
The VLDB Journal (2017) 26:777–801
DOI 10.1007/s00778-017-0477-2

REGULAR PAPER

From conceptual design to performance optimization of ETL
workflows: current state of research and open problems

Syed Muhammad Fawad Ali1 · Robert Wrembel1

Received: 11 December 2016 / Revised: 14 June 2017 / Accepted: 9 August 2017 / Published online: 6 September 2017
© The Author(s) 2017. This article is an open access publication

Abstract In this paper, we discuss the state of the art and
current trends in designing and optimizing ETL workflows.
We explain the existing techniques for: (1) constructing a
conceptual and a logical model of an ETL workflow, (2)
its corresponding physical implementation, and (3) its opti-
mization, illustrated by examples. The discussed techniques
are analyzed w.r.t. their advantages, disadvantages, and chal-
lenges in the context of metrics such as autonomous behavior,
support for quality metrics, and support for ETL activi-
ties as user-defined functions. We draw conclusions on still
open research and technological issues in the field of ETL.
Finally, we propose a theoretical ETL framework for ETL
optimization.

Keywords ETL workflow · ETL conceptual design ·

ETL logical design · ETL physical implementation · ETL
optimization

1 Introduction

A data warehouse (DW) integrates multiple heterogeneous
and distributed data sources (DSs) in order to provide a
centralized and unified access to data with the end goal of
decision support [1]. Data originating from DSs may have
different formats and data models, which may not comply
with the format and data model of a target DW. Furthermore,

B Syed Muhammad Fawad Ali
fawadali.ali@gmail.com

Robert Wrembel
robert.wrembel@cs.put.poznan.pl

1 Poznan University of Technology, Poznan, Poland

incoming data may be inconsistent and of poor quality—
ranging from simple spelling errors, missing or inconsistent
values, to conflicting or redundant data. Therefore, a spe-
cial purpose software is typically used in a data warehouse
architecture to integrate DSs. This software (a.k.a. process),
called Extraction–Transformation–Loading (ETL) is located
between data sources and a DW. The first task of an ETL pro-
cess is to extract data from multiple data sources, typically
into a Data Staging Area (DSA). Once data are available in a
DSA, the second phase is to perform data quality checks and
transformations in order to make data clean and consistent
with the structure of a target DW. Finally, the third phase is
to load data into a DW.

An ETL process is typically implemented as a workflow,
where various tasks (a.k.a. activities or operations), which
process data, are connected by data flows [2,3]. The tasks
executed in an ETL workflow include among others: (1)
extracting and filtering data from data sources, (2) trans-
forming data into a common data model, (3) cleaning data in
order to remove errors and null values, (4) standardizing val-
ues, (5) integrating cleaned data into one common consistent
data set, (6) removing duplicates, (7) sorting and comput-
ing summaries, and (8) loading data into a DW. These tasks
can be implemented by means of SQL commands, prede-
fined components, or user-defined functions (UDFs) written
in multiple programming languages.

There are several proprietary, cf., [4], and open-source,
cf., [5], ETL tools available in a business sector for design-
ing and developing ETL workflows. The tools provide proper
documentation and graphical user interfaces to design, visu-
alize, implement, deploy, and monitor execution of an entire
ETL workflow. However, these tools have a very limited sup-
port for designing and developing efficient workflows, since
automatic optimization and fine-tuning of an ETL workflow

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0477-2&domain=pdf
http://orcid.org/0000-0001-5886-8193

778 S. M. F. Ali, R. Wrembel

is not available. Hence, the ETL developer him/herself is
responsible for producing an efficient workflow.

This is one of a few reasons that make numerous organiza-
tions incline toward in-house development of such ETL tools
that best suit their business needs [6,7]. Furthermore, the
design of an ETL workflow may become complex, as it con-
sists of multiple activities and each of the ETL activity has its
execution cost, which increases with the increase of the vol-
ume of data being processed. As a result of a varying cost and
a complex design, an ETL workflow may fail amid execution
or may not be able to finish its execution within a specified
time window. In consequence, a DW becomes outdated and
cannot be utilized by its stakeholders. In order to increase
the productivity, quality, and performance of ETL workflows
some ETL design methods and optimization methods have
been proposed.

The ETL research community has proposed several meth-
ods for designing a conceptual model of an ETL workflow,
which led to its semantically equivalent logical model, phys-
ical implementation, and its optimized run-time version. The
set of guidelines formulated for the design of a conceptual
and a logical model of an ETL workflow [7,8] prompts the
automation of a design process, in order to facilitate the
development life cycle of the whole DW architecture. Fur-
thermore, community has been focusing on techniques for
optimizing the execution of an ETL workflow [9]. The most
common techniques are based on tasks rearranging and mov-
ing more selective tasks toward the beginning of a workflow,
e.g., [10–12]. On top of that, the existing research proves that
applying processing parallelism at a data level or at activity
level, or both, is a known approach to attain better execution
of an ETL workflow.

Since there exist multiple methods and techniques for con-
ceptual, logical, and physical design of an ETL workflow,
there is a need of developing a uniform ETL framework,
which would: (1) facilitate the ETL developer designing an
efficient ETL workflow, by providing hints for optimizing
the workflow, and (2) allow the ETL developer to validate
and benchmark some alternative workflow designs for given
quality objectives.

In this paper, we discuss the state of the art and current
trends in designing an ETL workflow and its optimization.
The goal of this paper is threefold. First, to study and under-
stand the existing techniques to construct a conceptual and
a logical model, its corresponding physical implementation,
and optimization of an ETL workflow as well as to evalu-
ate them on the basis of some metrics that we proposed (cf.
Sects. 3.5, 6.9). Second, to identify open research and tech-
nological issues in the field of designing, implementing, and
optimizing an ETL workflow. Third, based on the identified
virtues and limitations, to propose a framework for ETL opti-
mization.

This paper is divided into seven sections, each of which
starts with an introduction and concludes with the sum-
mary of open research and technological issues. Section 2
describes a running example, which we use throughout this
paper. Section 3 discusses the findings on a conceptual mod-
eling of an ETL workflow. Section 4 overviews works carried
out on designing a logical model of an ETL workflow and
approaches to convert a conceptual model into its corre-
sponding logical design. Section 5 introduces techniques
for the physical implementation of an ETL workflow. Sec-
tion 6 focuses on techniques for optimizing an ETL workflow.
Finally, Sect. 7 concludes this survey with a summary of
open research and technological issues and outlines our ETL
design and optimization framework.

2 Running example

To begin our discussion on the existing literature, we will be
using the example described in [7], which involves two data
sources S1.PARTSUPP (PKEY, SUPPKEY, QTY, COST)
and S2.PARTSUPP (PKEY, SUPPKEY, DATE, DEPT, QTY,
COST) and a central DW.PARTSUPP (PKEY, SUPPKEY,
DATE, QTY, COST). PKEY is the part number, SUPPKEY
is the supplier of the part, and QTY and COSTas are the
available quantity and cost of parts per supplier, respectively.

Data are propagated from S1.PARTSUPP and
S2.PARTSUPP into a DW table DW.PARTSUPP, as shown
in Fig. 1.

The example assumes that source S1 stores everyday data
about supplies in the European format and source S2 stores
the month-to-month data about supplies in the American for-
mat. The DW stores monthly data on the available quantity of
parts per supplier in the European format, which means that
data coming from S2 need to be converted into the European
format and data coming from S1 need to be rolled-up at the
month level in order to be accepted by the DW. S1 joins data
from two separate sources PS1 and PS2, and later the data
are transformed into a format accepted by the DW. Data from
sources S1 and S2 undergo several transformations, denoted
as A11, . . . , A1n and A21, . . . , A2n , respectively. Finally, data
from S1 and S2 are merged at activity Ann to be finally loaded
into the DW.

Fig. 1 An ETL workflow for the running example

123

From conceptual design to performance optimization of ETL workflows: current state of… 779

3 Conceptual model

A conceptual model of a DW serves a purpose of represent-
ing business requirements and clearly identifies all business
entities participating in a DW. A conceptual model and its
documentation help in understanding and identifying data
schema and facilitating the ETL developer in transformation
and maintenance phase of an ETL workflow.

Until 2002, design, development, and deployment of an
ETL workflow were done in an ad hoc manner due to the
nonexistence of specific design and development guidelines
and standards. The ETL research community has put a lot of
effort in formulating the required guidelines, methods, and
standards.

This section highlights these methods existing in the
literature for a conceptual model of an ETL workflow includ-
ing graph-, UML-, ontology-, and BPMN-based conceptual
models.

3.1 Graph-based conceptual model

A graph-based customizable and extensible conceptual
model [7] is among the first approaches in providing formal
foundations for the conceptual design of an ETL workflow.
The proposed model focuses on the internal structure of the
elements involved, interrelationships among sources, target
attributes of the elements, and transformations required dur-
ing loading a DW. The idea behind the proposed framework is
to provide the ETL developer with different kinds of transfor-
mations required for different ETL scenarios, which cannot
be anticipated. Therefore, instead of providing a limited set
of transformations, an extensible framework is developed
so that the ETL developer can define transformations as
required. The paper presents a three-layer architecture for
a conceptual model of an ETL workflow that consists of
schema layer (SL), meta-model Layer (ML), and template
Layer (TL).

SL contains a specific ETL scenario, and all the elements
in this layer are instances of ML. ML is a set of generic enti-
ties that are able to represent any ETL scenario. Finally, TL
enables the generic behavior of the framework, by providing
the ETL developer with customizable ETL templates, which
he/she can enrich according to different business require-
ments.

In Fig. 2, SL depicts an ETL workflow of the running
example described in Sect. 2. Sources S1.PARTSUPP and
S2.PARTSUPP are the instances of class ‘Concept’ in ML
and belong to template ‘ER Entity’ (i.e., an entity in an ER
model) defined in TL. ‘ER Entity’ is a subclass of ‘Con-
cept’ (from ML). Target DW.PARTSUPP belongs to subclass
‘Fact Table’ in TL. Since a DW stores quantity and cost
of parts per supplier in the European format on the daily
basis and supplier S2 stores data in the American format,

Fig. 2 The multilayer architecture

the customized transformation ‘$2e’ is selected from TL as
a subclass of ‘Transformation’ (from ML). The work in [7]
describes only the formal foundations for a conceptual model
of an ETL workflow. However, much needed design methods
and standards were not addressed until [8] proposes a set of
steps in order to construct a conceptual model in a managed,
customizable, and extensible manner. The set of steps is as
follows:

1. Step 1: identify participating data stores and relation-

ships between them. In the running example, source
data PARTSUPP comes from the union of two con-
cepts S1.PARTSUPP and S2.PARTSUPP. A data store,
DW.PARTSUPP is a target concept and stores cost of
parts per supplier on a daily basis.

2. Step 2: identify candidates and active candidates for

the involved data stores. The idea is to include only
active candidates in order to keep a conceptual model
simple. For example, let us assume in the running exam-
ple, S2.PARTSUPP can be populated either by file F1 or
F2. So, F1 and F2 are candidate data stores for concept
S2.PARTSUPP. The ETL developer chooses F2 due to
business requirements to populate S2.PARTSUPP, and
thus, F2 becomes the active candidate. Once the active
candidates are identified, the ETL developer can choose
not to show F1 in a conceptual model. However, it does
not mean F1 is eliminated from a conceptual model; it
remains a part of the model to be used in the later stages.

3. Step 3: identify the need of data transformation. If a
transformation is required, define mapping rules between
source and target concepts. A transformation can be
a surrogate key assignment, conversion of units, or
just a simple mapping of attributes. In the running
example, S2.PARTSUPP has values in the American
format, whereas DW.PARTSUPP accepts the European
format values. Therefore, attributes COST and DATE
from S2.PARTSUPP have to be transformed into Euros
and the European date format, respectively, to populate
DW.PARTSUPP.

4. Step 4: annotate the model with run-time constraints.
Annotation can be done using notes, which correspond

123

780 S. M. F. Ali, R. Wrembel

Fig. 3 A UML-based design of an ETL workflow

to a particular operation, concept, or a relationship in a
conceptual model. For example, DW.PARTSUPP needs
to be populated within a particular time window, e.g.,
three hours. Therefore, to state this constraint, the ETL
developer attaches a note at the particular operation to
specify the run-time constraint.

3.2 UML-based conceptual model

The unified modeling language (UML) [13] is a standard
modeling language in the field of software engineering in
order to visualize the design of systems in a standard-
ized way. [14] point out that methods [7,8], discussed in
Sect. 3.1, may result in a complex ETL workflow design due
to the absence of a standard modeling language and treat-
ing attributes as ‘first-class citizens’ in the model. Therefore,
UML is used as a standard modeling language for defining
the most common ETL activities (including among others:
data integration, transformation of attributes between source
and target data stores, as well as generation of surrogate
keys). The ETL activities are represented by UML packages
to model a large ETL workflow as multiple packages, thus
simplifying the complexity of an ETL workflow for the ETL
developer.

Figure 3 represents the lower flow of the running exam-
ple as a UML-based conceptual model of an ETL workflow
using the defined stereotype icons. For example, (a) is a
‘Table’ stereotype icon, which is used to represent data source
S2.PARTSUPP, (b) represents surrogate key assignment, (c)
represents aggregation of data in S2.PARTSUPP, (d) repre-
sents conversion of attribute DATE from the American to
the European format and conversion of attribute COST from
Dollars to Euros, (e) represents loading data, and (f) repre-
sents DW.PARTSUPP. The design and run-time constraints
are also shown using UML ‘Note’ artifact.

