
From Concurrent Multiclock Programs to Deterministic Asyn chronous
Implementations

Dumitru Potop-Butucaru Robert de Simone Yves Sorel Jean-Pierre Talpin
INRIA, France

{FirstName.LastName}@inria.fr

Abstract

We propose a general method to characterize and syn-
thesize correctness-preserving, asynchronous wrappers for
synchronous processes on a globally asynchronous locally
synchronous (GALS) architecture. Based on the theory of
weakly endochronous systems, our technique uses a com-
pact representation of the abstract synchronization config-
urations of the analyzed process to determine a minimal
set of synchronization patterns generating all possible re-
actions.

1 Introduction

Synchronous programming is nowadays a widely ac-
cepted paradigm for the design of critical applications such
as digital circuits or embedded software [3], especially
when a semantic reference is sought to ensure the coherence
between the implementation and the various simulations.
The synchronous paradigm supports a notion ofdetermin-
istic concurrencywhich facilitates the functional modeling
and analysis of embedded systems.

While modeling a synchronous process or module can be
easy, implementing a concurrent system by composing syn-
chronous modular specifications is often hardened by the
need of preserving global synchronizations in the model of
the system. These synchronization artifacts need most of
the time to be preserved, at least in part, in order to ensure
functional correctness when the behavior of the whole sys-
tem depends on properties such as the arrival order of events
on different channels, or the presence or absence of an event
at a certain instant.

We address this issue and focus on the characterization
and synthesis of wrappers that control the execution of syn-
chronous processes in a GALS architecture. Our aim is to
preserve the functional properties of individual synchronous
processes deployed on an asynchronous execution environ-
ment. To this aim, we shall start by considering a multi-
clocked or polychronous model of computation and lay the

proper theoretical background to finally establish proper-
ties pertaining on the assurance of asynchronous imple-
mentability.

Our technique is mathematically founded on the theory
of weakly endochronous systems, due to Potop, Caillaud,
and Benveniste [11]. Weak endochrony gives a compo-
sitional sufficient condition establishing that a concurrent
synchronous specification exhibits no behavior where infor-
mation on the absence of an event is needed. Thus, the syn-
chronous specification can safely be executed with identical
results in any asynchronous environment (where absence
cannot be sensed). Weak endochrony thus gives a latency-
insensitivity and scheduling-independence criterion.

In this paper, we propose the first general method to
check weak endochrony on multi-clock synchronous pro-
grams. The method is based on the construction of so-called
generator sets. Generator sets contain minimal synchro-
nization patterns that characterize all possible reactions of a
multi-clocked program. These sets are used to check that a
specification is indeed weakly endochronous, in which case
they can be used to generate the GALS wrapper. In case
the specification is not weakly endochronous, the genera-
tors can be used to generate intuitive error messages. Thus,
we provide an alternative to classical compilation schemes
for multi-clock programs, such as the clock hierarchization
techniques used in Signal/Polychrony [1].
Outline. The paper is organized as follows: Section 2 and
Section 3 give an intuition of the problem addressed in this
paper together with references to previous work and an idea
of the desired solution. Section 4 defines the formalism
that will support our presentation. Section 5 summarizes
the original theory of [11] and adapts it to our framework.
Section 6 defines novel algorithms to determine if a specifi-
cation is weakly endochronous. We conclude in Section 7.

2 Multiclock synchronous system

We use a small, intuitive example to present our prob-
lem, the desired result, and the main implementation is-

sues. The example, pictured in Fig. 1, is a simple recon-
figurable adder, where two independent single-word ALUs
can be used either independently, or synchronized to form
a double-word ALU. The choice between synchronized and
non-synchronizedmode is done using theSYNCsignal. The
carry between the two adders is propagated through the
BooleanCwire wheneverSYNCis present.

ADD2

I1

I2 O2

O1

SYNC
C

ADD1

Figure 1. Data-flow of a configurable adder. 1

We consider a discrete model of time, where execu-
tions are sequences ofreactions, indexed by aglobal clock.
Given a synchronous specification (also calledprocess), a
reaction is a valuation of theinput, output and internal (lo-
cal) signalsof the process. Fig. 2 gives a possible execution
of our example. We shall denote withV(P) the finite set of
signals of a processP . We shall distinguish insideV(P) the
disjoint sub-sets ofinput and output signals, respectively
denotedI(P) andO(P).

Clock 1 2 3 4 5 6 7

I1 (1,2) ⊥ (9,9) (9,9) ⊥ (2,5) ⊥
O1 3 ⊥ 8 8 ⊥ 7 ⊥

SYNC ⊥ ⊥ • ⊥ ⊥ • ⊥
C ⊥ ⊥ 1 ⊥ ⊥ 0 ⊥
I2 ⊥ ⊥ (0,0) (0,0) ⊥ (1,4) (2,3)

O2 ⊥ ⊥ 1 0 ⊥ 5 5

Figure 2. A synchronous run of the adder

If we denote withEXAMPLEour configurable adder, then

V(EXAMPLE) = {I1, I2, SY NC, O1, O2, C}
I(EXAMPLE) = {I1, I2, SY NC}
O(EXAMPLE) = {O1, O2}

All signals are typed. We denote withDS the domain of a
signalS. Not all signals need to have a value in a reaction,

1To simplify figures and notations, we group both integer inputs of
ADD1 under I1, and both integer inputs of ADD2 under I2. This poses
no problem because from the synchronization perspective ofthis paper the
two integer inputs of an adder have the same properties.

to model cases where only parts of the process compute. We
will say that a signal ispresentin a reaction when it has a
value inDS. Otherwise, we say that it isabsent. Absence
is simply represented with value⊥, which is appended to
all domainsD⊥

S
= DS ∪ {⊥}. Formally, a reaction of the

process is a valuation of its signals into their extended do-
mainsD⊥

S
. We denote withR the set of all such valuations.

