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Abstract

This paper addresses view-invariant object detection and

pose estimation from a single image. While recent work fo-

cuses on object-centered representations of point-based ob-

ject features, we revisit the viewer-centered framework, and

use image contours as basic features. Given training ex-

amples of arbitrary views of an object, we learn a sparse

object model in terms of a few view-dependent shape tem-

plates. The shape templates are jointly used for detecting

object occurrences and estimating their 3D poses in a new

image. Instrumental to this is our new mid-level feature,

called bag of boundaries (BOB), aimed at lifting from indi-

vidual edges toward their more informative summaries for

identifying object boundaries amidst the background clutter.

In inference, BOBs are placed on deformable grids both in

the image and the shape templates, and then matched. This

is formulated as a convex optimization problem that accom-

modates invariance to non-rigid, locally affine shape defor-

mations. Evaluation on benchmark datasets demonstrates

our competitive results relative to the state of the art.

1. Introduction

We study multi-view object detection and pose esti-

mation in a single image. These problems are challeng-

ing, because appearances of 3D objects may differ signifi-

cantly within a category and when seen from different view-

points. A majority of recent work resorts to the object-

centered framework, where statistical generative models

[16, 22, 17, 1, 10, 7], discriminative models [6], or view-

independent implicit shape models [15, 18] are used to en-

code how local object features (e.g. points or edgeless), and

their spatial relationships vary in the images as the cam-

era viewpoint changes. They strongly argue against certain

limitations of viewer-centered approaches that apply sev-

eral single-view detectors independently, and then combine

their responses [21, 13]. In the light of the age-long debate

whether viewer- or object-centered representations are more

suitable for 3D object recognition [4, 20], the recent trend

to readily dismiss viewpoint-dependent approaches seems

too hasty.

In this paper, we revisit the viewer-centered framework.

We are motivated by two widely recognized findings in

psychophysics and cognitive psychology that: (i) shape is

one of the most categorical object properties [3], and (ii)

viewpoint-dependent object representations generalize well

across members of perceptually-defined classes [20]. These

findings motivate our new approach that uses a number of

viewpoint-specific shape representations to model an object

category. Shape is typically more invariant to color, tex-

ture, and brightness changes in the image than other fea-

tures (e.g., interest points), and thus generally enables a

significant reduction in the number of training examples,

required to maintain high recognition accuracy. In this pa-

per, we show that using contours as basic object features

allows a sparse multi-view object representation in terms of

a few shape templates, illustrated in Fig. 1. The templates

are specified as 2D probabilistic maps of viewpoint-specific

object shapes. They can be interpreted as “mental images”

of an object category that are widely believed to play an im-

portant role in human vision [14]. While the templates are

distinct, they are jointly analyzed in our inference. Given

only a few of these shape templates, we show that it is possi-

ble to accurately identify boundaries and 3D pose of object

occurrences amidst background clutter.

Instrumental to the proposed shape-based 3D object

recognition is our new, mid-level feature, called bag of

boundaries (BOB). A BOB located at a given point in the

image is a histogram of boundaries, i.e., the right image

contours that occur in the BOB’s neighborhood and belong

to the foreground. If the object occurs, its boundaries will

be “covered” by many BOBs in the image. Therefore, we

represent the image and the shape templates of the object

model by deformable 2D lattices of BOBs which can collec-

tively provide a stronger support of the occurrence hypothe-

sis than any individual contour. This allows conducting 3D

object recognition by matching the image’s and template’s

BOBs, instead of directly matching cluttered edges in the

image and the shape templates. There are two main differ-
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Figure 1. Overview of our approach. We seek a subset of foreground image contours, referred to as boundaries, that jointly best match to the

shape templates of the object model, under an arbitrary affine projection. Instead of directly matching individual contours, we match their

summaries—our new, mid-level features, called bags of boundaries (BOBs). (a) A test image, and the shape templates of the category car.