3.3 Ontology-based conceptual model

The approaches discussed in Sects. 3.1 and 3.2 require the
ETL developer to manually derive the ETL transformations
and inter-attribute mappings at a conceptual level of an

ETL workflow. The work in [15] proposes a semiautomatic
method for designing a conceptual model of an ETL work-
flow, leveraging an ontology-based approach. The proposed
approach uses ontology instead of UML because ontology is
capable of deriving ETL transformations automatically using
ontology ‘reasoners.’ The proposed solution facilitates the
construction of an ETL workflow at a conceptual level and
deals with the problem of semantic and structural hetero-
geneity.

As the first step toward creating an ontology, a common
vocabulary is constructed. To this end, the ETL developer has
to provide the information about the application domain and
user requirements about a DW, for example, primitive con-
cepts and their attributes, possible values of the attributes,
and relationship among the concepts and attributes. Using
the information provided by the ETL developer, the vocabu-
lary is generated, which consists of the following elements:
(1) VC —concepts involved in the workflow, (2) VP —a set of
attributes that characterizes each concept, (3) VF —various
types of formats that may be used for the attributes, (4) VT —
a set of allowed values that an attribute may take, (5) fP —a
function associating each attribute in VP to primitive con-
cept VC it describes, (6) fF —a function associating each
representation format VF to attribute in VP , and (7) fT —a
function associating each value to representation format VF ,
or directly to attribute in VP .

In the running example, VC is PARTSUPP, VP is a
set of attributes {pPKEY, pSUPPKEY, pDATE, pQTY,
pCOST}, VF for pCOST is VF cost ={Dollars, Euros},
VF for pDATE is VF date ={American, European}, and
VF for pPKEY is VF pkey ={sourcepkey, dwhpkey}. Let us
assume, a DW also stores data of parts type pTYPE ‘small,’
‘medium,’ and ‘large,’ then VT for pType will be VT Type =

{small, medium, large}.
After the common vocabulary is formulated, the second

step is to annotate the data sources based on the constructed
vocabulary. The annotation for source S2 is given in Table 1,
which provides the following eight items: (1) φ—the format
of an attribute, (2) min—the minimum value for an attribute,
(3) max—the maximum value for an attribute, (4) T —the
set of values an attribute has on a given relation, (5) n—
the cardinality of an attribute in the relation, (6) R′—the
foreign key of a relation, (7) X f —the aggregation function
for example ‘sum,’ max,’ or ‘avg,’ and (8) X p—the property
on which the aggregation is based.

Once the application vocabulary and the annotations are
described, the third step is to construct an application ontol-
ogy. It describes the application domain, relationships, as
well as mappings between sources and a target. The appli-
cation ontology consists of: (1) a set of primitive classes
similar to the specified concepts, (2) representation formats,
and (3) ranges or sets of values as defined in the vocabu-
lary. Finally, the constructed ontology is used to generate a

123

From conceptual design to performance optimization of ETL workflows: current state of… 781

Table 1 Annotation for data
store S2

S2 φ min max T n R′ X f Xp

IpPKEY sourcepkey – – – 1 – – –

IpSUPPKEY – – – – 1 – – –

IpDATE American – – – 1 – – –

IpQTY – – – – 1 – Sum SUPPKEY

IpCOST Dollars – – – 1 – Sum SUPPKEY

IpTYPE – – – {small, medium, large} 1 – Sum SUPPKEY

Fig. 4 A data-store graph for data sources and a DW

conceptual model automatically using the OWL ‘reasoner.’
This solution enables the ETL developer to explicitly and
formally represent a conceptual model using Ontology Web
Language-Description Logic (OWL-DL).

OWL [16] helps in creating a flexible model that can
be redefined and reused during different stages of a DW
design. The well-defined semantics allows automated rea-
soning. This solution is applicable to the relational databases
only; however, a DW may also contain semi-structured and
unstructured data.

To provide the support for semi-structured data, [17] pro-
pose a solution, which is an extension of the work presented
in [15] to cater both structured and semi-structured data
sources. The proposed approach uses graphs to represent a
conceptual model for data sources in order to handle both
structured and semi-structured data in a uniform way. The
schema presented as a graph is called a data-store graph
(DSG). For a relational schema, a DSG is designed as fol-
lows: (1) Nodes represent elements of a schema, (2) edges
represent relationships among the elements, (3) labels on
each edge represent min and max cardinalities of a reference,
and (4) leaf nodes represent elements containing data.

To construct a DSG from semi-structured data in order to
generate a conceptual model using an ontology, let us con-
sider addition of a complex-type attribute DEPARTMENT
derived from LOCATION (CITY, BRANCH) into source S2
of the running example. Figure 4 shows the DSGs constructed
by following the proposed steps to convert an XML document
into a DSG, which are as follows: (1) Nodes represent ele-
ments, attributes, as well as complex and simplex types in an
XML document, (2) edges represent nesting or referencing
of XML elements, and (3) labels represent min and max car-
dinalities of an XML element. Figure 4b illustrates a DSG
that depicts the DEPARTMENT as a complex type.

Fig. 5 The ontology graph

Figure 5 illustrates the ontology graph, where PARTSUPP
has attributes PKEY, SUPPKEY, DATE, QTY, and COST.
For each of these attributes, a corresponding attribute and a
class are created in the ontology. Since PKEY has to be trans-
formed into a surrogate key, a separate class along with its
property is created in the ontology graph. In case of COST,
separate classes ‘Dollars’ and ‘Euros’ are introduced. Simi-
larly, for the case of date format, classes ‘AmericanDate’ and
‘EuropeanDate’ are created in the ontology graph. Classes
‘TotalCost’ and ‘TotalQty’ are also introduced to represent
the aggregated costs and quantity, according to the assump-
tions taken in the running example.

The ontology graph and a DSG are then used to anno-
tate each data store by defining mappings between these two
graphs. Finally, the semantic annotations are used along with
an application ontology to infer a set of generic transforma-
tions to construct a conceptual model of an ETL workflow.

In the preceding approaches [15,17] related to an
ontology-based conceptual model, the ETL developer is
responsible for manually sketching the required mappings
and transformations of schema from a source to a target data
store.

To reduce the manual work required by the ETL devel-
oper, [18] propose a semiautomatic approach to build an ETL
workflow in a step-by-step manner through a series of cus-
tomizable and extensible set of graph transformations rules.
These rules are based on the already provided ontology in

123

782 S. M. F. Ali, R. Wrembel

order to determine which ETL operators are applicable in the
initial graph, i.e., a graph generated after converting a semi-
structured data. The final graph, i.e., a graph generated after
applying transformation rules, depicts a conceptual model of
an ETL workflow with an appropriate choice of ETL activi-
ties.

3.4 BPMN-based conceptual model

Besides the aforementioned approaches proposing con-
ceptual models (cf. Sects. 3.1, 3.2, 3.3), the work pre-
sented in [19] proposes a Business Process Model Notation
(BPMN) to create a platform-independent conceptual model
of an ETL workflow.

The paper discusses several BPMN operators to represent
various ETL activities. For example, BPMN gateways rep-
resent the sequence of activities in an ETL workflow, based
on conditions and constraints; BPMN events represent start,
end, and error handling events; BPMN connection objects
represent the flow of activities; BPMN artifacts describe the
semantics of an ETL task.

Figure 6 illustrates the running example, which has three
swim lanes, namely ‘Extract,’ ‘Transform,’ and ‘Load.’
S1.PARTSUPP is populated using tables PS1 and PS2. Data
source S2.PARTSUPP requires data from text file F2.txt.
First, data are extracted from tables PS1, PS2, and file F2.txt,
depicted as operations ‘Extract from PS1,’ ‘Extract from
PS2,’ and ‘Extract from F2.txt,’ respectively. Then, extracted
data are loaded into temporary tables using operations ‘Load
S2.PARTSUPP’ and ‘Load S1.PARTSUPP.’ These activities
can be executed in parallel since there is no dependency
between them. Once the data are extracted and loaded into
staging tables, a transformation is performed according to
the business requirements.

The transformation part is depicted as a BPMN collapsed
sub-process. Sources S1.PARTSUPP and S2.PARTSUPP
in swim lane ‘Transform’ also have a check to reject all

Fig. 6 The BPMN representation of an ETL workflow

the rows whose COST is NULL, which is handled by a
BPMN error handling event. Finally, the data are loaded into
DW.PARTSUPP using operation ‘Load into DW,’ as shown
in the ’Load’ swim lane.

After the BPMN design is completed, the model is trans-
lated into a Business Process Execution Language (BPEL),
which we will discuss in Sect. 5. This work enables the design
developed in BPMN to be compatible across multiple tools
and easy to extend to fit the requirements of a particular appli-
cation. The BPMN approach was then adapted by [20–22] to
construct a conceptual model of an ETL workflow.

The work in [22] proposes a layered method that starts
with business requirements and systematically converts a
conceptual model into its semantically equivalent physical
implementation. The entire method is based on the QoX—
suit of quality metrics [23] to construct an optimal ETL
workflow. The QoX metrics are considered during the design
and development of ETL workflows ranging from quantita-
tive to qualitative metrics (e.g., performance, recoverability,
and freshness). [22] fill the gap between different stages (con-
ceptual, logical, and physical) of an ETL workflow design.
Once the conceptual design is expressed in BPMN, it is con-
verted into XML to translate a conceptual design into its
semantically equivalent logical model. The logical model is
then used to optimize an ETL workflow design and for cre-
ating the corresponding physical model.

The approach presented in [20] uses BPMN and model
driven development to specify an entire ETL workflow in a
vendor-independent way and to automatically generate the
corresponding code in different commercial tools. Once an
ETL workflow code is generated, a 4GL grammar is used in
order to generate a vendor-specific code.

The work in [21] complements and extends the work
of [20,22] by incorporating specific conceptual model con-
structs as BPMN patterns for ETL activities like ‘change
data capture,’ ‘slowly changing dimensions,’ ‘surrogate key
pipelining,’ or ‘data quality coverage.’ This foundation can
be extended to build more BPMN patterns covering all the
activities of an ETL workflow, which results in helping
develop high-quality, error-free, and an efficient ETL work-
flow.

3.5 Summary

In Sect. 3, we have discussed different techniques and meth-
ods for representing a conceptual model of an ETL workflow,
which include graphs, UML, ontology, and BPMN. Below,
we summarize the approaches on the basis of the following
criteria:

– Autonomous behavior—whether a design is manual,
automatic, or semiautomatic (i.e., how much input it
requires from the ETL developer);

123

From conceptual design to performance optimization of ETL workflows: current state of… 783

– DSs format—what kind of data sources are supported,
i.e., structured, unstructured, or semi-structured;

– UDF support—whether user-defined functions are sup-
ported;

– Quality metrics—whether quality metrics guide the
design of an ETL workflow;

– Unified model—whether an ETL design is easily trans-
lated from a conceptual model into its semantically
equivalent logical model and whether it can be imple-
mented using any ETL framework.

1. Graph-based approaches [7,8]

Pros:
• Widely accepted graph-based models are used,

which help the ETL developer to outline a
conceptual model of an ETL workflow in a stan-
dardized way.

• They present the first steps toward translating a
conceptual model of an ETL workflow into its
semantically equivalent logical model.

Cons:
• No autonomous behavior—the ETL developer

has to manually derive ETL transformations and
inter-attribute mappings at a conceptual level.

• Structured data only—only the structured input
data sources are supported, and there is no
discussion on how to handle unstructured or
semi-structured data sources.

• No UDF support and quality metrics—the oper-
ators and templates for traditional ETL tasks are
proposed; there is no support for UDFs; quality
metrics are not taken into consideration while
constructing a conceptual model.

• Challenges—an ETL design may become com-
plex due to the absence of a standard modeling
language and treating attributes as ‘first-class cit-
izens’ in the model.

2. UML-based approach [14]

Pros:
• Unified model—a method is proposed to stan-

dardize the conceptual design of an ETL work-
flow (UML is a standard modeling language).

Cons:
• No autonomous behavior—the ETL developer

has to provide input at each step of the conceptual
design.

• Structured data only—only the structured input
data sources are supported.

• No UDF support and quality metrics—no sup-
port for user-defined functions and quality met-
rics.

3. Ontology-based approaches [15,17,18,24]

Pros:
• Semi-autonomous behavior—the ontology-based

models propose semiautomatic methods to design
a conceptual model of an ETL workflow in
a step-by-step manner (based on reasoners on
ontologies, it is possible to derive ETL transfor-
mations automatically).

• Structured & semi-structured data—[15,18] focus
on structured data only and [17] focus also on
semi-structured data.

Cons:
• No UDF support and quality metrics—UDFs

are not supported; quality metrics are not taken
into consideration while constructing a concep-
tual ETL model.

• Unified model—an ontology-based conceptual
design cannot be directly translated into its
semantically equivalent logical model. It requires
a fair amount of effort from the ETL developer to
translate the design.

• Challenges—manually creating an ontology and
defining the relationships among the ontology
elements is a difficult and time-consuming task.
Constructing an ontology manually requires high
correctness and detailed description of data
sources, thus if an ontology is created manually
it becomes more prone to errors.