Thesupportof a reactionr, denotedsupp(r), is the set of
present signals. For instance, the support of reaction 4 in
Fig. 2 is{I1, I2, O1, O2}. In a reactionr, we distinguish
the input event, which is the restrictionr |I(EXAMPLE) of r to
input signals, and theoutput event, which is the restriction
r |O(EXAMPLE) to output signals.

In many cases we are only interested in the presence
or absence of a signal, because it transmits no data, just
synchronization (or because we are only interested in syn-
chronization aspects). To represent such signals, the Sig-
nal language [6] uses a dedicatedevent type of domain
Devent = {•}. We follow the same convention: In our
example,SYNChas typeevent . To represent reactions,
we use aset-like conventionand omit signals with value⊥.
In Fig. 2, the signal types areSY NC : event, O1, O2 :
integer, I1, I2 : integer pair, C : Boolean. Reaction
4 is denoted(I1(9,9), O18, I2(0,0), O20). Thestuttering re-
actionassigning⊥ to all signals is denoted⊥. Reaction 5
is a stuttering reaction.

3 Deterministic asynchronous implementation

We consider a synchronous process, and we want to exe-
cute it in an asynchronous environment where inputs arrive
and outputs depart via asynchronous FIFO channels with
uncontrolled (but finite) communication latencies. To sim-
plify, we assume that we have exactly one channel for each
input and output signal of the process. We also assume a
very simple correspondence between messages on channels
and signal values: Each message on a channel corresponds
to exactly one value (not absence) of a signal in a reaction.
In particular, no message represents absence.

We assume that the execution of the synchronous process
is a cyclic repetition of 3 steps:

1. assembling asynchronous input messages arriving onto
the input channels into a synchronous input event ac-
ceptable by the process,

2. triggering a reaction of the process for the recon-
structed input event, and

3. transforming the output event of the reaction into mes-
sages onto the output asynchronous channels.

In order to achieve deterministic execution,2 the main
difficulty lies in step (1), as it involves the potential recon-

2Like in [10], determinism can be relaxed here to predictability – the fact that
the environment is always informed of the choices made inside the process. While
this involves no changes in the following technical results, we preferred a simpler
presentation.

2

struction of signal absence, whereas absence is meaningless
in the chosen asynchronous framework. Reconstructing re-
actions from asynchronous messages must be done in a de-
terministic fashion, regardless of the message arrival order.
This is not always possible. Assume, like in Fig. 3, that we
consider the inputs of Fig. 2 without synchronization infor-
mation.

I1 (1,2) (9,9) (9,9) (2,5)
O1 3 8 8 7

SYNC • •
C 1 0
I2 (0,0) (0,0) (1,4) (2,3)

O2 1 0 5 5

Figure 3. Corresponding asynchronous run.
No synchronization exists between the vari-
ous signals, so that correctly reconstructing
synchronous inputs from the asynchronous
ones is impossible

The adderADD1will then receive the first value(1, 2)
on the input channelI1 and• on SYNC. Depending on the
arrival order, which cannot be determined, any of the reac-
tions(I1(1,2), O13, SY NC•, C0) or (I1(1,2), O13) can be
executed, leading to divergent computations. The problem
is that these two reactions are not independent, but no value
of a given channel allows to differentiate one from the other
(so one can’t deterministically choose between them in an
asynchronous environment).

We have seen in the previous section that determinis-
tic input event reconstruction is impossible for some syn-
chronous processes. This means that a methodology to im-
plement synchronous processes on an asynchronous archi-
tecture must rely on the (implicit or explicit) identification
of some class of processes for which reconstruction is possi-
ble. Then, giving a deterministic asynchronous implemen-
tation to a random synchronous process can be done in two
steps:

1. transforming the initial process, through added syn-
chronizations and/or signals, so that it belongs to the
implementable class, and then

2. generating an implementation for the transformed pro-
cess.

The choice of the class of implementable processes is there-
fore essential. On one hand, choosing a small class can
highly simplify analysis and code generation in step (2).
On the other, small classes of processes result in heav-
ier synchronization added to the process in step (1). Our
choice, justified in the next section, is the class of weakly
endochronous processes. This paper proposes a technique

for checking weak endochrony of real-life (real-size) speci-
fications.

3.1 Previous work. Motivation

The most developed notions identifying classes of imple-
mentable processes are the concepts oflatency-insensitive
systemsof Carloniet al. [4] and theendochronous systems
of Benvenisteet al. [2, 6]. The latency-insensitive systems
are those featuring no signal absence. Transforming pro-
cesses featuring absence, such as our example of Figures 1
and 2, into latency-insensitive ones amounts to transform-
ing the presence/absence of a signal into a true/false value
that is sent and received as an asynchronous message. This
is easy to check and implement, but often results in an un-
needed communication overhead due to the absence mes-
sages.

The endochronous systemsand the related hardware-
centric generalized latency-insensitive systems[14] are
those where the presence and absence of all signals can be
incrementally inferred starting from the state and from sig-
nals that are always present. For instance, Fig. 4 presents
a run of an endochronous system obtained by transforming
the SYNCsignal of our example into one that carries val-
ues from 0 to 3: 0 forADD1executing alone, 1 forADD2
executing alone, 2 for both adders executing without com-
municating (Cabsent), and 3 for the synchronized execution
of the two adders (C present). Note that the value ofSYNC
determines the presence/absence of all signals.

Clock 1 2 3 4 5

I1 (1,2) (9,9) (9,9) (2,5) ⊥
O1 3 8 8 7 ⊥

SYNC 0 3 2 3 1
C ⊥ 1 ⊥ 0 ⊥
I2 ⊥ (0,0) (0,0) (1,4) (2,3)

O2 ⊥ 1 0 5 5

Figure 4. Endochronous solution

Checking endochrony consists in ordering the signals
of the process in a tree representing the incremental pres-
ence inference process (the signals that are always read are
all placed in the tree root). The compilation of the Sig-
nal/Polychrony language is currently founded on a version
of endochrony [1].

