From Concurrent Multiclock Programs to Deterministic Asyn chronous
Implementations

Dumitru Potop-Butucaru Robert de Simone Yves Sorel JearrdTalpin
INRIA, France
{FirstName.LastName@inria.fr

Abstract proper theoretical background to finally establish proper-
ties pertaining on the assurance of asynchronous imple-
We propose a general method to characterize and syn-mentability.
thesize correctness-preserving, asynchronous wrappers f Our technique is mathematically founded on the theory
synchronous processes on a globally asynchronous locallyof weakly endochronous systentkie to Potop, Caillaud,
synchronous (GALS) architecture. Based on the theory ofand Benveniste [11]. Weak endochrony gives a compo-
weakly endochronous systems, our technique uses a consitional sufficient condition establishing that a concatre
pact representation of the abstract synchronization cenfig synchronous specification exhibits no behavior where infor
urations of the analyzed process to determine a minimal mation on the absence of an event is needed. Thus, the syn-
set of synchronization patterns generating all possible re chronous specification can safely be executed with identica
actions. results in any asynchronous environment (where absence
cannot be sensed). Weak endochrony thus gives a latency-
insensitivity and scheduling-independence criterion.
1 Introduction In this paper, we propose the first general method to
check weak endochrony on multi-clock synchronous pro-
Synchronous programming is nowadays a widely ac- grams. The method is based on the construction of so-called
cepted paradigm for the design of critical applicationshsuc generator sets Generator sets contain minimal synchro-
as digital circuits or embedded software [3], especially nization patterns that characterize all possible reastida
when a semantic reference is sought to ensure the coherenagaulti-clocked program. These sets are used to check that a
between the implementation and the various simulations.specification is indeed weakly endochronous, in which case

The synchronous paradigm supports a notiodetermin- they can be used to generate the GALS wrapper. In case
istic concurrencywhich facilitates the functional modeling the specification is not weakly endochronous, the genera-
and analysis of embedded systems. tors can be used to generate intuitive error messages. Thus,

While modeling a synchronous process or module can bewe provide an alternative to classical compilation schemes
easy, implementing a concurrent system by composing syn<for multi-clock programs, such as the clock hierarchizatio
chronous modular specifications is often hardened by thetechniques used in Signal/Polychrony [1].
need of preserving global synchronizations in the model of Outline. The paper is organized as follows: Section 2 and
the system. These synchronization artifacts need most ofSection 3 give an intuition of the problem addressed in this
the time to be preserved, at least in part, in order to ensurepaper together with references to previous work and an idea
functional correctness when the behavior of the whole sys-of the desired solution. Section 4 defines the formalism
tem depends on properties such as the arrival order of eventshat will support our presentation. Section 5 summarizes
on different channels, or the presence or absence of an everthe original theory of [11] and adapts it to our framework.
at a certain instant. Section 6 defines novel algorithms to determine if a specifi-

We address this issue and focus on the characterizatiortation is weakly endochronous. We conclude in Section 7.
and synthesis of wrappers that control the execution of syn-
chronous processes in a GALS architecture. Our aim is to .
preserve the functional properties of individual synclomas 2 Multiclock synchronous system
processes deployed on an asynchronous execution environ-
ment. To this aim, we shall start by considering a multi- We use a small, intuitive example to present our prob-
clocked or polychronous model of computation and lay the lem, the desired result, and the main implementation is-

sues. The example, pictured in Fig. 1, is a simple recon-to model cases where only parts of the process compute. We
figurable adder, where two independent single-word ALUs will say that a signal igresentin a reaction when it has a
can be used either independently, or synchronized to formvalue inDs. Otherwise, we say that it @bsent Absence

a double-word ALU. The choice between synchronized andis simply represented with value, which is appended to
non-synchronized mode is done using 8¥NCsignal. The all domainsDy = Ds U {L}. Formally, a reaction of the
carry between the two adders is propagated through theprocess is a valuation of its signals into their extended do-
BooleanC wire wheneveSYNCis present. mainsDs-. We denote withR the set of all such valuations.
The supportof a reactionr, denotedsupp(r), is the set of
. present signals. For instance, the support of reaction 4 in
ADD1 Fig. 2 is{I1,12,01,02}. In a reaction, we distinguish
theinput eventwhich is the restrictiom |7 (gxawerz) Of r tO
input signals, and theutput eventwhich is the restriction

SYNC 7 |oexaverr) tO OUtPUL SigNals.
In many cases we are only interested in the presence
ADD2 or absence of a signal, because it transmits no data, just
Tz R synchronization (or because we are only interested in syn-

chronization aspects). To represent such signals, the Sig-
nal language [6] uses a dedicatedent type of domain
Figure 1. Data-flow of a configurable adder. ~ * Devens = {®}. We follow the same convention: In our
example,SYNChas typeevent . To represent reactions,
we use aet-like conventioand omit signals with value .
In Fig. 2, the signal types ar8Y NC' : cvent, 01,02 :
integer, 11,12 : integer_pair, C' : Boolean. Reaction
4is denoted 71 018, 1209 02°). Thestuttering re-
actionassigningl to all signals is denoted . Reaction 5
is a stuttering reaction.

