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Abstract

The existence and properties of the sigma meson have been controversial for almost six decades,

despite playing a central role in the spontaneous chiral symmetry of QCD or in the nucleon-

nucleon attraction. This controversy has also been fed by the strong indications that it is not an

ordinary quark-antiquark meson. Here we review both the recent and old experimental data and

the model independent dispersive formalisms which have provided precise determinations of its

mass and width, finally settling the controversy and leading to its new name: f0(500). We then

provide a rather conservative average of the most recent and advanced dispersive determinations

of its pole position
√

sσ = 449+22
−16
−i(275±12). In addition, after comprehensive introductions, we

will review within the modern perspective of effective theories and dispersion theory, its relation

to chiral symmetry, unitarization techniques, its quark mass dependence, popular models, as well

as the recent strong evidence, obtained from the QCD 1/Nc expansion or Regge theory, for its

non ordinary nature in terms of quarks and gluons.
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1. INTRODUCTION

“Nothing clears up a case so much as stating it to another person.”

Sherlock Holmes Quote.

Silver Blaze. Sir Arthur Conan Doyle, 1892.

For researchers outside the field, it may be surprising that despite having established Quan-

tum Chromodynamics (QCD) as the fundamental theory of the Strong Interaction 40 years ago,

the spectrum of lowest mass states, and particularly that of scalar mesons, may be still under

debate. Actually, light scalar mesons have been a puzzle in our understanding of the Strong In-

teraction for almost six decades. This may be even more amazing given the fact that they play a

very relevant role within nuclear and hadron physics, as in the nucleon-nucleon attraction and in

the spontaneous breaking of chiral symmetry, both of them fundamental features of the Strong

Interaction. The relatively poor theoretical understanding of hadrons at low energies causes little

surprise since it is textbook knowledge that QCD becomes non-perturbative at low energies and

does not allow for precise calculations of the light hadron spectrum. However, young and not so

young people outside the field are often unaware of the fact that even basic empirical properties

such as the existence of many of the lightest mesons and resonances are still actively discussed,

even if they were suggested much before QCD was proposed. Moreover, it is often the case that

older non-practitioners think that no rigorous conclusions or progress can be made about light

scalars, particularly about the lightest one, traditionally known as σ meson and nowadays called

the f0(500). This attitude is due to the fact that the situation on how many states exist, if they

exist at all, what are their masses, widths, etc... has remained rather confusing for many decades.

Admittedly, the way that, for instance, the lightest meson—the σ resonance—has been listed in

the Review of Particle physics (RPP) [1, 2], which until 2010 considered it a “well-established”

state despite quoting its mass in a range between 400 and 1200 MeV, did not help in conveying

the rigorous efforts pursued both by theoreticians and experimentalists within the light hadron

physics community. The continuous efforts of this community have considerably clarified the
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situation and the modern formalisms have allowed us to slowly move away from a time of con-

fusion to a time of precision studies. Actually, these efforts have been recently recognized in the

last RPP 2012 edition [2], at least for σ particle; perhaps the most controversial light meson for

many years, whose mass uncertainties have been reduced by a factor of 5 and, accordingly, has

even changed its name to f0(500).

The purpose of this work is to provide a review of the present status of the σ meson and its

relevant role within particle and nuclear physics paying particular attention to the developments

that triggered this major revision in the RPP. Thus, after a general and historical introduction in

this section, the recent developments that have led to this final acceptance of the σ parameters

will be reviewed in detail in Sec.2. Next, Sec.3 will be devoted to the role of the f0(500) in the

spontaneous breaking of chiral symmetry by the Strong Interaction and the modern approaches

based on Chiral symmetry and effective theories. The last section will be dedicated to the spec-

troscopic classification and the growing evidence supporting a non-ordinary nature of the σ, i.e.

its predominantly non quark-antiquark composition.

1.1. Historical perspective

In order to illustrate the confusing situation of light scalars over the last decades and to gain

perspective on the significance of recent progress, it is instructive to review briefly the History

of the σ meson. Unfortunately the description of a confusing situation might result confusing

to the reader, since at some given time two conflicting results could coexist or some previous

advances may not have received full recognition. Some relevant results might be forgotten for

some time and resurrected later. Thus, the history of the σ has advanced forward and backwards,

After this historical perspective, Subsecs. 1.2 and 1.3 will summarize the present situation of the

σ, where the controversy and confusion has disappeared in many aspects. In Sections 2,3 and 4

the historical perspective will be abandoned and we will describe in detail the methods that have

lead us to the present situation.

1.1.1. The pre-QCD era: Nucleon attraction, isospin and chiral symmetry

On the theory side, a relatively light “neutral scalar meson” was introduced by Teller and

Johnson as early as 1955 [3] in order to explain the nucleon-nucleon attraction. Very soon such

a field was incorporated by Schwinger [4] into a unified description of the known particles in

terms of isotopic spin, of which this field was a singlet, and he called it σ. He already pointed

out that while the pions, which form a triplet, were known, such a σ field had not been observed.

Nevertheless Schwinger already remarked that if its mass was above the two-pion threshold it

would be highly unstable and not easily observable. This is indeed what happens and, of course,

the origin of the long debate about the existence of the σ meson.

In the early sixties an isoscalar-scalar meson with a mass around 540 MeV was already being

considered within “one-boson-exchange models” to explain nuclear forces in relative detail (see

for instance the review in [5]). Even at present, as we can see for example in Fig.1, the most

common purely phenomenological models of the nucleon-nucleon interaction [6, 7, 8], are based

on the exchange of bosons and contain a component due to the σ meson, which provides the

main part of the strong attraction in the 1 to 2 Fermi range. Sometimes the σ contribution

is referred to as “correlated two-pion” exchange [9], “complicated two-pion exchange”, etc...

Note that other mesons dominate other parts of the potential, like the ω producing a short range

repulsion, or the pion being responsible for the long distance tail, whereas the ρ has a relatively

smaller contribution. The fact that the σ plays such an important role in nucleon attraction,
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Figure 1: A field with the quantum numbers of the σ meson was first proposed in order to explain the nucleon-

nucleon attraction [3]. The figure, from [10], shows the shape of the NN potential in the 1S 0 channel within different

modern phenomenological models. Typically, the attractive intermediate part is dominated by the σ-meson or some sort

of correlated two-pion exchange with the σ quantum numbers. The curves come from [6] (Bonn), [7] (Reid93) and [8]

(AV18). Reprinted with permission from N. Ishii, S. Aoki and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007). Copyright

2007 by the American Physical Society. [10]

and therefore in nuclei formation, makes it particularly relevant for Cosmological and Anthropic

considerations that will be addressed in Sec.3.

Back to History, the σ meson was incorporated in the early sixties into simple models of

the Strong Interaction, like the Linear Sigma Model [11] (LσM), that we will study in Sec.3.2.

Very briefly, in this model the σ belongs to a multiplet of four scalars that suffers a spontaneous

symmetry breaking such that the other three become massless Nambu-Goldstone bosons (NGB).

In contrast, the σ field remains massive. If this broken symmetry is identified with the SU(2)

chiral symmetry that QCD would have if its two lightest quarks u and d were massless, then the

three NGB could be identified with the pions. In reality the two lightest quarks have a small

mass that can be added to this picture perturbatively and as a consequence pions inherit a mass

which is small compared to typical hadronic scales. For this reason they are called pseudo-NGB.

This implementation of chiral symmetry breaking is rather simple due to the linear realization of

its symmetries and has become very popular, capturing many essential features of pion physics

at energies lower than the mass of other resonances not included in the model. It is also easily

extended to take into account the somewhat heavier strange quark, thus yielding eight pseudo-

NGB which, besides the three pions, include the four kaons and the eta meson. In this case

there is not just the sigma, but a nonet of scalars to which the sigma belongs together with other

light scalar mesons nowadays called the f0(980), the a0(980) and the K∗
0
(800) or κ meson. The

latter is in many aspects very similar to the σ, including its extremely short lifetime. Since

some of these states are controversial too, this spectroscopic classification has also been the

subject of a longstanding debate, which seems much clearer today and we will address in the

last section of this review. As we will see in Sec.3, the LσM is not the correct effective theory

of QCD at low energies, but it has played a very important role in our phenomenological and

more intuitive description of low energy hadronic interactions. The LσM has its successes and

shortcomings, leading to multiple variations (see, for instance [12, 13, 14, 15, 16, 17, 18] and
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references therein), some of which we will review in Subsecs.3.9 and 4.6.

Not only within the LσM, but on general grounds, the σ, which has the quantum numbers

of the vacuum, plays a very important role in the dynamics of the QCD spontaneous chiral sym-

metry breaking. Actually, a relatively light scalar-isoscalar meson coupling strongly to ππ, and

therefore very wide, is also generated in a Nambu-Jona-Lasinio (NJL) model or its modifica-

tions within hadron physics [19]. Still, both the LσM and NJL are simple models that, despite

capturing many relevant features, neither provide a systematic description of low energy hadron

physics nor a clear connection to QCD, usually requiring some ad-hoc modifications.

Therefore, from the theoretical side, from the late 50’s to the late 60’s it became clear that the

existence and properties of theσwere very relevant for our understanding of the nucleon-nucleon

attraction and chiral symmetry in Strong Interactions. These are already strong motivations for

the interest on the σ meson. But, in addition, we will see later that with the advent of quarks,

gluons and QCD in the 70’s, the σ and other scalar-isoscalar mesons acquired further interest

related to the the identification of glueballs and the composition of mesons.

1.1.2. To be or not to be: The σ History in the Review of Particle Properties.

Of course, in order to address these issues properly, a reliable and precise determination of

the σ mass, width and couplings is needed. Moreover, the experimental situation of the σ has

been so confusing that even its very existence has been frequently challenged, although it is now

firmly established.

In the next subsections this controversial status through time will be illustrated in detail.

However, before getting into such a detailed explanation, let us sketch it briefly following the

different developments as compiled in the Review of Particle Properties (RPP). This review pro-

vides every two years what could be considered as a conservative, consensual summary of the

state of the art. In the next subsections further comments and details not always present in the

RPP will also be included.

Thus, let us briefly summarize the sigma evolution on the RPP. Very soon after it was sug-

gested theoretically, a narrow σ already appeared in the 1964 edition of the RPP—at that time

called “Data on Elementary particles and Resonant states” [20]. Several references were listed

with a mass around 390 MeV and a width between 50 and 150 MeV. The possibility that it was

a broad resonance was already being considered in the RPP 1967 edition [21], following [22].

From the first “Review of Particle Properties” edition in 1969 [23] until 1973 [24], a σ meson or

some other relatively light scalar-isoscalar meson resonance under different names (ǫ, η+−), ap-

peared in the particle listings, sometimes simultaneously, although they were not considered well

established states. Actually, in the 1969 edition there were two JP = 0+ states: a wide σ(410)

and a narrower η0+(720), also called ǫ sometimes. From the 1976 edition [25], such states dis-

appeared from the tables for 20 years, returning in 1996 [1] under the name of “ f0(400 − 1200)

or σ”, with a large mass uncertainty ranging from 400 to 1200 MeV and a similarly large range,

from 500 to 1000 MeV, for the width. Its entry was accompanied with one footnote stating that

”the interpretation of this entry as a particle is controversial”, whereas another footnote in the

“Non-qq̄ candidates” section stated that it was “considered as well-established”. Despite keep-

ing these large uncertainties on its parameters, and the same comments about its status, its name

was changed to f0(600) in the 2002 edition. Moreover, both the large uncertainties and the name

were kept until the 2010 edition. As commented before, the σ has finally suffered a major revi-

sion in the 2012 edition, changing its name to f0(500) and reducing its mass uncertainties by a

factor of 5. In addition, there was a rather large change in the central value of the width and a

very substantial reduction on its uncertainties.
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There are several reasons for the very large uncertainties and this very confusing coming in

and going out of the tables for scalar-isoscalar states below 1 GeV. Let us recall that it was already

Schwinger in his 1957 work [4] who pointed out that the sigma could be wide and difficult to

observe. Actually, despite being first suggested within the context of nucleon-nucleon attraction,

this interaction is not very sensitive to the details of the particles exchanged, even less so if

they are very wide [26], as it is the case of the σ meson. Intuitively this can be understood as

follows: phenomenologically boson exchanges contribute to the nucleon-nucleon potential in the

t-channel. This means that the exchanged bosons do not resonate as it happens in other processes

(like resonant annihilation) where the direct s-channel exchange of a resonance is possible.

Therefore, many of the lightest mesons have been traditionally studied in meson-meson scat-

tering, where such resonances can be produced in the s-channel. For the quantum numbers we are

interested in, this means studying pion-pion scattering, or systems were ππ scattering is needed

as a part of a larger process. Unfortunately, ππ scattering is also not observed directly and its

indirect extraction from data needs some modeling and has large systematic uncertainties leading

to many data sets incompatible among themselves. As we will see throughout this review, a great

amount of work has been needed both on the experimental side to measure scattering phases and

inelasticities and on the theoretical side to sort out what data sets are fully consistent with funda-

mental requirements. But even when this is settled, the identification and determination of the σ

parameters is hindered by its large width and unusual shape.

1.1.3. The 70’s and meson-meson scattering phases. No Breit-Wigner resonance found.

Experimental claims of several narrow π+π− resonances in the 400 to 500 MeV region were

made as early as 1962 [27]. However, pretty soon it became clear that such narrow resonances

(50-70 MeV widths) were not confirmed. The first suggestions that there might actually be a

behavior characteristic of a wide resonance in the phase shifts of the scalar-isoscalar sector in the

650 to 800 region were given somewhat later in the 60’s. Quite a few works were dedicated to

this issue ( see [28] and references therein) following the first attempts to measure the scattering

phase shift, although the broad σ scenario had already been advocated in [22] from a dispersive

study of πN elastic scattering. In these works, there was some evidence for the phase to reach

90o around 750 MeV, giving some weak support for a so called “ǫ resonance”. However, there

was no evidence for a fast phase motion, which therefore implied a broad state, if any, perhaps

combined with another σ(400) broad meson. This is why, as commented above, in the first

RPP 1969 edition [23], a σ(410) and a narrower η0+(720) (or ǫ) coexisted. However, in the

1971 edition [29], the latter was changed to η0+(700 − 1000) (or ǫ), although at the same time a

η0+(1070) or S ∗ was listed too. In the 1973 edition [24] the σ disappeared from the tables but

an ǫ(600) resonance was listed instead, with a note saying that the existence of its pole was “not

established”. In the same 1973 edition the η0+(1070) became the S ∗(1000), which was considered

“well established”. Nowadays this state, which is very narrow, is known as the f0(980) and is

still listed in the RPP.