The endochronous reaction reconstruction process is
fully deterministic, and the presence of all signals is syn-
chronized w.r.t. some base signal(s) in a hierarchic fash-
ion. This means that no concurrency remains between sub-
processes of an endochronous process. For instance, in the
endochronous model of our adder, the behavior of the two
adders is synchronized at all instants by theSYNCsignal

3

(whereas in the initial model the adders can function inde-
pendently wheneverSYNCis absent). By consequence, us-
ing endochrony as the basis for the development of systems
with internal concurrency has 2 drawbacks:

• Endochrony is non-compositional (synchronization
code must be added even when composing processes
sharing no signal).

• Specifications and implementations/simulations are
over-synchronized.

Weak endochrony, due to Potop, Caillaud, and Ben-
veniste [11] and presented in Section 5, generalizes
endochrony by allowing both synchronized and non-
synchronized (independent) computations to be realized by
a given process.

Fig. 5 presents a run of a weakly endochronous system
obtained by replacing theSYNCsignal of our example with
two input signals:

• SYNC1, of Boolean type, is received at each execution
of ADD1. It has value 0 to notify that no synchroniza-
tion is necessary, and value 1 to notify that synchro-
nization is necessary and the carry signalC must be
produced.

• SYNC2, of Boolean type, is received at each execution
of ADD2. It has value 0 to notify that no synchroniza-
tion is necessary, and value 1 to notify that synchro-
nization is necessary and the carry signalC must be
read.

The two adders are synchronized whenSYNC1=1 and
SYNC2=1, corresponding to the cases whereSYNC=• in
the original design. However, the adders function indepen-
dently elsewhere (between synchronization points).

I1 (1,2) (9,9) (9,9) (2,5)
O1 3 8 8 7

SYNC1 0 1 0 1

C 1 0
SYNC • •

SYNC2 1 0 1 0
I2 (0,0) (0,0) (1,4) (2,3)

O2 1 0 5 5

Figure 5. Weakly endochronous solution

4 Multiclock Specification in Signal

The use of weakly endochronous processes allows the
preservation of the independence of non-synchronized com-

putations,3 while adding the supplementary synchroniza-
tion needed to ensure deterministic execution in an asyn-
chronous environment. Weak endochrony is preserved by
synchronous composition, thus supporting incremental de-
velopment. However, the lack of a practical technique for
checking and/or synthesizing weak endochrony limited its
use in practice until now.

We use the high-level multi-clock synchronous data-flow
language Signal [1] to demonstrate the applicability of our
technique. This language allows a simple representation of
clock synchronization constraints we are interested in. Like
other synchronous data-flow formalisms, such as Lustre,
Scade, Lucid, that could also have been considered, Signal
gives an implicit representation of states that is most con-
venient (yet not mandatory) for a direct illustration of our
technique.

4.1 Finite stateless abstraction

We define our decision procedure for weak endochrony
on the finite-data stateless abstraction of Signal programs
that is already used in existing compilers. This subset is de-
fined by (1) a restriction to finite data types and (2) the ab-
straction of delay equations (sole to introduce implicit state
transition) by synchronization constraints (between the sig-
nals of a delay equation).

For programs featuring infinite data and delays (e.g.,
integer , float) the construction of an finite-data state-
less abstraction is done by a procedure of the Signal com-
piler that is detailed in [9]. Given that a Signal specification
needs not be functionally complete, the abstraction can be
represented as a Signal process (and it is derived through
simple transformations of the Signal source).

The stateless abstraction does not mean all state infor-
mation is lost. The abstraction procedure automatically
conserves some of the underlying synchronization informa-
tion, and the programmer can force the preservation of as
much information as needed through the addition of so-
called clock constraints(defined in Section 4.3.1), which
are preserved by the abstraction procedure. For instance,
activation conditions such as the ones used in the compila-
tion of Esterel [13] can be easily preserved in this way.

However, the abstraction means that: (1) Certain weakly
endochronous processes are rejected, as the analysis can-
not determine it and (2) The code generated for a weakly
endochronous process may be over-synchronized.

4.2 Process structure

In Signal, a specification is aprocess, whose definition
may involve other processes, hierarchically. Fig. 6 gives the
Signal process corresponding to the configurable adder of

3So that later analysis or implementation steps can exploit it.

4

Fig. 1. A process is formed of a header defining its name,
an interface specification, a data-flow specification, and a
local declaration section. In our example, the top-level pro-
cess is namedEXAMPLE. Its interface defines 3 input sig-
nals (SYNC, I1 , andI2), identified with “?”, and 2 output
signals (O1 andO2), identified with “!”. Our example has
no state, and the infinite type signals (I1 , I2 , O1, O2) have
been replaced with signals of typeevent by the abstrac-
tion procedure. The Boolean type of the carryC has also
been transformed intoevent , because it is computed from
I1 (we need to preserve determinism).

1 process EXAMPLE = (? event SYNC,I1, I2
2 ! event O1, O2)
3 (| (O1,C) := ADD1 (SYNC,I1)
4 | O2 := ADD2 (SYNC,I2,C) |)
5 where event C ;
6 process ADD1 = (? event SYNC, I1
7 ! event O1, C)
8 (| I1 ˆ= O1 | SYNC ˆ< I1
9 | C ˆ= SYNC |) ;

10 process ADD2 = (? event SYNC, I2, C
11 ! event O2)
12 (| I2 ˆ= O2 | SYNC ˆ< I2
13 | C ˆ= SYNC |) ;
14 end ;

Figure 6. The Signal process of the config-
urable adder in Fig. 1

The data-flow specification ofEXAMPLEconsists of
two equations, which define the interconnections between
ADD1, ADD2, and the environment. The local definition
section defines the internal signalC, and the processes
ADD1and ADD2. The hierarchy of processes allows the
structuring of a specification and the definition of signal
scopes that mask internal signals. ProcessEXAMPLEus-
ing processADD1 in its data-flow intuitively corresponds
to replacing each instance ofADD1 in EXAMPLEwith its
data-flow with the internal signals ofADD1being masked.