We consider a discrete model of time, where execu-
tions are sequences @actions indexed by alobal clock
Given a synchronous specification (also caledcess$, a
reaction is a valuation of thiaput, output and internal (lo-
cal) signalsof the process. Fig. 2 gives a possible execution
of our example. We shall denote with(P) the finite set of
signals of a procesB. We shall distinguish insidg(P) the
disjoint sub-sets ofnput and output signals respectively

3 Deterministic asynchronous implementation

denotedZ(P) andO(P). We consider a synchronous process, and we want to exe-
cute it in an asynchronous environment where inputs arrive
Clock| 1 2 3 4 5 6 7 and outputs depart via asynchronous FIFO channels with
uncontrolled (but finite) communication latencies. To sim-
Olll (13'2) i (gég) (98'9) i (27'5) i plify, we assume that we have exactly one channel for each
synel 10 1 . L1 . 1 input and output signal of the process. We also assume a
cl | | 1 1L 0 N very simple correspondence between messages on channels
2| 1L 1 00 (00 L (L4 (23) and signal values: Each message on a channel corresponds
o2| L L 1 o L 5 5 to exactly one value (not absence) of a signal in a reaction.
In particular, no message represents absence.
We assume that the execution of the synchronous process
Figure 2. A synchronous run of the adder is a cyclic repetition of 3 steps:
1. assembling asynchronous input messages arriving onto
If we denote withEXAMPLEbur configurable adder, then the input channels into a synchronous input event ac-
ceptable by the process,
V(EXAMPLE) = {I1,12,SYNC,01,02,C} 2. triggering a reaction of the process for the recon-
Z(EXAMPLE) = {I1,12,SYNC} structed input event, and
O(EXAMPLE) = {0O1,02} 3. transforming the output event of the reaction into mes-

sages onto the output asynchronous channels.
All signals are typed. We denote wifhg the domain of a

. . . . In order to achieve deterministic executidbtihe main
signalS. Not all signals need to have a value in a reaction

' difficulty lies in step (1), as it involves the potential reco

1 . . .
To simplify figures and notations, we group both integer spof 2Like in [10], determinism can be relaxed here to predictgbit the fact that

ADD1 under 11, and both integer input_s OT ADD2 unde_:r ,IZ' Thises the environment is always informed of the choices made é#ié process. While
no p_roblem _because from the synchronization perspe_ctlﬂmsopaper the this involves no changes in the following technical resulte preferred a simpler
two integer inputs of an adder have the same properties. presentation.

struction of signal absence, whereas absence is mearsnglesor checking weak endochrony of real-life (real-size) spec
in the chosen asynchronous framework. Reconstructing re<fications.

actions from asynchronous messages must be done in a de-

terministic fashion, regardless of the message arrivatord 3.1 Previous work. Motivation

This is not always possible. Assume, like in Fig. 3, that we

consider the inputs of Fig. 2 without synchronization irfor The most developed notions identifying classes of imple-

mation. mentable processes are the conceptsigicy-insensitive
system®f Carloniet al. [4] and theendochronous systems
11| (1,2)(9,9)(9,9) (2,5) of Benvenisteet al. [2, 6]. The latency-insensitive systems
o1 3 8 8 7 are those featuring no signal absence. Transforming pro-
SYNC oo cesses featuring absence, such as our example of Figures 1
> 10 and 2, into latency-insensitive ones amounts to transform-

12 | (0,0)(0,0) (1,4) (2,3)

02 1o e e ing the presence/absence of a signal into a true/false value

that is sent and received as an asynchronous message. This
is easy to check and implement, but often results in an un-
needed communication overhead due to the absence mes-
sages.

The endochronous systenand the related hardware-
centric generalized latency-insensitive systefid] are
those where the presence and absence of all signals can be
incrementally inferred starting from the state and from sig
nals that are always present. For instance, Fig. 4 presents
a run of an endochronous system obtained by transforming
the SYNCsignal of our example into one that carries val-
ues from 0 to 3: 0 foADD1executing alone, 1 foADD2
executing alone, 2 for both adders executing without com-

Figure 3. Corresponding asynchronous run.
No synchronization exists between the vari-
ous signals, so that correctly reconstructing
synchronous inputs from the asynchronous
ones is impossible

The adderADD1will then receive the first valuél, 2)
on the input channéll ande on SYNC Depending on the
arrival order, which cannot be determined, any of the reac-

tions (112,013, SYNC*®, C%) or (111% 01%) can be o ; :
executed, leading to divergent computations. The problemmunlcatlng Cabsent), and 3 for the synchronized execution
') of the two adders(present). Note that the value 8YNC

is that these two reactions are not independent, but no value) .
. . . determines the presence/absence of all signals.

of a given channel allows to differentiate one from the other

(so one can’t deterministically choose between them in an 5

asynchronous environment).

We have seen in the previous section that determinis- 11 (12 (99 99 (25 L
tic input event reconstruction is impossible for some syn- ol 3 8 8 4 -
chronous processes. This means that a methodology to im- SYNC| 0 3 2 3 1
plement synchronous processes on an asynchronous archi- Ig i (010) (OLO) (S 2) és)
tecture must rely on the (implicit or explicit) identificati o2| 1 1 0 5 5
of some class of processes for which reconstruction is possi
ble. Then, giving a deterministic asynchronous implemen-
tation to a random synchronous process can be done in two Figure 4. Endochronous solution
steps:

1. transforming the initial process, through added syn- Checking endochrony consists in ordering the signals
chronizations and/or signals, so that it belongs to the of the process in a tree representing the incremental pres-

Clock | 1 2 3 4

implementable class, and then ence inference process (the signals that are always read are
2. generating an implementation for the transformed pro- all placed in the tree root). The compilation of the Sig-
cess. nal/Polychrony language is currently founded on a version
of endochrony [1].