(b) Successive iterations of matching BOBs placed on deformable grids in the test image (magenta) and the shape templates (yellow). Top:

current estimates of boundaries that best match to the shape templates. Middle: matches from the previous iteration define how to project

the grids of BOBs of every shape template (yellow) onto the test image, and thus match them to the grid of BOBs in the image (magenta);

the grids are deformable to accommodate invariance to non-rigid, locally affine shape deformations of object occurrences. Bottom: current

estimates of the best matching shape template and its affine projection onto the test image. (c) Our results: boundary detection and 3D pose

estimation of the car occurrence in the test image. The estimated viewpoint is depicted as the green camera, and the best matching shape

template is shown as the orange camera. The label “front-left” is our discrete viewpoint estimate.

ences from other common mid-level features (e.g., Bag of

Words, shape context). First, boundaries, which we use for

computing the BOB histogram, are not observable, but hid-

den variables that must be inferred. The BOB histogram is

computed from the right contours, not any edges (as in, e.g.,

BOW, shape context). Second, BOBs lie on a deformable

2D lattice, whose warping is iteratively guided top-down

by the inference algorithm, such that the BOBs could better

summarize boundaries for recognition.

Overview: Our approach consists of two steps, illus-

trated in Fig. 1. In Step 1, we learn the viewer-centered

shape templates of an object category. We assume that train-

ing images are labeled with bounding boxes around object

instances. For each training image, we estimate its corre-

sponding 3D camera location on the viewing sphere using a

standard SfM method. For each camera viewpoint, the tem-

plate is learned from boundaries detected within the bound-

ing boxes around training instances, seen from that view-

point. After normalizing the bounding boxes to have the

same size as the template, their boundaries are copied to the

template, and averaged. Every pixel in the template counts

the average frequency it falls on a boundary, resulting in a

probabilistic shape map (see Fig. 2). In Step 2, we con-

duct shape matching between all contours in a given image,

and the shape templates learned in Step 1. The matching

seeks a subset of foreground image contours, i.e., bound-

aries, that jointly best match to the shape templates under

an arbitrary affine projection (3D rotation, translation, and

scale). We lift from the clutter of image edges, and realize

shape matching by establishing correspondences between

2D lattices of BOBs in the image and the templates. This

is formulated as an efficient convex optimization that al-

lows for non-rigid, locally affine, shape deformations. The

best matching BOBs identify object boundaries, and the as-

sociated affine projection of the template onto the image.

The parameters of this affine projection are taken as a real-

valued, continuous estimate of 3D object pose, while the

best matching template identifies a discrete pose estimate.

In the following, Sec. 2 points out our contributions;

Sec. 3 describes the viewer-centered shape templates; Sec. 4

specifies BOBs; Sec. 5 and Sec. 6 formulate BOB matching;

and Sec. 7 presents our empirical evaluation.

2. Our Contributions and Prior work

To our knowledge, this paper presents the first shape-

based approach to view-invariant object detection and pose

estimation from a single image. While most prior work de-

tects only bounding boxes around objects [16, 22, 17, 1, 10,
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15, 18, 21, 13], our approach is capable of detecting bound-

aries that delineate objects, and their characteristic parts,

seen from arbitrary viewpoints. For delineating object parts,

we do not require part labels in training. The approach of

[7] also seeks to delineate detected objects. However, they

employ computationally expensive inference of a genera-

tive model of Gabor-filter responses only to detect sparsely

placed stick-like edgelets belonging to objects. By using

contours instead of point-based features, we relax the strin-

gent requirement of prior work that objects must have sig-

nificant interior texture to carry out geometric registration.

We relax the restrictive assumption of some prior work

(e.g., [17]) that objects are piece-wise planar, spatially re-

lated through a homography. We allow non-rigid object de-

formations, and estimate the affine projection matrix.

Our approach is fundamentally viewer-centered, because

we use a set of distinct object representations corresponding

to different camera viewpoints. However, we do not use the

two-stage inference common in prior work [21, 13], where

one first reasons about objects based on each viewpoint rep-

resentation independently, and then fuses these hypotheses

in the second stage. Instead, our inference jointly considers

all distinct object representations within a unified convex

optimization framework.

Shape-based single-view object detection has a long-

track record in vision (e.g., [2, 5, 23]). The key research

questions explored by this line of work concern the formula-

tion of shape representation and similarity for shape match-

ing. Similar to the work of [2, 23], we use a lattice of mid-

level shape features, called BOBs, for shape matching. Un-

like shape context, a BOB is aimed at filtering the clutter of

image edges, and identifying and summarizing boundaries

that occur in the BOB’s neighborhood. For object detec-

tion, we find the best matching subset of BOBs to our shape

templates, such that the matched BOBs maximally cover all

image contours that are estimated to be boundaries. This is

very different from most prior work on shape (e.g., [2]) that

typically works with edge fragments, and seeks evidence

for their matching in relatively short-range neighborhoods.