4.3 Data-flow

The data-flow specification of a process is formed of
equationsdefining constraintsbetween the signals of the
process. Any reaction satisfying all the equations of a pro-
cessP is a valid reaction ofP . We denote withR(P) the
set of all the reactions ofP . The use of a constraint lan-
guage allows us to easily manipulate functionally incom-
plete specifications.

4.3.1 Clocks. Clock Constraints

The clock of a signalS is another signal, denoted∧S, of
typeevent , which is present wheneverS is present. Clock
signals are used to specifyclock constraints.

The most common clock constraints areidentity, inclu-
sion, andexclusion. Lines 8 and 9 of Fig. 6, which gives
the constraints ofADD1, illustrates clock equality and in-
clusion. The equation “I1 ∧=O1” specifies that signalI1
is present in a reactioniff O1 is present. In other terms,
whenever inputs arrive, the adder produces an output. The
next equation requires thatI1 is present in reactions where
SYNCis present.

Otherwise said,∧SYNCis included in∧I1 . The last
equation states that the carry valueC is emitted byADD1
wheneverSYNCis present. The definition ofADD2is simi-
lar. The difference is that the carry signalC is here an input,
and not an output like inADD1. Clock exclusion is not used
in our example. Writing “S1∧#S2” requires thatS1 and
S2 are never present in the same reaction.

4.3.2 Stateless Signal primitive language

The following statements are the primitives of the Signal
language sub-set we consider. The delay primitive of the
full language, “X:=Y$ init V ” 4, is simply abstracted
by its synchronization requirement “X∧=Y”. The assign-
ment equation “X:=f(Y1,...,Yn) ” states that all the
signals have the same clock, and that the specified equality
relation holds at each instant where the signals are present.
Equation “X:=Y ” is a particular case of assignment. It spec-
ifies the identity ofX andY. SignalY can also be replaced
with a data-flow expression built using the following oper-
ators:

The operator when performs conditional down-
sampling. The signal “X when C” is equal toX whenever
the boolean signal C is present with valuetrue .
Otherwise, it is⊥. The shortcut for “∧C when C” is
“when C”. For instance, in Fig. 7, “when SYNC1=1” is
a signal of typeevent that is present when signalSYNC1
is present with value1. The operatordefault merges
two signals of the same type, giving priority to the first.
The signal “X default Y ” is present whenever one ofX
or Y is present. It is equal toX wheneverX is present, and
is equal toY otherwise.

5 Weak endochrony

The theory ofweakly endochronous (WE) systems[11],
gives criteria establishing that a synchronous presentation
hides a behavior that is fundamentally asynchronous and

4X is defined byV the first timeY occurs and then takes the previous
value ofY

5

deterministic. Absence information is not needed, which
guarantees the deterministic implementability of the syn-
chronous specification in an asynchronous environment.5

Absence not being needed in computations means that
reactions sharing no common present value can be executed
independently(without any synchronization). Absence is
treated as adon’t care valueimposing no synchronization
constraint (as opposed to present values).

process EXAMPLE2 = (? boolean S1, S2;
event I1,I2

! event O1,O2)
(| (O1,O2) := EXAMPLE (when S1, I1, I2)

| when S1 ˆ= when S2
|)

where
process EXAMPLE = the process in Fig. 6

end

Figure 7. A weakly endochronous refinement
of process EXAMPLE is obtained by limiting
the use of signal absence (when compared to
the other solutions)

This property suggests a natural organization of the pos-
sible values of a signalS as a Scott domain defined by
⊥ ≤ v, for all v ∈ DS . The domain structure on par-
ticular signals induces a product partial order≤ on reac-
tions withr1 ≤ r2 if and only if supp(r1) ⊆ supp(r2) and
r1(v) = r2(v) for all v ∈ supp(r1).

We say of two reactionsr1 and r2 that they arenon-
contradictory, written r1 ⊲⊳ r2, if r1(v) = r2(v) for all
v ∈ supp(r1) ∩ supp(r2). Otherwise, we say that the re-
actions arecontradictory, written r1 6⊲⊳ r2. Given a set of
reactionsK, we shall say that it is non-contradictory, de-
noted⊲⊳ K if any two reactions ofK are non-contradictory.

The least upper bound and greatest lower bound induced
by the order relation are respectively denoted with∨ and∧,
and called union and intersection of reactions. Ifr1 ⊲⊳ r2,
bothr1 ∨ r2 andr1 ∧ r2 are defined, and we can also define
the differencer1\r2, which has supportsupp(r1)\supp(r2)
and equalsr1 on its support. For a setK with ⊲⊳ we denote
∨K =

∨
r∈K r.

Weak endochrony is defined in an automata-theoretic
framework. We simplify it here according to our state-
less abstraction:

5The intuition behind weak endochrony is that we are looking for sys-
tems where (1) all causality is implied by the sequencing of messages on
communication channels, and (2) all choices are visible as choices over
the value (and not present/absent status) of some message. As explained
in [10], the axioms of weak endochrony can be traced down to the funda-
mental result of Keller [7] on the deterministic operation of a system in an
asynchronous environment. Moreover, WE systems are synchronous Kahn
processes, and weak endochrony extends to a synchronous framework the
classical trace theory [8].