The choice of the class of implementable processes is there- The endochronous reaction reconstruction process is
fore essential. On one hand, choosing a small class carfully deterministic, and the presence of all signals is syn-
highly simplify analysis and code generation in step (2). chronized w.r.t. some base signal(s) in a hierarchic fash-
On the other, small classes of processes result in heavion. This means that no concurrency remains between sub-
ier synchronization added to the process in step (1). Ourprocesses of an endochronous process. For instance, in the
choice, justified in the next section, is the class of weakly endochronous model of our adder, the behavior of the two
endochronous processes. This paper proposes a techniquaders is synchronized at all instants by $¥NCsignal

(whereas in the initial model the adders can function inde- putations? while adding the supplementary synchroniza-
pendently wheneve®YNCis absent). By consequence, us- tion needed to ensure deterministic execution in an asyn-
ing endochrony as the basis for the development of systemshronous environment. Weak endochrony is preserved by
with internal concurrency has 2 drawbacks: synchronous composition, thus supporting incremental de-
) - .. velopment. However, the lack of a practical technique for
e Endochrony is non-compositional (synchronization cpecking and/or synthesizing weak endochrony limited its
codg must pe added even when composing processeg§ge in practice until now.
sharing no signal). We use the high-level multi-clock synchronous data-flow
language Signal [1] to demonstrate the applicability of our
technique. This language allows a simple representation of
clock synchronization constraints we are interested ike Li
Weak endochrony, due to Potop, Caillaud, and Ben- other synchronous data-flow formalisms, such as Lustre,
veniste [11] and presented in Section 5, generalizesScade, Lucid, that could also have been considered, Signal
endochrony by allowing both synchronized and non- gives an implicit representation of states that is most con-
synchronized (independent) computations to be realized byvenient (yet not mandatory) for a direct illustration of our
a given process. technique.
Fig. 5 presents a run of a weakly endochronous system
obtained by replacing th8YNCsignal of our example with 4.1 Finite stateless abstraction
two input signals:

e Specifications and implementations/simulations are
over-synchronized.

. . . We define our decision procedure for weak endochrony
* SYNC1 of Boolean type, is re(_:elved ateach BXecution ., the finite-data stateless abstraction of Signal programs
qf AI.DDl It has value O to notify that no synchroniza- that is already used in existing compilers. This subsetis de
tion Is necessary, and value 1 to notlf_y that synchro- g qq by (1) a restriction to finite data types and (2) the ab-
hization is necessary and the carry sig@ahust be straction of delay equations (sole to introduce implicitst
produced. transition) by synchronization constraints (between the s

e SYNC2of Boolean type, is received at each execution Nals of a delay equation).
of ADD2 It has value 0 to notify that no synchroniza- For programs featuring infinite data and delays (e.g.,
tion is necessary, and value 1 to notify that synchro- integer ,float) the construction of an finite-data state-

nization is necessary and the carry sigGanust be |€SS abstraction is done by a procedure of the Signal com-
read. piler that is detailed in [9]. Given that a Signal specifioati

needs not be functionally complete, the abstraction can be
The two adders are synchronized whe&YNCE1 and represented as a Signal process (and it is derived through

SYNCZ1, corresponding to the cases Wh&¥NG-e in simple transformations of the Signal source).
the original design. However, the adders function indepen- The stateless abstraction does not mean all state infor-
dently elsewhere (between synchronization points). mation is lost. The abstraction procedure automatically
conserves some of the underlying synchronization informa-
111 (1,2 (9,9 (9,9 (2,5) tion, and the programmer can force the preservation of as
Oo1] 3 8 8 7 much information as needed through the addition of so-
SYNC1| O 1 0 1 called clock constraintgdefined in Section 4.3.1), which
C 1 0 are preserved by the abstraction procedure. For instance,
SYNC o o activation conditions such as the ones used in the compila-
SYNC2 1 0 1 0 tion of Esterel [13] can bg easily preserved in this way.
12 (0,0) 00 (14 (23) However, the abstraction means that: (1) Certain we_akly
02 1 0 5 5 endochronous processes are rejected, as the analysis can-

not determine it and (2) The code generated for a weakly
endochronous process may be over-synchronized.

Figure 5. Weakly endochronous solution

4.2 Process structure

4 Multiclock Specification in Signal In Signal, a specification is process whose definition
may involve other processes, hierarchically. Fig. 6 gihes t

The use of weakly endochronous processes allows theSlgnaI process corresponding to the configurable adder of

preservation of the independence of non-synchronized com- 3So that later analysis or implementation steps can exploit i