Instead, we treat each contour as a whole unit, and require

a joint support from multiple BOBs to either match it to

our model, or declare it as the background. This makes our

shape matching more robust to background clutter.

Our shape matching simultaneously estimates a 3D

affine projection of the best matching shape templates to

the image. Related to ours is prior work on matching two

images under 2D locally affine transformation [9], or global

2D scale and rotation transformation [8]. However, they

treat descriptors of image features as fixed vectors, and do

not account that they change under local or global affine

transformations. By contrast, we allow non-rigid deforma-

tions of contours by estimating the optimal placement of

BOBs in the image. As the BOBs change positions, they

Figure 2. Example shape templates obtained for the mug category.

Boundaries that fall in the bounding box of the object are averaged

to form the probabilistic shape map.

cover different sets of contours, and thus change their asso-

ciated histograms, as desired.

3. Building the Shape Templates

This section explains how to build the shape template

from a given set of training images captured from a specific

camera viewpoint. We will consider that the camera view-

point is given together with bounding boxes around objects,

for clarity. In Sec. 7, we relax this assumption, and describe

how to estimate camera viewpoints of training images.

In each training image, we first extract long, salient con-

tours, using the approach of [23]. This is illustrated in

Fig. 2. Then, we set the size of our template to an aver-

age rectangle of all training bounding boxes (i.e., the length

of each side of the template is equal to the average length of

the corresponding sides of the bounding boxes). All training

bounding boxes are scaled to have the same size as the tem-

plate. This allows us to directly copy all boundaries from

the bounding boxes to the template. Every pixel in the tem-

plate counts the average number of times it falls on a bound-

ary. This results in a probabilistic shape map, as shown in

Fig. 2. As can be seen, due to the alignment and scaling

of bounding boxes, the shape template is capable of captur-

ing prominent object boundaries. Any contours that come

from background clutter or belong to rare variations of the

object category, by definition, will have low probability of

occurrence in the shape template.

In this way, we learn a number of shape templates corre-

sponding to distinct viewpoints present in the training set.

4. Shape Representation

Our shape representation is designed to facilitate match-

ing between image contours, and all shape templates of the

object category. We formulate this matching as many-to-
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many, because, in general, specific features of a category

instance, and canonical features of the category model may

not be in one-to-one correspondence. Thus, our goal is to

identify a subset of image contours and a subset of template

parts that match. Instead of directly matching contours, we

match BOBs placed on deformable grids in the image and

all the templates, as illustrated in Fig. 3. The BOBs serve to

jointly collect evidence on candidate boundaries, and facil-

itate many-to-many shape matching.

A BOB that is placed in the shape template is the stan-

dard shape context [2], computed over a relatively large spa-

tial neighborhood. The radius of every BOB in the template

is data-driven and varies in inference, as described in Sec. 5.

A BOB that is placed in the image differs from the stan-

dard shape context in that its log-polar histogram includes

only those image contours occurring in its neighborhood

that are estimated as boundaries. Similar to the work of

[23], we avoid enumerating exponentially many choices of

figure/ground labeling of contours. Rather, for a BOB lo-

cated at image point i, we compute the BOB’s histogram,

Si, as the following linear function of an indicator vector,

X , indexed by all contours in the image, and a matrix Vi,

which serves to formalize the BOB’s neighborhood:

Si = ViX. (1)

An element of X is set to 1 if the corresponding contour

is estimated as foreground, or 0, otherwise. An element of

Vi, denoted as (Vi)st, counts the number of pixels of tth

contour that fall in sth bin of the log-polar neighborhood

of i. Note that Vi is observable. However, computing Si

requires estimation of the hidden variables X in inference.

5. Shape Matching

This section presents our inference, under non-rigid

shape deformations and arbitrary 3D affine projection. We

place a number of BOBs in the image and the shape tem-

plates, and match them, as illustrated in Fig. 3. The result

is a subset of best matching image BOBs which are closest

to the expected affine projections of the corresponding tem-

plate BOBs onto the image. Also, the corresponding pairs

of BOBs have the smallest differences in their associated

boundary histograms. To jointly minimize these two cri-

teria, we estimate the optimal placement of image BOBs

to maximally cover the identified object boundaries, and

thus account for any non-rigid shape deformations. In the

following, we gradually formalize the matching of BOBs

from a simple standard linear assignment problem to the

desired complex optimization which allows for non-rigid

shape transformations.