4. BPMN-based approaches [19–22]

Pros:
• Semi-autonomous behavior—[21] introduce var-

ious BPMN patterns as constructs for frequently
used ETL operators and activities.

• Quality metrics & unified model—[22] pro-
pose a systematic method to translate business
requirements into a conceptual model and con-
ceptual model into its semantically equivalent
logical model, based on quality metrics. [20] use
BPMN and model driven development approach
to develop vendor-independent design of an ETL
workflow.

Cons:
• No UDF support.
• Challenges—converting conceptual model into

its equivalent logical and physical implementa-
tion requires ETL developers to have specific

123

784 S. M. F. Ali, R. Wrembel

knowledge and hands-on experience in BPMN
and BPEL.

To conclude, the graph-based models can be used to rep-
resent a complex conceptual design of an ETL workflow by
using standard notations, whereas, for simpler ETL work-
flows, approaches based on UML, ontology, and BPMN
are well suited. Such models reflect business requirements
as well as provide technical perspective of the problem.
Nonetheless, there is a need for a single agreed unified model,
easy to validate and benchmark an ETL design for its qual-
ity objectives. Also all the discussed approaches require the
ETL developer to extensively provide some input during the
design phase of an ETL workflow, as well as require techni-
cal knowledge from business users to understand and validate
an ETL design. Furthermore, despite the fact that multiple
approaches have been proposed, the research community has
not yet agreed upon the standard notation for representing a
conceptual model of an ETL workflow.

4 Logical model

The next step in ETL development life cycle is a logical
design of an ETL workflow. A logical design describes
detailed description of an ETL workflow such as relation-
ships among the involved processes with participating data
sources, a description of primary data flow from source data
stores into a DW, including an execution order of ETL activ-
ities as well as an execution schedule of an entire ETL
workflow. A recovery plan and a sequence of steps in case
of recovery from a failure are also devised during a logical
design of an ETL workflow.

In this section, we will discuss approaches to a logical
design of an ETL workflow.

4.1 Graph-based logical model

Initial approaches to designing a logical model of an ETL
workflow are based on graphs. The work presented in [25]
proposes a formal logical model as a graph called Archi-

tecture Graph. The graph shown in Fig. 7 illustrates an
ETL workflow as a set of ETL activities and a flow of data
between these activities. The nodes in the graph represent
ETL activities, record sets, and attributes, whereas the edges
represent different types of relationships among ETL activ-
ities. For example, Fig. 7 illustrates activities ‘SK_T’ and
‘$2e.’ Parameter ‘PKEY’ is mapped to attribute ‘PKEY’
of activity ‘SK_T’ and parameter ‘SKEY’ is mapped to
attribute ‘SKEY’ via regulator relationship. The regulator
relationship denotes that external data provider is used to
populate the attribute. The provider relationships denote the
data flow from source record sets toward the target record
set. The part-of relationship denotes the relationship between

Fig. 7 Architecture Graph of an ETL workflow

attributes and activity, record set, or function. The instance-
of relationship describes a relationship between data types
and attributes.

[25] propose the following steps to construct a logical
model of an ETL workflow as the Architecture Graph:

1. Incorporate structured entities, i.e., activities and record
sets in a graph along with all the attributes. For example,
Fig. 7 illustrates S2.PARTSUPP as a structured entity
along with its attributes, i.e., DEPT, COST, QTY, DATE,
SUPPKEY, and PKEY.

2. Connect ‘Activity nodes’ with their respective attributes
through a part-of relationship. For example, in Fig. 7
‘Activity nodes’ ‘SK_T’ and ‘$2e’ are connected with
their respective attributes as the part-of relationship that
is depicted as a connector with a diamond. The ‘IN’ and
‘OUT’ labels on an activity represent that the attributes
belong to the input and output schema of an activity,
respectively.

3. Incorporate data and function types using instance-of
relationships. For example, data types ‘US_Date’ and
‘US_Dollar’ are connected to their respective attributes
‘DATE’ and ‘COST’ as instance-of relationships, depicted
in Fig. 7.

4. Construct the regulator relationships. For example, in
Fig. 7, regulator relationships among the parameters of
the activities and attributes are depicted with simple dot-
ted edges.

5. Establish provider relationships that capture the flow of
data from source to target. For example, the data flow
from source attributes toward target attributes is depicted
as bold solid arrows in Fig. 7.

The proposed graph is considered as a formal logical
model of an ETL workflow. In [26,27], the authors used
the aforementioned model along with a formal Logical
Data Language (LDL) to define the semantics of each ETL
activity. [27] also mention the reusability framework to com-

123

From conceptual design to performance optimization of ETL workflows: current state of… 785

Fig. 8 Parameterized DAG
(DAG-P) for the example ETL
workflow

pliment the generic behavior of the proposed model, which
is achieved through a meta-model layer (ML) and a template
layer (TL) as discussed in [7] (cf. Sect. 3.1). The authors also
propose a user-friendly graphical tool to facilitate the ETL
developer to design an ETL workflow.

[22] propose to construct a logical model of an ETL work-
flow using a method to parameterize a Directed Acyclic
Graph (DAG), called here Parameterized DAG (DAG-P). The
DAG is created by translating a BPMN-based conceptual
model, as mentioned in Sect. 3.4. DAG-P operations, trans-
formations, and data stores are represented as vertices of the
graph. Edges represent data flows from a source data store
to a target data store. The parameters in DAG-P are used to
incorporate business requirements [23], physical resources
(needed for an ETL workflow execution), and other generic
characteristics (such as visualization) of an ETL workflow.
Figure 8 shows a part of the running example as DAG-P. In
this figure, data are extracted from S2.PARTSUPP, ‘SK_T’
generates a surrogate key, ‘A2E Date’ converts the DATE to
European format, ‘$2e’ converts the COST to Euros, and
finally, data are loaded into DW.PARTSUPP. The parameters
depict that the ‘Populate PARTSUPP Process’ should run
every 15 min, has a mean time to recover MTTR 2 min, and
uses 2 CPUs. The DAG-P logical model is represented using
XML notation, called the xLM model.

The xLM model describes different naming standards
to represent DAG-P in an XML notation. For example,
<design/> represents all the elements in an ETL graph,
<node/> represents a vertex, and <edge/> represents a
data flow in an ETL graph connecting two vertices. The
<properties/>, <resources/>, and <features/> represent
different parameters to identify QoX metrics in an ETL work-
flow.

4.2 From conceptual to logical model

The work presented in [28] proposes a set of steps to
transform a conceptual model of an ETL workflow to its
corresponding logical model. The models are represented
by graphs called Conceptual Graph and Architecture Graph,
respectively. The following steps map a conceptual model
into a logical model:

1. Identify data stores and transformations required in an
ETL workflow and describe inter-attribute mappings
between source and target data stores.

2. Determine ‘Stages’ to identify the proper order of activ-
ities in a conceptual model to assure a proper placement
of activities in a logical model.

3. Follow the following five-step method in order to trans-
late a conceptual model into its corresponding logical
model:

(a) Simplify a conceptual model such that only required
elements are present in the model.

(b) Map the concepts of a conceptual model into data
sources in a logical model such that part-of rela-
tionships do not change. The part-of relationship
denotes the relationship between attributes and activ-
ity, record set, or function.

(c) Map transformations defined in a conceptual model
to logical activities and then determine the order of
execution of the ETL activities.

(d) Represent ETL constraints with separate activities in
a logical model and determine their execution order.

(e) Generate a schema involved in a logical model using
the algorithm proposed in [12] in order to assure that
semantics of the involved concepts does not change
even after changing the execution order of tasks in an
ETL workflow.

As discussed in Sect. 3.4, the work in [22] proposes a
method that covers all stages of an ETL workflow design,
i.e., from gathering business requirements to designing a
conceptual model and finally translating it into an XML-
based logical model as a DAG-P. The reason behind choosing
XML is its ability to easily transform one XML model
(conceptual) into another XML model (logical). The paper
proposes a semiautomatic approach to convert a concep-
tual model represented using XPDL into the xLM model
(XML representation of a logical workflow). For example,
the XPDL workflow is mapped into xLM <design/>, XPDL
transitions—into xLM <edges/>, XPDL activities—into
xLM <nodes/>. The XML representation of a logical model
is used for creating a physical model of an ETL workflow,
which is discussed in Sect. 5.

123

786 S. M. F. Ali, R. Wrembel

4.3 Summary

In this section, we have discussed a graph-based logical
representation of an ETL workflow and steps to translate
a conceptual model into its semantically equivalent logical
model. We have outlined step-by-step methods to formu-
late a graph-based logical model of an ETL workflow. The
discussed methods are not trivial to adopt and require a
substantial amount of manual effort and background knowl-
edge from the ETL developers. Below, we summarize the
approaches on the basis of the criteria described in Sect. 3.5.

1. Graph-based approaches [22,25–27,29]

Pros:
• Quality metrics—[22] propose annotations to

incorporate quality metrics in an ETL workflow
for its efficient and reliable execution.

• Unified model—[27] propose a reusable frame-
work that supplements a generic behavior of a
logical model by defining semantics of each ETL
activity in a graph. [22] propose a logical model
as a graph, which is implemented in XML and
can be used in any XML-based framework.

Cons:
• No autonomous behavior—the discussed meth-

ods require the ETL developer either to manually
construct a logical model from a given concep-
tual model or to provide an extensive amount of
input to the system, to generate a logical model
from a conceptual model.

• No UDF support.
• Challenges—the discussed approaches demand

a substantial amount of input from the ETL
developer. For example, such an input is required
in: (1) the task of identifying stages (c.f. Sect. 4.2)
to make sure the activities are in a proper order
and (2) the task of defining the mappings to trans-
late a conceptual model to its equivalent logical
model. Such tasks are not trivial in nature and
are prone to errors.

From the above discussion, we can conclude that there still
exists a need to develop a fully or semiautomatic intelligent
system that would guide the ETL developer to produce a log-
ical design of an ETL workflow satisfying some predefined
quality criteria.

5 Physical implementation

Having developed a conceptual and a logical model of an
ETL workflow, its physical model has to be produced. A

physical model describes and implements the specifications
and requirements presented in a conceptual and a logical
model.

5.1 Implementation based on reusable templates

The work in [30] proposes a method for mapping a logical
model of an ETL workflow into its corresponding physical
model. A logical model is formulated as a state-space prob-
lem, where states are a set of physical level scenarios and each
state has a different cost. An initial state of the state-space
problem is generated by converting each logical activity to
its corresponding physical activity using a library of reusable
templates. The library consists of both logical- and physical-
level templates. The templates include a set of properties,
require some input parameters, and thus are able to be cus-
tomized according to a particular ETL scenario.

Let L t denote a set of logical templates and Pt be
a set of physical templates in a template library. Con-
sider logical activity $2e that converts dollars to euros for
S2.PARTSUPP in the running example. First, logical tem-
plate ‘CurrencyConvert_L t ’ (to convert currency amount)
is picked from L t . Then, an input and output schema and
an attribute over which the conversion will take place are
assigned to the selected template. For example, the required
input and output schema will be S2.PARTSUPP (PKEY,
SUPPKEY, DATE, QTY, COST, SKEY) and attribute COST
will be passed for conversion. Finally, the selected template
‘CurrencyConvert_L t ’ is mapped into a valid physical tem-
plate from Pt .

Multiple versions of the solution can be generated by
selecting different physical templates, provided all con-
straints and conditions of the selected physical template are
satisfied.

5.2 Implementation based on BPEL

A BPMN approach [19] discussed in Sect. 3.4 implements a
BPMN-based conceptual model into Business Process Exe-
cution Language (BPEL). BPEL is a standard executable
language for specifying interactions with Web services,
based on XML. BPEL has four main sections: ‘partnerLinks,’
‘variables,’ ‘faultHandlers,’ and ‘process.’ In order to trans-
late BPMN into BPEL, first the basic attributes are mapped
such as business process name and related namespaces are
mapped to the ‘process name’ in BPEL. Then, ETL tasks in
a BPMN are represented as the type of ‘services’ and are
mapped into the ‘partnerLinks’ in BPEL.

For example, Fig. 9, which is an extract from Fig. 6,
illustrates ETL activities as (extract from) ‘PS1,’ (extract
from) ‘PS2,’ and (extract from) ‘F2.txt.’ These activities are
mapped to ‘partnerLinks’ in BPEL. BPMN properties that
support an ETL workflow such as ‘TempF2’ in Fig. 6 are

123

From conceptual design to performance optimization of ETL workflows: current state of… 787

Fig. 9 BPMN representation of an ‘Extract’ Step

stored in BPEL ‘variables.’ The error end events in a BPMN
are mapped to ‘faultHandlers’ event in BPEL. Finally, the
‘process’ section in BPEL contains the description of the
ETL activities that are included in an ETL workflow.

5.3 Implementation based on XML

[22] propose to model an ETL workflow as an ETL graph
encoded in XML representation (as described in Sects. 3, 4).
To translate an XML-based logical model to its correspond-
ing physical implementation, the authors use an appropriate
parser. For example, an XML encoded logical model can be
translated into a physical implementation format understand-
able by Pentaho Data Integrator (PDI), as follows:

1. element <design/> maps into ‘job’ activity, and if
<design/> element is nested, then it maps into ‘trans-
formation’ activity in PDI,

2. element <node/> maps into ‘step,’
3. elements <name/> and <optype/> map into ‘name’

and ‘type’ of ‘step,’ respectively,
4. element <type/> of node describes the type of an ETL

activity, e.g., a data store or an ETL operator in ‘step,’
5. element <edge/> specifies the order and interconnection

of ‘step,’
6. element <properties/> specifies the physical properties

of the ‘step.’