Fig. 1. A process is formed of a header defining its name, 4.3.1 Clocks. Clock Constraints

an interface specification, a data-flow specification, and aTh lock of a sianalS i her sianal. d B, of
local declaration section. In our example, the top-level pr e clockof a signals is another signal, denotets, o

cess is name&XAMPLEIts interface defines 3 input sig- typeevent , which is present wheneveis present. Clock

nals SYNG 1 , andI2), identified with “?”, and 2 output signals are used to specifjock constraints
signals 01 andO2), identified with “I". Our example has . | "€ Most common clock constraints aentity, inclu-
no state, and the infinite type signalis (12 , 01, 02 have SO andexclusion Lines 8 and 9 of Fig. 6, which gives
been replaced with signals of typeent by the abstrac- the constraints OAD.D]' |Ilkjstra,t'es cquk equahty and in-
tion procedure. The Boolean type of the ca@yas also clusion. The equationll "=01" specifies that signalll

been transformed intevent , because it is computed from IS present_ln a reac_tlorﬁf Olis present. In other terms,
I1 (we need to preserve determinism). whenever inputs arrive, the adder produces an output. The

next equation requires thHt is present in reactions where
SYNCis present.
process EXAMPLE = (? event SYNC,I1, 12 Otherwise said/'SYNCis included in*11 . The last
_ ! event O1, O2) equation states that the carry val@ds emitted byADD1
(I (O1,C) := ADD1 (SYNC,I1) whenevelSYNCis present. The definition #ZDD2is simi-

1
2
3
z Wlhgré ;,eﬁ??;z : (SYNC12.0)) lar. The difference is that the carry sigitais here an input,
6
7
8
9

process ADD1 = (? event SYNC, I1 gnd not an outputlikg_iADDl Clock excllusion is not used
! event O1, C) in our example. Writing S1"#S2” requires thatS1 and
(11 "=01]SYNC <11 S2 are never present in the same reaction.
| C "= SYNC |) ;
10 process ADD2 = (? event SYNC, 12, C 4.3.2 Stateless Signal primitive language
1 I event 02)
2 (|12 "= 02| SYNC "< 12 The following statements are the primitives of the Signal
s | C = SYNC |) ; language sub-set we consider. The delay primitive of the
1 end ; full language, X:=Y$ init V" 4, is simply abstracted
by its synchronization requiremenX“=Y". The assign-
Figure 6. The Signal process of the config- ment equation X:=f(Y1,...,Yn) " states that all the
urable adder in Fig. 1 signals have the same clock, and that the specified equality

relation holds at each instant where the signals are present
Equation X:=Y "is a particular case of assignment. It spec-

o] ifies the identity ofX andY. SignalY can also be replaced
The data-flow specification oEXAMPLEconsists of yith 5 data-flow expression built using the following oper-
two equations, which define the interconnections betweeng;q ;-

ADD1 ADD2 and the environment. The local definition The operator when performs conditional down-
section defines the internal sign@l and the processes sampling. The signalX when C'is equal toX whenever
ADDlandADD2 The hierarchy of processes allows the iha poolean signal C is present with valuetrue .
structuring of a specification and the definition of signal Otherwise, it isl. The shortcut for *C when C is
scopes that mask internal signals. ProdeX#\MPLE.s- “when C'. For instance, in Fig. 7,when SYNC1=T is

ing procgssADDlin its data-flow i_ntuitively corre_spc_)nds a signal of typeevent that is present when sign&YNC1
to replacmg each _mstance _AiDDlln EXAMPLENlth its is present with value. The operatodefault —merges
data-flow with the internal signals &{DD1being masked. two signals of the same type, giving priority to the first.

The signal X default Y ”is present whenever one &f
or Y is present. It is equal t& wheneveiX is present, and
4.3 Data-flow is equal toY otherwise.

5 Weak endochron
The data-flow specification of a process is formed of y

equationsdefining constraintsbetween the signals of the
process. Any reaction satisfying all the equations of a pro-
cessP is a valid reaction of?. We denote withR(P) the

set of all the reactions aP. The use of a constraint lan-

guage alIO_VYS us to easily manipulate functionally incom- 4y is gefined byv the first timeY occurs and then takes the previous
plete specifications. value ofY

The theory ofweakly endochronous (WE) systefh$],
gives criteria establishing that a synchronous presemtati
hides a behavior that is fundamentally asynchronous and

deterministic. Absence information is not needed, which Definition 1 (stateless weak endochronyVe say that
guarantees the deterministic implementability of the syn- process P is weakly endochronous its set of reactions
chronous specification in an asynchronous environtient. R (P) is closed under the operations associated to the

Absence not being needed in computations means thapreviously-defined domain structure: intersection, union
reactions sharing no common present value can be executednd difference of non-contradictory reactions.

independentlfwithout any synchronization). Absence is
treated as @on’t care valueimposing no synchronization
constraint (as opposed to present values).

process EXAMPLE2 = (? boolean S1, S2;
event 11,12
I event 01,02)

(| (01,02) := EXAMPLE (when S1, 11, 12)
| when S1 "= when S2

)

where

process EXAMPLE = the process in Fig. 6
end

Figure 7. A weakly endochronous refinement
of process EXAMPLE is obtained by limiting
the use of signal absence (when compared to
the other solutions)

This property suggests a natural organization of the pos-
sible values of a signabt’ as a Scott domain defined by
1 < w, forallv € Dg. The domain structure on par-
ticular signals induces a product partial orderon reac-
tions withry < ro if and only if supp(r1) C supp(r2) and
r1(v) = ro(v) forallv € supp(ry).