More formally, let M be the set of template BOBs,

m = |M|, and I be the set of image BOBs, n = |I|. The

homogenous coordinates of image and template BOBs, pi

and qj , are represented by 3 × 1 and 4 × 1 vectors, respec-

tively. We want to estimate an n × m matrix F = [fij ],
whose each element fij represents confidence that 2D point

i ∈ I is the best match to 3D point j ∈ M.

The criterion that best matching BOBs have maximally

similar boundary histograms can be formalized as

min
F

∑

i∈I

∑

j∈M
fijcij

s.t ∀i, j, fij ≥ 0,
∑

i fij = 1,
∑

j fij ≤ 1,
(2)

where the constraints on the fij’s enforce one-to-many

matching, such that every BOB in the template finds its cor-

responding image BOB. cij is the histogram dissimilarity of

BOBs i and j defined as

cij;X = (ViX − Sj)
T Σ−1

j (ViX − Sj) (3)

where the indicator vector of boundaries in the image X ∈
{0, 1}

n
, the BOB’s neighborhood matrix Vi, and the bound-

ary histogram Sj are defined in Sec. 4. The covariance ma-

trix Σj is learned in training for each template point j ∈ M.

We organize dissimilarities cij;X in an n × m matrix CX .

This allows expressing the objective of (2) in a more conve-

nient matrix form:
∑

i∈I

∑

j∈M
fijcij;X = tr{CT

XF}.

To identify boundaries, i.e., estimate X , we extend (2) as

min
F,X

tr{CT
XF}

s.t F ≥ 0, FT
1n = 1m, F1m ≤ 1n, X ∈ [0, 1]n

(4)

where 1n is n-dimensional vector with all 1’s, and X is

relaxed to take continuous real values in [0, 1]n.

The formulation in (4) has two major limitations. First,

the resulting matches may contain template BOBs from all

viewpoints, which would mean that the image shows all

object views at once. Therefore, it is necessary to addi-

tionally constrain (4), such that a majority of correspon-

dences are established between the image and a cluster of

templates corresponding to neighboring camera locations

on the viewing sphere (or, in a special case, one particu-

lar template). The best matching subset of templates can be

jointly used to robustly estimate the object viewpoint, which

may have not been seen previously in training. Second, (4)

does not provide invariance to non-rigid shape deformations

and 3D affine transformations. Both limitations could be

addressed by allowing image BOBs to iteratively move to

the expected affine projections of their corresponding tem-

plate BOBs. This is similar to the EM algorithm. For com-

puting the expected locations of BOBs (E-step), we maxi-

mize their matches (M-step). The iterative displacements of

image BOBs are constrained to be locally similar. In this

way, we enforce that image BOBs match to the shape tem-

plates with similar (neighboring) viewpoints on the viewing

sphere. Below, we specify these additional constraints.

Let T be a set of all projection matrices, so T ∈ T has

the form T = K [R|t], where R is a 3 × 3 rotation matrix,
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t is a 3 × 1 translation vector, and K captures scale and

camera parameters. Given T ∈ T that projects the template

onto the image, the expected location of image point pi can

be estimated as p̂i;T =
∑

j∈M
fijTqj . After finding best

correspondences F = [fij ], we move each pi to its expected

location p̂i;T , and then repeat matching. The criterion that

neighboring BOBs should have the same displacements can

be formalized as

min
T∈T

∑

i∈I

‖(p̂i;T − pi) −
∑

k∈I

wik(p̂k;T − pk)‖, (5)

where ‖·‖ is ℓ2 norm, and the wik’s are elements of the n×n

adjacency matrix of image BOBs, W = [wik], representing

the neighbor strength between all BOB pairs, (i, k) ∈ I ×
I. We specify wik as inversely proportional to the distance

between pi and pk.