Experimental analysis of ππ scattering phase shifts from πN → ππN became available in the

very early seventies [30]. However, most of those were soon superseded by the best known ex-

perimental determinations of the ππ scattering scalar-isoscalar scattering phases by Protopopescu

et al. [31] and the CERN-Munich Collaboration, which has three works: Hyams et al. in 1973

[32], Grayer et al. in 1974 [33] and Hyams et al. in 1975 [34]. As we will see, these are the

most extensive phase shift analyses, covering a range of energies from above 500 to well beyond

1.5 GeV and have been widely used together with some re-analyses by other groups who had

access to raw data [35, 36]. These references also provided information on other partial waves,

7



particularly the vector-isovector, whereas the experimental information on the isospin 2 waves

can be found in [37]. In principle ππ → ππ scattering data can be extracted from πN → ππN

because in certain kinematic regions the latter is dominated by the one-pion exchange process.

Together with the initial pion and the two pions in the final state, this exchanged pion forms

the ππ → ππ subsystem. This amplitude has to be extracted through a complicated analysis in

which some background mechanisms (like absorption, A1 exchange, etc...) have to be modeled.

This technique has ambiguities that can lead to different solutions for the scattering amplitude.

These are due, for instance, to the fact that in certain energy regions one is only sensitive to

the S-wave from the S-P interference, which essentially determines the |δ0
0
− δ1/2 − π/4| phase

shift combination. Thus a two-fold ambiguity appears even if the P-wave is known (this one is

called up-down or top-down ambiguity), or a four-fold ambiguity for the overall amplitude. We

will only show here data once these ambiguities have been resolved. In Subsec.2.2.2 we will

comment on how later reanalyses with polarized targets and the use of dispersive formalisms

settled this issue [36, 38]. A detailed account of the method to extract meson-meson ampli-

tudes and a partial resolution of these ambiguities before the use of dispersive techniques can

be found in the textbook [39]. However, even within the same ambiguity solution the results

are plagued with systematic uncertainties that are due to the use of different models to isolate

the ππ → ππ amplitude. Actually, even within the same experimental collaboration, and thus

using the same πN → ππN data, different and even conflicting data sets of ππ → ππ data have

been provided. For instance, in the same publication of Grayer et al. [33] by the CERN-Munich

Collaboration, five different sets of ππ → ππ data are shown, labeled A to E, and some of them

are incompatible with the others, as can be seen in Fig.2. Moreover, with the notable exceptions

of [31, 34], it seems that providing Tables with their results was not fashionable in those days

and that only very vague statements about systematic uncertainties were made. Sometimes, as in

[33], statistical uncertainties were provided for each set of solutions. However, since these data

sets are incompatible among themselves within statistical uncertainties, the differences between

sets should be interpreted as an indication of the systematic uncertainty. As an example, the left

panel of Fig.2 displays the data on ππ → ππ scattering phase shifts of the scalar isoscalar wave.

Note the large differences even within data sets coming from the same experiment [33] (Solution

B was published first in [32]) due to systematic uncertainties. Something similar happens with

[31], but we only show the most commonly used data set, since it will be seen later that the others

are even more inconsistent with fundamental dispersive constraints.

Another relevant indication of the interest on ππ scattering in the early seventies was the

appearance of Ke4 experiments [41, 42]. These correspond to the K → ππeν decay and provide

an indirect measurement of the δ0
0
− δ1 phase combination well below 500 MeV, a region that

could not be reached with πN → ππN experiments. At that time these low energy data were not

very determinant in the σ discussion, but we will see that recent Ke4 experiments have actually

been decisive to enter the precision era for light scalars.

At this point, and in view of Fig.2 it is important to emphasize that the σ is so wide that

right from the very beginning it was clear that the familiar Breit-Wigner description [40], valid

for narrow isolated resonances, is not appropriate to describe the S-wave data. Indeed, note in

Fig.2 that there is no isolated Breit-Wigner shape around 500-600 MeV, corresponding to a σ or

f0(500) resonance. This means that the σ resonance does not appear as a peak in the ππ → ππ

cross section nor in many other amplitudes which contain in the final state two pions with the

quantum numbers of the f0(500). Of course, a Breit-Wigner-like shape over a background phase

of about 100 degrees is seen around 980 MeV in Fig.2, corresponding to the f0(980), but even

that shape is somewhat distorted by the nearby K̄K threshold. As an illustration of how the
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Figure 2: Data on ππ → ππ scattering phase shifts: Protopopescu et al. from [31], Grayer et al. from [33] (Solution

B also from [32]), Estabrooks and Martin from [35], Kaminski et al. from [36]. Left panel: The scalar-isoscalar phase

shift δ
(0)

0
. Note the very large differences due to systematic uncertainties, which exist even within data sets from the same

experimental collaboration [33] (Something similar happens with [31], but we only show the most commonly used and

consistent data set). Please note that there is no Breit-Wigner-like sharp increase of 180o on the phase between threshold

and 800 MeV. Such sharp phase increase is seen around 980 MeV, corresponding to the f0(980) meson, although starting

over a background phase of about 100o degrees. Right panel: For comparison we also show the vector-isovector δ1 phase

shift, where the ρ(770) resonance can be seen to follow the familiar Breit-Wigner shape [40] to a very good degree of

approximation.

phase of a Breit-Wigner resonance looks like, we display in the right panel of Fig.2 the vector-

isovector channel, where the shape of the ρ(770) resonance is seen. Clearly, nothing like that is

seen around 500 MeV in the left panel.

This issue is of importance, because the use of simple Breit-Wigner formulas to fit the mod-

ulus of the σ contribution to an amplitude that contains two pions in the scalar isoscalar channel

is one of the biggest sources of confusion when determining the σ parameters. As a matter of

fact, Watson’s final state theorem [43] implies that the phase of such amplitude should be the

same as that in the left panel of Fig.2, but that data is not well reproduced with a Breit-Wigner

shape. Trying to determine the σ parameters by the position of peaks or poles in Breit-Wigner

amplitudes can actually lead to different parameters when looking to different processes. But if

such techniques can be misleading, what is then a rigorous definition of a resonance?

1.1.4. Poles, resonances and dispersion relations... ignored

The process independent and mathematically sounded definition of a resonance is made by

means of its associated pole in the unphysical (or second) Riemann sheet of the complex energy

(squared) plane. Actually, already in the 1973 RPP edition [24], it was commented that “It is

clear that the behavior of the δ0
0

is much too complicated to allow a description in terms of one

or several Breit-Wigner resonances. We therefore list the positions of the poles of the T matrix”.

Nevertheless, it is still customary to identify the pole position sR with the resonance mass and

width as follows:
√

sR ≃ MR − iΓR/2, much as it would be done within a Breit-Wigner notation.

In what follows, the σ parameters will always refer to the T-matrix pole-mass and pole-width,

unless explicitly stated otherwise.
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As a matter of fact, in the very early seventies there were works showing that analyticity

and unitarity together with crossing constraints, required the existence of a broad σ pole, despite

the poor existing data before the Grayer et al. [33] and the Protopopescu et al. [31] results.

Unfortunately these were not completely consistent since mσ ≃ 410 MeV and Γ ≃ 380 MeV

were obtained in [44], whereas in [45] an ǫ-resonance with a mass below 650 MeV but a width

Γ > 650 MeV was found.

A very important technique used in the recent theoretical works that triggered the major re-

vision of the RPP in 2012 was developed by S.M. Roy in 1971 [46]. He was able to incorporate

crossing and analyticity into a set of exact integral equations for ππ scattering involving only

physical region partial waves. Unfortunately, these rigorous methods were ignored to a large

extent for more than a decade, with few valuable exceptions [47, 48, 49, 50], between the 70’s

and the early 90’s. Roughly, these years coincide with the time when the σ resonance was absent

from the RPP (actually, one can even check the citation gap of [46, 45] during those years). As

we will see in Sec.2.3 these equations were resurrected in the late 90’s and the early 2000’s and

have been crucial to our present understanding and precise determination of the σ parameters.

A possible explanation is that around that time QCD appeared and the attention of the hadronic

community was shifted away from other topics. In addition, these analytic methods require pow-

erful mathematical techniques, which many people prefer to avoid. As we will see in Sec.3, there

are of course simpler and reasonable approaches, often related to some approximated dispersion

relation, which still provide very decent results. But dispersive or analytic considerations have

often been avoided in favor of too simple models, which usually work fine for narrow resonances,

but which may sometimes lead to artifacts or not very rigorous determinations when poles are

deep in the complex plane. This has been one of the main sources of confusion on the discussions

about the σ meson.

In any case, in 1976 both the ǫ and σ disappeared from the RPP [25]. The ππ isoscalar

S-wave motion was interpreted as mainly due to the narrow S ∗(993) (nowadays f0(980)) and

a broad ǫ(1200) (nowadays called the f0(1300) resonance), which replaced all previous scalar

mesons below 900 MeV. According to the RPP [25] this replacement was motivated by the need

to have the right number of scalar-isoscalar resonances to form an SU(3) multiplet together with

the δ(993) and the κ(1250), following [51].

1.1.5. Three quarks for Muster Mark! ... but how many for the σ?

With the advent of QCD and the interpretation of quarks and gluons as physical entities, a

new question arose concerning the composition of hadronic resonances. Within the quark model

mesons were interpreted as quark-antiquark states that could be grouped into nonets, correspond-

ing to representations of the flavor symmetry group. Each member of the multiplet corresponds

to different flavor states of the constituent quark and antiquark. A similar pattern was followed

by baryons, made of three quarks, which could be grouped into different flavor multiplets.

However QCD is much more than just the quark model and in principle other configurations

might be possible, including states with more than one valence quark-antiquark pair or even

confined states of gluons, called glueballs, which are a striking feature of a confining non-abelian

gauge theory like QCD.

As a matter of fact, the interest on light scalars increased because they are difficult to fit

within the ordinary quark-antiquark scheme. Actually, one could form an SU(3) nonet of light

scalars with the ǫ(700) (one of the names of the σ back then) together with the δ(976) (nowadays

a0(980)), the S ∗(993) and a light κ (now called K∗
0
(800), still not listed in the RPP summary

tables, but included in the particle listings). Such a nonet is shown in Fig. 3: on the left in
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the 1976 version and on the right in the modern notation. However, this nonet identification

implies an inverted hierarchy with respect to the standard quark-antiquark composition. For

instance, if these scalars were quark-antiquarks, then the κ resonance, which has strangeness,

should contain a strange quark or antiquark and should be about 200 MeV heavier than the

δ(976), which contains no strangeness. But, as seen in Fig. 3, the opposite hierarchy is observed.

Nevertheless, since the existence of the κ was unclear it was still possible to assume that

it simply did not exist. In such scenario the δ(976) and S ∗(993) should belong to a heavier

nonet. But since only one strange scalar was seen around 1500 GeV (now called K0(1430))

then there were too many scalar-isoscalar states above 1 GeV for only one nonet. Therefore

this classification required to assume that one scalar-isoscalar resonance (today called f0(1300)),

whose existence was also controversial, did not exist either. Once the full nonet between 950

MeV and 1500 MeV was identified, the much lighter ǫ/σ was an extra singlet state outside that

heavy nonet. With these assumptions the glueball interpretation might seem appealing for the

ǫ/σ, since a pure glueball carries no flavor and the lightest glueball is also expected to have no

spin. However, we will see in Sec.4 that this scenario is not favored by lattice calculations, large

Nc arguments, chiral symmetry and the growing evidence for the existence of a κ or K∗
0
(800)

meson. Of course, in order to identify a glueball, it is still nowadays essential to understand the

σ and identify all light scalar mesons within their multiplets and see if there are extra states or

not.

An alternative proposal was advanced in 1976 by Jaffe, within the framework of the MIT

bag model, suggesting that the lightest scalars were not ordinary quark-antiquark mesons. He

found that their features, particularly the inverted hierarchy, could be better explained within a

tetraquark model [52]. Within this scheme, the glueball, if it existed, should be heavier than 1

GeV.
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Figure 3: Left, light scalar nonet as suggested in [52] with the 1976 notation. Right: the same multiplet in the present

notation.

Thus, by the end of the 70’s the σ became even more interesting due to QCD: it was now

important for the identification of the lightest glueball and it was also a strong candidate for a

different class of mesons. Naively speaking, it now became relevant to know how many quarks

or antiquarks made up a σ meson: none, two or more. Sec.4 will be dedicated to this issue, in

which some significant progress has been achieved, but is still the subject of intense debate.
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1.1.6. The 80’s and early 90’s. Chiral Perturbation Theory and ππ scattering.

Following important developments in the late seventies on the Effective Theory approach

[53], the eighties gave rise to Chiral Perturbation Theory (ChPT) [54, 55], which is the low en-

ergy effective theory of QCD. It provides a systematic low energy and small mass expansion of a

Lagrangian made of pions, kaons and eta mesons, which is consistent with all QCD symmetries

and particularly with its spontaneous symmetry breaking pattern. In this formalism the pions are

taken into account into a so-called non-linear representation as opposed to the linear representa-

tion of the LσM, and the σ meson is not included explicitly as a degree of freedom. The leading

order is universal in the sense that it only depends on the symmetry pattern, the particle masses

and the scale of spontaneous symmetry breaking, whereas the next orders contain a set of phe-

nomenological parameters known as low energy constants (LECs), which take into account the

underlying dynamics of QCD. This expansion has the virtue of providing a model-independent

connection with QCD and systematically improvable results at low energies, which was a partic-

ularly difficult region for hadron physics. Soon it was shown that the phenomenological values

of the LECs can be understood by the exchange of heavier resonances [54, 56], predominantly

by the exchange of vectors. There is a small contribution from scalars, but whose masses should

be ≃ 1GeV or heavier. No scalar below 1 GeV contributed to these LECs, which at that time

seemed to play against the existence of a light σ meson. However, we will see later on that this

is just evidence about the σ not being an ordinary meson, not against its existence.