We say of two reactions; andrs that they arenon-
contradictory written 1 <1 ro, if r1(v) = ro(v) for all
v € supp(ri) N supp(rs2). Otherwise, we say that the re-
actions arecontradictory writtenry 54 ro. Given a set of
reactionsK’, we shall say that it is non-contradictory, de-
noted K if any two reactions of< are non-contradictory.

Atoms. From our point of view oriented towards auto-
mated analysis, it is most interesting that any behavior of
a WE system can be decomposed iatomic transitions

or atoms Formally, the set of atomic reactions 6% de-
noted Atoms(P) is the set of the smallest (in the sense of
<) reactions ofR(P) different from_ L. The set of atomic
transitions is characterized by two fundamental propgrtie
non-interference and generation.

Theorem 1 (atom set characterization)A stateless pro-
cessP is weakly endochronous if and only if there exists
a set of reactionst C R(P) such that:

Generation: The union of non-interfering atoms generates
all the reactions ofR(P): R(P) = {VK | K C
GA K},

Non interference: Two distinctatoms, as € A, a1 # as
are either contradictory or independent.

Axiom (Non interference) implies that as soon as two atoms
are not independent, they can be distinguished by a present
value (not absence), meaning that choice between them can
be done in an asynchronous environment.

The characterization of Theorem 1 corresponds to the
case where no distinction is made between input, output and
internal signals of a system (which is the case in [11]). As
we seek to obtain deterministic asynchronous implementa-
tions for Signal programs, we require that the choice be-
tween any two contradictory atoms can be done based on
input signal value$.Formally:

The least upper bound and greatest lower bound induced

by the order relation are respectively denoted withndA,
and called union and intersection of reactionsrylfx< 79,
bothr, vV ro andr; A ry are defined, and we can also define
the difference; \ 2, which has suppostupp(r1)\ supp(r2)
and equals, on its support. For a sét” with > we denote
VK =V g

Weak endochrony is defined in an automata-theoretic
framework. We simplify it here according to our state-
less abstraction:

5The intuition behind weak endochrony is that we are lookimgsfys-
tems where (1) all causality is implied by the sequencing essages on
communication channels, and (2) all choices are visiblehaéces over
the value (and not present/absent status) of some messagexpkined
in [10], the axioms of weak endochrony can be traced downeduhda-
mental result of Keller [7] on the deterministic operatidrasystem in an
asynchronous environment. Moreover, WE systems are synohs Kahn
processes, and weak endochrony extends to a synchronousafoek the
classical trace theory [8].

Input choice: For any two contradictory atoms;,as €
A, there existss € V(P) such thata;(s) # 1,i =
1,2, anda; (s) # aza(s).

6 Checking weak endochrony

According to Theorem 1, checking weak endochrony is
determining when an atom set can be constructed for a given
process. We follow this approach by determining for each
processP one minimal set of supplementary synchroniza-
tions (under the form of signal absence constraints) allow-
ing the construction of a generator set with atom-like prop-
erties. Proces® is weakly endochronouf the generators
are free of forced absence constraints.

6To achieve predictability, choice can be done on input opaisignal
values.

6.1 Signal absence constraints

For processe® that are not weakly endochronous, the
set of reaction®R (P) is not closed under the operatiovis

Definition 3 (Fully constrained generator set) A genera-

tor setG' of processP is called fully constrained if each
atom represents all absence constraints associated to it.
Formally, for all g € G we have: g N7 | r e

A, \ defined in the previous section, meaning that we cannotR (P) A g < r}.

use generation properties to represgiif’) in a compact

fashion. This is due to the fact that the model does not allow Finally, we are looking for generator sets with atom-like

the representation @bsence constraintsvhich are needed
in order to represent theaction to signal absence

To allow compact representation, we enrich the model

with absence constraints under the forntofstrained ab-

sencell signal values which are added to the domain of

each signal. An extended reactiorsets signalS to 1L
to represent the fact that upon unior) ¢he signalS must

exclusiveness properties.

Definition 4 (Non-interfering generator set) A generator
set G of processP is called non-interfering if for all
r,r9 € G with r; < ro and [7‘1] AN [7‘2] # 1 we have
T = To.

Every Signal process has a fully constrained non-

remain absent. This new value represents the classical SYNiterfering generator set, obtained by replacingvith 1L
chronizing absence of the synchronous model, which musti, 411 the reactions ofR(P). But using this representa-

be preserved at composition timdowever, we are not in-

tion amounts to reverting to the synchronous model, and

terested in fully reverting to a synchronous setting, but in 4t exploiting the concurrency of the process. We are there-
preserving as few synchronizations as needed to allow de-gre |ooking for least synchronized generator sets exhipit

terministic asynchronous execution

We denote withDg- = D& U {1L} the new domain
with L < 1. The operators\, Vv, and\ are extended
accordingly. We denote witR- the set of valuations of
the signals over the extended domains.h we can ex-
tend the operators, Vv, \, and. We define the operator

minimal absence constraints.

Definition 5 (Less synchronized generator set) et P be
a process andr,, G, two generator sets foP. We say that
G is less synchronized tha,, denoted=; < Gb, if for

all go € G5 there existd’ C G4 with \/gng < g and

[: R%Y — R that removes absence constraints (replaces[\/ . x 9] = [g2].

1l values with). We also define the converse transfor-
mation : R — R that transforms all the values of a
reaction intoL values. We denotel. = 1 the reaction
assigningllL to all signals.