‘job,’ ‘step,’ ‘name,’ and type of step’ are artifacts in PDI.
Hence, using the aforementioned mapping rules and the
appropriate parser, the physical implementation of a XML
encoded logical model is easily generated.

5.4 Summary

In this section, we have examined the methods and tech-
niques to translate logical models of an ETL workflow into
their corresponding physical implementations using reusable
templates, engine-specific XML parser, and BPEL. The
advantages and disadvantages of the discussed approaches
can be summarized based on the metrics described in Sect. 3.5
as follows.

1. Reusable templates approach [30]

Pros:
• Semi-autonomous behavior—the techniques

that physically implement a graph-based logical
model use a library of reusable (possibly error-
free and efficient) templates; a number of an ETL
workflow variants may be generated by selecting
different physical templates.

• UDF support—UDFs are supported as black-
box ETL activities and are considered during
implementation and performance optimization.

Cons:
• Structured data—only structured data sources

are supported.
• Quality metrics—only execution and perfor-

mance cost as quality metrics are considered.
• Unified model—the ETL developer has to manu-

ally translate a logical model into its correspond-
ing physical implementation if a template is not
already provided for a certain ETL activity. Fur-
thermore, the templates are platform dependent,
which limits their application.

• Challenges—a limited set of logical and physi-
cal templates is provided.

2. BPEL-based approach [19]

Pros:
• Semi-autonomous behavior—BPEL is used to

physically implement a BPMN-based logical
model; mapping rules are required to implement
a BPMN-based model into BPEL.

• Unified model—the physical implementation is
done using BPEL and thus is platform indepen-
dent as an ETL processes can be exposed as a
Web service.

Cons:
• Structured data—only structured data sources

are supported.
• No UDF support.
• Challenges—the ETL developer must have prior

knowledge of BPEL and tools that support
BPEL-based ETL workflows.

3. XML-based approach [22]

Pros:
• Semi-autonomous behavior—a step-by-step

method is proposed to generate a physical
implementation of an XML-based logical
model using engine-specific XML parser, but
the ETL developer has to provide the mapping
rules to implement an ETL workflow.

123

788 S. M. F. Ali, R. Wrembel

• Quality metrics—the performance, freshness,
recoverability, and reliability quality metrics are
addressed.

• Unified model—the logical design is created
in the XML format. Since most of the ETL
tools support XML, it is easy to generate a
corresponding physical implementation using
existing tools.

Cons:
• Structured data—only structured data sources

are supported.
• No UDF support.
• Challenges—generating a physical implementa-

tion of a workflow from its XML-based logical
model requires a set of carefully defined rules.

To conclude, the discussed methods require extensive
amount of input from the ETL developer to execute a trans-
lation of a logical model into its physical representation.
Although a few approaches have been proposed in this field,
there is a need for a framework that automatically or semi-
automatically translates a logical model into its physical
implementation with minimum or no human support.

6 Optimization of an ETL workflow

As discussed in Sect. 1, an ETL workflow has a complex
structure because it comprises many different ETL activities,
which may be implemented in various ways, e.g., relational
operators or UDFs. Each of these activities may have fluctu-
ating execution time that increases with respect to the size of
incoming data. Therefore, minimizing the execution time is
of particular importance. In this section, we will discuss dif-
ferent research approaches and commercial tools that support
performance optimization of ETL workflows.

6.1 State-space approach for optimizing an ETL

workflow

[12] present a concept to reduce the execution cost either
by decreasing the total number of activities or by changing
the order of activities in an ETL workflow. To this end, a
state-space search problem is defined, where each state in a
search space is a Directed Acyclic Graph (DAG). In a DAG,
activities are represented as graph nodes and relationships
among nodes are represented as directed graph edges. To
find an optimal ETL workflow, new states are generated that
are semantically equivalent to the original state. A transition
from an original state to a new state may involve swapping

two activities, factorizing/distributing two activities, merg-

ing, or splitting activities.

Fig. 10 ETL workflow before applying operation distribute

Fig. 11 ETL workflow after applying operation distribute

To illustrate the generation of a semantically equivalent
new state using operation distribute (i.e., to distribute the
data flow in an activity into different data flows rather than
operating over a single data flow), consider a conceptual
model of the running example as depicted in Fig. 10. The
data are propagated into a DW in two parallel flows passing
through different activities and are finally unified at Activity
10. Then, in Activity 11, the flow checks for the value of
attribute QTY before loading data into a DW. This activity is
highly selective; therefore, it is beneficial to push the activity
to the beginning of the flow and distribute the activity into
two parallel flows. Figure 11 shows Activity 11_1 and Activ-
ity 11_2 after applying the distribute operation to Activity 11
in Fig. 10. This approach reduces the total cost of the flow
without changing the semantics of the ETL workflow.

A work of [31] extends that of [12] w.r.t. generating an
optimal ETL workflow in terms of performance, fault toler-
ance, and freshness, as described in [23]. In order to achieve
quality objectives, the approach applies three new transitions,
namely partition, add_recovery_point, and replicate. parti-

tion is used to parallelize an ETL workflow to achieve better
performance. add_recovery_point and replicate are used to
provide a workflow persistence and recovery in case of a
failure.

To generate a search space, the ‘exhaustive search (ES)’
algorithm is used [12]. Next, the search space is pruned by
using a cost model and different heuristics for performance,
reliability, and recoverability metrics. Once the state-space
search problem is constructed using the ES algorithm, heuris-
tics and greedy algorithms are used to reduce and explore the
search space to get an optimal ETL workflow.

[30] also model an ETL workflow as a state-space search
problem and apply sorters in a graph node. Sorters change
the order of input tuples, because in some cases the order
plays an important role in an improved execution of an ETL

123

From conceptual design to performance optimization of ETL workflows: current state of… 789

activity. In order to obtain the optimal solution, the ‘exhaus-
tive ordering (EO)’ algorithm is used. EO takes a logical
design of an ETL workflow as an input in the form of a DAG
and computes its signature and its computing cost. The sig-
nature is a string representation of a physical design of an
ETL workflow. To represent a workflow (i.e., a graph) as a
string, the following rules are proposed: a@p—the physical
implementation of ‘p’ of logical activity ‘a,’ . (dot)—names
of activities forming a linear path separated by dot (.), //—
concurrent activities delimited by ‘//’ and each path enclosed
in parenthesis, a_b(A,B)—a sorter placed among activity ‘a’
and ‘b’ based on attributes ‘A’ and ‘B,’ V!A—a sorter on
table ‘V’ based on attribute ‘A.’ Based on the rules, an ETL
workflow shown in Fig. 10 can be represented in terms of the
following signature:

((1.3.4@DT.5@NN) // (2.6.7@PO.8.9)). 10@NL.11.12

In the signature, activities 1, 3, 4, and 5 (in Fig. 10) form a lin-
ear path in the upper level flow and activities 2, 6, 7, 8, and 9
form a linear path in the lower level flow. Both the upper and
the lower level flows are concurrent and therefore are sepa-
rated by ‘//.’ ((1.3.4@DT.5@NN) denotes that activity 4 is
aggregated based on the date function ‘DT’ and activity 5 per-
forms a not null check ‘NN.’ (2.6.7@PO.8.9)).10@NL.11.12

denotes that activity 7 applies projection ‘PO’ on attribute
DEPT as it is not required by a DW. Finally, both flows are
merged based on nested loop ‘NL’ at activity 10.

Once the signature is computed, the EO algorithm gen-
erates all possible states by placing sorters at all possible
positions. The EO algorithm then uses all possible combina-
tions of different physical implementations for each activity.
Finally, it chooses a state with minimum execution cost as
the optimal physical implementation.

6.2 Dependency graph for optimizing an ETL workflow

The optimization concept contributed in [11] draws upon the
idea of rearranging tasks (activities) in an ETL workflow
(as proposed in [12]), in order to construct a more efficient
variant of this workflow. The following assumptions are made
in [11]:

– an ETL workflow is represented as a DAG,
– every task has associated a selectivity (defined as a ratio:

output/input data volume),
– every task has associated a cost, which is a function of

an input data size,
– a workflow is rearranged by means of operations: swap,

factorize/distribute, merge/un-merge (as in [12]),
– a workflow rearrangement is guided by an optimization

rule that moves (if possible) more selective tasks to the
beginning of the workflow.

Fig. 12 Swappable and non-swappable tasks in an ETL workflow

[11] introduced a dependency graph—a structure that rep-
resents dependencies between tasks in a workflow. The graph
is constructed by applying the ‘swappability test,’ proposed
in [12]. Two given tasks are considered independent of each
other if they are swappable, i.e., if they conform to the fol-
lowing four rules:

1. the tasks to swap must be adjacent to each other in the
dependency graph,

2. the tasks to swap must have a single in/output schema and
must have exactly one consumer of the output schema,

3. the tasks must have the same name for attributes in their
in/output schema,

4. the tasks must generate the same schema before or after
applying the swap operation.

As an example, let us consider a linear flow shown in
Fig. 12. Recall that: (1) data source S2 stores costs and dates
in the US format, (2) function $2e (task 9) converts USD
into EUR, and (3) task 9_1 selects some rows based on the
value of attribute ‘cost’ (expressed in EUR). Since task 9_1
cannot be executed before task 9, they are non-swappable.
Therefore, tasks 9 and 9_1 are dependent on each other. On
the contrary, tasks 7 and 8 are swappable because they have
non-intersecting schemas and they are independent on each
other. Task 6 is also independent. Such checks are performed
for each task in an ETL workflow, and the dependency graph
is created.

The dependency graph is used for narrowing possible
space of allowed rearrangements of tasks within a given
workflow. To this end, the authors proposed a greedy heuris-
tic that is applicable only to linear flows. For this reason, a
given complex ETL workflow with multiple splits and merges
(joins) is divided into n linear flows.

As an example, let us consider a complex ETL workflow,
as shown in Fig. 13. The workflow is divided into the three
following linear flows: LFI with tasks (3, 4, 5), LFII with
tasks (6, 7, 8, 9, 10), and LFIII with tasks (12, 13).

Having divided a complex workflow into linear flows, each
linear flow is optimized by rearranging its tasks. To this end,
an algorithm was proposed whose intuition is as follows.
Nodes of the dependency graph are ordered in a linear work-
flow by their selectivities. Less selective tasks are placed
closer to the end of the flow (the target). This way, more
selective tasks are moved toward the beginning of the flow
(toward a data source). Tasks that depend on another tasks

123

790 S. M. F. Ali, R. Wrembel

Fig. 13 Logical linear division of a complex ETL workflow

T must be placed to the right of T . This way, the dependen-
cies between tasks represented in the dependency graph are
respected.

Having optimized the linear flows, the final step is to com-
bine the flows into larger linear flows that include all the tasks
processing data from the source to the destination. For exam-
ple, the linear flows from Fig. 13 are combined into two larger
linear flows—the first one is composed of [LFI, LFIII] and
the second one is composed of [LFII, LFIII].

Next, each combined linear flow is optimized by rearrang-
ing its tasks, as described above. There are tasks that may be
moved from a given linear flow LFm to the next linear flow
LFn , i.e., in the direction toward the end of a workflow. Such
tasks are called forward transferable. There are also tasks
that may be moved in the opposite direction, i.e., toward the
beginning of a workflow. They are called backward transfer-
able. An execution order within a combined linear flow is
determined by the order implied by the dependency graph.

For example, in Fig. 13 tasks 5 and 9 have the same seman-
tics (selecting rows with not null costs). Therefore, they can
be moved forward to the beginning of linear flow III, such that
the linear flow will be composed of tasks (5_9, 12, 13). Task
5_9 is a new task created by the factorize operator, having
the same semantics as 5 and 9. Similarly, task 12 (selecting
rows based on the value of attribute QTY) can be moved to
LFI and LFII by applying the distribute operator.

Having constructed the combined linear flows, each com-
bined flow is optimized by and algorithm whose intuition
is as follows. All possible rearrangements of backward- and
forward-transferable tasks are analyzed, and for each of them,
an execution cost of the combined linear flow is computed.
Next, the rearrangement with the lowest cost is selected.

6.3 Scheduling strategies for optimizing an ETL

workflow

[9] propose a solution to optimize the performance of an
offline batch ETL workflow in terms of execution time and
memory consumption without the loss of data. To this end,
a multi-threaded framework with incorporated ETL sched-
uler is presented, where each node of an ETL workflow is
implemented as a thread. The proposed framework monitors,

schedules, and guarantees the correct execution of an ETL
workflow based on the proposed scheduling strategies such
as ‘minimum cost prediction (MCP),’ ‘minimum memory
prediction (MMP),’ and ‘mixed policy (MxP).’

The MCP scheduling strategy is proposed to improve the
performance of an ETL workflow by reducing its execution
time. The ETL scheduler prioritizes activities to be scheduled
at each step that have the largest volume of input data to
process at that time. As a result, the activity with the largest
input queue is able to process all data without any interruption
from the ETL scheduler.