The objective in (5) minimizes only the magnitude of

relative displacements of BOBs in the image. We also want

to bound their absolute displacements as

min
T∈T

∑

i∈I

‖p̂i;T − pi‖. (6)

By introducing a 3 × n matrix of image coordinates P , and

a 4 × m matrix of template coordinate Q, we combine the

objectives of (4), (5), and (6) into our final formulation:

min
X,F,T

tr
{

CT
XF

}

+ α‖TQFT − P‖

+β‖(TQFT − P ) − (TQFT − P )WT ‖

s.t X ∈ [0, 1]N ; T ∈ T
F ≥ 0; FT

1N = 1M ; F1M ≤ 1N

(7)

Note that when α = β = 0 and Σj is the identity matrix,

(7) is equivalent to the 2D shape packing of [23]. Also, (7)

is similar to recent matching formulations, presented in [9,

8]; however, they do not account that image features change

under affine transformation.

6. Algorithm

This section describes our algorithm for solving (7). In-

put to our algorithm are the BOB coordinates Q and P ,

and their adjacency matrix W . We experimentally find op-

timal α = 2 and β = 1. We use an iterative approach

to find F , X and T in (7), and use the software CVX

http://cvxr.com/cvx/ to compute the optimization.

Each iteration consists of the following steps.

(1) We fix X and T and compute F . Initially,

all image contours are considered, so X is set to 1n.

T is initially set to the orthogonal projection matrix

[1 0 0 0; 0 1 0 0; 0 0 1 0].
(2) We fix X and F and compute T . We linearize the

quadratic constraint on the rotation matrix R by relaxing

the orthogonality constraint RRT = I to the norm con-

straint ‖R‖∞ ≤ 1. This can be done without affecting the

original optimization problem (see [12] for details). ‖R‖∞
is the spectral norm of R. After T is determined, we

transform the image BOBs pi to their expected locations

p̂i;T =
∑

j∈M
fijTqj .

(3) We fix T and F , and compute X , and CX .

(4) Steps (1)–(3) are iterated. After convergence, i.e.,

when F, T and X no longer change, we remove the bound-

aries indicated by X from the initial set of image contours.

(5) To detect multiple object occurrences in the image,

steps (1)–(4) are repeated until the set of image contours

reduces to the 10% of its initial size.

Implementation. On average, we extract around 80 con-

tours in each image. Our Matlab CVX implementation of

the above steps (1)–(5) takes about 3min on a 2.66GHz,

3.49GB RAM PC.

7. Results

Datasets. We evaluate our approach on the 3D object

dataset [16] and the Table Top dataset of [18]. The 3D

object dataset is used for evaluating on classes cars and

bikes; whereas the Table Top dataset is used for evaluat-

ing on classes staplers, mugs and computer mice. In both

datasets, each class contains 10 object instances. The first 5

are selected for training, and the remaining 5 for testing, as

in [16, 7, 18]. In the 3D object dataset, each instance is ob-

served under 8 angles (A1..A8), 2 heights (H1, H2), and 3

scales (S1..S3), i.e. 48 images. For training, we use only the

images from scale S1. For testing, we use all 5 × 48 = 240
images per category. In the Table Top dataset, each instance

is observed under 8 angles (A1..A8), 2 heights (H1, H2),

and one scale (S1), i.e. 16 images. For cars, we also eval-

uate our method on the PASCAL VOC 2006 dataset, and

on the car show dataset [13]. The PASCAL dataset con-

tains 544 test images. The car show dataset contains 20

sequences of cars as they rotate by 360 degrees. Similar

to [13], we use the last 10 sequences for testing, a total of

1120 images. Additionally, we evaluate our method on the

mug category of the ETHZ Shape dataset [5]. It contains 48

positive images with mugs, and 207 negative images with a

mixture of apple logos, bottles, giraffes and swans.

Training. Each training image is labeled with the ob-

ject’s bounding box. We use two approaches to identify the

camera viewpoint of each training image. For the two object

categories cars and bikes, we use publicly available, AUTO

CAD, synthetic models, as in [11, 10, 7]. For the other ob-

ject categories studied in this paper synthetic models are not

available, and, therefore, we estimate camera viewpoints via

standard SfM methods, as in [1]. Then, for each training im-

age, we extract long, salient contours using [23], and build

16 shape templates (8 angles and 2 heights). For each tem-

plate, we sample 25 BOBs on a uniform 5x5 grid, so we
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Figure 3. Iterative matching of BOBs in the image and the shape templates. Top: Estimated boundaries, and 3D BOBs that are matched to

the image BOBs. Middle and Bottom: Initially, the matches are established with multiple templates. After a few iterations, the matching

identifies the correct shape template, and the image contours selected as foreground indeed fall on the object. Corresponding pairs of image

and template BOBs are marked with the same color.

sample a total of 400 BOBs qj ∈ M. A shape context de-

scriptor Sj is associated with each qj , with a radius equal to
3
10 of the object size. This way, each descriptor represents

a significant part of the object, and there is a large overlap

between adjacent descriptors, see Fig. 3. Using the camera

pose of each viewpoint, we can compute the 3D location of

each BOB qj .