6.2 Generators

We define in this section the notionwiinimal fully con-
strained non-interfering set of generatas$ a process”,

The procedures of the next section will build for each
process a fully constrained, non-interfering generator se
that is minimal in the sense of.

Theorem 2 Let P be a process and: be a fully con-

strained, non-interfering generator set that is minimal in
the sense oK. Then,G is weakly endochronous if and only
if the setdq = {[g] | g € G} satisfies the generation and

which is very similar to an atom set, except (1) it can be hon-interference properties of Theorem 1.

computed for any procesB and (2) it involves absence

constraints. Such generator sets will represent for us comProof sketch: If Aq satisfies the given property, then

pact representations @& (P), and the basic objects in our

according to Theorem 1 we know tha&t is weakly en-

weak endochrony check technique. The reactions of such glochronous. .
generator set can be seen as tiles that can be united (when n the other sense, assurdeis the set of atoms of the

disjoint) to generate all other reactions. Generators tsm a
be compared with the prime implicants of a logic formula —
they are reactions of smallest support that generate at oth
reactions.

Definition 2 (Generator set) Let P be a process. A set
G C R of partial reactions such thaly] # L for all

g € Gis a generator set oR(P) if R(P) = {[V ,cx 9] |
K C GAX K},

weakly endochronous proceBs For alla € A we define
ga:/\{ﬂreR(P)/\agr}

Then,G4 = {g. | a € A} is a fully constrained non-
interfering generator set that can be proved minimal in the
sense of< (ant it is unique with this property)]

If a process is not weakly endochronous, then there may
exist several minimal non-interfering generator sets. We

As we are building our generator sets incrementally, it provide here a technique allowing the construction of one

is essential they preserve all the synchronization inferma such generator set. Our technique works inductively: We
tion of the process, including all absence constraintshSuc compute a minimal generator set for each statement in a
generator sets are called fully constrained. bottom-up fashion following the syntax of the process. We

v _
GX::Y default Z —

{(X",) YY", Z")|veDx,weDx U{l}}U
(X, Y1, Z2°) |veDx}U
{(W") |veDx,WeV\{X,Y,Z}}

v _
GX::Y when Z

= {(X",Y",Z") |veDx}U
{(x*,y°, 2% |ve Dx U{lL}} U
(X%t v, z4) |veDx}U
{W") |veDx,WeV\{X,Y,Z}}
G}(}::f(y1 Y.)

{()(f(v],...,vn)’}/11/17 Y, ") | Vi € Dy} U
{(W?) |veDx,WeV\{X,Y;|1<i<n}}

Figure 8. Minimal generator sets for primitive
Signal equations

GY_y = {(X",Y"¥)|veDx,weDy}U
{(W?) |veDw,WeV\{X,Y}}

Gyoy = {(X°Y")|veDxU{l},weDy}U
{(W?) |v e Dw, W eV\{X,V}}

Figure 9. Minimal generator sets for clock
equations (can be derived from primitives)

shall denote withz,, the minimal non-interfering genera-
tor set built for statement. When, due to signal scoping,
we need to explicitly include in the notation the 3&bf
signals over which the reactions pfare defined, we shall
extend the notation t«ﬂ}f. Fig. 8 and Fig. 9 give mini-
mal non-interfering generator sets for primitives and kloc
equations.

In the remainder of the paper, when saying minimal
generator set, we mean a minimal fully constrained non-
interfering generator set.

6.3 Algorithms

Given a Signal program, the computation of a minimal

are of only two types: parallel composition and sumodule
instantiation. This section deals with parallel compaositi
The main algorithm isParallelComposition which com-
putes a minimal generator set;of ¢ starting from minimal
generator sets gf andg.

The signal scoping realized by subprocess instantiation
must be ignored, meaning that the local signals of the gen-
erators of the sub-process are treated as local signals of th
instantiating process itself. This is necessary if the goal
multi-task code generation, because hiding local sigraais ¢
hide actual dependencies and render non-interfering reac-
tions that are interfering in the sub-process. For space rea
sons, we relegate to Appendix A the routine allowing the
hiding of local signals at the level of subprocess instantia
tion (which may be useful for verification purposes).

Function 1 ParallelComposition
Input: G, G,: generator set
Output: G, generator set
G — 0
forall g € G, do
ParallelCompositionAuwy, L,G,,G4.G")
— MinimizeSynchronizatiqd")

G

plg

Function ParallelCompositionand the recursive auxil-
iary (Procedure 2) perform an exploration of all combina-
tions of generators ip and¢ whose present signals hold
the same values. It operates by incrementally adding atoms
of p andq on one side in an attempt to match present values
on the other side. The iteration stops when the generators
match or when all possibilities have been exhausted.