The MMP scheduling strategy is proposed to improve
memory consumption by scheduling activities at each
step that have the highest consumption rate (consumption
rate=number of rows consumed/processing time of input
data). As a result, the ETL scheduler maintains a data vol-
ume low in a system by scheduling the flow of activities
whenever an input queue is exhausted due to higher memory
consumption of the activity.

The MxP strategy is proposed to combine the benefits
of MCP and MMP including operating system’s default
scheduling strategy (i.e., round-robin) by exploiting paral-
lelism within an ETL workflow.

A set of scheduling policies is assessed for the execution
of an ETL workflow. The results of incorporating scheduling
policies are as follows: (1) MCP outperforms other schedul-
ing strategies w.r.t. execution time, (2) MMP is better w.r.t.
average memory consumption, and (3) MxP, which incor-
porates multiple scheduling strategies (e.g., MCP, MMP,
or round-robin) by splitting an ETL workflow, achieves
better time performance. The better time performance is
achieved by either prioritizing memory intensive activities
or by scheduling an ETL workflow to avoid blocking ETL
operations.

6.4 Reusable patterns for optimizing an ETL workflow

[32] present reusable patterns, as a mean to characterize
and standardize the representation of ETL activities along
with the strategy to improve the efficiency an ETL workflow
execution. The paper proposes to standardize the represen-
tation of frequently used ETL activities that involve a single
transformation (e.g., surrogate key transformation, checking
null values, and primary key violations), called ETL Parti-

cles. ETL activities that perform exactly one job and involve
exactly one transformation (e.g., $2e conversion) are called
ETL Atoms. ETL Atoms that involve a linear flow of ETL
particles are called ETL Molecules, and an ETL workflow is
called ETL Compound.

The paper then presents a normal form of ETL activities,
e.g., the normal form of activity 8 in Fig. 13 can be repre-
sented as follows:

123

From conceptual design to performance optimization of ETL workflows: current state of… 791

Fig. 14 Data parallelism and task parallelism

I(πDEPT), A2E(DATE), O(NNCOST)

I is the input schema coming from activity πDEPT . A2E is the
specific template activity that converts the format of attribute
DATE from American to European. O represents the output
of activity 8 as an input to the next activity NNCOST . Simi-
larly, activities 3 to 12 are ETL Molecules and the entire flow
in Fig. 13 including activities and record sets represent the
ETL Compound.

6.5 Parallelism for optimizing an ETL workflow

Besides the aforementioned optimization strategies, incor-
porating parallelism in an ETL workflow is another popular
strategy to achieve better execution performance. Parallelism
can be achieved either by partitioning the data into N subsets
and process each subset in parallel sub-flows (data paral-
lelism) or by using pipeline parallelism (task parallelism) as
shown in Fig. 14.

For a simple ETL workflow, the data parallelism can work
well. However, for a complex ETL workflow (e.g., nonlin-
ear flows or flows with data and compute-intensive tasks),
combination of data and task parallelism is required. Hence,
a mixed parallelism is beneficial when either communica-
tion in a distributed environment is slow or the number of
processors is large [33].

6.5.1 Parallelism in traditional data flow

Most of research on ETL workflow parallelism has focused
on a traditional data flow parallelism, from which the most
prominent one is the MapReduce framework [34]. It uses
a generic key/value data model to process large-scale data
in a parallel environment. MapReduce provides two func-
tions, Map and Reduce, both having two input parameters,
i.e., (1) a set of input data set in a key/value format and (2) an
user-defined function (UDF). Map assigns a key/value pair
to its input data using an UDF and produces a set of out-
put key/value pairs. The Reduce function then groups the
key/value pairs of its input data on the basis of keys, and
finally, each group is processed using an UDF. Storage for
MapReduce is based on distributed file system called Hadoop
Distributed File System (HDFS) [35].

The MapReduce framework has its limitations, i.e., (1) it
accepts a single set of input data set at a time in a key/value

format, (2) it always executes in a strict order, i.e., first Map
and then Reduce, (3) the output data from Map have to be
stored into an intermediate file system, which makes data
processing slow due to data partitioning and shuffling, and
(4) developers have to write a custom code for the Map and
the Reduce functions, which is hard to maintain and reuse.

Another parallel processing framework is PACT [36]. It
is based on the Parallelization Contracts (PACTs), which
consists of an Input Contract and an optional Output Con-
tract. The Input Contract is the generalization of the Map and
Reduce functions and takes an UDF and one or more data sets
as an input. It also provides an extended set of Input Con-
tracts i.e., ‘Cross,’ ‘Math,’ and ‘CoGroup’ functions, which
complements Map and Reduce functionality and overcomes
the limitations of MapReduce model, i.e., The Input Contract
does not need to be executed in a fixed order and allows mul-
tiple inputs of key/value pairs. The Output Contract denotes
different properties of the output data, which are relevant to
parallelization. These properties can be either (1) preserving
a partitioning property or (2) an ordering property on data that
are generated by an UDF. An input UDF contains the strat-
egy (such as partitioning, repartitioning, or broadcasting) for
parallelizing in PACT.

For example, let us introduce another concept in our run-
ning example, REVIEWS (RID, PKEY, DEPT, REVIEW,
SCORE, ENTRYDATE), which stores user reviews along
with its computed score for each ‘part’ stored in a depart-
ment. Now consider analytical query Q, which provides
‘parts’ from S1.PARTSUPP having COST greater than some
amount, let us say ‘c.’ Query Q joins S1.PARTSUPP with
REVIEWS, keeping only ‘parts’ where the review score is
greater than some threshold ‘s,’ and reduces the result set to
the ‘parts,’ which are not present in S2.PARTSUPP for some
department ‘d.’

Figure 15 shows query Q as: (a) the MapReduce imple-
mentation and (b) the PACT implementation. The MapRe-
duce implementation requires two stages of the MapReduce
job. The first stage performs a join on the basis of PKEY in
S1.PARTSUPP (S1) and REVIEWS (R) and carries out the
specific selection based on S1. COST > ‘c’ and R.SCORE
> ‘s.’ The result from the first stage joins with the selec-
tion on S2.PARTSUPP (S2) on the basis of S2.DEPT= ‘d’
in the Map function of the second stage. The reducer in
this stage performs an anti-join on the result set (when no
S2.PARTSUPP row with an equal key is found).

The PACT implementation for the same query Q requires
three separate user-defined functions (UDFs) attached to the
Map contract to perform a selection on data sources S1, R,
and S2 instead of a single user-defined function in a MapRe-
duce scenario, such that each UDF is executed in parallel.
The Match contract replaces the Reduce contract in the orig-
inal MapReduce implementation. It matches the incoming
key/value pairs from data sets with the same key and forms

123

792 S. M. F. Ali, R. Wrembel

Fig. 15 MapReduce versus PACT implementation

an independent set based on the similar keys. The Match con-
tract guarantees that the independent set of key/value pairs is
supplied to exactly one parallel instance of the user-defined
function so that each set is processed independently. Finally,
the CoGroup contract implements the anti-join by releasing
the rows coming from the Match contract. The CoGroup con-
tract assigns the independent subsets with equal keys to the
same group. The PACT implementation allows the flexibility
to parallelize tasks by giving parallel hints using output con-
tracts such as the SameKey contract. SameKey is the output
contract attached to the Map, Match, and Co-Group con-
tracts, which assures that the value and type of a key will not
change even after applying the user-defied functions. Such
hints are later exploited by an optimizer that generates par-
allel execution plans.

The strategy for the generation of an efficient parallel data
flow is implemented in the Selinger-style SQL optimizer
[37]. This kind of optimizer selects a globally efficient plan
by generating multiple plans, starting from data sources, and
pruning the costly ones based on partitioning and sort order
properties. The plan with the lowest cost is selected as an
optimized query plan. A PACT program is executed on a
three-tier architecture [38] composed of: a PACT compiler,
engine Nephele [39], and a distributed file system.

[40] propose a method to optimize a PACT program con-
sisting of UDFs to process input data into multiple subsets,
as follows:

1. use a static code analysis of an UDF (UDFs are consid-
ered as black-box activities with unknown semantics) to
obtain relevant properties required to order UDFs;

2. enumerate all valid re-orderings for a given PACT pro-
gram [41];

3. compute all possible alternative re-orderings using a
cost-based optimizer to generate the execution plan by
selecting execution strategies;

4. select and submit the plan with a minimum estimated cost
for a parallel execution [36].

To overcome the aforementioned limitations of the
MapReduce framework, an in-memory parallel computing
framework Spark [42] uses multi-pass computation, i.e.,
computing components several times, using a Direct Acyclic
Graph pattern. It also supports in-memory data sharing
between multiple tasks. Spark allows the developers to cre-
ate applications using API based on Resilient Distributed
Dataset (RDD). RDD is a read-only multiset of data items
distributed over a cluster of machines. RDD is placed on top
of a distributed file system (typically HDFS) to provide multi-
pass computations on data by rearranging the computations
and optimizing data processing.

Another approach toward parallelizing a data flow is
Structured Computations Optimized for Parallel Execution
(SCOPE) [43]. It supports analyzing massive amount of data
residing on clusters of hundreds or thousands of machines by
means of and extensible scripting language similar to SQL.
SCOPE uses a transformation-based optimizer which is a part
of Microsoft’s distributed computing platform called Cos-
mos. Cosmos accepts SCOPE scripts, translates them using
SCOPE compiler, and finally invokes the SCOPE optimizer.
The SCOPE optimizer introduces considerable parallelism
based on a cost function. As presented in [44], the SCOPE
optimizer generates a large number of execution plans by
taking into account structural properties of data (e.g., parti-
tioning, sorting, or grouping). The generated execution plans
are then pruned using a cost model. However, this approach
is restricted to relational operators (ROs) only, whereas in
practice, it is important to optimize both ROs and UDFs.

The work presented in [45] acknowledges the importance
of optimizing both ROs and UDFs. It extends the work pre-
sented in [44] by introducing parallelization techniques for
UDFs. An UDF is treated as a black-box operation. In order
to describe an UDF behavior and provide means for its par-
allelization, a set of UDF annotations were proposed. They
describe pre- and post-conditions for partitioning and hints
for an optimizer. For example, annotations BEGIN and END
keywords, enclosed within annotations BEGIN PARALLEL
and END PARALLEL mark the beginning and end point
of the user-defined code. A script (with annotations) similar
to SQLScript [46] is used to express complex data flows
containing ROs and UDFs together. The main goal is to
parallelize ROs and UDFs together, which is achieved by
directly translating a RO into the internal representation of
the proposed cost-based optimizer as described in [44] and by
applying the ‘Worker-Farm’ pattern [47] on an UDF. A com-
plete set of annotations is described in [45]. The proposed
approach has two main limitations: (1) It supports UDFs
implemented only as table functions and (2) it requires the
ETL developer to annotate the custom code manually, i.e., in
fact optimize the code manually.

123

From conceptual design to performance optimization of ETL workflows: current state of… 793

6.5.2 Parallelism in an ETL workflow

Introducing parallelism into an ETL workflow is not a trivial
task. The ETL developer has to decide which activities to
parallelize, how much to parallelize, and when to parallelize
before incorporating parallelism into an ETL workflow.

Task and code parallelism [48] propose a method to exploit
parallelism at a code level by introducing strategies for both
task and data parallelism. A set of constructs is proposed in
order to enable the ETL developer to convert a linear ETL
workflow into its corresponding parallel flow. The constructs
are easy to use and do not require complicated modifica-
tion of a non-parallel ETL workflow. However, the proposed
solution is code based and requires the ETL developer to
configure the degree of parallelization. Furthermore, this
solution does not provide any cost model to estimate a per-
formance gain.

Parallelizing by means of MapReduce [49,50] present a
parallel dimensional ETL framework based on MapReduce
called ETLMR. The focus of ETLMR is on star schema,
snowflake schema, slowly changing dimensions (SCDs), and
data-intensive dimensions. The ETLMR processes an ETL
workflow in two stages. In the first stage, dimensions are pro-
cessed using MapReduce tasks. In the second stage, facts are
processed using another MapReduce task. Dimensions can
be processed by using either of the following strategies: One

Dimension One Task (ODOT) and One Dimension All Tasks

(ODAT). In ODOT, dimensions are processed by the Map
task using an UDF and then the processed data are propagated
into a single Reduce task. In the Reduce task, user-defined
transformations are performed on rows and then loaded into
a DW. In ODAT, an output of the Map task is partitioned in
a ‘round-robin’ fashion, i.e., the output is processed by all
the Reduce tasks such that each Reduce task receives equal
number of rows. The uniqueness of dimension key/values is
maintained by using a global ID generator and a ‘post-fixing’
method, which merges rows with the same values but differ-
ent keys into a single row. To optimize ODOT, keys with the
same values are combined together in the Combiner task, to
reduce the communication cost between the Map and Reduce
tasks. Using the single Reduce task can become a bottleneck
in case of a data intensive dimension; therefore, ODAT is
used to overcome the bottleneck.

Fact processing in ETLMR requires looking up of dimen-
sion keys and aggregation (if required). If aggregations are
not applicable, only the Map task is used and the Reduce
task is dropped. Otherwise, only the Reduce task is used
since aggregations must be completed from all the data in the
Reduce task. Once the fact data are processed, it is loaded
into a temporary buffer where it resides until the buffer is

Fig. 16 ETL workflow partitioning

fully loaded. The Map and Reduce tasks then perform bulk
loading in parallel into a DW.

