable time) and a large implementation effort.

27

For a concrete demonstration, a good target would be to break a protocol such
as TLS or IKE, or to build a rogue certificate authority.

Another research direction is to study how one can improve SHA-1 collision
attacks, not only for minimising the cost of finding a simple collision, but to
improve our chosen-prefix collision search complexity. In particular, our attack
requires the ability to reach many distinct output differences for the compression
function. In this paper, to simplify our analysis, we only considered the differen-
tial trail from [SBK+17] because a real collision was found with this trail, and a
precise complexity evaluation was conducted. However, it should be possible to
increase the pool of available differences, and further reduce the total complexity,
by using other (slightly more costly) differential trails.

Finally, a last direction is to evaluate how our strategy actually applies to
other hash functions, such as RIPEMD, (reduced-round) SHA-2, or even others.
Again, this will require a deep knowledge of the functions studied, as many
details might impact the overall complexity. We can however expect that our
attack strategy will be applicable mostly on classical Davies-Meier constructions
inside a single-pipe Merkle-Damg̊ard operating mode.

In order to make our work easier to verify, we are publishing some additional
data and code online at: https://github.com/Cryptosaurus/sha1-cp.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful com-
ments. We also thanks Paul Wouters (Red Hat) and Marc Stevens (CWI) for
additionnal comments. The second author is supported by Temasek Laborato-
ries, Singapore.

References

[BC04] Eli Biham and Rafi Chen. Near-collisions of SHA-0. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 290–305. Springer,
Heidelberg, August 2004.

[BCJ+05] Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault, Christophe
Lemuet, and William Jalby. Collisions of SHA-0 and reduced SHA-1.
In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS,
pages 36–57. Springer, Heidelberg, May 2005.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript collision attacks:
Breaking authentication in TLS, IKE and SSH. In NDSS 2016. The In-
ternet Society, February 2016.

[Bra90] Gilles Brassard, editor. CRYPTO, volume 435 of Lecture Notes in Com-

puter Science. Springer, 1990.
[CJ98] Florent Chabaud and Antoine Joux. Differential collisions in SHA-0. In

Hugo Krawczyk, editor, CRYPTO’98, volume 1462 of LNCS, pages 56–71.
Springer, Heidelberg, August 1998.

[Dam89] Ivan Damg̊ard. A Design Principle for Hash Functions. In Brassard
[Bra90], pages 416–427.

28

https://github.com/Cryptosaurus/sha1-cp

[Dam90] Ivan Damg̊ard. A design principle for hash functions. In Gilles Bras-
sard, editor, CRYPTO’89, volume 435 of LNCS, pages 416–427. Springer,
Heidelberg, August 1990.

[dB94] Bert den Boer and Antoon Bosselaers. Collisions for the compressin func-
tion of MD5. In Tor Helleseth, editor, EUROCRYPT’93, volume 765 of
LNCS, pages 293–304. Springer, Heidelberg, May 1994.

[DMR07] Christophe De Cannière, Florian Mendel, and Christian Rechberger. Col-
lisions for 70-step SHA-1: On the full cost of collision search. In Carlisle M.
Adams, Ali Miri, and Michael J. Wiener, editors, SAC 2007, volume 4876
of LNCS, pages 56–73. Springer, Heidelberg, August 2007.

[JP07] Antoine Joux and Thomas Peyrin. Hash functions and the (amplified)
boomerang attack. In Alfred Menezes, editor, CRYPTO 2007, volume
4622 of LNCS, pages 244–263. Springer, Heidelberg, August 2007.

[Kli06] Vlastimil Klima. Tunnels in hash functions: MD5 collisions within a
minute. Cryptology ePrint Archive, Report 2006/105, 2006. http:

//eprint.iacr.org/2006/105.
[KPS15] Pierre Karpman, Thomas Peyrin, and Marc Stevens. Practical free-start

collision attacks on 76-step SHA-1. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of LNCS, pages
623–642. Springer, Heidelberg, August 2015.

[Leu12] Gaëtan Leurent. Analysis of differential attacks in ARX constructions. In
Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658
of LNCS, pages 226–243. Springer, Heidelberg, December 2012.