Procedure 2 ParallelCompositionAux
Input: rq,7ro reactions(z,,G> generator sets
Reference-passed(:: reaction set
if [7‘2] \ [7‘1] 75 1 then
forall g € G, do
if g > 7 andg < ro and[g] A ([r2] \ [r1]) # L
then
if 1 Vg]=][re]Jthen G — GU{riVraVg}
elseParallelCompositionAux; V g,r2,G1,G2,G)
elseParallelCompositionAuxs,r1,G2,G1,G)

The forall loop in Function ParallelComposition
determines a fully-constrained, non-interfering germarat
set forp | ¢, but which is not necessarily minimal.
For instance, consider the parallel compositipn |
qo, Wherepgis (| C "< B | C # A) and qp is
(| € "= when false |) (meaningy, forcesCto al-

generator set proceeds bottom-up in the syntax tree, startyays pe absent). The generator set computegdorg, by

ing from the minimal generator sets of the primitives (given

above), and incrementally computing one minimal genera-

theforall loop is:

tor set for each composed statement. Composed statements’ = {(A4°, B+, C4), (A*, B, c), (4%, B®*,C1)}

which is not minimal, as the minimal generator set (where generator set satisfying the non-interfering and fully

A andB are independent) is: constrained properties. But we still need to check that it
still is a generator set for the considered process (that the
Gpolao = {(A°, BY,CH), (A, B*,)} removal of synchronizations does not allow supplementary
behaviors).

The needed decomposition 6f into G, |4, is done by
ProceduréinimizeSynchronizatiorThe procedure uncov-
ers concurrency by determining that existing generatars ca
be further decomposed into less synchronized generators
It works by attempting to remove one by one each forced
absence value of each generator, and then using Functio
RemoveOneSynchronizatitm obtain a fully constrained,
non-interfering generator set where the chosen forced ab-
sence value is not necessary, and which is therefore les
synchronized than the previous one.

This check is done by Functio€heckEquivalence
When CheckEquivalencereturns false, we know that
the particular Il value given as input to Function
RemoveOneSynchronizatiotannot be removed (it is
rqeeded to preserve the synchronous semantics). For exam-
ple, in the computation of, |,, above, we can assume that
we start by removing thel value of B in the first genera-
éor of G’. Then, FunctiorRemoveOneSynchronizationll

roduceG), |4, - No further simplification is possible.

Procedure 3 MinimizeSynchronization Function 4 RemoveOneSynchronization
Input: G- set of generators over the set of variales Input: G set of generators ovét, go € G, sp € V
Reference-passed(y’: set of generators over such thayo(so) = 1L
while truedo Output: Status:Boolean
Choosey € G, s € V with g(s) = 1L and G': set of generators, §tatus = true
RemoveOneSynchronizati6h g, s) = (true, G") g—Ndg' g eGn]g]<g'}
for someG”’. if g(so) = 1L then
if there exist sucl, s, andG” then G «— G” Status — false
elseG’ — G ; return return
90 < 90

!
The procedure terminates when no mdtevalues can golso] — L

/ /
be removed. When this happens, somhevalues may re- G’ — {90}

1
main in the generator set. Some of them, like those in our g :ngo{}g)
. _ 0
previous example(,,|,), are only there to ensure com while truedo

pleteness with respect to Definition 3, and can be safely
removed upon execution in an asynchronous environment.
When all remaininglL values are of this type, which is the
: i G —G\{g}

case in our example, the program is weakly endochronous, G — G U g}
and the atom set is obtained by removinglalivalues from g1

. - Gimp — {aNg | (9 € G)N (g1 =< g)A
the generator set. Checking that this is the case amounts to mp

A
checking for each generatgthat: (lon AT # L)}
g g 9 Gtmp — Gtmp) {g/ \ g1 | (gl € G/) A (gl >

Choosey, € G, ¢} € G’ with g, <1 g} andg; Ag} # L
if such a pair existthen

gz/\{g'|g'€G/\[g]§g’} gIN (9" \] # L)}
gemp — 91 \Uyear gioag, (91 N G')
This means that the generator containslhwvalue in addi- if [gemp] # L then Gimp — Gemp U {gimp}
tion to those prescribed by Definition 3. Gimp < Gimp U{9" [(¢ € G") AN(g1 0 ¢")}
When this is not the case, additional values are syn- G'— Gump
chronization defects potentially leading to non-deteismn else
upon execution in an asynchronous environment. For in- Status — CheckEquivalenge:’, G”)
stance, the generator setXkY (given in Fig. 9) contains G'—=Gua
such synchronization defects. return

The complexity of the MinimizeSynchronization
procedure is hidden within the auxiliary Function The computation of the intersections and differences
RemoveOneSynchronization After removal of one between generators, and the equivalence check are opti-
synchronization_(L value), this function successively com- mized in FunctiorRemoveOneSynchronizatitmonly in-
putes all intersections and differences of non-contradjct volve generators that are actually modified. Non-intenigri
generators until no changes occur. This process, which mayatoms are not changed or analyzed.
remove furtherll values, results in a less synchronized Using the previous algorithms to compute the minimal

Function 5 CheckEquivalence

Input: G’,G”: sets of generators, witty’ less synchro-
nized thani”

Output: FEquiv:Boolean
G" « the set of reactions generated @y
Equiv—{[g] [g€ G} ={[r] [r € G"}

fully constrained non-interfering generator set of the-pro
cess in Fig. 6 gives:

{(I1°,01°, SYNC™), (12°,02°, SYNCH),
(I1°,01°,12°,02°, SYNC*®,C*)}

simplified under specific timing hypothesis (for instance, a
FIFO protocols can be simplified if the reader is faster than
the writer, etc.). In parallel, we are also investigating/s/a

to optimize the representation of atoms better using, e.g.,
decision trees.

References

[1] P. Amagbégnon, L. Besnard, and P. L. Guernic. Implemen-
tation of the data-flow synchronous language signaPrb»
ceedings PLDI'95La Jolla, CA, USA, June 1995.