Despite a relative fading of interest on a light σ in the late seventies, in the eighties there

were also attempts to fit quark models to meson-meson results [57]. In addition there were

other proposals concerning the nature of light scalars. For instance, in [58] they were interpreted

as “weakly bound states of two color singlet mesons”, i.e. “meson molecules”, or in [59] it

was shown that a light sigma, as a member of a light scalar nonet, was obtained within NJL-like

models of low-energy QCD, or in [60] the pure quark model states were shown to be dramatically

modified when final state interactions of mesons were taken into account through unitarization.

Unitarity is an essential ingredient of ππ scattering, whose amplitude saturates the unitarity bound

and becomes resonant already in the elastic region of the scalar and vector partial waves and not

too far from threshold.

Furthermore, it was even pointed out that there was no need to include the σ meson in a

Lagrangian (as a tree-level resonance exchange) to explain several effects where the σ resonance

seemed to appear, but that all those effects could be mimicked with just the final state rescattering

of two pions [61]. However, as we will see, this necessarily implies the existence of a light σ

pole in the amplitude, although very deep in the complex plane.

Actually, in the late eighties and early nineties, ChPT was combined with dispersion relations,

giving rise to what has become known as Unitarized Chiral Perturbation Theory (UChPT).The

first instance of this formalism was derived using a dispersion relation for the inverse of the am-

plitude [62, 63], which allows for an exact implementation of elastic unitarity in ππ scattering

while respecting the ChPT low energy expansion [64, 65]. The interest of this approach, known

as the Inverse Amplitude Method (IAM) is that, while respecting the systematic low energy

expansion of ChPT at low energies and therefore the connection with QCD, it can simultane-

ously generate resonant shapes without introducing them as explicit degrees of freedom in the

Lagrangian. In addition, since this formalism is based on a dispersion relation for the inverse

amplitude, it has all the analytic structures of elastic amplitudes in the physical sheet of the com-

plex plane, namely, the unitarity or physical cut implemented exactly and the crossing or left cut

as an approximation. Analyticity and unitarity, which are the dominant features of resonance
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Figure 4: The σ or f0(400 − 1400) resonance poles listed in the RPP 1996 edition (Black squares) together with those

also cited in the 2010 edition [72] (Red circles). Note the much better consistency of the latter and the general absence

of uncertainties in the former. The large light gray area corresponds to the uncertainty band assigned to the σ from 1996

to 2010.

scattering, are thus imposed exactly, but at the cost of an approximated crossing symmetry. This

allowed for the search for poles over the next years, including that of the σ.

Within the ChPT context, the process of unitarization is often reinterpreted as resumming,

among others, the diagrams in which the final mesons rescatter an arbitrary number of times.

Formally, these are higher order diagrams, but their resummation may be very relevant numer-

ically, particularly close to resonances. In the literature it is frequent to abuse the language so

that “resumming higher order diagrams with interactions between the final meson legs” is also

referred to as “including final state interactions”.

1.1.7. The mid 90’s: The resurrection of a confusing σ(400 − 1200).

There were still works [17] trying to build the lightest scalar nonet as quark-antiquark mesons

without the σ although almost immediately it was found that the poles of that model [18] con-

tained a σ.

According to the “Note on scalar mesons” in the 1996 edition of the RPP [1], the works that

triggered the “resurrection/confirmation” of the σ were not dispersive analyses nor made any

analysis in terms of ChPT, but they were re-analyses of ππ S-wave scattering within relatively

simple phenomenological models [16, 18, 66, 67, 68, 69] together with newer analyses of pp̄→
3π data [70, 71] (which claimed to demonstrate that the σ and the f0(1300) were two different

poles). Unluckily, as nicely remarked in that “note on scalar mesons”, there was a “large spread

in the resonance parameters obtained by these groups” which was “due less to differences in the

data used than to differences in the models employed”. Hence, the σ became the f0(400− 1200).

Unfortunately, this large 800 MeV uncertainty in theσmass remained in the RPP until as recently

as 2010, despite the strong evidence for a light σ which piled up during almost two decades.

In order to illustrate this spread of values, and the confusing situation that prevailed until

2010 according to the RPP, let us recall that the 1996 RPP provided again the so-called “T-
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matrix” pole (Unfortunately, it also provided, and still does, a Breit-Wigner pole, which as was

commented before might be process dependent and confusing for its interpretation). Thus Fig.4

shows the compilation of σ poles in the complex-energy plane in the 1996 RPP edition (Black

squares) [1] together with the additional poles included in the next editions until 2010 [72].

Note that with few exceptions, the poles in the 1996 edition had no error estimate. One of the

most striking features of this plot is the large light gray area that corresponds to the uncertainty

assigned to the σ pole in the RPP from 1996 until 2010. However, this large uncertainty band

was driven by a few points which, since the 1996 edition, were scattered very far from the rest.

As emphasized before, a very significant part of the apparent disagreement between different

poles in Fig.2 is not coming from experimental uncertainties when extracting the data, but from

the use of models in the interpretation of those data together with unreliable extrapolations to the

complex plane. Actually, different analyses of the same experiment could provide dramatically

different poles, depending on the parameterization or model used to describe the data and its later

interpretation in terms of poles and resonances. Maybe the most radical example are the three

poles from the Crystal Barrel collaboration, lying at (1100− i300) MeV [70], (400− i500) MeV

and (1100− i137) MeV [71], corresponding to the highest masses and widths in that plot. These

poles were compiled together in the RPP although they even lie in different Riemann sheets.

Moreover we will see in Sect.2 that all three lie outside the region of analyticity of the partial

wave expansion (Lehmann-Martin ellipse [73]).

Therefore it should be now clear that in order to extract the parameters of the σ pole, which

lies so deep in the complex plane and has no evident fast phase-shift motion, it is not enough to

have a good description of the data. As a matter of fact, many functional forms could fit very

well the data in a given region, but then differ widely from each other when extrapolated outside

the fitting region. For instance, if all data were consistent (which they are not) one can always

find a good data description using polynomials, or splines, which have no poles at all. Hence, to

look for the σ pole, the correct analytic extension to the complex plane, or at least a controlled

approximation to it, is needed. Unfortunately that has not always been the case in many analyses,

and thus the poles obtained from poor analytic extensions of an otherwise nice experimental

analysis are at risk of being artifacts or just plain wrong determinations. This, together with the

large uncertainty attached to the σ in the RPP, is what made many people outside the community

to think that no progress was made in the light scalar sector for many decades.

However, progress was being made and the other remarkable feature of Fig.2 is that by 2010

most determinations agreed on a light sigma with a mass between 400 and 550 MeV and a half

width between 200 and 300 MeV. As we will see next, most of these and other “light sigma”

poles were obtained much before 2010 within many different approaches. In all these, unitarity

played a very important role.

1.1.8. Poles from Unitarity and Chiral Perturbation Theory

For instance, in the early 90’s a broad σ meson was again found when describing ππ scat-

tering within a relativistic treatment of coupled channels in a Lippmann-Schwinger formalism

applied to a separable potential [74]. Only two-body states were considered, and two-body uni-

tarity was implemented. A σσ channel was introduced to mimic the 4π contribution, but it was

shown to be relevant only above 1400 MeV [75, 76]. In another example [77], a broad σ was

included in a simple model, which was nevertheless unitary and crossing symmetric, containing

the lowest-order chiral (contact) term and explicit resonances at tree level, in order to describe

ππ scattering. Note that in this work [77] some ad-hoc deformation of the usual Breit-Wigner

shape for the σ was carefully implemented.
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In the UChPT front beyond the tree level, by 1996 the poles of the ρ and the σ were found

simultaneously using the elastic IAM described above [78]. The relevance of this result is that

both poles were generated without a priori assumptions about their existence or nature. They

result from a data fit of a fully renormalized and unitarized effective field theory expression,

which depends only on the four next-to-leading-order (NLO) ChPT low energy constants but

contains no other spurious parameter nor explicit resonances in the Lagrangian. Both poles

come from an analytic extension to the complex plane of an amplitude obtained from a dispersion

relation for the inverse amplitude that has an exact elastic unitarity cut and approximated left and

inelastic cuts. In addition, this elastic formalism could be extended to SU(3) ChPT, by including

the strange quark, and applied to Kπ scattering [65], generating the K∗(892) vector resonance

pole [78] with the same chiral parameters used for the σ and the ρ description. (The κ can also

be generated this way but went unnoticed at the time).

Simultaneously, it was shown [79] that using just the leading order (LO) ChPT within a

coupled channel Lippmann-Schwinger like resummation with a natural cutoff, it was possible

to generate not only the σ but all scalar resonances below 1 GeV that are needed to identify

a complete SU(3) nonet. As suggested before, these are the isoscalar σ, the f0(980), the three

isovector a0(980) and the four isospin 1/2 strange κ resonances. This time they were generated

as a consequence of chiral symmetry, unitarity and analyticity, without any a priori assumption

about their existence or their classification into one multiplet. This formalism has become known

as the “Chiral Unitary Approach” and it was soon shown to be closely related to the IAM and

UChPT [80]. Indeed, when extended to higher orders it could also generate the poles associated

to the vectors ρ(770) and K∗(892) [81] (as well as the octet component of the φ(1020), see [82]).

Similar results were also obtained for the scalars within the closely related formalism of Bethe-

Salpeter equations combined with ChPT [83].

Nevertheless, as we will see in Sec.3, for the vectors, which fit well into the ordinary qq̄ quark

model description, it is absolutely necessary to include the NLO ChPT low energy constants,

since a natural size cutoff was not enough. Hence, the fact that the σ can be generated just

from the LO ChPT contribution, which is universal and given just by the spontaneous symmetry

breaking scale, together with a cutoff of a natural hadronic size, is a strong suggestion of its non-

ordinary nature. This result also explains why the σ does not contribute to the LECs, since the

dominant dynamics that produce it seem to depend more on physics at the hadronic scale than

on the underlying quark dynamics that dominate the LECs. Actually, by the explicit introduction

of resonances in a chiral Lagrangian combined with a dispersive approach it was soon shown

[84] that this picture is consistent with the coexistence of the light scalar nonet described in the

previous paragraph with another scalar nonet above 1 GeV. The former would be “dynamically”

generated, meaning it is generated mostly by the unitarization of the purely mesonic dynamics

and not by “preexisting” resonances that contribute to the ChPT LECs in the Lagrangian (like

vectors or scalar mesons above 1 GeV). These “preexisting” states are also called genuine, and

we will see later how a definition can be provided within QCD within the 1/Nc expansion.

Both UChPT or the chiral unitary approach, as they start from ChPT, are sometimes referred

as “non-linear chiral realizations”, where light scalar resonances are not included explicitly. But

in the late nineties, further support for the existence of a broad and light sigma around 500 MeV,

forming a nonet with the f0(980), a0(980) and κ, was also obtained from models where the scalar

resonances are included explicitly either as poles in the amplitudes [85] or in the Lagrangian in

a linear representation of a chiral multiplet [86, 87, 88, 89]. Nevertheless, the confusion lingered

on, since there were some analyses that produced a narrow sigma around 700 [90], although the

phase-shifts would differ substantially from other analyses like those in Fig.2.
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1.1.9. The new millennium: Experimental confirmation from heavy meson decays and general

agreement on an f0(600)

Further experimental evidence for a light σ came at the turn of the century from decays of

heavier particles into final states with at least two pions in the scalar-isoscalar channel. Given the

fact that systematic uncertainties in these experiments were radically different from those found

in ππ scattering, these heavy particle decays provided a very strong support for the existence of

a light σ between 450 and 550 MeV. Actually, when the results from [91, 92] were included in

the RPP 2002 edition, the name of the σ(400 − 1200) was changed to f0(600).

The decays that contributed to this change were τ→ π−π0π0ντ [91], D→ 3π [92] (these two

do not give T-matrix poles and are thus not included in Fig.2), J/ψ→ ωπ+π− [93], D→ π−π+π+

[94] or ψ(2S )→ π+π−J/ψ [95]. Even though part of these results were subject to some criticism

over the parametrizations used to describe the σ pole, which is so deep in the complex plane, it

was really clear that a significant resonant contribution was needed in the σ channel. There is

actually something like a “peak” seen in many of these experiments and that definitely made a

much more convincing case for the σ meson. As explained for instance in [96], a peak or bump

is seen in these decay experiments and not in meson-meson scattering partly because the latter

is distorted by an “Adler zero” [97] below threshold, due to chiral symmetry. Such a peak can

be seen in panel (c) of Fig.5, which shows the σ contribution needed to explain the ππ invariant

mass distribution of events in [93]. Note its asymmetric shape compared to that of the f2(1275)

resonance in panel (d) in the same figure.

In general these decay analyses tend to yield a pole mass between 500 and 550 MeV, which is

somewhat higher than the results of dispersive approaches that we will discuss below. This might

be due to the fact that these decays are usually analyzed with simple models and not dispersion

theory. These approaches are less rigorous and sometimes even inconsistent with some funda-

mental requirements of unitarity, analyticity, etc. as it may happen with certain isobar models

with superimposed Breit-Wigner terms, which violate unitarity, or with K matrices, which should

also incorporate information on meson-meson scattering in one way or another. Moreover, these

experiments usually refer to the “Breit-Wigner” shape, which as we have seen might even be

process dependent, and may explain in part this 50 to 100 MeV mass shift from the dispersive

determinations. Anyway, this information from decays improved considerably the attitude to-

wards the σ and closed the case in favor of the existence of a light and broad f0(600) meson.

But for precise pole determinations and resonance parameters, these analyses are still somewhat

model-dependent. Rigorous, precise and model independent pole determinations appeared some

years later and triggered the major revision that has motivated this report.