Definition 1 (stateless weak endochrony)We say that
processP is weakly endochronous its set of reactions
R(P) is closed under the operations associated to the
previously-defined domain structure: intersection, union,
and difference of non-contradictory reactions.

Atoms. From our point of view oriented towards auto-
mated analysis, it is most interesting that any behavior of
a WE system can be decomposed intoatomic transitions,
or atoms. Formally, the set of atomic reactions ofP , de-
notedAtoms(P) is the set of the smallest (in the sense of
≤) reactions ofR(P) different from⊥. The set of atomic
transitions is characterized by two fundamental properties:
non-interference and generation.

Theorem 1 (atom set characterization)A stateless pro-
cessP is weakly endochronous if and only if there exists
a set of reactionsA ⊆ R(P) such that:

Generation: The union of non-interfering atoms generates
all the reactions ofR(P): R(P) = {

∨
K | K ⊆

G∧ ⊲⊳ K}.

Non interference: Two distinct atomsa1, a2 ∈ A, a1 6= a2

are either contradictory or independent.

Axiom (Non interference) implies that as soon as two atoms
are not independent, they can be distinguished by a present
value (not absence), meaning that choice between them can
be done in an asynchronous environment.

The characterization of Theorem 1 corresponds to the
case where no distinction is made between input, output and
internal signals of a system (which is the case in [11]). As
we seek to obtain deterministic asynchronous implementa-
tions for Signal programs, we require that the choice be-
tween any two contradictory atoms can be done based on
input signal values.6 Formally:

Input choice: For any two contradictory atomsa1, a2 ∈
A, there existss ∈ V(P) such thatai(s) 6= ⊥, i =
1, 2, anda1(s) 6= a2(s).

6 Checking weak endochrony

According to Theorem 1, checking weak endochrony is
determining when an atom set can be constructed for a given
process. We follow this approach by determining for each
processP one minimal set of supplementary synchroniza-
tions (under the form of signal absence constraints) allow-
ing the construction of a generator set with atom-like prop-
erties. ProcessP is weakly endochronousiff the generators
are free of forced absence constraints.

6To achieve predictability, choice can be done on input or output signal
values.

6

6.1 Signal absence constraints

For processesP that are not weakly endochronous, the
set of reactionsR(P) is not closed under the operations∨,
∧, \ defined in the previous section, meaning that we cannot
use generation properties to representR(P) in a compact
fashion. This is due to the fact that the model does not allow
the representation ofabsence constraints, which are needed
in order to represent thereaction to signal absence.

To allow compact representation, we enrich the model
with absence constraints under the form ofconstrained ab-
sence⊥⊥ signal values which are added to the domain of
each signal. An extended reactionr sets signalS to ⊥⊥
to represent the fact that upon union (∨) the signalS must
remain absent. This new value represents the classical syn-
chronizing absence of the synchronous model, which must
be preserved at composition time.However, we are not in-
terested in fully reverting to a synchronous setting, but in
preserving as few synchronizations as needed to allow de-
terministic asynchronous execution.

We denote withD⊥⊥
S = D⊥

S ∪ {⊥⊥} the new domain
with ⊥ ≤ ⊥⊥. The operators∧, ∨, and\ are extended
accordingly. We denote withR⊥⊥ the set of valuations of
the signals over the extended domains. OnR⊥⊥ we can ex-
tend the operators∧, ∨, \, and⊲⊳. We define the operator
[] : R⊥⊥ → R that removes absence constraints (replaces
⊥⊥ values with⊥). We also define the converse transfor-
mation : R → R⊥⊥ that transforms all the⊥ values of a
reaction into⊥⊥ values. We denote⊥⊥ = ⊥ the reaction
assigning⊥⊥ to all signals.

6.2 Generators

We define in this section the notion ofminimal fully con-
strained non-interfering set of generatorsof a processP ,
which is very similar to an atom set, except (1) it can be
computed for any processP and (2) it involves absence
constraints. Such generator sets will represent for us com-
pact representations ofR(P), and the basic objects in our
weak endochrony check technique. The reactions of such a
generator set can be seen as tiles that can be united (when
disjoint) to generate all other reactions. Generators can also
be compared with the prime implicants of a logic formula –
they are reactions of smallest support that generate all other
reactions.

Definition 2 (Generator set) Let P be a process. A set
G ⊆ R⊥⊥ of partial reactions such that[g] 6= ⊥ for all
g ∈ G is a generator set ofR(P) if R(P) = {[

∨
g∈K g] |

K ⊆ G∧ ⊲⊳ K}.

As we are building our generator sets incrementally, it
is essential they preserve all the synchronization informa-
tion of the process, including all absence constraints. Such
generator sets are called fully constrained.

Definition 3 (Fully constrained generator set) A genera-
tor setG of processP is called fully constrained if each
atom represents all absence constraints associated to it.
Formally, for all g ∈ G we have: g =

∧
{r | r ∈

R(P) ∧ g ≤ r}.

Finally, we are looking for generator sets with atom-like
exclusiveness properties.

Definition 4 (Non-interfering generator set) A generator
set G of processP is called non-interfering if for all
r1, r2 ∈ G with r1 ⊲⊳ r2 and [r1] ∧ [r2] 6= ⊥ we have
r1 = r2.

Every Signal process has a fully constrained non-
interfering generator set, obtained by replacing⊥ with ⊥⊥
in all the reactions ofR(P). But using this representa-
tion amounts to reverting to the synchronous model, and
not exploiting the concurrency of the process. We are there-
fore looking for least synchronized generator sets exhibiting
minimal absence constraints.

Definition 5 (Less synchronized generator set)Let P be
a process andG1, G2 two generator sets forP . We say that
G1 is less synchronized thanG2, denotedG1 � G2, if for
all g2 ∈ G2 there existsK ⊆ G1 with

∨
g∈K g ≤ g2 and

[
∨

g∈K g] = [g2].