[2] A.Benveniste, B. Caillaud, and P. L. Guernic. Compasiti
ality in dataflow synchronous languages: Specification and
distributed code generatiotnformation and Computatign

As expected, the process is not weakly endochronous 163:125 - 171, 2000.

because [(I1°,01°,12°, 02°, SYNC*®)] and
[(I1°,01°,SYNC*)] are neither conflicting, nor of
disjoint support. The minimal non-conflicting generatar se
of the transformed process in Fig. 7 is:

{(I1*,01°,SYNC1°,C* SYNC),
(I12°,02°,SYNC2°,C*, SYNCH),
(I1°,01°,12°,02°, SYNC1',SYNC2' C*),SYNC*}

The process is weakly endochronous.

7 Conclusion

[3] A.Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,.P. L
Guernic, and R. de Simone. The synchronous languages
12 years laterProceedings of the IEEED1(1):64-83, Jan.
2003.

[4] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentell
Theory of latency-insensitive desigiEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
20(9):18, Sep 2001.

[5] T. Grandpierre and Y. Sorel. From algorithm and archi-
tecture specification to automatic generation of distadut
real-time executives: a seamless flow of graphs transforma-
tions. InProceedings of First ACM and IEEE International
Conference on Formal Methods and Models for Codesign,
MEMOCODE’03 Mont Saint-Michel, France, June 2003.

We have defined a general method to characterize and [6] P- L. Guemic, J.-P. Talpin, and J.-C. L. Lann. Polyclyon

synthesize correctness-preserving wrappers to execute sy
chronous processes on a globally asynchronous architec

ture. This methods considers processes abstracted by high- 7

level synchronization constraints and is thus applicable t
a large variety of scenarios. Although we chose the Sig-
nal language to illustrate our approach, the method itself i
independent of a domain-specific formalism.

GALS architectures constructed with our method have
a predictable behavior that is sound and complete with re-
spect to initial synchronous specifications, regardlessef
size of the system or of latency in the network. The result of
the analysis allows to directly synthesize executives fior a

specifications whose processes are proven stateless weakly

endochronous. Moreover, in the case a specification fails
to meet expected criteria, our analysis points directlyat t
faulty synchronization issue(s).

for system designJournal for Circuits, Systems and Com-
puters April 2003. Special Issue on Application Specific
Hardware Design.

R. Keller. A fundamental theorem of asynchronous patall
computation.Lecture Notes in Computer Scien@:103—
112, 1975.

[8] A. Mazurkiewicz. Concurrent program schemes and their
interpretations. Technical report, DAIMI, Arhus Univeysi
1977.

[9] M. Nebut. Specification and analysis of synchronous teac
tions. Formal Aspects of Computin@6(3):263—291, august
2004.

[10] D.Potop-Butucaru and B. Caillaud. Correct-by-constion

asynchronous implementation of modular synchronous

specifications. IProccedings ACSD’Q55t. Malo, France,

June 2005.

[11] D.Potop-Butucaru, B. Caillaud, and A. Benveniste. Gon
rency in synchronous system&ormal Methods in System

In the present paper, our main concern was to character- Design 28(2):111-130, 2006.

ize an effective criterion ensuring the functional cornests
of GALS architectures in an untimed setting. A longer-
term objective is to take real-time requirements into ac-

count. This should provide guarantees on more elaborate

constraints pertaining to periodicity, throughput, WCET.
Such an extension requires the definition of timing analy-

sis and scheduling techniques compatible with our program

execution model. Yet, the executives themselves could be

10

[12] D. Potop-Butucaru, R. de Simone, and Y. Sorel. Neces-
sary and sufficient conditions for deterministic desynehro
nization. InProceedings EMSOFT 200Yienna, Austria.

[13] D. Potop-Butucaru, S. Edwards, and G. Ber§ompiling
Esterel Springer, 2007.

[14] M. Singh and M. Theobald. Generalized latency-ins@resi
systems for single-clock and multi-clock architecturen. |
Proceedings DATE'04Paris, France, 2004.

A Appendix

FunctionSignalScopéuilds the generators set of a pro-
cessP in which V is the set of private signals. The in-
put of the function is the set of generators of the program
body. The output is the set of generatorgyfwhich don'’t
use variables of to differentiate between non-independent
generators. In its definition, we use the scoping (hiding)
operator: Ifr is a reaction over the set of variablF¥sand
V C V, thenr \ V denotes the reaction ovér\ V that
equalsr on variables of \ V. We also denote withl y
the reaction oved’ that equalslL on V' and L elsewhere.
The function works by adding supplementary synchroniza-
tions (constrained absent values), when necessary.

Function 6 SignalScope
Input: G: set of generators ovet, V C V: set of signals
Output: G’:set of generators ovér\ V
G—{9eG|lg\V]#1}
while truedo
Choosey, ¢’ € Gwith (¢ \ V) \ (¢’ \ V) # L and
g\Veag'\Vand(g\V)A(g'\ V) # L
if there exist such, ¢’ then
Chooses € supp((g\ V) \ (9" \ V)
g// — g/
g"[s] — 1L
G"—{geG\{g'} | (g=g) N (ghg")}
G" — {gl \ J-I—supp(g)ag \ J-I—supp(g’)a gV gl | g€
G//}
G—(G\({gtua")ua”
else
G'—{g\V]geG}
return

11