In addition, by the end of the nineties and throughout the first decade of the new millen-

nium, virtually all approaches that fitted either heavy meson decays and/or ππ scattering phases

containing at the very least some minimal implementation of chiral symmetry, unitarity and ana-

lyticity obtained a pole around 430 to 550 MeV corresponding to a broad resonance whose width

lied between 400 to 600 MeV (for references on these years see [74, 75, 76, 96, 98, 99, 100, 101,

102, 103, 104]). This can be checked in Fig.4.

1.1.10. The QCD connection via the Nc behavior

Around that time there was a relevant development concerning the nature and spectroscopic

classification of the σ meson and its scalar partners. In particular, when using the IAM only the

NLO ChPT parameters were needed to generate all light scalars and vectors. Recall that those

parameters encode the underlying QCD dynamics but their precise values are not calculable from

perturbation QCD. Nevertheless, by means of the 1/Nc expansion, their dependence on the QCD
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Figure 5: Figure taken from [93]. Panels (a), (b) show the π+π− and ωπ invariant mass projections of data from the BES

analysis of J/Ψ→ ωπ+π−. Panels (c) and (d) show the JPC = 0++ and 2++ projections, respectively. The shaded area in

(c) corresponds to the σ contribution. The contribution of the f0(980) can be seen as a small peak on top of the shaded

area right below 1 GeV. Compare the height of the peak and the asymmetric shape of the σ in (c) to the height and shape

of the f2(1275) resonance in (d). Reprinted from Phys. Lett. B 598, 149, 2004, M. Ablikim et al. [BES Collaboration],

“The sigma pole in J/ψ→ ωπ+π−,”. Copyright 2004, with permission from Elsevier.
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number of colors Nc [55] had been previously calculated in a model independent way. The 1/Nc

expansion also predicted the scaling of the mass and width of ordinary qq̄ mesons [105, 106].

Thus, by re-scaling the ChPT low energy parameters with Nc it was possible to calculate the Nc

behavior of the generated resonances in the vicinity of Nc = 3. Actually, it was shown [107] that

the ρ(770) followed nicely the expected behavior of ordinary mesons but the σ (and its scalar

partners) did not. Since the IAM does not make any a priori assumption about the existence or

nature of resonances, this result was a very strong piece of evidence against the ordinary nature

of the σ meson and provided a relatively direct link to QCD.

In addition, these results were consistent with a previous publication [108], in which ππ

scattering was studied within a model which included “all (large Nc leading) resonances in the

range of interest” . This work suggested that the σ should be included too, although presumably

it was “not of the simple qq type”, and hence its exchange “should be of subleading order in the

large Nc limit”.

1.1.11. Precision in Theory and experiment

Therefore, by the mid 2000’s the collective experimental and theoretical effort had led to a

relatively well accepted picture of a light sigma around 450 to 550 MeV, which most likely was

part of a light nonet of non-ordinary mesons. However, this still had to make it to the particle and

nuclear physics community at large. In order to settle the issue of the σ existence and improve

the precision on its parameters, a model independent approach is needed. For this task, two parts

are necessary: first, a consistent set of data to be used as input, and second, a rigorous analytic

extension to the complex plane, to avoid artifacts, in which the pole is derived as a consequence

of data and not included a priori in the amplitude with a specific functional form. Both criteria

are met within the dispersion relation formalism for ππ scattering.

In particular, the dispersive formalism is based on the first principles of causality and cross-

ing, which imply strong analytic constraints on the amplitudes. These provide the correct analytic

extension to the complex plane. The dispersive integrals can be used to, on the one hand, discard

data sets which are inconsistent with basic requirements as causality and crossing —together

with isospin and chiral symmetries as well as unitarity—, but, on the other hand, they can also

be used to obtain data fits or solutions that are constrained by these requirements. Dispersion

relations are simpler and much more powerful for ππ → ππ scattering than for other processes

like heavy meson decays, due to the fact that one is dealing with two-body states and also be-

cause all particles involved have the same mass in the isospin limit. As we have seen, dispersive

approaches had already been used in the 70’s, but one of the main problems was the poor quality

of data, particularly at very low energies. This was partially alleviated by new Kl4 experiments

in 2001 by the BNL-E865 Collaboration [109] or by the use of Chiral Perturbation Theory to fix

the low energy part of the amplitude [65, 78, 84, 99, 102, 104, 110, 111] (parameterized by a

set of “subtraction constants” in the integral formalism, as we will see in the next Section). All

these works provided very consistent σ poles around 500 MeV and implemented unitarity, chiral

symmetry as well as analyticity, although crossing symmetry was an approximation, which was

a common criticism. As we will see in the next sections, this crossing symmetry is responsible

for an analytic structure (called the “left cut”) which is much closer to the σ meson pole than to

any other resonance. From the left cut approximations implemented in the previous references it

seemed that its contribution was small and it would not affect much the existence or position of

the σ pole. However, for a precise and rigorous determination of the pole parameters, an accurate

determination of the left cut contribution was needed.
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As commented above, the formalism to implement crossing symmetry into partial wave dis-

persion relations had already been derived in 1971 by S.M. Roy [46]. These equations were

revisited in the late 90’s and early 2000’s. In particular solutions to these equations below 800

MeV were worked out for the S and P-waves in [112] (the data above that energy and on the

other waves are input) and later refined with ChPT constraints at low energy [99]. These solu-

tions were then used in 2006 [113] to extend the partial waves to the complex plane, As a result

it was shown that the σ pole could be found with remarkable precision at M = 441+16
−8
− i272+9

−12.5

MeV, having good control over the left cut contribution. Moreover, it was demonstrated that

such a σ pole lied within the region of convergence of the partial wave expansion (the so-called

Lehman-Martin ellipse [73]). The latter is an important result, since, as commented above, some

of the poles calculated with other methods and shown in Fig.4 do not fall within this region.

On the experimental front, the NA48/2 Collaboration at CERN [116] performed a new mea-

surement of Kl4 decays which was much more accurate than the previous ones. Already with

the preliminary results it was possible to show [114, 115] that with very simple parametrizations

respecting unitarity and analyticity in the elastic region, a light σ pole was necessary and fairly

consistent with the one just discussed from ChPT+Roy equations. Actually, with the release of

the final NA48/2 data, which we show in Fig.6, it was even possible [117] to make a data analysis

by fitting, instead of solving, once-subtracted Roy equations without ChPT input, called GKPY

equations. The resulting σ pole [118] at 457+14
−13
− i279+11

−7
MeV was, once again, very consis-

tent with previous determinations. Further confirmation came from the additional Roy-equation

analysis of [119] extended to the two-kaon threshold, but also from other approaches using the

so-called analytic K-matrix formalism [120, 121].

Figure 6: NA48/2 results from Ke4 decays. On a first approximation they measure the difference δ ≃ δ0
0
− δ1

1
between ππ

scattering phase shifts, although the precise relation will be discussed in Sect.2.2 and it requires some isospin corrections

shown in the plot. Figure taken from the NA48/2 Collaboration reference [116].

Moreover a similar pole was also found in [122] within a model of a coupled channel uni-

tarized chiral Lagrangian, this time with an explicit σσ channel to take into account the 4π

contribution that should be present in ππ scattering, which is neglected below KK̄ threshold in

almost all other approaches, including those based on Roy Eqs., since it is very small and has

not been measured. As it happened in [75, 76], it was found that such a 4π contribution does
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Figure 7: Left panel: Compilation of f0(500) or σ resonance poles in the 2012 RPP edition. The light gray area stands

for the uncertainty assigned to the σ poles from 1996 until 2010. The darker gray rectangle is the new uncertainty

estimated in the summary tables, Eq.(1). Right panel: Detail of the new uncertainty band. We only show the four “most

advanced dispersive analyses” according to the 2012 RPP and as a darker area the “more radical” and “restricted range of

f0(500) parameters”, Eq.(2), if one averages those four analyses. The dashed rectangle corresponds to the “conservative

dispersive estimate” advocated here:
√

sσ = 449+22
−16
− i(275±12) MeV which, as explained in the text, takes into account

that the differences between these four dispersive approaches are of systematic nature.

not alter significantly the position of the σ pole, which was found at (456 ± 6 − i241 ± 7) MeV.

Actually, it had also been shown before [123] that the amplitude ππ → 4π is very small below

1.4 GeV and can be modelled by contributions from the f0(1370) and the f0(1500) resonances.

Of course, that channel is of relevance at higher energies. The work [122] also excluded the

glueball interpretation of the f0(500) in favor of the f0(1710) and an important contribution to

the f0(1500).

1.2. Present Status of the f0(500) parameters: A major RPP revision

As a consequence of these rigorous and precise analyses together with results from heavy

meson decays and all previous analyses which consistently found a light σ over the previous

decades that we have described above, the Particle Data Group decided to make a major revision

of the f0(600) parameters in the RPP 2012 edition [2]. In particular, the large 400-1200 MeV

uncertainty in the mass was reduced by almost a factor of 5 to to 400-550 MeV, whereas the very

large uncertainty of 600-1000 MeV for the width was both shifted downwards and reduced to

become 400-700 MeV. Hence, the RPP T-matrix pole was estimated to be

√
sσ = (400 − 550) − i(200 − 350) MeV (RPP2012 estimate). (1)

In the left panel of Fig.7 we show this dramatic improvement: the light gray area corresponds

to the uncertainty in the RPP since 1996 until 2010, whereas the smaller and darker rectangle

represents the new uncertainty listed in the summary tables of the RPP. For consistency with

the new uncertainties, even the name of the resonance has changed from f0(600) to f0(500).

By comparing with Fig.4 it can be noticed that some of the poles previously listed in the RPP

have been removed, since now only analyses consistent with the NA48/2 final data are taken into

account.

However, the darker region can still be considered rather conservative. As explained above,

many of the poles shown in that figure correspond to simple models without the full analytic
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properties, which did not aim to a precise determination of the σ parameters, some of them cor-

respond to fits with simple functional forms whose analytic continuation is therefore not reliable

and some others are using data sets which have been shown to be inconsistent with dispersion

relations. Only those works which aimed at an accurate determination of the f0(500) pole based

on data descriptions consistent with dispersive constraints, and whose poles are obtained from

sound analytic extrapolations to the complex planes, should be taken into account. Of course,

this was well known to the RPP authors and this is why in the 2012 RPP “Note on scalar mesons

below 2 GeV”, they suggested that “One might also take the more radical point of view and just

average the most advanced dispersive analyses, [99, 113, 118, 119]...”, which we show in the

right panel of Fig.7, “which provide a determination with minimal bias”. By averaging the values

obtained in those four references a more restricted range of parameters is estimated at the 2012

RPP: √
sσ = (446 ± 6) − i(276 ± 5) MeV (RPP2012 restricted range) (2)

In the left panel of Fig.7, the area covered by this “restricted” uncertainty would be almost

imperceptible within the darker rectangle, and hence we show in the right panel an expanded

view of the darker rectangle and just the “most advanced dispersive analyses” according to the

2012 RPP. Thus the “restricted range of parameters” corresponds to the smallest and even darker

rectangle in the middle of the plot.

Now, as we will see in Sect.2 these uncertainties may now be considered too small , since the

differences between those four determinations are more of a systematic than statistical nature.

Thus, weighting them as if the uncertainties and differences were statistical to obtain an even

smaller uncertainty is somewhat optimistic. Moreover, an uncertainty of less than 3% is hard to

achieve due to isospin breaking effects, which are not incorporated into these formalisms (except

maybe in the experimental uncertainties), and to the absence of 4π channels, although we have

seen above that this effect is very small. A suggestion would be to take as a conservative disper-

sive estimate the band that covers [113] and [118], since the pole in [99] was not really calculated

with the analytic extension of Roy equations but from the phenomenological representation and

can be considered superseded by the results of [113]. In addition the result of [119] lies within

this estimate (it uses results from the [99, 113] group as input). That is:
√

sσ = 449+22
−16 − i(275 ± 12) MeV (Conservative dispersive estimate) (3)

In Fig.7 this corresponds to the rectangle enclosed within the dashed line.

Thus, as we have just seen, even by the conservative and cautious standards of the RPP the σ

was already well established by 1996 settling the issue about its existence. In 2012, also within

the conservative approach of the RPP, the σ parameters are known well enough to settle the issue

of its mass and with: It is definitely light ≃ 500 MeV and almost as wide as massive. But there

is still an ongoing debate over other properties that we address next.

1.3. Present Status of the σ spectroscopic classification and nature.

Still under some discussion are the classification of the σ into multiplets and its composition

in terms of quarks and gluons. The situation about these two features has also been clarified

considerably over the last years and some firm statements can already be made.

1.3.1. The nonet of light scalar mesons

The problem with spectroscopy is to which U(3) multiplet the sigma should be assigned.

There is a very strong evidence for the sigma resonance to belong to a nonet with the f0(980),

a0(980) and K∗
0
(800) [52, 59, 60, 75, 76, 79, 80, 84, 87, 102, 124].
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At present, the most controversial among these resonances is the K∗
0
(800) or κ meson, which

seems to be following a recognition process in the RPP very similar to that of the σ, although

somewhat delayed. At present the K∗
0
(800) is not yet in the RPP summary tables, but it is present

in the particle listings. However, according to the RPP, as of today the K∗
0
(800) still “Needs

confirmation”. Nevertheless, over the last years, the evidence for it has been accumulating and

is now compelling. Actually some recent developments are very similar to those described in

previous sections for the sigma and it seems likely that its situation in the RPP may change rela-

tively soon1. In particular: i) it was obtained within UChPT in its different variants [79, 81, 102]

and therefore without a priori assumption about its existence or nature; ii) it was shown that it

should be below 900 MeV [126]; iii) its pole was obtained within a very rigorous dispersive

approach [127] using Roy-Steiner equations, which are a modification of Roy equations taking

into account different masses. The result is Mκ = 658 ± 13 MeV and Γκ = 557 ± 12 MeV. A sim-

ilar pole has also been recently found in conformal parametrizations constrained with Forward

Dispersion Relations [128]. iv) As it happened with the sigma, there is also a strong support for

a κ from heavy meson decays. For example, recent results on J/Ψ → K0
S

K0
S
π+π− decays from

the BES2 Collaboration [129] require a K∗
0
(800) contribution whose S -matrix pole would have

Mκ = 764 ± 164+71
−54

MeV and Γκ = 612 ± 298+286
−170

MeV. Other experiments also seem to require

such a wide resonance, although they usually quote model dependent Breit-Wigner parameters

and then the mass appears around 800 MeV, which is why the κ is nowadays called K∗
0
(800) (see

the RPP [2] for a compilation). Here it is important to remark that the work in [126] has been

often misrepresented [103, 124] as refuting the existence of the κ, when what it actually does is

just to rule out a κ at 900 MeV, but, as emphasized in the very abstract, not a lighter one below

825 MeV. Therefore, the existence of a light κ is not disputed by the authors in that work 2.

The other members of the possible light scalar multiplet, the a0(980) and f0(980) are not

questioned.