Partitioning and parallelization [51] propose ETL workflow
partitioning and parallelization, as an optimization method.
Vertical and horizontal partitioning is suggested. Vertical
partitioning is impacted by tasks in an ETL workflow and
the following tasks are distinguished: row-synchronized—it
processes row by row (e.g., filter, lookup, split, data for-
mat conversion) and uses a shared cache to move data from
task to task, block—processing cannot start until all rows
are received by the task (e.g., aggregation), semi-block—
receives rows from multiple tasks and merges them (e.g., join,
set operators); processing of the task starts no sooner than all
expected rows are received. The authors propose to partition
and parallelize an ETL workflow at three levels. First, the
whole ETL workflow is vertically partitioned into multiple
sub-workflows—called execution trees. Second, execution
trees are partitioned horizontally and each partition is run in
parallel. Third, single tasks in an execution tree are paral-
lelized by multi-threading.

Vertical partitioning is executed as follows. An ETL work-
flow analysis is run depth-first and it starts from a data source
(the root of an ETL graph). All row-synchronized compo-
nents (i.e., the ones that use a shared cache) are added into a
new sub-workflow, so that their original order is preserved.
If a block or semi-block task is found, then it becomes a root
of a new sub-workflow.

Figure 16 explains the workflow partitioning method.
Analyzing the ETL graph starts from data sources. For exam-
ple, S1 and S2 create two separate execution trees T1 and T3,
respectively. Task 3 is row-synchronized and it is added into
T1, whereas row-synchronized tasks 6, 7, 8, and 9 are added
into T3. Since task 4 is a block task, it becomes the root of
a new execution tree T2 having activity 5 as its only child.
Task 10 is a semi-block task, which forms execution tree T4,
composed of tasks 11 and 12.

Once the execution trees are constructed, internal paral-
lelization is carried out inside each of the execution trees. To
this end, input data are partitioned horizontally into n disjoint
partitions (n is parameterized), where each partition is pro-
cessed by a separate thread. Finally, internal parallelization
is carried out for tasks with a heavy computational load. To

123

794 S. M. F. Ali, R. Wrembel

find such a task, time is measured during which a task does
not produce any output. If the time is greater than a given
threshold, then the task becomes a candidate for internal par-
allelization. To parallelize a single task, multi-threading is
applied, i.e., an input of the task is divided into n equal
splits, each of which is run by a separate thread. Moving data
between tasks within the same execution tree is implemented
by means of a shared cache, whereas moving data between
adjacent execution trees is implemented by means of coping
data between separate cache (cf. dotted arrows in Fig. 16).

6.6 Quality metrics for ETL workflows

The goal of [23] is to reduce time and cost of ETL design,
implementation, and maintenance (DIM) by incorporating
some quality metrics into an ETL workflow design. A lay-
ered approach is proposed for an ETL DIM, where each layer
represents a logical design, implementation, optimization,
and maintenance. At each layer, some metrics are intro-
duced (or refined from higher levels) that guide the ETL
developer to produce a high-quality workflow. Furthermore,
dependencies among metrics that impact DIM are identi-
fied and discussed. The following metrics are proposed in
the so-called QoX metric suite: performance, recoverabil-
ity, reliability, and maintainability—which characterize an
ETL workflow as well as freshness—which characterizes
processed data.

The aforementioned QoX metrics are interrelated and
interdependent, which may lead to a contradictory behav-
ior of a workflow. For example, on the one hand, increasing
performance by partitioning and parallelization may increase
freshness, but on the other hand, it decreases maintainabil-
ity due to a more complex workflow design. The authors
stress that some metrics can be used only at certain levels
of DIM. For example, freshness and reliability can be han-
dled at the physical level, but at the conceptual level their
usefulness is questionable; conversely, performance is a per-
tinent metric at the conceptual, logical, and physical level
of an ETL workflow design. The interdependencies between
the quality metrics have been confirmed by some experi-
ments. The authors report that: (1) increasing recoverability
by means of recovery points decreases performance, as addi-
tional disk operations are required to store RPs and (2) the
impact of some optimization techniques on the performance
varies, e.g., increasing processing power does not improve
performance linearly—there are parts for an ETL workload
whose parallelization impacts performance stronger than the
other parts.

6.7 Statistics for workflow optimization

Most of ETL workload optimization methods rely on vari-
ous statistics. In [10], the authors provide a framework for

gathering statistics for cost-based workload optimization.
To this end, a workload must be divided into parts, called
sub-expressions (SEs). The authors proposed to divide a
workflow into SEs based on division points, which are ETL
tasks (activities). The following tasks are used as division
points: (1) materialization of intermediate results, (2) trans-
formation of values of an attribute that is derived from the
join of multiple relations and that is further used in another
join, and (3) an UDF. Then, each SE is optimized indepen-
dently. It must be stressed that the proposed framework does
not deal with generating execution plans or estimating their
costs, i.e., it is assumed that the set of SEs and their optimized
execution plans exists and are delivered by an ETL optimizer
module.

Finding an optimal execution plan is based on: (1) iden-
tifying different possible re-orderings of operators (tasks,
activities) in a given SE and (2) estimating their execution
costs, in the spirit of [11,12]. Each operator has a cost func-
tion that is based among others on: cardinalities of input
relations (based on histograms), CPU and disk-access speeds,
memory availability. The following operators are supported:
select, project, join, group-by, and transform.

There are multiple sets of statistics (called candidate statis-
tics set—CSS) suitable for optimizing a given SE. Some
statistics can be computed from others, based on the fol-
lowing computation rules:

– the cardinality of the select operator can be estimated if
the data distribution on a filtering attribute is known,

– for the project operator, output cardinalities and distribu-
tions are identical to the input ones,

– the cardinality of a join can be determined from the dis-
tributions of the input tables on a join attribute,

– the cardinality of group by is identical to the number of
distinct values of grouping attributes,

– for the transform operator, output cardinalities and dis-
tributions are identical to the input ones,

– if there exists a histogram on any set of attributes of table
T, then the cardinality of T can be computed by adding
the values of buckets,

– if there exists a detailed histogram on attributes A and B,
then a histogram for A can be computed by aggregating
buckets on B.

Each CSS may have a different cost of collecting its
statistics (e.g., CPU and memory usage). For this reason,
a challenging task is to identify and generate a set of statis-
tics to be collected by an ETL engine during its execution,
such that: (1) the set of statistics can be used to estimate
costs of all possible re-orderings of tasks within a given
SE and (2) time and resource overhead of collecting the
statistics is minimal. The authors identified that this is an
NP-hard problem and to solve it they proposed a linear pro-

123

From conceptual design to performance optimization of ETL workflows: current state of… 795

gramming algorithm. Finally, the authors suggested that the
whole ETL optimization method is divided into the seven fol-
lowing steps: (1) identifying optimizable blocks by dividing
a workflow into sub-expressions, (2) generating optimized
sub-expressions by means of task reordering, (3) generat-
ing candidate statistics sets, (4) determining a minimal set of
statistics, (5) augmenting an optimized SE by injecting into
it a special component for collecting statistics, (6) running
a SE and gathering statistics, and (7) optimizing the whole
ETL workflow by means of cost-based techniques.

6.8 Commercial ETL tools

To the best of our knowledge, only two commercial ETL
tools, namely IBM InfoSphere DataStage [52] and Infor-
matica PowerCenter [53], provide some simple means of
optimizing ETL workflows.

In IBM InfoSphere DataStage, the so-called balanced

optimization is used. The optimization is included in the fol-
lowing design scenario: (1) an ETL workflow is designed
manually (each task should be elementary, e.g., simple select
from one table instead of a join), (2) the workflow is com-
piled into an internal representation, (3) optimization options
are defined by the ETL developer, (4) the balanced opti-
mization method is applied, and (5) the optimized workflow
is produced to be run. The optimization process is guided
by some parameters/options/hints including: (1) reduce a
data volume retrieved from a data source (if possible), i.e.,
move data transformations, aggregations, sorting, duplicate
removal, joins, and lookups into a data source, (2) alterna-
tively, if possible, move processing into a data target, (3) use
bulk loading to target, (4) maximize parallelism, and (5) use
not more than a given number of nested joins.

Informatica PowerCenter implements the so-called push-

down optimization. In this optimization, some ETL tasks that
can be implemented as SQL commands are first identified.
Second, these tasks are converted into SQL and executed
either at an appropriate source or target database (depending
on the semantics of the tasks). This approach leverages the
processing power of a database in which data reside.

Other tools, including AbInitio, Microsoft SQL Server
Integration Services, and Oracle Data Integrator, support
only parallelization of ETL tasks, with a parameterized level
of parallelism.

6.9 Summary

In this section, we discussed various approaches to the
performance optimization of an ETL workflow, i.e., state-
space search, dependency graphs, scheduling policies, and
reusable patterns to optimize and ETL workflow execution.
We also presented strategies that use parallelism in order to
achieve execution performance in an ETL workflow. Finally,

we presented optimization support available in commer-
cial and open-source ETL tools. Below, we summarize the
approaches on the basis of the following criteria:

1. Autonomous Behavior—whether an optimization
method is automatic, semiautomatic (i.e., requires input
from the ETL developer), or manual;

2. UDF Optimization—whether a method supports the opti-
mization of user-defined functions;

3. Monitoring—whether a method or framework supports
monitoring an ETL workflow in order to identify perfor-
mance bottlenecks;

4. Recommendation—whether a method or framework pro-
vides recommendations to improve the implementation
of an ETL workflow.

1. State-space-based approaches [10–12,30,31]

Pros:
• Optimization techniques based on execution

costs and tasks reordering (similarly as query
optimization techniques) are applied.

• Semi-autonomous behavior—an input is an ETL
workflow in the form of a graph. A given work-
flow is then transformed by an algorithm into a
more efficient but semantically equivalent work-
flow.

Cons:
• No UDF support—the proposed optimization

algorithms support only basic ETL operators.
• No monitoring and recommendation—the pro-

posed frameworks neither monitor ETL work-
flows for the performance bottlenecks nor pro-
vide hints on how to improve the performance
of a workflow.

• Challenges—one of the biggest challenges is the
generation of an optimal ETL workflow using
the proposed algorithms. If an ETL workflow
is large and complex, the generation of an opti-
mal workflow may take longer than the actual
time of execution of the ETL workflow itself.
Moreover, [12,31] are limited to a few transition
techniques from one state to another and also do
not give an account to translate an optimized log-
ical model to its semantically equivalent physical
implementation.

2. Scheduling-based approach [9]

Pros:
• Scheduling policies are applied to optimize an

ETL workflow execution time and memory con-
sumption.

123

796 S. M. F. Ali, R. Wrembel

• Semi-autonomous behavior—it is mainly
focused on scheduling of ETL activities; the
scheduling algorithm requires an ETL work-
flow as an input; the scheduling is based on
predefined policies.

• Monitoring—it monitors the entire ETL work-
flow, but only for the purpose of scheduling ETL
activities at the right time; it does not monitor the
activities to find out performance bottlenecks.

Cons:
• No UDF optimization and recommendation—it

does not specifically optimize the behavior of
an UDF activity if it tends to be a bottleneck in
an ETL workflow; the scheduling algorithm does
not provide any recommendations to improve an
input ETL workflow.

• Challenges—there is a possibility of losing data
during scheduling; therefore, the approach will
not be applicable to most of the traditional ETL
processing.

3. Parallelism-based approaches [48–51]

Pros:
• Semi-autonomous behavior—the proposed

approaches give a reasonable account for par-
allelizing the ETL activities, but the methods
require a considerable amount of input from the
ETL developer to decide which parts of an ETL
workflow need to be parallelized, how much
to parallelize, and where to put split points in
order to enable parallelism.

• UDF support—the methods proposed in [49,50]
support the ETL activities as UDFs but do not
support their optimization.

Cons:
• No monitoring and recommendation—neither

mechanisms for monitoring ETL workflows for
bottlenecks nor recommendations to improve an
input ETL workflow are supported.

• Challenges—the proposed solutions do not pro-
vide any cost model to identify the required
degree of parallelism. Therefore, the ETL devel-
oper has to either perform trial and error method
or execute the ETL transformations using test
data to figure out the required degree of paral-
lelism.

4. QoX Suite [23]

Pros:
• Analyzes various quality metrics and their inter

dependencies for an ETL design (at a conceptual

and logical level), implementation, optimiza-
tion, and maintenance. The metrics are used for
assessing the quality of a workflow.

Cons:
• No autonomous behavior—the approach pro-

vides only a theoretical framework.
• UDF support—not discussed.
• No monitoring and recommendation—neither

methods for monitoring the performance of an
ETL engine nor the functionality of improving
an ETL design based on analyzing quality met-
rics has been discussed.

• Challenges—the biggest challenge is how to
efficiently guide the ETL developer through sub-
sequent stages of an ETL design, taking into
account current values of the proposed metrics.