Testing. For each test image, we extract contours by

the approach of [23]. We sample 121 BOBs pi on a uni-

form 11x11 grid (empirically found optimal), and com-

pute a shape context descriptor for every point pi. Ini-

tially, the right scale for the descriptor is unknown. We

try multiple BOB radii, proportional to the image size, i.e.

radius = γ w+h
2 , with γ ∈ {0.05, 0.1, 0.15, 0.2}. We run

one iteration and keep the solution (F, T, X) that returns

the best score for the objective function in (7). In further

iterations, the projection matrix T gives us an estimate of

the scale of the object. The radius of the descriptor is then

set to 3
10 the size of the estimated object, to match the BOB

defined in the templates. This constitutes our default setup.

Evaluation criteria. To evaluate the 2D detection, we

use the standard PASCAL VOC detection quality criterion.

For a correct localization, the overlap ao between predicted

bounding box Bp and ground truth bounding box Bgt must

exceed 50%, as defined by ao =
area(Bp∩Bgt)
area(Bp∪Bgt)

. Our 2D

localization is created by fitting a bounding box to the con-

tours that are selected by our algorithm. Since our method

outputs contours, and not just a bounding box, we can com-

pute precision and recall of our detector in terms of contour

pixels, which is more precise. We count as true positives

the detected contour pixels that intersect with the object’s

mask. The contours extracted originally form the total set

of true positives and true negatives.

In addition to the 2D localization, the proposed approach

yields an estimate of the object’s 3D pose. For view-

point classification, we take the viewpoint-label of the best

matching template, whose camera centroid is the closest

(Euclidean distance) to the estimated camera.

Evaluating our training setup. To determine how many

viewpoints are necessary to represent an object category, we

train (a) 4, (b) 8, (c) 16, and (d) 32 shape templates for the

car category of the 3D object dataset [16]. The selected

viewpoints are (a) front, left, back and right, height H1,

scale S1, (b) all 8 viewpoints, height H1, scale S1, (c) all

8 viewpoints, heights H1, H2, scale S1, and (d) all 8 view-

points, heights H1, H2, scales S1, S2. We test each setup on

the task of 8-viewpoint classification, and report the average

classification performance in Tab. 1.

Number of templates 4 8 16 32

Average 64.5% 78.9% 85.4% 86.1%

performance ± 1.5% ± 0.7% ± 0.6% ± 0.5%

Table 1. 3D object car dataset. Influence of the number of tem-

plates on the pose estimation performance.

As expected, the performance improves as we add more

templates. We choose to use 16 templates and not 32, be-

cause the small performance gain does not justify the large

increase in computation time. Our formulation is linear but
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the solver takes much longer to handle large matrices, which

makes it impractical to use 32 templates on large datasets.

Precision of pose estimation. To evaluate the preci-

sion of our camera pose estimate, we use synthetic data,

for which it is easy to obtain ground truth. We collect 6

synthetic car models from free CAD databases, e.g. tur-

bosquid.com. Cameras are positioned at azimuth a =
0..360◦ in 10◦ steps, elevation e = 0..40◦ in 20◦ steps,

and distance d = 3, 5, 7 (generic units). 324 images are

rendered for each 3D model, for a total of 1944 test images

(see the supplemental material). For each image, we run

our car detector and record the 3D location of the estimated

camera. The position error is defined as the Euclidean dis-

tance between the centroids of ground truth camera and es-

timated camera. We measure an average error of 3.1 ± 1.2
units. There is a large variation because when we incor-

rectly estimate the camera, it is oftentimes because we have

mis-interpreted a viewpoint for its symmetric, e.g. front for

back. The position error is also due to the underestima-

tion of the distance between object and camera, which is

probably caused by our choice of resolving the scale via the

camera pose.