Note also that the classification of states into multiplets is affected by mixing. This can be of

two kinds: on the one hand, the assignment of the scalar-isoscalar positions in the nonet center is

affected by octet-singlet mixing [130] and, on the other hand, all members of the multiplet could

be affected from mixing with members of more massive multiplets [87, 131, 132, 133, 134].

These issues will be discussed in detail in Sect. 4

1.3.2. What the f0(500) is not.

More controversial is the nature of this resonance, i.e., its composition in terms of quarks

and gluons. Of course, one should interpret with care what is meant by “composition”, since

the intuitive Fock space decomposition is not always well defined. Unfortunately this makes

statements about the σ nature somewhat model-dependent. Nevertheless, authors usually refer

to some kind of “constituent”, “dressed” or “valence” quarks and gluons much the same as in

quark models one says that uud is the composition of the proton. With this caveat in mind, what

seems to be quite well established is that the σ is not an ordinary meson in the sense that it

cannot be interpreted as predominantly made of a quark and an antiquark. This is also most

likely true of its multiplet partners.

This statement is not only due to the long and well recognized fact that it cannot be described

with a usual Breit-Wigner formalism, a fact that was revisited also in relatively recent years

1 It is planned to have a revision of the K∗
0
(800) or κ and possibly move it to the summary tables in one of the next

RPP editions [125].
2M. Pennington, private communication.
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[135]. We have already commented that it was long ago suggested by Jaffe [52] that the ordinary

identification of mesons as qq̄ states did not match well the light scalars due to their inverted

hierarchy as well as their large widths. But there are other pieces of evidence.

For instance, the large Nc limit is a regime in which the composition of a meson can be

well defined within QCD, which also dictates the leading behavior of masses, widths and other

observables in the 1/Nc expansion. This is why a strong support for the non-ordinary nature of the

σ meson came from the 1/Nc behavior of poles generated from unitarized ChPT [102, 107, 136].

In particular, the ρ pole was shown to behave as expected from QCD for an ordinary qq̄ meson,

whereas theσ pole dependence was a rather different one. Let us once again emphasize that these

poles are generated without introducing them explicitly nor assuming they have any specific

nature or belong to a particular multiplet. Actually, by 2007 it was even considered by Jaffe

that the different leading 1/Nc behaviors of light scalars found in [107] were “... the only

reliable identifications of observed effects that may be examples of a different class of hadrons”.

Subsequently, he considered these different behaviors to illustrate his sound definition of ordinary

and extraordinary hadrons in terms of their Nc → ∞ limit [137]. It is also important to remark

the difference [138] between the leading behavior of the 1/Nc expansion around Nc = 3, which

gives us information on the physical effects of the σ that we observe, and the large Nc limit, of

formal interest, where some results are also available for the f0(500) [139, 140, 141]. Of course,

the most relevant results for the physical resonance are obtained from the former. The 1/Nc non-

ordinary behavior was also observed in ππ scattering by explicit introduction of resonant states

[142]. Moreover, it has been recently shown that the same conclusion can be obtained in a model

independent way [143], without using any particular model, nor UChPT, but just from data, the

pole positions and the general behavior of qq̄ states in QCD. We will dedicate Sects.4.1, 4.2 and

4.3 to explain in detail this 1/Nc behavior for the σ.

An additional piece of evidence for a predominantly non qq̄ nature comes from Regge the-

ory. It is well known that ordinary qq̄ mesons can be classified into straight Regge trajectories

which relate linearly their spin J and mass squared, with an almost universal slope ∼ 1 GeV −2.

However, it was long ago pointed out that the “enigmatic σ meson” did not fit into the Regge

systematics of qq̄ states and was supposedly “alien to this classification” [144]. Some authors

avoided this issue by considering its very large pre-RPP2012 width as an uncertainty, and with

such a large width it can almost fit anywhere. But Regge trajectories are complex and the width

of a resonance is not an uncertainty, but should be taken properly into account. Actually, it has

been possible to calculate instead of fitting, the complex Regge trajectories of resonances poles

that appear in the elastic scattering of two mesons [145]. When calculated for widely accepted

qq̄ states, the resulting trajectories are almost real, linear and have the universal slope, whereas

the σ trajectory is not almost real, but even its real part is non-linear and with a slope much

smaller than ∼ 1GeV −2. This strongly supports its predominantly non-qq̄ nature and even hints

at a hadronic energy scale for the dynamics that generate the resonance. This will be detailed in

Sect.4.5

Note that we have repeatedly emphasized that the dominant behavior is not that of a qq̄ state.

But that does not exclude the possibility that a qq̄ state could appear in its composition as a

subdominant component. Actually, there is even some evidence that this might be the case and

the σ might contain some small admixture of qq̄ states, which usually are much heavier than

the physical f0(500), as suggested by linear sigma models [87, 124], unitarized quark model

calculations [146], UChPT and the leading 1/Nc behavior [136, 142], instanton induced mixings

in tetraquark models [147] or semi-local duality arguments [148].

Note that so far it has not been possible to quantify in a reliable and model independent way
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how dominant is one component over the others. This is still a matter of debate. Actually, in the

next subsection we will see that it is not completely settled what the non-ordinary component

may be. In Sec.4 we will review the most significant models in detail as well as how to quantify

the deviation of the σ from the ordinary Nc behavior.

In conclusion, although there might be some subdominant qq̄ component in it, it seems well

established that the dominant σ component is not a qq̄ state. We thus know what it is not. But the

debate is now focused on what it is.

1.3.3. What the f0(500) might be.

First of all, the glueball interpretation is still advocated by two groups, one in Marseille

[149, 121] and another one in Bern-Munich [150, 151], who collaborated in γγ decays of the

sigma [120]. However, this interpretation is very hard to support since the very large σ width

cannot be accommodated naturally within the expected dependence on the QCD number of colors

Nc, as its width to two mesons should be suppressed by 1/N2
c , i.e., one more power of Nc than qq̄

mesons, which are already narrower than the σ. It has been recently shown [143], within a model

independent formalism, that very unnatural cancellations, of several orders of magnitude, should

occur between different orders in the 1/Nc expansion for the ππ elastic phase to be explained

with glueball-like Nc behavior for the f0(500) [143]. The glueball Nc behavior is also at odds

with the Nc behavior found in UChPT, particularly the width. Concerning the mass, lattice

calculations (either in pure Yang-Mills or full QCD calculations) find the lightest scalar glueball

around 1.5-1.8 GeV [152], very far from the 500 MeV region where the σ is found. In addition,

in many scalar meson models the glueball can be easily identified as one of the main components

of the f0(1500) or f0(1710) [122, 153, 154, 155, 156, 157]. Moreover, in the σ as a glueball

scenarios one has to get rid of the K∗
0
(800) or κ meson [151] (and of the f0(1370) as well), which

is again in conflict with model independent and rigorous dispersive approaches [127] or UChPT

[79, 81, 84, 102]. The reason is that the κ is very similar to the σ but with strangeness. However,

a glueball cannot have strangeness and it would be extremely unnatural not to fit the σ and κ

in the same nonet, or to have one mechanism explaining the formation of the σ and a different

one for the κ. Once again, of course, the above arguments do not exclude the existence of some

glueball component in the f0(500) but only as long as it is subdominant.

The most extended interpretation is in terms of so-called tetraquarks in the sense that there

are two valence quarks and two antiquarks almost bounded to form a color neutral resonance. As

we have seen this was first advocated by Jaffe [52]) who showed that such an arrangement can

give rise to a nonet of light scalar-isoscalar mesons. Many authors have followed this suggestion

with different variants, particularly including the description of meson-meson scattering [87,

132] or decays [158]. There are also different mechanisms explaining the quark-level dynamics

responsible for the formation of scalar mesons, like the original “bag model” plus one gluon

exchange [52], diquark-antidiquark configurations [159], even including instanton effects [147],

which can be used to explain the mixing between light tetraquark states and some q̄q states [147].

Recently, a drawback has been found in the pure tetraquark picture (or pure mixture of tetraquark

and quark-antiquark) since Weinberg has shown that in the Nc → limit the standard tetraquark is

as narrow as qq̄ ordinary mesons. The very large σ width seems to be related to some other kind

of composition. This means that even in these scenarios some interplay with two meson-states,

whose diagrams are subdominant at large Nc, is needed.

Nevertheless that is not quite a big problem, because in the literature there are several mean-

ings of the word “tetraquark”. Namely, in some contexts the word tetraquark only refers to
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the configuration in which there are no color neutral substructures, whereas the term “meson-

molecule” or “composite-mesons” is used to refer to the case when each quark-antiquark pair

forms a color neutral meson and then the resulting two mesons are also quasi-bound. From the

point of view of quantum numbers or valence quarks, these configurations are indistinguishable,

and some general features, like the inverted hierarchy are common to both pictures. The use of

these words is very informal and that is why I will frequently use them within quotation marks.

Thus, the “molecule” name is better suited when the resonance is close to a two-meson

scattering threshold, as it happens with the f0(980) and the KK̄ threshold [58], but is a somewhat

less natural name for the σ. For this reason such a component is sometimes called the “pion

cloud” or just “final state meson-meson interactions”. Once again, these configurations can

mix. Actually it has even been proposed that the σ may have a layer structure with some inner

tetraquark structure (with some small admixture of qq̄ in a P-wave) which rearranges in the

outer layers into a pion-pion state [124]. Some tetraquark models include this pion-pion state

phenomenologically, for instance with an additional parameter that describes the” tunneling”

between a diquark structure and the ππ state [159] and is responsible for the widths of scalars.

Predictions about couplings and decays can be made but these are often very model dependent

and the uncertainties are very hard to estimate. Therefore it seems more adequate not to interpret

the sigma as a pure elementary or composite object. The very large width and the correct mass

must be reproduced taking also into account the hadronic level interaction of the two pions in

which the sigma decays. Even Jaffe recently argued that “there is no clear distinction between a

meson-meson molecule and a q̄q̄qq state” [137].

In addition, apart from the mixed “tetraquark/molecule/pion cloud” dominant component,

there is also evidence about some subdominant qq̄ component. However, it also seems that this

one by itself may be more massive than the physical f0(500). For instance this is the case of the

unitarized quark models in which a quark-antiquark state above 1 GeV can be deformed into the

physical σ meson around 500 MeV by making a ππ − qq̄ interaction sufficiently strong [146].

There has also been a considerable amount of work studying the mixing of light tetraquark-like

and heavier qq̄ states within constituent quark-models [160] or within the framework of chiral

effective Lagrangians [87, 131, 134], leading to very successful phenomenology. Studies within

the Schwinger-Dyson/Bethe Salpeter approach also seem to suggest a tetraquark/molecule inter-

pretation, with the ligtest qq̄ configuration much heavier than 500 MeV. This will be discussed

in detail in Sec.4.6.5,

Moreover, as commented before, within the framework of UChPT it was found that by in-

creasing Nc not far from Nc = 3 the σ width did not decrease as for an ordinary meson, but

increased instead. But this is not the whole story, since if one keeps increasing Nc, it is also

possible for the width to decrease again and to behave as for ordinary qq̄ mesons, although at

a mass around or above 1 GeV [136]. As we will see in Sect.4.4 this behavior seems to be fa-

vored by semi-local duality arguments [148] and could also be indicative of a sub-dominant qq̄

component, although once again at a much higher mass than the physical f0(500).

And last, but definitely not least, there are lattice QCD calculations of scalar mesons. The

possibility for tetraquarks to bound into scalar mesons was shown in [161], although for large

quark masses. There are several works that find a σ meson [162, 163, 164, 165] with a large

tetraquark/molecular component. Of course, these are still calculations at high pion masses so

that the σ cannot decay and have a width, but the results are very encouraging. Moreover, some

lattice works also find a κ light meson with a predominant tetraquark/molecular interpretation

[164, 166] .

In conclusion, the nature of the f0(500) is the less robust part of our present knowledge. With
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Figure 8: π1(p1)π2(p2)→ π3(p3)π4(p4) scattering.

all the caveats about the poor definition of Fock space within a relativistic context for light quarks,

and with a rather informal use of language, it can be summarized as follows: in the most widely

accepted scenario the f0(500) is predominantly made of some qqq̄q̄ arrangement. This could be

in the form of conventional tetraquarks or as a ππ-molecule/cloud state or, more likely, a mixture

of them. In addition, there is some evidence for a subdominant, but non-negligible, admixture of

a qq̄ state whose mass would be above 1 GeV if its interaction with the tetraquark/molecule/cloud

component was turned off. This subdominant qq̄ component is most likely related to the existence

of another nonet of scalars above 1 GeV, which might be predominantly of a qq̄ nature. Sect.4

will include a detailed account on this whole issue.

Once the historical perspective and the present status of the σ meson have been provided,

a detailed explanation of the different topics and most significant results will be given, starting

from the recent precise dispersive determination of the σ parameters.

2. PRECISE f0(500) PARAMETERS FROM DISPERSION THEORY

As we have reiterated in the previous section, the most reliable extractions of theσ parameters—

those which have triggered the major revision of the σ mass and width in the RPP— have been

obtained with dispersive analyses of ππ → ππ amplitudes. After introducing the appropriate

notation in Sec.2.1, data on ππ scattering phase shifts, inelasticities and total cross sections will

reviewed in Sec.2.2. The theoretical tools will be introduced later on in Sec.2.3. In particular the

connection between poles and resonances and the two most relevant dispersive approaches will

be presented in detail. The application of these techniques to describe the data will be discussed

in Sec.2.4 and Sec.2.5 will be devoted to the extraction of the f0(500) pole parameters.