To conclude, the state-space search approaches [12,31]
are considered among the first ones toward the logical opti-
mization of an ETL workflow. [12] models the problem as
a state-space search problem, where each state in a search
space is a DAG. An optimal ETL workflow is achieved by
choosing the optimal state from the number of generated
states that are semantically equivalent to the original state.
[31] focus on optimizing an ETL workflow for fault toler-
ance, performance, and freshness. These approaches served
as the premise for the optimization of an ETL workflow and
were later utilized by various researchers and specialists in
this particular topic. [11] propose the dependency graph that
is used for narrowing the space of allowed rearrangements
of tasks within a given workflow. Most of ETL workload
optimization methods presented in this survey rely on vari-
ous statistics. In [10], the authors provide a framework for
gathering statistics for cost-based workload optimization.

The second group of approaches focuses on strategies that
use parallelism as a mean for increasing ETL execution per-
formance, but most of them focus on data flow parallelism.
[48] introduce a method to parallelize an ETL workflow
(developed in some programming language) by introducing
both task parallel and data parallel strategies. [49,50] present
an ETL framework based on MapReduce. Although [48–51]
give a reasonable account for parallelization, these methods
require a considerable amount of input from the ETL devel-
oper to decide which parts of an ETL workflow need to be
parallelized, how much to parallelize, and where to put the
split points in order to enable parallelism.

7 Conclusions

An ETL workflow comprises numerous activities, e.g., data
extraction, validation, transformation, cleaning, conversion,

123

From conceptual design to performance optimization of ETL workflows: current state of… 797

 0

 2

 4

 6

 8

 10

 12

 2000 2002 2004 2006 2008 2010 2012 2014 2016

%
 o

f
p
u
b
lic

a
ti
o
n
s

year

Fig. 17 The distribution of ETL publications (in % of total 229 since
2000 (based on DBLP)

deduplication, and loading. All these activities can be rep-
resented and executed in many distinctive ways, e.g., using
relational operators or user-defined functions (implemented
in various programming languages), which results in a com-
plex design of an ETL workflow. Designing an error-free
and efficient ETL workflow is a complex and expensive task.
For this reason, the research community has contributed a
significant amount methods for the design, development,
deployment, and optimization of an ETL workflow.

The most intensive research on ETL took place during the
last 10 years. Figure 17 shows the distribution of publications
on ETL (expressed in % of total 229 publications), listed on
DBLP since 2001. With the growing need to warehouse and
analyze Big Data, we may expect that the interest of the
community on ETL will even increase in the nearest future.
The still open issues on ETL development, discussed in this
survey, become much more difficult to solve in the area of
Big Data. In this paper, we have presented the state of the art
and current trends in the whole process of an ETL workflow
development and optimization.

7.1 ETL workflow development: summary

There exist multiple techniques for an ETL workflow devel-
opment. At the conceptual level, there are methods involving
graphs, semantic Web ontology, UML notation, and BPMN.
All these methods propose diverse approaches to design an
ETL conceptual model in a precise and productive way. Then,
at a logical level, there exist approaches using graphs, which
supplement a generic behavior of a logical design. Addition-
ally, there are methods to incorporate quality metrics in an
ETL workflow for its efficient and reliable execution. For
a physical implementation of a logical design of an ETL
workflow, there exist methods that give detailed account on
translating a logical model into its corresponding physical
implementation.

Based on the analysis of the presented methods for each
development stage, i.e., conceptual modeling, logical mod-

eling, and physical implementation, we draw the following
conclusions.

1. There are diverse methods for constructing a concep-
tual model of an ETL workflow, e.g., graph-based [7,8],
UML-based [14], ontology-based [15,17,18,24,54], and
BPMN [19–22], from which we can conclude that the
research community has not yet concurred upon the
standard notation and model for representing an ETL
conceptual design. As a consequence, it is difficult to
develop guidelines for validating an ETL design.

2. The discussed graph-based [7,8] and UML-based [14]
methods require the ETL developer to extensively pro-
vide input during the modeling and design of an ETL
workflow; thus, it can be error-prone, time-consuming,
and inefficient.

3. Most of the methods are designed only for structured
data [7,8,14,19,22], and the support for semi-structured
and unstructured data is very limited. Since the variety
of data forMats is growing rapidly and most of data are
unstructured, it is important to extend the support for
unstructured data in an ETL workflow.

4. Almost all of the discussed design methods are based
on the traditional ETL operators (e.g., join, union, sort,
aggregate, lookup, and convert), and they mostly do not
consider UDFs as ETL activities.

5. Few methods [22,31] put emphasis on the issues of
efficient, reliable, and improved execution of an ETL
workflow using quality metrics, as described in [23].
However, most of the methods in practice do not cap-
ture or track these quality metrics.

7.2 ETL workflow optimization: summary

We also discussed methods for the optimization of an ETL
workflow and afterward narrowed down our point of interest
to parallelization techniques. The following ETL optimiza-
tion approaches have been proposed so far: state-space
search, dependency graph, and scheduling policies. The
state-space search approach serves as the foundation for the
optimization of an ETL workflow for other research. The
dependency graph approach focuses on the optimization of
a linear and a nonlinear logical ETL workflow. The schedul-
ing policies are proposed to optimize the ETL workflow with
respect to execution time and memory consumption.

In the literature, there exist multiple methods that revolve
around data flow parallelism [34,36,40,43–45]. However,
research on an ETL workflow parallelism has not appealed
much consideration.

Based on the analysis of the presented methods for and
ETL workflow optimization, we draw the following conclu-
sions.

123

798 S. M. F. Ali, R. Wrembel

1. [9,11,12,30–32,48–51] require extensive amount of
input from the ETL developer to optimize an ETL work-
flow, which makes his/her job very complicated and
time-consuming. Furthermore, the proposed methods
require the ETL developer to be highly technical in pro-
gramming as well as cautious in order to understand the
quality metrics and their impact on the performance.

2. The methods do not consider the optimization of UDFs
in a comprehensive manner. As UDFs are commonly
used in an ETL workflow to overcome the limitations
of traditional ETL operators, it is important to optimize
UDFs along with traditional ETL operators. Since an
UDF is typically considered as a black-box activity and
its semantics is unknown, it is very difficult to optimize
its execution.

3. Currently, there is no such framework that autonomously
monitors an ETL workflow to find out which ETL activ-
ities hinder its performance and gives recommendations
to the ETL developer how to increase its performance.

7.3 Open Issues

On the basis of this literature review, we can conclude our
paper with the following open issues.

1. There is a need for a unified model for an ETL workflow,
so that it is easier to validate an ETL design for its quality
metrics.

2. There is a need to consolidate and fully support UDFs in
an ETL workflow along with traditional ETL operators.

3. There is a need for an ETL framework that shall reduce
the work of the ETL developer from a design and perfor-
mance optimization perspective. The framework should
provide recommendations on: (1) an efficient design an
ETL workflow according to the business requirements
and (2) how and when to improve the performance of an
ETL workflow without conceding other quality metrics.

4. To improve the execution performance of an entire ETL
workflow, techniques based on task parallelism, data par-
allelism, and a combination of both for traditional ETL
operators as well as UDFs are required.

A new and yet almost unexplored area is handling struc-
tural changes in data sources at an ETL layer. In practice,
data sources change their structures (schemas) frequently.
Typically after such changes, an ETL workflow cannot be
executed and must be repaired (cf. the maintainability metric
in Sect. 6.6). Such a repair is done manually by the ETL
designer, as neither of commercial and open-source ETL
tools supports (semi-)automatic repairs of ETL workflows.
The tools support only impact analysis.

So far, only two research approaches have been proposed
that address this problem, namely Hecataeus [55] and E-ETL

[56]. In [55], an ETL workflow is manually annotated with
rules that define the behavior of the workflow in response to a
data source change. In [56], a case-based reasoning is used to
semiautomatically (or if possible—automatically) repair an
ETL workflow. Since both of the approaches do not provide
comprehensive solutions, this problem still needs substantial
research.

A rapidly growing need for analyzing Big Data calls for
novel architectures for warehousing the data, such as a data

lake [57] or a polystore [58]. In both of the architectures,
ETL processes serve similar purposes as in traditional DW
architectures. Since Big Data exist in a multitude of formats
and the relationships between data often are very complex,
ETL workflows are much complex than in traditional DW
architectures. Such architectures also need data transforma-
tions and cleaning (often on-the-fly, i.e., when a query is
executed). For these reasons, designing ETL workflows for
Big Data challenging. Multiple off-the-box ETL tasks are not
suitable for processing Big Data, and such tasks have to be
implemented by UDFs. Since a Big Data ETL engine pro-
cesses much complex ETL workflows and much larger data
volumes, the performance of the engine becomes vital.

The consequence of the aforementioned observation is
that designing and optimizing ETL workflows for Big Data
is much more difficult than for traditional data. Therefore, the
open issues identified for traditional ETL workflows become
even more difficult to solve in the context of Big Data.

7.4 Extendible theoretical ETL Framework

Based on the open issues identified in this survey, we present a
theoretical ETL Framework. It can be extended with various
components, and some of them offer functionality that is
not supported in the current state-of-the-art solutions. An
architecture of the ETL Framework is shown in Fig. 18.

ETL Workflow Designer represents any standard open-
source or commercial ETL tool for designing an ETL
workflow. The middle layer is extendible and consists of the
four following components:

Fig. 18 The overall architecture of the ETL Framework

123

From conceptual design to performance optimization of ETL workflows: current state of… 799

– A Monitoring Agent—it allows to: (1) monitor ETL
workflow executions, (2) identify performance bottle-
necks, (3) report errors, (4) schedule executions, and (5)
gather various performance statistics. This is a standard
component of any ETL engine.

– A Library of Code Templates—it contains the set of code
templates that allow the ETL developer to write paral-
lel UDFs to be executed in a distributed environment,
e.g., a template for MapReduce. The ETL developer only
has to provide the Map and Reduce functions, whereas
MapReduce configurations (i.e., partitioning parameters,
number of nodes) will be provided by the ETL Frame-

work, which actually are very critical to achieve right
degree of parallelism.

– A Recommender—it includes a set of machine learning
algorithms to optimize a given ETL workflow (based on
metadata collected during past ETL executions) and to
generate a more efficient version of the workflow. Since
there are a few algorithms that can be applied to opti-
mizing a workflow, the ETL developer should be able to
experiment with alternative algorithms and compare their
optimization outcomes. To this end, the Recommender

module should allow to plug in various optimization algo-
rithms.

– A Cost Model—the algorithms used by the Recommender

need cost models. Multiple cost models have been pro-
posed in the research literature, and the module should
allow to extend the set of cost models applied to the opti-
mization.

The top layer in the architecture is the Distributed Frame-

work. Its task is to execute parallel codes of UDFs (developed
using the code templates) in a distributed environment, in
order to improve the overall execution performance of an
ETL workflow.

7.5 Future work: our approach to ETL optimization

Currently we are implementing the following two main
components of the ETL Framework, as first steps toward
building the complete Framework: (1) a Configurable–

parallelizable UDF Component (cp-UDF)—to provide the
library of reusable parallel algorithmic skeletons for the ETL
developer and (2) a cost model—to generate the most effi-
cient execution plan for an ETL workflow.

cp-UDF exposes a library of reusable parallel algorith-
mic skeletons (e.g., MapReduce Paradigm Skeleton, Spark,
Flink) for the ETL developer, in order to support parallel
implementations of UDFs. The skeletons contain the main
configurations and necessary functions for a relevant dis-
tributed system and would only require an ETL developer to
write the main functionality of an UDF. For example, in case
of the MapReduce skeleton, cp-UDF requires only the Map

function and Reduce function to be implemented. The per-
formance tuning and configuration, runner class as well as
input and output configuration parameters will be provided
by cp-UDF itself.

Having provided a skeleton augmented with a user code,
cp-UDF generates multiple parallel variants of the code. For
example, in case of MapReduce, cp-UDF will generate a
parallel skeleton with different configurations of a virtual
machine (VM), where a given program is to be executed,
i.e., the same program can be executed on multiple different
VMs that may result in different execution time and monetary
cost (in case of cloud distributed frameworks).

The cost model finds a sub-optimal optimized execution
plan for an ETL workflow, based on execution time and
monetary cost constraints provided by the ETL developer.
Assuming that: (1) an ETL workflow consists of n differ-
ent computationally intensive UDFs and (2) cp-UDF may
generate m parallel variants of each UDF, there are mn combi-
nations of code variants. Finding an optimal code variant may
be mapped to Multiple Choice Knapsack Problem (MCKP)
[59]. Currently, we are implementing the cost model com-
ponent and are applying dynamic programming for solving
MCKP.