Independent viewpoints. We test a setup where one

considers each viewpoint independently. We solve 16 in-

dependent optimizations, as defined by (7), for each of the

16 shape templates. The image receives the viewpoint-label

of the template that yields the best score. We here get a drop

in classification performance by 5.3% ± 0.4% compared to

our default setup.

Qualitative results. Fig. 4 shows examples of success-

ful detections and 3D object pose estimation. We success-

fully detect the object boundaries, and we correctly esti-

mate the 3D poses. We are also able to identify interme-

diate poses that are not available in our discrete set of shape

templates, e.g. the car in the lower-right image.

Quantitative results. We first evaluate our performance

on object detection. Fig. 5 shows the precision/recall of

our detector on the PASCAL cars and the car show dataset.

We outperform the existing methods of [17, 11, 7, 13].

Our approach allows for non-rigid deformations and esti-

mates a full affine projection matrix, which explain our su-

perior results. Our method can also detect object parts.

We count 425 wheels in the car images of the 3D object

dataset, and record precision/recall at equal error rate (EER)

of 63.7% ± 0.5% for the wheel parts. Also, for the con-

tour pixels detection, we measure precision/recall at EER

of 68.3% ± 0.2% on the 3D object car dataset. After the

deadline of camera-ready submissions, we became aware

of competitive detection results, presented in [6] – specif-

ically, they reported an ROC curve that saturates at about

60% recall.

On the ETHZ Shape dataset, we use 24 positive mug im-

ages and 24 negative images from the other classes to esti-

mate the equal error rate detection threshold teer. We run

our mug detector on the remaining 207 images. Each can-

didate detection with an objective score below teer is clas-

sified as mug. The precision and recall at equal error rate

is measured at 84.3%± 0.5%, which is better than the 59%

reported in [23]. This also suggests that our shape templates

generalize well to other datasets.

Figure 5. Our detection results on the PASCAL VOC 2006 car

dataset (left) and the car show dataset (right).

Fig. 6 shows our confusion matrices for viewpoint clas-

sification, and compares our performance to that of [1, 19,

10, 18, 7] on different datasets. Our approach shows su-

perior performance for nearly all viewpoints and categories

relative to these approaches. After the deadline of camera-

ready submissions, we became aware of the state-of-the-art

results of viewpoint classification, presented in [6] – specif-

ically, they reported the viewpoint classification accuracy of

92.8% for cars, and 96.8% for bicycles. For the mice and

staplers of the 3D object dataset, we achieve a viewpoint

classification of 78.2% ± 1.1%, resp. 77.6% ± 0.9%, and

improve by 3.2%, resp. 4.1% the results of [18].

8. Conclusion

We have presented a novel, shape-based approach to 3D
pose estimation and view-invariant object detection. Shape,
being one of the most categorical object features, has al-
lowed us to formulate a new, sparse, view-centered ob-
ject representation in terms of a few, distinct, probabilistic,
shape templates. The templates are analogues to the well-
known “mental images”, believed to play an important role
in human vision. We have formulated 3D object recognition
as matching image contours to the set of shape templates.
To address the background clutter, we have lifted shape
matching from considering individual contours to match-
ing of new, mid-level features, called bags of boundaries
(BOBs). BOBs are histograms of the right contours esti-
mated to belong to the foreground. In inference, BOBs in
the image are iteratively re-located to jointly best summa-
rize object boundaries and match them to the shape tem-
plates, while accounting for likely non-rigid shape defor-
mations. Our experiments have demonstrated that BOBs
are rich contextual features that facilitate view-invariant in-
ference, yielding favorable performance relative to the state
of the art on benchmark datasets.
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Figure 4. Examples of our contour detection and 3D object pose estimation. Upper left: 3D object car dataset. Upper right: Table Top

stapler dataset. Lower left: ETHZ dataset. Lower right: car show dataset. We are successfully detecting the contours of the objects, and

we correctly estimate their 3D pose. The viewpoint label of the best matching template is taken as a discrete estimate of object pose, e.g.

right-front for the stapler. Example matches between image and shape templates BOBs are also shown. (Best viewed in color.)

Figure 6. Viewpoint classification results. Top: cars in the 3D ob-

ject dataset. Middle: bikes in the 3D object dataset. Bottom: mice-

staplers-mugs in the Table Top dataset. Left: confusion matrices.

Right: diagonal elements of our confusion matrices are compared

with the state of the art.
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