2.1. Notation

Excellent pedagogical introductions to the topics reviewed in this section, including Regge

theory, can be found in the books [167] and [39], the latter being dedicated solely to ππ scattering,

as well as the relatively recent review in [168]. Here just the very basics of different topics of

relevance for f0(500) pole determinations will be provided, since the detailed derivations can be

found in the original references.

For π1(p1)π2(p2)→ π3(p3)π4(p4) scattering, where πk = π
0, π± and pi are the four-momenta

of the particles in the process, as illustrated in Fig.8, we will define the usual Mandelstam vari-

ables as s = (p1 + p2)2, t = (p1 − p3)2 and u = (p1 − p4)2. Only two of these variables are
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independent, since s + t + u = 4M2
π, and frequently the u dependence will be omitted if not

needed, i.e. the scattering amplitude may be denoted as T (s, t, u) or T (s, t). Note also that the

isospin limit Mπ± = Mπ0 ≡ Mπ will be considered unless explicitly stated otherwise. Thus, in

practice, it is most convenient to work with amplitudes of definite isospin I in the s-channel:

T I=0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s), (4)

T I=I(s, t, u) = A(t, s, u) − A(u, t, s),

T I=2(s, t, u) = A(t, s, u) + A(u, t, s),

where A(s, t, u) = T (π+π− → π0π0). In addition, it is also very useful to work with partial waves

of definite angular momentum. Unfortunately, in the literature there are various normalizations

and notations when writing the amplitudes and the partial wave expansion, which we summarize

next:

T (I)(s, t) = 32π
∑

ℓ

(2ℓ + 1)Pℓ(cos θ)t
(I)

ℓ
(s), F(I)(s, t) = 4π2T (I)(s, t), (5)

t
(I)

ℓ
(s) =

√
s

2k
f̂

(I)

ℓ
(s) =

f̂
(I)

ℓ
(s)

σ(s)
, f̂

(I)

ℓ
(s) =

η
(I)

ℓ
(s)e2iδ

(I)

ℓ
(s) − 1

2i
,

where δ
(I)

ℓ
(s) and 0 ≤ η(I)

ℓ
(s) ≤ 1 are the phase shift and inelasticity of the I, ℓ partial wave, ℓ is

the angular momentum, k2 = s/4 − M2
π is the center of mass momentum and we have defined

for convenience σ(s) ≡ 2k/
√

s. Note that we have introduced an overall factor of 2 in the first

equation due to pions being identical in the isospin limit.

Let us now remark that partial waves will be extended to the complex energy squared plane

in search of resonance poles. The region of convergence of the partial wave series is known as

the Lehman-Martin ellipse in the t plane [73], which is derived from axiomatic field theory plus

the positivity condition Im t
(I)

ℓ
(s) ≥ 0, implied by unitarity. In the case of ππ scattering the ellipse

has foci at t = 0 and t = M2
π − s, and the right extremity is at t = r(s), where r(s) = 16s/(s−4M2

π)

for 4M2
π ≤ s ≤ 20M2

π and r(s) = 4s/(s − 16M2
π) for s ≥ 20M2

π [113]. For textbooks on this issue

see [39, 169].

In the elastic case, η = 1 and

f̂
(I)

ℓ
(s) = sin δ

(I)

ℓ
(s) eiδ

(I)

ℓ
(s), (6)

so that

Im f̂
(I)

ℓ
(s) = | f̂ (I)

ℓ
(s)|2, (7)

which is nothing but the elastic unitarity condition.

Note that I = 0, 1, 2 and since all pions are considered identical bosons in the isospin limit,

whenever I is even (odd) then ℓ is even (odd). Thus the isospin index for odd waves will be

omitted, i.e., δ
(1)

1
will be denoted by δ1. In addition, we may refer to partial waves either by their

I, ℓ quantum numbers or by the usual spectroscopic notation S0, S2, P, D0, D2, F, G0, G2, etc...

In particular, the scalar-isoscalar partial wave, where the f0(500) appears, is called the S0-wave.

In addition, since we are dealing with scattering of spin zero mesons, the angular momentum

ℓ = J, where J is the total angular momentum, and thus we will often write t
(I)

J
instead of t

(I)

ℓ
,

since both notations are frequent in the literature.

Later on we will be interested in threshold parameters defined from the following expansion

s1/2

2Mπk2ℓ+1
Re f̂

(I)

ℓ
(s) ≃ a

(I)

ℓ
+ b

(I)

ℓ
k2 + O(k4). (8)
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Note that a
(I)

ℓ
and b

(I)

ℓ
are the usual scattering lengths and slope parameters. Customarily these

are given in Mπ units.

2.2. The ππ scattering data

We separate the discussion of experimental information on ππ scattering in three energy

regions. Partial wave analyses providing experimental information on s and t dependence exist

up to 1.8 GeV. The general features in the whole energy range will be discussed first in Sec.2.2.1,

whereas the specific features of the elastic and inelastic regions will be discussed in Secs.2.2.2

and 2.2.3, respectively. Finally, in section 2.2.4 we discuss the experimental information on total

cross sections at higher energies and how it is described in terms of Regge theory, from which

the t behavior is inferred.

2.2.1. General features of ππ partial wave determinations.

The best and most widely used data on partial-wave ππ scattering phases and inelasticities

are obtained from two kind of processes, πN → ππN′ scattering and K → ππeν, also known as

the Ke4 decay.

For the S0-wave, the πN → ππN′ data comes from: i) the π+p → π+π−∆++ reaction (

and π+p → K+K+∆++ for the inelasticity) by Protopopescu et al. [31], which provides several

solutions; ii) the high statistics study of the π−p → π−π+n reaction at 17.2 GeV performed by

Grayer et al. [33], which provides 5 different solutions; and iii) the Krakow group reanalysis [36]

of the CERN-Krakow-Munich Collaboration on π−p ↑→ π−π+n using a polarized target [170].

The extraction of the ππ amplitude is a complicated procedure. For a detailed description we

refer the reader to the excellent book [39] and the review lectures in [216], besides the original

experimental references. In this section we will only provide a sketch of the method and its

caveats, together with a briefly commented list of relevant references.

The key observation is that the above reactions are dominated by the exchange of one pion,

which together with the pion in the initial state and the two in the final state form the ππ → ππ

subprocess. The main assumptions are that in this one-pion exchange mechanism the ππ scatter-

ing amplitude factorizes in the total amplitude and that partial waves can be extracted by mea-

suring angular distributions of the final di-pion state. However, there are several complications

in this picture.

The first complication is the existence of phase-shift ambiguities that affect differently the

elastic and inelastic regions, and yield different mathematically acceptable solutions for the S0

wave. These ambiguities will only be discussed very briefly in the following subsections because

they were solved a long time ago and dedicated books or reports [39, 216] already exist on this

issue. For our discussion, the relevant observation is that there is one widely accepted solution of

these ambiguities in the whole energy range of interest, which is the one already shown in Fig.2.

However, the second complication is that, even after sorting out these ambiguities, the re-

sulting solution is still plagued with further systematic uncertainties which for long prevented a

precise determination of the amplitude. These were due to:

• the fact that the exchanged pion is not on-shell and an on-shell extrapolation is needed.

• exchanges of more pions, known as absorption (or Reggeized π-exchange).

• other resonance exchanges with “natural” parity (i.e. the same as for the pion), like the

a1(1260), generically called A1 exchanges.
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• contributions from other resonances (which could also be Reggeized) with ‘unnatural”

parity, like the a2(1320), also called A2 exchanges.

These non-trivial contributions, which may spoil factorization, were implemented by means of

models. As a consequence, even within the same experiment and using the same solution of the

ambiguities, systematic uncertainties dominate the result, as it was already seen in Fig.2, and

make a purely statistical analysis meaningless. One of the aims of this report is to review the

recent dispersive techniques used to obtain precise results despite the existence of these large

systematic uncertainties.

Let us now comment on the particular features of each energy region.

2.2.2. Partial waves below KK̄ threshold

In this region phase-shift ambiguities appear when there are more helicity amplitudes than

observables available from the πN → ππN′ reaction. This happened in the first studies when

only a few observables were used, either due to low statistics in some component of the angular

distributions, the inability to separate the one-pion exchange from other contributions, or the

absence of polarization measurements.

For instance, before the advent of full amplitude analyses, only one angular distribution was

used, because all others were polluted by contributions other than one-pion exchange. But this

observable was sensitive to sin(δP − 2δS ) and only |δS − δP − π/4| could be determined. Even

though the S2 and P waves were relatively well known, this led to the so-called “up-down”

ambiguity in the S0 phase shift. Actually, there was an ambiguity on each side of the energy

where the above combination vanishes, which occurs near the ρ(770), so that for a time there

was a four-fold ambiguity up-up, up-down, down-up and down-down. The ambiguity below the

ρ(770) was easily resolved by refining the amplitude analyses with more angular distribution

observables or for instance with Kℓ4 data.

Once again, a detailed description of the different ambiguities on the S0 phase-shift arising

from different analysis methods and how they are resolved is well beyond the scope of this review.

Thus, we just recommend the pedagogical and extensive references [39] and [216] and provide

in the next paragraph a very brief account of some later discussions and references.

The “up” solution above the ρ(770) was actually behind some claims of a narrow ǫ resonance

around 750 MeV. Until the 90’s it was a general belief that the issue had been resolved in the 70’s

in favor of the “down” solution by the observation of a very rapid S-wave amplitude decrease

between 950 and 980 MeV [32, 171] 3, as well as the observation of a wide enhancement in the

π0π0 system around 800 MeV, hard to reconcile with the “up” solution [172]. In addition, For-

ward Dispersion Relations [173] and Roy equations [49] seemed to imply that only the “down”

solution was consistent with dispersion theory. However, the “up-down” controversy was briefly

resurrected and killed again in the 90’s [90] when a narrow σ was suggested around 750 MeV

in a reanalysis of the CERN-Krakow-Munich polarized data. The key point was the observation

that the a1 resonance exchange, ignored in most previous analyses, was important to extract ππ

scattering from πN → ππN′. The subsequent Krakow group reanalysis of [36] confirmed that the

a1 contribution was sizable and that such a solution with a narrow ǫ was indeed possible. Actu-

ally, it was found that each “up” and “down” solution could be either be “steep” or “flat” and that

the previous Roy equations analysis had only excluded the “steep-flat” ambiguity, but it was still

3which roughly corresponds to the evidence for the S ∗, now f0(980), being on top of a background so that the cross

section changes from unitarity saturation to almost vanishing within a small energy interval.
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Figure 9: Left panel: Precise pion form factor description. Right panel: Phase shift data sets from πN → ππN′ [31, 32,

35]. The curve [176] below KK̄ threshold is not fitted to those data, but predicted from the form factor shown in the left

panel. In contrast, above KK̄ threshold the dashed curve is a fit to scattering data. Left figure from [175], reprinted with

permission from J. F. De Troconiz and F. J. Yndurain, Phys. Rev. D 65, 093001 (2002). Copyright 2002 by the American

Physical Society. Right figure taken from [176].

possible to have either “up-flat” or “down-flat” solutions. The very same Krakow group found

later on [38] that only the “down-flat” solution was reasonably consistent with Roy equations.

Therefore, since this “up/down-flat/steep” issue is settled, Fig.2 only shows data sets consistent

with the “down-flat” solution, which from now on will be the only one considered here.

Even though the sigma appears in the S0-wave, P, D and F-waves are also relevant for dis-

persive analyses. In general, their structure is much simpler. The P-wave is dominated by the

ρ(770), as seen in right panel of Fig.2, and the D0-wave is dominated by the f2(1270). The I=2

waves, which are repulsive, were also extracted from πN → ππN′ but with two charged pions in

the final state [37]. The F wave is very tiny and little is known about it.

The P-wave deserves particular attention since it will be needed when dealing with Ke4 data.

This is the best known partial wave, although not from πN → ππN′, but from the pion form

factor measured in e+e− scattering or, more recently, in τ-decays (not contaminated by ω produc-

tion). By Watson’s final state theorem [43], in the elastic region the phase of the form factor is

exactly that of ππ scattering in the vector-isovector channel. Electromagnetic corrections can be

accounted for and a very rigorous treatment can be performed [174, 175]. Actually, on the left

panel of Fig.9 we show the description of the form factor provided in [175], which below the KK̄

threshold leads to the prediction for the scattering phase shown in the right panel versus the data

obtained from πN → ππN′. As we can see, the prediction is extremely good and much more

reliable than a fit to those πN → ππN′ data sets, which indeed are incompatible among each

other if taking into account just their statistical uncertainties. Therefore, at least in the elastic

region, there is a very precise and reliable description of the P-wave data. Above KK̄ threshold

one has to rely again on πN → ππN′ data and therefore the uncertainties become much larger

[176].

The other relevant source of data for ππ scattering comes from Ke4 decays. As we saw in the

historical introduction, the first experiments were already carried out in the 70’s [41, 42] but they
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Figure 10: Data on S-wave ππ scattering from Ke4 decays. The NA48/2 data of 2010 comes from [116] and is much

more precise than previous measurements [42, 109]. Note that all these data have been plotted after subtracting the

isospin correction derived in [177] and adding the δ1 phase obtained in [175] from the pion form factor.

have been repeated later in the new millennium with much larger statistics: in 2001 by the BNL-

E865 Collaboration [109] and in 2010 by the CERN NA48/2 Collaboration [116]. They provide

the most reliable and accurate information about S-wave ππ scattering below 400 MeV and it

confirms the accepted solution of the “up-down” ambiguity at low energies. Once again Watson’s

final state theorem implies that, in the isospin limit, the phase of this weak decay is given by the

phase of the ππ rescattering in the final state. These pions can be produced with total isospin 0 or

1, and therefore what is measured is just the interference of both isospin amplitudes, i.e., δ
(0)

0
−δ1,

as seen in Fig.6. Of course, the real world is not exactly isospin symmetric and the masses of the

charged and neutral pions differ by roughly 3%. This is the typical size of isospin violations in

pion systems, but it is not necessarily a good estimate close to the 2π threshold as in the Ke4 case.