The procedures of the next section will build for each
process a fully constrained, non-interfering generator set
that is minimal in the sense of�.

Theorem 2 Let P be a process andG be a fully con-
strained, non-interfering generator set that is minimal in
the sense of�. Then,G is weakly endochronous if and only
if the setAG = {[g] | g ∈ G} satisfies the generation and
non-interference properties of Theorem 1.

Proof sketch: If AG satisfies the given property, then
according to Theorem 1 we know thatP is weakly en-
dochronous.

In the other sense, assumeA is the set of atoms of the
weakly endochronous processP . For alla ∈ A we define

ga =
∧
{r | r ∈ R(P) ∧ a ≤ r}

Then,GA = {ga | a ∈ A} is a fully constrained non-
interfering generator set that can be proved minimal in the
sense of� (ant it is unique with this property).�

If a process is not weakly endochronous, then there may
exist several minimal non-interfering generator sets. We
provide here a technique allowing the construction of one
such generator set. Our technique works inductively: We
compute a minimal generator set for each statement in a
bottom-up fashion following the syntax of the process. We

7

GV
X:=Y default Z

=

= {(Xv, Y v, Zw) | v ∈ DX , w ∈ DX ∪ {⊥⊥}} ∪

{(Xv, Y ⊥⊥, Zv) | v ∈ DX} ∪

{(W v) | v ∈ DX , W ∈ V \ {X, Y, Z}}

GV
X:=Y when Z

=

= {(Xv, Y v, Z1) | v ∈ DX} ∪

{(X⊥⊥, Y v, Z0) | v ∈ DX ∪ {⊥⊥}} ∪

{(X⊥⊥, Y v, Z⊥⊥) | v ∈ DX} ∪

{(W v) | v ∈ DX , W ∈ V \ {X, Y, Z}}

GV
X:=f(Y

1
,...,Yn) =

= {(Xf(v1,...,vn), Y1
v1 , . . . , Yn

vn) | ∀i : vi ∈ DYi
} ∪

{(W v) | v ∈ DX , W ∈ V \ {X, Yi | 1 ≤ i ≤ n}}

Figure 8. Minimal generator sets for primitive
Signal equations

GV
X∧=Y

= {(Xv, Y w) | v ∈ DX , w ∈ DY } ∪

{(W v) | v ∈ DW , W ∈ V \ {X, Y }}

GV
X∧<Y

= {(Xv, Y w) | v ∈ DX ∪ {⊥⊥}, w ∈ DY } ∪

{(W v) | v ∈ DW , W ∈ V \ {X, Y }}

Figure 9. Minimal generator sets for clock
equations (can be derived from primitives)

shall denote withGp the minimal non-interfering genera-
tor set built for statementp. When, due to signal scoping,
we need to explicitly include in the notation the setV of
signals over which the reactions ofp are defined, we shall
extend the notation toGV

p . Fig. 8 and Fig. 9 give mini-
mal non-interfering generator sets for primitives and clock
equations.

In the remainder of the paper, when saying minimal
generator set, we mean a minimal fully constrained non-
interfering generator set.

6.3 Algorithms

Given a Signal program, the computation of a minimal
generator set proceeds bottom-up in the syntax tree, start-
ing from the minimal generator sets of the primitives (given
above), and incrementally computing one minimal genera-
tor set for each composed statement. Composed statements

are of only two types: parallel composition and sumodule
instantiation. This section deals with parallel composition:
The main algorithm isParallelComposition, which com-
putes a minimal generator set ofp | q starting from minimal
generator sets ofp andq.

The signal scoping realized by subprocess instantiation
must be ignored, meaning that the local signals of the gen-
erators of the sub-process are treated as local signals of the
instantiating process itself. This is necessary if the goalis
multi-task code generation, because hiding local signals can
hide actual dependencies and render non-interfering reac-
tions that are interfering in the sub-process. For space rea-
sons, we relegate to Appendix A the routine allowing the
hiding of local signals at the level of subprocess instantia-
tion (which may be useful for verification purposes).

Function 1 ParallelComposition
Input: Gp, Gq: generator set
Output: Gp|q: generator set

G′ ← ∅
for all g ∈ Gp do

ParallelCompositionAux(g,⊥,Gp,Gq,G′)
Gp|q ← MinimizeSynchronization(G′)

FunctionParallelCompositionand the recursive auxil-
iary (Procedure 2) perform an exploration of all combina-
tions of generators inp andq whose present signals hold
the same values. It operates by incrementally adding atoms
of p andq on one side in an attempt to match present values
on the other side. The iteration stops when the generators
match or when all possibilities have been exhausted.

Procedure 2 ParallelCompositionAux
Input: r1,r2 reactions,G1,G2 generator sets
Reference-passed:G: reaction set

if [r2] \ [r1] 6= ⊥ then
for all g ∈ G1 do

if g ⊲⊳ r1 andg ⊲⊳ r2 and [g] ∧ ([r2] \ [r1]) 6= ⊥
then

if [r1 ∨ g] = [r2] then G← G ∪ {r1 ∨ r2 ∨ g}
elseParallelCompositionAux(r1∨g,r2,G1,G2,G)

elseParallelCompositionAux(r2,r1,G2,G1,G)

The forall loop in Function ParallelComposition
determines a fully-constrained, non-interfering generator
set for p | q, but which is not necessarily minimal.
For instance, consider the parallel compositionp0 |
q0, wherep0 is (| C ˆ< B | C ˆ# A |) and q0 is
(| C ˆ= when false |) (meaningq0 forcesC to al-
ways be absent). The generator set computed forp0 | q0 by
theforall loop is:

G′ = {(A•, B⊥⊥, C⊥⊥), (A⊥⊥, B•, C⊥⊥), (A•, B•, C⊥⊥)}

8

which is not minimal, as the minimal generator set (where
A andB are independent) is:

Gp0|q0
= {(A•, B⊥, C⊥⊥), (A⊥, B•, C⊥⊥)}

The needed decomposition ofG′ into Gp0|q0
is done by

ProcedureMinimizeSynchronization. The procedure uncov-
ers concurrency by determining that existing generators can
be further decomposed into less synchronized generators.
It works by attempting to remove one by one each forced
absence value of each generator, and then using Function
RemoveOneSynchronizationto obtain a fully constrained,
non-interfering generator set where the chosen forced ab-
sence value is not necessary, and which is therefore less
synchronized than the previous one.