Acknowledgements The research of F. Ali has been funded by the
European Commission through the Erasmus Mundus Joint Doctorate
‘Information Technologies for Business Intelligence Doctoral College’
(IT4BI-DC). The research of R. Wrembel has been funded by the
National Science Center Grant No. 2015/19/B/ST6/02637.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Jensen, C.S., Pedersen, T.B., Thomsen, C.: Synthesis Lectures on
Data Management. Morgan & Claypool Publishers, San Rafael
(2010)

2. Andzic, J., Fiore, V., Sisto, L.: Extraction, transformation, and
loading processes. In: Wrembel, R., Koncilia, C. (eds.) Data Ware-
houses and OLAP: Concepts, Architectures and Solutions. Idea
Group Inc. (2007). ISBN 1-59904-364-5

3. Patil, P., Rao, S., Patil, S.: Data integration problem of structural and
semantic heterogeneity: data warehousing framework models for
the optimization of the ETL processes. In: Proceedings of ACM
International Conference and Workshop on Emerging Trends in
Technology (2011)

4. Gartner magic quadrant for data integration tools (2017)
5. 10 open source ETL tools. Data science central. www.

datasciencecentral.com/profiles/blogs/10-open-source-etl-tools.
Accessed 10 June 2017 (2015)

6. Awad, M.M., Abdullah, M.S., Ali, A.B.M.: Extending ETL frame-
work using service oriented architecture. Proc. Comput. Sci. 3,
110–114 (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.datasciencecentral.com/profiles/blogs/10-open-source-etl-tools
www.datasciencecentral.com/profiles/blogs/10-open-source-etl-tools

800 S. M. F. Ali, R. Wrembel

7. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Conceptual mod-
eling for ETL processes. In: Proceedings of ACM International
Workshop on Data Warehousing and OLAP (DOLAP) (2002)

8. Simitsis, A., Vassiliadis, P.: A methodology for the conceptual mod-
eling of ETL processes. In: Proceedings of the of Conference on
Advanced Information Systems Engineering (CAiSE) (2003)

9. Karagiannis, A., Vassiliadis, P., Simitsis, A.: Scheduling strategies
for efficient ETL execution. Inf. Syst. 38(6), 927–945 (2013)

10. Halasipuram, R., Deshpande, P.M., Padmanabhan, S.: Determining
essential statistics for cost based optimization of an ETL work-
flow. In: Proceedings of International Conference on Extending
Database Technology (EDBT), pp. 307–318 (2014)

11. Kumar, N., Kumar, P.S.: An efficient heuristic for logical opti-
mization of ETL workflows. In: Proceedings of International
Conference on Very Large Data Bases (VLDB). Springer, Berlin
(2011)

12. Simitsis, A., Vassiliadis, P., Sellis, T.: State-space optimization of
ETL workflows. IEEE Trans. Knowl. Data Eng. (TKDE) 17(10),
1404–1419 (2005)

13. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling
Language Reference Manual. Pearson Higher Education, London
(2004)

14. Trujillo, J., Luján-Mora, S.: A UML based approach for modeling
ETL processes in data warehouses. In: Proceedings of International
Conference on Conceptual Modeling (ER). Springer, Berlin (2003)

15. Skoutas, D., Simitsis, A.: Designing ETL processes using semantic
web technologies. In: Proceedings of ACM International Workshop
on Data Warehousing and OLAP (DOLAP) (2006)

16. McGuinness, D.L., Van Harmelen, F., et al.: OWL web ontology
language overview. W3C recommendation. https://www.w3.org/
TR/owl-features/. Accessed 05 June 2017 (2004)

17. Skoutas, D., Simitsis, A.: Ontology-based conceptual design of
ETL processes for both structured and semi-structured data. Int. J.
Semant. Web Inf. Syst. (IJSWIS) 3(4), 1–24 (2007)

18. Skoutas, D., Simitsis, A., Sellis, T.: Ontology-driven conceptual
design of ETL processes using graph transformations. In: Journal
on Data Semantics XIII. Lecture Notes in Computer Science, pp.
120–146. Springer, Berlin (2009)

19. El Akkaoui, Z., Zimányi, E.: Defining ETL workflows using BPMN
and BPEL. In: Proceedings of ACM International Workshop on
Data Warehousing and OLAP (DOLAP) (2009)

20. El Akkaoui, Z., Zimànyi, E., Mazón, J.N., Trujillo, J.: A model-
driven framework for ETL process development. In: Proceedings of
the ACM International Workshop on Data Warehousing and OLAP
(DOLAP) (2011)

21. Oliveira, B., Belo, O.: BPMN patterns for ETL conceptual mod-
elling and validation. In: Foundations of Intelligent Systems.
Springer, Berlin (2012)

22. Wilkinson, K., Simitsis, A., Castellanos, M., Dayal, U.: Leveraging
business process models for ETL design. In: Proceedings of the
International Conference on Conceptual Modeling (ER). Springer,
Berlin (2010)

23. Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: QoX-
driven ETL design: reducing the cost of ETL consulting engage-
ments. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data (2009)

24. Simitsis, A., Skoutas, D., Castellanos, M.: Representation of con-
ceptual ETL designs in natural language using semantic web
technology. Data Knowl. Eng. (DKE) 69(1), 96–115 (2010)

25. Vassiliadis, P., Simitsis, A., Skiadopoulos, S.: Modeling ETL activ-
ities as graphs. In: Proceedings of International Workshop on
Design and Management of Data Warehouses (DMDW) (2002)

26. Simitsis, A., Vassiliadis, P., Sellis, T.: Logical optimization of ETL
workflows. In: Proceedings of Hellenic Data Management Sympo-
sium. Citeseer (2005)

27. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M., Ski-
adopoulos, S.: A generic and customizable framework for the
design of ETL scenarios. Inf. Syst. 30(7), 492–525 (2005)

28. Simitsis, A., Vassiliadis, P.: A method for the mapping of concep-
tual designs to logical blueprints for ETL processes. Decis. Support
Syst. 45(1), 22–40 (2008)

29. Vassiliadis, P., Simitsis, A., Georgantas, P., Terrovitis, M.: A
framework for the design of ETL scenarios. In: Proceedings of
the Conference on Advanced Information Systems Engineering
(CAiSE). Springer, Berlin (2003)

30. Tziovara, V., Vassiliadis, P., Simitsis, A.: Deciding the physical
implementation of ETL workflows. In: Proceedings of ACM Inter-
national Workshop on Data Warehousing and OLAP (DOLAP)
(2007)

31. Simitsis, A., Wilkinson, K., Dayal, U., Castellanos, M.: Optimiz-
ing ETL workflows for fault-tolerance. In: Proceedings of IEEE
International Conference on Data Engineering (ICDE) (2010)

32. Vassiliadis, P., Simitsis, A., Baikousi, E.: A taxonomy of ETL activ-
ities. In: Proceedings of ACM International Workshop on Data
Warehousing and OLAP (DOLAP) (2009)

33. Chakrabarti, S., Demmel, J., Yelick, K.: Modeling the benefits of
mixed data and task parallelism. In: Proceedings of the Seventh
Annual ACM Symposium on Parallel Algorithms and Architec-
tures (1995)

34. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. Commun. ACM 51(1), 107–113 (2008)

35. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop
distributed file system. IEEE Mass Storage Syst. Technol. (MSST)
(2010)

36. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.:
Nephele/pacts: a programming model and execution framework for
web-scale analytical processing. In: Proceedings of ACM Sympo-
sium on Cloud Computing. ACM (2010)

37. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A.,
Price, T.G.: Access path selection in a relational database man-
agement system. In: Proceedings of ACM SIGMOD International
Conference on Management of Data (1979)

38. Alexandrov, A., Heimel, M., Markl, V., Battré, D., Hueske, F.,
Nijkamp, E., Ewen, S., Kao, O., Warneke, D.: Massively parallel
data analysis with pacts on nephele. Proceedings of International
Conference on Very Large Data Bases (VLDB) (2010)

39. Warneke, D., Kao, O.: Nephele: efficient parallel data processing
in the cloud. In: Proceedings of ACM International Workshop on
Many-Task Computing on Grids and Supercomputers (2009)

40. Hueske, F., Peters, M., Krettek, A., Ringwald, M., Tzoumas, K.,
Markl, V., Freytag, J.: Peeking into the optimization of data flow
programs with mapreduce-style UDFS. In: Proceedings of IEEE
International Conference on Data Engineering (ICDE) (2013)

41. Hueske, F., Peters, M., Sax, M.J., Rheinländer, A., Bergmann, R.,
Krettek, A., Tzoumas, K.: Opening the black boxes in data flow
optimization. In: Proceedings of International Conference on Very
Large Data Bases (VLDB) (2012)

42. Apache Spark—lightning-fast cluster computing. http://spark.
apache.org/. Accessed on 22 July 2016

43. Chaiken, R., Jenkins, B., Larson, P.Å., Ramsey, B., Shakib, D.,
Weaver, S., Zhou, J.: Scope: easy and efficient parallel processing
of massive data sets. In: Proceedings of International Conference
on Very Large Data Bases (VLDB) (2008)

44. Zhou, J., Larson, P.A., Chaiken, R.: Incorporating partitioning and
parallel plans into the scope optimizer. In: Proceedings of IEEE
International Conference on Data Engineering (ICDE) (2010)

45. Große, P., May, N., Lehner, W.: A study of partitioning and paral-
lel UDF execution with the SAP HANA database. In: Proceedings
of ACM International Conference on Scientific and Statistical
Database Management (SSDBM) (2014)

123

https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl-features/
http://spark.apache.org/
http://spark.apache.org/

From conceptual design to performance optimization of ETL workflows: current state of… 801

46. Binnig, C., May, N., Mindnich, T.: SQLScript: Efficiently Analyz-
ing Big Enterprise Data in SAP HANA. In: Datenbanksysteme für
Business, Technologie und Web (BTW) (2013)

47. Große, P., Lehner, W., May, N.: Advanced analytics with the SAP
HANA database. In: DATA (2013)

48. Thomsen, C., Pedersen, T.B.: Easy and effective parallel pro-
grammable ETL. In: Proceedings of ACM International Workshop
on Data Warehousing and OLAP (DOLAP) (2011)

49. Liu, X., Thomsen, C., Pedersen, T.B.: ETLMR: a highly scalable
dimensional ETL framework based on mapreduce. In: Proceedings
of International Conference on Data Warehousing and Knowledge
Discovery (DaWaK). Springer, Berlin (2011)

50. Liu, X., Thomsen, C., Pedersen, T.B.: ETLMR: a highly scalable
dimensional ETL framework based on mapreduce. In: Transactions
on Large-Scale Data and Knowledge-Centered Systems, LNCS.
Springer, Berlin (2013)

51. Liu, X., Iftikhar, N.: An ETL optimization framework using par-
titioning and parallelization. In: Proceedings of the 30th Annual
Symposium on Applied Computing. ACM (2015)

52. Lella, R.: Optimizing BDFS jobs using InfoSphere DataStage Bal-
anced Optimization. IBM Developer Works (2014)

53. How to Achieve Flexible, Cost-effective Scalability and Perfor-
mance through Pushdown Processing. Informatica whitepaper.
https://www.informatica.com/downloads/pushdown_wp_6650_
web.pdf. Accessed 01 June 2017 (2007)

54. Bergamaschi, S., Guerra, F., Orsini, M., Sartori, C., Vincini, M.: A
semantic approach to ETL technologies. Data Knowl. Eng. (DKE)
70(8), 717–731 (2011)

55. Manousis, P., Vassiliadis, P., Papastefanatos, G.: Impact analysis
and policy-conforming rewriting of evolving data-intensive ecosys-
tems. J. Data Semant. (2015). doi:10.1007/s13740-015-0050-3

56. Wojciechowski, A.: ETL workflow reparation by means of
case-based reasoning. Inf. Syst. Front. (2017). doi:10.1007/
s10796-016-9732-0

57. Terrizzano, I., Schwarz, P., Roth, M., Colino, J.E.: Data wrangling:
the challenging journey from the Wild to the lake. In: Proceed-
ings of Conference on Innovative Data Systems Research (CIDR)
(2015)

58. Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe,
B., Kepner, J., Madden, S., Maier, D., Mattson, T., Zdonik, S.: The
BigDAWG Polystore system. SIGMOD Rec. 44(2), 11–16 (2015)

59. Ibaraki, T., Hasegawa, T., Teranaka, K., Iwase, J.: The multiple
choice knapsack problem. J. Oper. Res. Soc. Jpn. 21(1), 59–93
(1978)

123

https://www.informatica.com/downloads/pushdown_wp_6650_web.pdf
https://www.informatica.com/downloads/pushdown_wp_6650_web.pdf
http://dx.doi.org/10.1007/s13740-015-0050-3
http://dx.doi.org/10.1007/s10796-016-9732-0
http://dx.doi.org/10.1007/s10796-016-9732-0

	From conceptual design to performance optimization of ETL workflows: current state of research and open problems
	Abstract
	1 Introduction
	2 Running example
	3 Conceptual model
	3.1 Graph-based conceptual model
	3.2 UML-based conceptual model
	3.3 Ontology-based conceptual model
	3.4 BPMN-based conceptual model
	3.5 Summary

	4 Logical model
	4.1 Graph-based logical model
	4.2 From conceptual to logical model
	4.3 Summary

	5 Physical implementation
	5.1 Implementation based on reusable templates
	5.2 Implementation based on BPEL
	5.3 Implementation based on XML
	5.4 Summary

	6 Optimization of an ETL workflow
	6.1 State-space approach for optimizing an ETL workflow
	6.2 Dependency graph for optimizing an ETL workflow
	6.3 Scheduling strategies for optimizing an ETL workflow
	6.4 Reusable patterns for optimizing an ETL workflow
	6.5 Parallelism for optimizing an ETL workflow
	6.5.1 Parallelism in traditional data flow
	6.5.2 Parallelism in an ETL workflow

	6.6 Quality metrics for ETL workflows
	6.7 Statistics for workflow optimization
	6.8 Commercial ETL tools
	6.9 Summary

	7 Conclusions
	7.1 ETL workflow development: summary
	7.2 ETL workflow optimization: summary
	7.3 Open Issues
	7.4 Extendible theoretical ETL Framework
	7.5 Future work: our approach to ETL optimization

	Acknowledgements
	References