The reason is that in the real world there are actually two thresholds: one for π0π0 about 10 MeV

below that for π+π−. In between these two thresholds only real π0 pairs can exist, and this makes

isospin violation effects much larger than naively expected in other energy ranges. In 2008 [177]

it was realized that this was an important correction to Ke4 and a relatively simple equation was

provided in time to correct for isospin and extract the isospin symmetric δ
(0)

0
− δ1 combination

from the NA48/2 experiment. The difference between taking into account this correction or not

can be seen in Fig.6, where the red data points correspond to the isospin corrected results. The

net effect is to decrease the value of δ
(0)

0
− δ1 by a small correction between 0.65o and 0.88o,

depending on the point. (Detailed values for each energy are given by the NA48/2 Collaboration

in Table 12 of their work [116]). Of course, for previous Ke4 experiments the correction given in

[177] should also be applied. Thus, in Fig.10 we show the data on Ke4 for the S-wave, that is,

including the isospin correction and adding the δ1 phase shift obtained from the form factor 4.

The size of the isospin correction that has been subtracted to the data is also shown in the figure.

The latest and very precise NA48/2 data [116] have been highlighted with respect to the older

experimental results, because they have turned out to be very decisive in the RPP major revision

of the σ pole. Previous experiments are certainly less precise.

Before reviewing the data above 1 GeV, it is worth mentioning that there are other experi-

4even including an overall 3% uncertainty for isospin violation, the uncertainty in the P-wave is smaller than the

uncertainty in the NA48/2 results
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mental results concerning the S-wave at threshold. These come from pionic atoms [178, 179],

yielding: a
(0)

0
− a

(2)

0
= 0.280 ± 0.013(St.) ± 0.008(Syst.) M−1

π and a
(0)

0
− a

(2)

0
= 0.264+0.033

−0.020
M−1
π ,

respectively; or from or K3π decays, also studied by the NA48/2 Collaboration [181], which

yield: a
(0)

0
− a

(2)

0
= 0.268± 0.010(St.)± 0.041(Syst.)± 0.013(Ext.) M−1

π . In general, any approach

describing the NA48/2 Ke4 data is also compatible with these results.

2.2.3. Partial waves above KK̄ threshold

Although in the 500 MeV energy region ππ scattering is almost purely elastic, the sigma pole

is deep in the complex plane and in order to determine it accurately and reliably, information

from the inelastic region is also needed. Up to 1.8 GeV data on partial waves have been obtained

in terms of the phase shift and inelasticity. It is important to remark that this inelasticity takes

into account within its uncertainties any possible channel to which ππ can couple. Therefore,

using this phase-inelasticity parameterization all channels are included, as long as they provide

a contribution to the inelasticity, contrary to what can happen with specific models which start

from a dynamical description (either from a Lagrangian or explicit inclusion of resonances) and

include just a few states in order to calculate the inelastic amplitude.

The inelasticity to 4π, 6π... to which ππ can couple, seems to be very small below the KK̄

threshold and has not even been observed. Therefore, for an analysis based on experimental data,

we have to consider that it has been included within the systematic uncertainties, which, as we

have commented above, are rather large for other reasons. Nevertheless, S-wave inelasticity has

been measured and becomes relevant around the KK̄ threshold, close to the f0(980) resonance,

whose decay to KK̄ is seen and the corresponding branching ratio is of the order of a few tens of

a percent [2].

Once inelasticity sets in, further ambiguities arise when extracting partial waves from data.

Note that the phase-shift and the modulus of the partial wave become independent and also that in

practice the partial wave series in Eq.5 is truncated at some ℓmax. Thus, the amplitude becomes

a polynomial in z = cos θ, which can always be written as T (s, z) = c exp(iφ)Π
ℓmax

i=1
(z − zi),

where c is a real constant and zi are its zeros. However, from experiment one determines |T |2 =
c2Π

ℓmax

i=1
(z − zi)(z − z∗

i
) and does not know whether the amplitude has a zero at zi or z∗

i
. These are

the so-called Barrelet ambiguities [180] on the sign of each Im zi. As a consequence, even the

same experimental group can provide several solutions in the inelastic regime.

As already commented, a full analysis of these ambiguities is well beyond the scope of this

report, which focuses on the sigma and the precise analyses once these ambiguities have been

sorted out (see for instance [25, 186, 187] as well as the book [39] and the report [216] and

references therein). Here we will only comment briefly on the experimental situation and why

one particular solution, called (− − −), became widely accepted as the correct one. We will also

see in Secs.2.4 and 2.5 that, for the f0(500) precise determination, the most severe situation with

ambiguities, which occurs above 1.4 GeV, has been circumvented by using Regge instead of

partial waves. The results for the sigma are very compatible using either Regge theory or the

(− − −) partial-wave solution.

Thus, the most elaborated partial wave studies, set ℓmax = 3 and the analyses involve three

zeros, ordered by increasing Re zi, and consequently three possible sign ambiguities. However,

it can be shown that Im z3 < 0 below 1.8 GeV. Concerning the data above KK̄ threshold, those

from Protopopescu et al. [31] only reach 1150 MeV, whereas the CERN-Munich Collaboration

in its latest work (Hyams et al. [34]) made a full study dedicated to ππ from 1 to 1.8 GeV. Their

analysis allowed for two different solutions below 1.4 GeV and four different solutions above that

energy. These are labeled by the signs of Im zi as (+ − −), (+ + −), (− + −) and (− − −). Several
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Figure 11: ππ inelasticity above the 1 GeV region. In principle it should be 0 ≤ η(0)

0
≤ 1. Left panel: Measured from the

subprocess ππ → ππ [31, 32, 184]. Note that the value of η
(0)

0
suffers a drastic drop between 1 and 1.1 GeV. We have

plotted lighter the results of Kaminski et al. [36] because they have so large uncertainty bands that would obscure the

existence of a dip. Right panel: Measures from the subprocess ππ → KK̄ [185]. Note the data does not show the dip

structure of the left panel.

methods were combined to select one solution over the others, namely: i) an slightly better χ2, ii)

consistency with π0π0 → π0π0 data, iii) absence of anomalous behaviors or unphysical artifacts

and, once again, iv) fixed-t dispersion relations and Roy equations. For example: Hyams et al.

[34], showed that two of their solutions were “somewhat less favored by χ2” and some may

contain unphysical artifacts (like the (+ − −) solution ). They also indicate that one of the most

favored solutions, the so-called “(− − −)” solution is almost identical to the one provided in a

previous work of the collaboration [32] below 1.4 GeV. In addition, in [188] it was shown that the

only solution that “does not induce anomalous behavior of the amplitude zeros in other charge

configurations” is precisely the (− − −). Moreover, this solution is also compatible with those

of [36], where polarized data is also analyzed. Furthermore, it has been recently shown that,

with ±5 degrees added as a systematic uncertainty, the (− − −) solution is compatible with Roy

equations up to 1.1 GeV and Forward dispersion Relations up to 1.4 GeV [117], although only

when accompanied by the “dip” solution for the inelasticity, that we comment next. Therefore,

below 1.4 GeV there is a general consensus on considering the (− − −) solution as the correct

one.

Actually, there has also been a longstanding controversy about the size of the inelasticity right

above the 1 GeV region [66, 67, 182, 183]. This controversy is illustrated in Fig.11 where we

show on the left panel the inelasticity measured in ππ final states [31, 32, 184] 5, where a “dip”

structure is seen between 1 and 1.1 GeV, whereas on the right panel we show the data obtained

from ππ→ KK̄ [185], where such a pronounced dip is not observed. We will see that dispersion

relations have recently settled this issue in favor of the “dip-solution”.

Above 1.4 GeV, apart from having four solutions, the experimental results are much less

reliable. First of all, because of the convergence of the partial wave expansion, since it can be

shown that around 1.7 GeV the F-wave is already as large as the P-wave, the D0 as large as

5[184] corresponds to some proceedings of the E852 Collaboration, for phase shifts their uncertainties are not com-

petitive with those published in other references and that is why they have not been shown in Fig.2
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the S0 and the D2 as large as the S2. In addition, the Hyams et al. results [34] seem to imply

that above 1.5 GeV the amplitude is almost elastic, or at least the elastic part is bigger than the

inelastic one, contrary to all other processes like πN, NN. Even more, the inelastic π+π− cross

section seems to decrease between 1 and 1.7 GeV. Similar concerns can be stated for other waves,

and for a thorough discussion of the caveats on the ππ phase shifts above 1.4 GeV we refer the

reader to [176, 189]. It is also worth remarking that W. Ochs, a member of the CERN-Munich

collaboration, has presented a recent reanalysis in [151] supporting the (−+−) solution above 1.4

GeV. Fortunately, this is identical to solution (− − −) below 1.4 GeV which is the most relevant

region for our purposes. 6

Thus, Fig.2 shows the data on the ππ phase shift up to 1.4 GeV, obtained from πN → ππN′.
Recall that below 1.4 GeV the Hyams et al. data from [32] 1973 (called “Hyams 73” in the plot)

is almost identical to the (− − −) solution by the same group in Hyams et al. [34] obtained in

1975, which is the only one plotted up to that energy.

We will see that due to the above caveats, some dispersive analyses [176, 117, 118] do not

make use of partial waves above 1.4 GeV, but use Regge theory instead. Let us nevertheless

remark that beyond 1.4 GeV some authors [99, 112, 119] still make use of the Hyams et al. data

[34] (although the impact of this energy region in their results is rather small). We will also see

that both approaches give compatible results for the f0(500) parameters. In any case at some

given high energy the partial wave formalism has to be abandoned and one has to rely on full

amplitudes and a different description of high energy data. This is done by means of Regge

theory, which we comment next.

2.2.4. High energy data

In principle, dispersive integrals extend to infinite energies, but since our interest is on the

f0(500) region we will suppress the higher energy region by means of subtractions, which will be

explained in detail below. Nevertheless, in order to claim precision, the high energy contribution

should be taken into account and for this we will now review the existing data above the 1.4 GeV

region. In practice the data description up to a few GeV is more than enough.

As we will see later, the most relevant dispersion relations for our purposes are of two types:

those with fixed t = 0, called Forward Dispersion Relations, and those for partial waves, where t

is integrated out. For the former type, we only need the ππ forward amplitude that, by the optical

theorem, is proportional to the total ππ cross section, for which there is data at high energies.

In contrast, partial-wave dispersion relations also need the t dependence, for which data is not

available at high energies but can be obtained from other processes assuming factorization.

Let us first discuss the total cross sections, which have been measured for the following

initial states: π+π− [190, 191, 192, 193], π−π− [190, 191, 194, 195, 193] and π0π− [190]. The

data for the latter are very scarce and provide little information. These data were obtained from

the following reactions: π−p → π+π−n [190, 191, 194], π±p → ∆++X, as well as π±n → pX

[192, 195, 193]. We show these data in Figs.12 and 13. Note that, particularly below the 2 GeV,

these data sets are not very consistent with each other.

The description of high energy ππ scattering cannot be done in terms of the partial wave

expansion because, as we have seen, somewhere between roughly 1.5 and 2 GeV that expansion

breaks down. High energy hadron-hadron scattering is well described in terms of Regge theory

and other dispersive techniques like sum rules, which were developed in the 60’s and 70’s when

6 I thank W. Ochs for these observations.

34



1 2 3 4 5 6 8 10

√ s  (GeV)

0

10

20

30

40

50

mb
Biswas et al. 1967
Robertson et al. 1973
Hanlon et al. 1976
ACGL 2001
Garcia-Martin et al. 2011 CFD
Regge RPP 2011
Net result of Caprini et al. 2012
partial waves
Regge - Caprini et al 2012

σπ−π+

1 1.5 2 3 5 7.5 10 15 200.50.3

√ s  (GeV)

0

5

10

15

20

25

30

mb
Biswas et al. 1967
Cohen et al.  1973
Robertson et al. 1973
Losty et al. 1974
Abramowicz et al. 1980
ACGL 2001
Regge RPP2011
Garcia-Martin et al. 2011 CDF
Net result of Caprini et al. 2012
Regge - Caprini et al. 2012
partial waves

σπ−π−

Figure 12: Compilation of data on ππ total cross sections versus some Regge parameterizations: ACGL [112], the 2011

update of the 2010 edition of the RPP [72], Garcı́a-Martı́n et al. [117] (update from [189, 202]), the Regge result from

[201]. The grey band is the cross section as reconstructed from the partial wave analyses in [201] and the Losty et al.

data come from [208]. Left: π−π+ data from [190, 191, 192]. Right: π−π− data from [190, 194, 191, 195]. The author

thanks I. Caprini, G. Colangelo and H. Leutwyler for kindly providing their tools for making these plots.

they were also applied to ππ scattering [45, 47, 48, 50, 186, 196, 197, 198]. Introductory text-

books can be found in [199, 200]. As we explained here in the introduction, for some time later

these techniques were practically abandoned for ππ scattering (see [201] for a nice account on

the developments of Regge phenomenology for this reaction).

However, the interest in ππ scattering was revived in the 2000’s due to the new uses of Roy

equations. The data had been somewhat forgotten, but in [189, 202] it was found that these total

cross sections could be described fairly well on the average with Regge theory, by including

the following four Regge trajectories: the Pomeron, the P’ (or f2), the ρ and some isospin 2

double ρ exchange. Let us recall that there is a well-known equivalence, called “average duality”

or “semi-local duality”, between the direct channel resonances and the crossed channel Regge

poles. This allows for a dual description of amplitudes in terms of Regge exchanges that extends

from the asymptotic region down to the resonance region, although in the latter the equivalence

is not local in energy but “on the average” over an energy region. For an introduction to duality

in Regge theory we refer once again to [199, 200]. Note that this on the average description over

a certain energy region, is enough if one wants to use those expressions inside integrals, as it is

the case of dispersion theory. Most of the parameters of these trajectories can be obtained from

a fit to data on total cross sections for πN and NN, and then used for ππ using factorization. This

approach is basically an update of the Regge parameterizations suggested by Rarita et al. [203].