Procedure 3 MinimizeSynchronization
Input: G: set of generators over the set of variablesV
Reference-passed:G′: set of generators overV

while truedo
Chooseg ∈ G, s ∈ V with g(s) = ⊥⊥ and

RemoveOneSynchronization(G, g, s) = (true, G′′)
for someG′′.

if there exist suchg, s, andG′′ then G← G′′

elseG′ ← G ; return

The procedure terminates when no more⊥⊥ values can
be removed. When this happens, some⊥⊥ values may re-
main in the generator set. Some of them, like those in our
previous example (Gp0|q0

), are only there to ensure com-
pleteness with respect to Definition 3, and can be safely
removed upon execution in an asynchronous environment.
When all remaining⊥⊥ values are of this type, which is the
case in our example, the program is weakly endochronous,
and the atom set is obtained by removing all⊥⊥ values from
the generator set. Checking that this is the case amounts to
checking for each generatorg that:

g =
∧
{g′ | g′ ∈ G ∧ [g] ≤ g′}

This means that the generator contains no⊥⊥ value in addi-
tion to those prescribed by Definition 3.

When this is not the case, additional⊥⊥ values are syn-
chronization defects potentially leading to non-determinism
upon execution in an asynchronous environment. For in-
stance, the generator set ofXˆ<Y (given in Fig. 9) contains
such synchronization defects.

The complexity of the MinimizeSynchronization
procedure is hidden within the auxiliary Function
RemoveOneSynchronization. After removal of one
synchronization (⊥⊥ value), this function successively com-
putes all intersections and differences of non-contradictory
generators until no changes occur. This process, which may
remove further⊥⊥ values, results in a less synchronized

generator set satisfying the non-interfering and fully
constrained properties. But we still need to check that it
still is a generator set for the considered process (that the
removal of synchronizations does not allow supplementary
behaviors).

This check is done by FunctionCheckEquivalence.
When CheckEquivalencereturns false, we know that
the particular ⊥⊥ value given as input to Function
RemoveOneSynchronizationcannot be removed (it is
needed to preserve the synchronous semantics). For exam-
ple, in the computation ofGp0|q0

above, we can assume that
we start by removing the⊥⊥ value ofB in the first genera-
tor of G′. Then, FunctionRemoveOneSynchronizationwill
produceGp0|q0

. No further simplification is possible.

Function 4 RemoveOneSynchronization
Input: G: set of generators overV , g0 ∈ G, s0 ∈ V

such thatg0(s0) = ⊥⊥
Output: Status:Boolean

G′: set of generators, ifStatus = true

g ←
∧
{g′ | g′ ∈ G ∧ [g] ≤ g′}

if g(s0) = ⊥⊥ then
Status← false

return
g′0 ← g0

g′0[s0]← ⊥
G′ ← {g′0}
G′′ ← {g0}
G← G \ {g0}
while truedo

Chooseg1 ∈ G, g′1 ∈ G′ with g1 ⊲⊳ g′1 andg1∧g′1 6= ⊥
if such a pair existsthen

G← G \ {g1}
G′′ ← G′′ ∪ {g1}
Gtmp ← {g1 ∧ g′ | (g′ ∈ G′) ∧ (g1 ⊲⊳ g′) ∧
([g1 ∧ g′] 6= ⊥)}
Gtmp ← Gtmp ∪ {g′ \ g1 | (g′ ∈ G′) ∧ (g1 ⊲⊳

g′) ∧ ([g′ \ g1] 6= ⊥)}
gtmp ← g1 \

⋃
g′∈G′,g′⊲⊳g1

(g1 ∧ g′)
if [gtmp] 6= ⊥ then Gtmp ← Gtmp ∪ {gtmp}
Gtmp ← Gtmp ∪ {g′ | (g′ ∈ G′) ∧ (g1 6⊲⊳ g′)}
G′ ← Gtmp

else
Status← CheckEquivalence(G′, G′′)
G′ ← G′ ∪G

return

The computation of the intersections and differences
between generators, and the equivalence check are opti-
mized in FunctionRemoveOneSynchronizationto only in-
volve generators that are actually modified. Non-interfering
atoms are not changed or analyzed.

Using the previous algorithms to compute the minimal

9

Function 5 CheckEquivalence
Input: G′, G′′: sets of generators, withG′ less synchro-

nized thanG′′

Output: Equiv:Boolean
G′′ ← the set of reactions generated byG′

Equiv← {[g] | g ∈ G} = {[r] | r ∈ G′′}

fully constrained non-interfering generator set of the pro-
cess in Fig. 6 gives:

{(I1•, O1•, SY NC⊥⊥), (I2•, O2•, SY NC⊥⊥),

(I1•, O1•, I2•, O2•, SY NC•, C•)}

As expected, the process is not weakly endochronous
because [(I1•, O1•, I2•, O2•, SY NC•)] and
[(I1•, O1•, SY NC⊥⊥)] are neither conflicting, nor of
disjoint support. The minimal non-conflicting generator set
of the transformed process in Fig. 7 is:

{(I1•, O1•, SY NC10, C⊥⊥, SY NC⊥⊥),

(I2•, O2•, SY NC20, C⊥⊥, SY NC⊥⊥),

(I1•, O1•, I2•, O2•, SY NC11, SY NC21, C•), SY NC•}

The process is weakly endochronous.