[LPRR07] Mario Lamberger, Norbert Pramstaller, Christian Rechberger, and Vin-
cent Rijmen. Second preimages for SMASH. In Masayuki Abe, editor,
CT-RSA 2007, volume 4377 of LNCS, pages 101–111. Springer, Heidel-
berg, February 2007.

[Mer89] Ralph C. Merkle. One Way Hash Functions and DES. In Brassard [Bra90],
pages 428–446.

[Mer90] Ralph C. Merkle. One way hash functions and DES. In Gilles Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 428–446. Springer, Hei-
delberg, August 1990.

[MRS15] Florian Mendel, Vincent Rijmen, and Martin Schläffer. Collision attack
on 5 rounds of Grøstl. In Carlos Cid and Christian Rechberger, editors,
FSE 2014, volume 8540 of LNCS, pages 509–521. Springer, Heidelberg,
March 2015.

[Nat93] National Institute of Standards and Technology. FIPS 180: Secure Hash
Standard, May 1993.

[Nat95] National Institute of Standards and Technology. FIPS 180-1: Secure Hash
Standard, April 1995.

[Nat02] National Institute of Standards and Technology. FIPS 180-2: Secure Hash
Standard, August 2002.

[Nat15] National Institute of Standards and Technology. FIPS 202: SHA-3 Stan-
dard: Permutation-Based Hash and Extendable-Output Functions, Au-
gust 2015.

[Pey07] Thomas Peyrin. Cryptanalysis of Grindahl. In Kaoru Kurosawa, edi-
tor, ASIACRYPT 2007, volume 4833 of LNCS, pages 551–567. Springer,
Heidelberg, December 2007.

[Riv91] Ronald L. Rivest. The MD4 message digest algorithm. In Alfred J.
Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume 537 of
LNCS, pages 303–311. Springer, Heidelberg, August 1991.

29

http://eprint.iacr.org/2006/105
http://eprint.iacr.org/2006/105

[Riv92] Ronald L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Inter-
net Activities Board, April 1992.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The first collision for full SHA-1. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
570–596. Springer, Heidelberg, August 2017.

[SKP16] Marc Stevens, Pierre Karpman, and Thomas Peyrin. Freestart collision
for full SHA-1. In Marc Fischlin and Jean-Sébastien Coron, editors, EU-

ROCRYPT 2016, Part I, volume 9665 of LNCS, pages 459–483. Springer,
Heidelberg, May 2016.

[SLdW07] Marc Stevens, Arjen K. Lenstra, and Benne de Weger. Chosen-prefix
collisions for MD5 and colliding X.509 certificates for different identities.
In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of LNCS, pages
1–22. Springer, Heidelberg, May 2007.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen K. Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger. Short chosen-
prefix collisions for MD5 and the creation of a rogue CA certificate. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 55–69.
Springer, Heidelberg, August 2009.

[Ste12] Marc Stevens. Attacks on Hash Functions and Applications. PhD thesis,
Leiden University, June 2012.

[Ste13] Marc Stevens. New collision attacks on SHA-1 based on optimal joint
local-collision analysis. In Thomas Johansson and Phong Q. Nguyen, edi-
tors, EUROCRYPT 2013, volume 7881 of LNCS, pages 245–261. Springer,
Heidelberg, May 2013.

[vW99] Paul C. van Oorschot and Michael J. Wiener. Parallel collision search
with cryptanalytic applications. Journal of Cryptology, 12(1):1–28, 1999.

[WLF+05] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and Xiuyuan Yu.
Cryptanalysis of the hash functions MD4 and RIPEMD. In Ronald
Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 1–18.
Springer, Heidelberg, May 2005.

[WY05] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash func-
tions. In Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of
LNCS, pages 19–35. Springer, Heidelberg, May 2005.

[WYY05a] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding collisions in
the full SHA-1. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of
LNCS, pages 17–36. Springer, Heidelberg, August 2005.

[WYY05b] Xiaoyun Wang, Hongbo Yu, and Yiqun Lisa Yin. Efficient collision search
attacks on SHA-0. In Victor Shoup, editor, CRYPTO 2005, volume 3621
of LNCS, pages 1–16. Springer, Heidelberg, August 2005.

30