7 Conclusion

We have defined a general method to characterize and
synthesize correctness-preserving wrappers to execute syn-
chronous processes on a globally asynchronous architec-
ture. This methods considers processes abstracted by high-
level synchronization constraints and is thus applicable to
a large variety of scenarios. Although we chose the Sig-
nal language to illustrate our approach, the method itself is
independent of a domain-specific formalism.

GALS architectures constructed with our method have
a predictable behavior that is sound and complete with re-
spect to initial synchronous specifications, regardless ofthe
size of the system or of latency in the network. The result of
the analysis allows to directly synthesize executives for all
specifications whose processes are proven stateless weakly
endochronous. Moreover, in the case a specification fails
to meet expected criteria, our analysis points directly at the
faulty synchronization issue(s).

In the present paper, our main concern was to character-
ize an effective criterion ensuring the functional correctness
of GALS architectures in an untimed setting. A longer-
term objective is to take real-time requirements into ac-
count. This should provide guarantees on more elaborate
constraints pertaining to periodicity, throughput, WCET.

Such an extension requires the definition of timing analy-
sis and scheduling techniques compatible with our program
execution model. Yet, the executives themselves could be

simplified under specific timing hypothesis (for instance, a
FIFO protocols can be simplified if the reader is faster than
the writer, etc.). In parallel, we are also investigating ways
to optimize the representation of atoms better using, e.g.,
decision trees.

References

[1] P. Amagbégnon, L. Besnard, and P. L. Guernic. Implemen-
tation of the data-flow synchronous language signal. InPro-
ceedings PLDI’95, La Jolla, CA, USA, June 1995.

[2] A. Benveniste, B. Caillaud, and P. L. Guernic. Composition-
ality in dataflow synchronous languages: Specification and
distributed code generation.Information and Computation,
163:125 – 171, 2000.

[3] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L.
Guernic, and R. de Simone. The synchronous languages
12 years later.Proceedings of the IEEE, 91(1):64–83, Jan.
2003.

[4] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli.
Theory of latency-insensitive design.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
20(9):18, Sep 2001.

[5] T. Grandpierre and Y. Sorel. From algorithm and archi-
tecture specification to automatic generation of distributed
real-time executives: a seamless flow of graphs transforma-
tions. InProceedings of First ACM and IEEE International
Conference on Formal Methods and Models for Codesign,
MEMOCODE’03, Mont Saint-Michel, France, June 2003.

[6] P. L. Guernic, J.-P. Talpin, and J.-C. L. Lann. Polychrony
for system design.Journal for Circuits, Systems and Com-
puters, April 2003. Special Issue on Application Specific
Hardware Design.

[7] R. Keller. A fundamental theorem of asynchronous parallel
computation.Lecture Notes in Computer Science, 24:103–
112, 1975.

[8] A. Mazurkiewicz. Concurrent program schemes and their
interpretations. Technical report, DAIMI, Arhus University,
1977.

[9] M. Nebut. Specification and analysis of synchronous reac-
tions.Formal Aspects of Computing, 16(3):263–291, august
2004.

[10] D. Potop-Butucaru and B. Caillaud. Correct-by-construction
asynchronous implementation of modular synchronous
specifications. InProccedings ACSD’05, St. Malo, France,
June 2005.

[11] D. Potop-Butucaru, B. Caillaud, and A. Benveniste. Concur-
rency in synchronous systems.Formal Methods in System
Design, 28(2):111–130, 2006.

[12] D. Potop-Butucaru, R. de Simone, and Y. Sorel. Neces-
sary and sufficient conditions for deterministic desynchro-
nization. InProceedings EMSOFT 2007, Vienna, Austria.

[13] D. Potop-Butucaru, S. Edwards, and G. Berry.Compiling
Esterel. Springer, 2007.

[14] M. Singh and M. Theobald. Generalized latency-insensitive
systems for single-clock and multi-clock architectures. In
Proceedings DATE’04, Paris, France, 2004.

10

A Appendix

FunctionSignalScopebuilds the generators set of a pro-
cessP in which V is the set of private signals. The in-
put of the function is the set of generators of the program
body. The output is the set of generators ofP , which don’t
use variables ofV to differentiate between non-independent
generators. In its definition, we use the scoping (hiding)
operator: Ifr is a reaction over the set of variablesV and
V ⊆ V , thenr \ V denotes the reaction overV \ V that
equalsr on variables ofV \ V . We also denote with⊥⊥V

the reaction overV that equals⊥⊥ on V and⊥ elsewhere.
The function works by adding supplementary synchroniza-
tions (constrained absent values), when necessary.

Function 6 SignalScope
Input: G: set of generators overV , V ⊂ V : set of signals
Output: G′:set of generators overV \ V

G← {g ∈ G | [g \ V] 6= ⊥}
while truedo

Chooseg, g′ ∈ G with (g \ V) \ (g′ \ V) 6= ⊥ and
g \ V ⊲⊳ g′ \ V and(g \ V) ∧ (g′ \ V) 6= ⊥
if there exist suchg, g′ then

Chooses ∈ supp((g \ V) \ (g′ \ V))
g′′ ← g′

g′′[s]← ⊥⊥
G′′ ← {g ∈ G \ {g′} | (g ⊲⊳ g′) ∧ (g 6⊲⊳ g′′)}
G′′′ ← {g′ ∨ ⊥⊥supp(g), g ∨ ⊥⊥supp(g′), g ∨ g′ | g ∈
G′′}
G← (G \ ({g′} ∪G′′)) ∪G′′′

else
G′ ← {g \ V | g ∈ G}
return

11