The rest of the parameters were determined from ππ scattering at low energies by means of some

sum rules, as the one derived by Olsson [197] or those derived in [112] from crossing symmetry,

which were forced upon the fit. To avoid the conflicting data sets, ππ scattering was only fitted

above 2 GeV whereas below that energy an extrapolation of the Regge formulas was used. Note

that the data of [193] was not included in the fits, since it was rediscovered a posteriori. In

addition, to reach the TeV range one should use other parameterizations, which include some

logarithmic growth, provided in [202]. For our purposes the simpler parameterizations in [202]

can be used, which extend to 10-20 GeV and tend to 12-13 mb at very high energies. Actually,

these simple parameterizations and fits have been gradually improved in subsequent works by

the same Madrid-Krakow group [114, 176, 204] whose latest version is [117]. In Fig.12 these
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Figure 13: ππ total cross sections from [193]. Although not shown, a 7-10% systematic uncertainty should be added to

these data according to the authors of [193]. The curves are not fits, but correspond to the Madrid-Krakow parameteri-

zation of [189, 202]. Figures taken from “Regge description of high energy pion pion total cross sections,” J. R. Pelaez,

Int. J. Mod. Phys. A 20, 628 (2005). Copyright 2005 World Scientific Publishing Company.

parameterizations correspond to the blue dashed area. It has also been shown in [205] that these

parameterizations describe the data from [193], as shown in Fig.13 (once a 7-10% systematic

uncertainty is added to those data following the estimate of the authors of [193]).

The description of these data was revisited later by the Bern-Bucharest group in [201], going

beyond the simple average description and including non-leading Regge contributions to ensure a

smooth transition between the energy regions where partial wave or Regge formalisms are used.

This led to the continuous light blue area in Fig.12, which certainly matches the partial wave

representation at 2 GeV. Below that energy, it should still be considered an average description.

It can be noticed that results from [201] are very compatible with those from the Madrid-Krakow

group [189, 202], although the inclusion of subleading terms produces a larger uncertainty and

they can be considered more conservative. Recall that none of the parameterizations have been

obtained by fitting the [193] data, although as seen in Fig.13 these data are reasonably well

described too. If these data were to be included in the fits of the Bern-Bucharest group, their

uncertainties would decrease [206] and become somewhat closer to those used by the Madrid-

Krakow group in [117].

This whole picture was also revisited by Halzen and Ishida in [207], with slightly different

functional forms. Their result is once again compatible with [189, 202]. They actually note that

even though extending Regge theory down to 1.4 GeV might not be guaranteed to work a priori,

it still provides a ”fairly good” description at those low energies.

In conclusion, there is a fairly good agreement between the data and different models on total

ππ cross sections above 1.4 GeV, although some approaches are somewhat more conservative on

the uncertainty estimates. As remarked above, this input is needed both for forward or partial

wave dispersion relations.

However, for partial wave dispersion relations, the t dependence of amplitudes at high ener-

gies is also needed. Unfortunately there is no data here and one has to rely on pure Regge theory

and several sum rules that constraint the possible t behavior of the residues of the different Regge

trajectories.

In particular the behavior of the rho reggeon exchange at t = 4M2
π is constrained by the
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following sum rule [176]

I ≡
∫ ∞

4M2
π

ds
Im F(It=1)(s, 4M2

π) − Im F(It=1)(s, 0)

s2
−

∫ ∞

4M2
π

ds
8M2

π[s − 2M2
π] Im F(Is=1)(s, 0)

s2(s − 4M2
π)2

= 0. (9)

It can be checked that the contributions of the S-waves cancel and only the P and D waves

contribute (we also include F and G waves, but they are negligible).

Another sum rule constraining the t dependence of the Regge contribution to the amplitude

was given in [112] and requires the vanishing of

J ≡
∫ ∞

4M2
π

d s






4Im F′(0)(s, 0) − 10Im F′(2)(s, 0)

s2(s − 4M2
π)2

− 6(3s − 4m2
π)

Im F′(1)(s, 0) − Im F(1)(s, 0)

s2(s − 4M2
π)3





= 0. (10)

Note that the t dependence has been recast in terms of F′(I)(s, t) ≡ ∂F(I)(s, t)/∂ cos θ. At high

energy, the integral is dominated by isospin zero Regge trajectories, thus this sum rule is more

appropriate to constrain the Pomeron and the P′ reggeon.

The t dependence of the Regge trajectories, including the previous constraints, was provided

in [189, 202] (once more the latest update is in [117]) and later revisited in [201]. We show the

respective residues in Fig.14 in the region of interest for later dispersive approaches. The general

agreement of different models is fair except for the subleading f trajectory, which always appears

together with the Pomeron trajectory. As before, the uncertainties of [201] are much larger

than for [189, 202]. Nevertheless, since these differences between models appear in the high

energy part of the partial-wave dispersive integrals, their effect is not larger than a few MeV in

the σ pole determination [206], which is well covered by the uncertainties in the conservative

dispersive estimate given in Eq.3. As we will see below, the σ pole determinations from the

Bern-Bucharest [201] and Madrid-Krakow groups [118] are very compatible.

2.3. Analyticity: cuts and poles

2.3.1. Analyticity from causality in non-relativistic scattering

Dispersion relations are the mathematical consequence of the analytic properties of the ampli-

tude T (s, t, u) in the complex plane, which in turn are a consequence of causality. Rigorous proof

of this connection between causality and analyticity only exists within non-relativistic scattering

and we only sketch it briefly here. In addition non-relativistic scattering provides an intuitive

interpretation of poles in the amplitude. We recommend [209] for a rigorous and detailed but

pedagogical account. For relativistic scattering there is no general proof beyond axiomatic field

theory or perturbation theory and is therefore an hypothesis (Mandelstamm hypothesis).

Let us first define the non-relativistic quantum scattering problem, projected in partial waves:

On the one hand, the system should be described by a solution of the radial Schrödinger equation:

d2ul(k
2, r)

dr2
+

[

k2 − 2V(r) − ℓ(ℓ + 1)

r2

]

ul(k
2, r) = 0, (11)

where we have set m = ~ = 1 units and V(r) is real spherically symmetric potential. Note that the

center of mass momentum k2 ≡ 2E always appears squared. On the other hand, to be solutions of

a scattering problem for partial waves, asymptotically they must be a superposition of incoming

and outgoing spherical waves, i.e., for r → ∞:

uℓ(k
2, r)→ [Φ−ℓ (k2)eikr + Φ+ℓ (k2)e−ikr] ∼ Aℓ(k

2)

2ik
[S ℓ(k

2)eikr − (−1ℓ)e−ikr], (12)
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Figure 14: Regge residues responsible for the t dependence of ππ scattering at high energies. The figures represent the

profiles of these residues, i.e., once the t = 0 value has been factored out: β(t) = β(0)β̄(t). The Regge parameterizations

shown correspond to the Lovelace-Shapiro-Veneziano (LSV) model [196, 112], Pennington and Protopopescu [48],

Garcı́a-Martı́n et al. [117] (update from [189, 202]), and as green bands those of [201]. The agreement for the leading

Pomeron trajectory is fairly reasonable, as well as for the ρ residue. Apart from the larger uncertainties of [201], the only

significant disagreement with the parameterizations in [189, 202, 117] is in the residue of the subleading f trajectory.

Figures taken from [201].
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where Aℓ is the normalization factor of the incoming wave and S ℓ(k
2) = (−1)ℓ+1Φ−

ℓ
(k2)/Φ+

ℓ
(k2)

is called the S -matrix partial wave. If there was no interaction S ℓ(k
2) = 1. Note that, although

the uℓ(k
2, r) are functions of k2, we have now introduced some explicit dependence on k, defined

as k =
√

k2 =
√

2E, which is a double valued function of k2 or E. This implies that we need two

E sheets to map k on the k2 or E plane. Thus, if we define k = κ1/2(cosα/2 + i sinα/2) with κ

real and positive we have:

- Sheet I, called physical or first Riemann sheet, with 0 ≤ α ≤ 2π, Im k > 0.

- Sheet II, called unphysical or second Riemann sheet, with 2π ≤ α ≤ 4π, Im k < 0.

The names are due to the convention that the observable or physical S -matrix should be recovered

as S (Re k + iIm k)) → S physical(k) for Im k → 0+. Note that the information on both sheets is

redundant, because Φ+
ℓ
(k) = Φ−

ℓ
(−k), which implies that S I

ℓ
(k2) = 1/S II

ℓ
(k2). In practice, there

will be an incoming packet Φin(r, t) ≡ −
∫ ∞

0
dE A(E)e−ikr−iEt and a similar outgoing packet. The

scattering wave is defined as the difference of the outgoing packet when there is interaction minus

the packet if there was no interaction, which can be written as:

Φsc(r, t) =

∫ ∞

0

dE A(E)[S (E) − 1]eikr−iEt = 2π

∫ ∞

0

dE A(E)e−ikr−iEtG(r, E) (13)

where G(r, E) = [S (E) − 1] exp(2ikr)/2π. Then, by considering its Fourier transform g(r, τ) =
∫ ∞
∞ G(r, E) exp(−iEτ)dE, we can rewrite:

Φsc(r, t) =

∫ ∞

−∞
dt′g(r, t − t′)Φin(r, t′), (14)

so that the scattering wave at time t has been written as a functional (called causal transform) of

the incident wave at a different time t′. Now, causality demands that the scattering wave at time

t cannot be influenced by the incident wave at time t′ > t, that is g(r, τ)=0 if τ = t − t′ < 0. But

this means that

G(r, E) =
1

2π

∫ ∞

0

dτg(r, τ)eiEτ. (15)

Note that due to the integral starting at t = 0, if E = ER + iEI , with EI > 0, then there is a factor

exp(−EI t), which for sufficiently well-behaved g(r, τ) ensures the convergence of the integral.

Therefore, it follows that G(r, E) has a regular analytic continuation in the upper half plane of E,

and so does S (E).

Now, since the coefficients of Eq.11 are real, Φ+
ℓ
(k2∗) = [Φ+

ℓ
(k2)]∗ and Φ−

ℓ
(k2∗) = [Φ−

ℓ
(k2)]∗,

so that S (E∗) = S (E)∗ on each sheet. This property is sometimes referred to as a Schwartz

reflection. Therefore there is also an analytic continuation to the second sheet. This restricts

all singularities to lie on the real axis, where there is actually a cut from zero energy to infinity

which connects the two Riemann sheets and, possibly, poles at negative energies corresponding to

bound states. Note also that when S II
ℓ

has a pole at k2
0
< 0, then uℓ(k

2
0
, r) → Φ−

ℓ
(k2

0
)eir Rek0 e−r Imk0

with Im k0 > 0. That is, the wave function decreases exponentially with r and is therefore

normalizable and localized in space, representing a bound state of mass Re k0 and binding energy

k2
0
/2. Since we are working in the isospin limit neglecting electromagnetism there are no bound

states in ππ scattering and we will not find such poles in this report. We will nevertheless find

poles in the second Riemann sheet, which correspond to non-normalizable quasi-bound states or

resonances. Note that due to the Schwartz reflection, these poles will appear as conjugated pairs
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Figure 15: Analytic structure of the non-relativistic scattering S -matrix. It is analytic in the first Riemann sheet with a

cut along the real axis that connects continuously with the second sheet (as illustrated with the red curve). Resonance

poles correspond to conjugated pairs of poles in the second Riemann sheet or zeros on the first. Poles in the negative real

axis of the first sheet, corresponding to bound states, can in principle occur, but they are absent in ππ scattering under the

isospin-conserving strong interaction.

in the second sheet or as zeros in the first sheet. We have illustrated this analytic structure in

Fig.15. Note that the amplitude in the real axis is continuous with the lower half of the second

sheet and therefore it can feel the influence of poles in that half plane. If a pole is isolated and

far from the threshold, its effect is seen as a bump or peak in the physical amplitude in the region

closest to the pole.

Finally, it is important to remark that this two-sheet analytic structure is inherited by the

scattering amplitude or T-matrix, where poles can only occur in the second Riemann sheet or in

the negative real axis on the first sheet. Of course, the T-matrix in the second sheet is no longer

the inverse of the T-matrix on the first, but they are still related. For partial waves the relation

will be provided in Eq.21 when discussing resonances in Sect.2.3.3.

Moreover, although we have been discussing the partial wave formalism, the analytic struc-

ture is also similar for the case of a fixed scattering angle.

2.3.2. Analyticity and crossing in relativistic ππ scattering

Within relativistic scattering, the energy and the scattering angle roles are played by the

Lorentz invariant Mandelstam variables s and t, respectively. The analytic properties of the rela-

tivistic S matrix can be now derived perturbatively in terms of diagrams and in some cases from

axiomatic field theory (see also the textbooks [210] and [167]). However, in general the ana-

lytic properties are derived from the so-called Mandelstam hypothesis [211], based on crossing

symmetry, which relates ππ scattering in the so-called s, t and u channels.

Let us look back at the scattering process in Fig.8. We have been considering that the initial

state is on the left, and the final one on the right, so that it describes the process π1(~p1)π2(~p2)→
π3(~p3)π4(~p4). Here πk = π±, π0 and particles are on-shell. Following the definition of Man-

delstam variables in Sec.2.1, we say this is the s-channel, because the energy of the process is

s = 4E2, and we write the amplitude as: T12→34(s, t, u). For this process to occur physically, we

need s ≥ 4M2
π, whereas t, u ≤ 0.

Now, the t-channel corresponds to looking at the picture from top to botton instead of left to
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Figure 16: Left: The Mandelstam plane and the physical regions for ππ scattering. Right: Analytic structure of fixed t

amplitudes on the s plane, with a right cut from 4Mπ to +∞ and a left cur from −∞ to −t. Note that there are no poles in

the first Riemann sheet for ππ scattering. We also show the integration contour for fixed-t dispersion relations.

righ. Of course, now π3 is coming out, although it is in the initial state, but we can interpret it

as the antiparticle π̄3 coming in with −~p3. We can do similarly with π2 and then this is just the

process π1(~p1)π̄3(−~p3) → π̄2(−~p2)π4(~p4). We would then write the amplitude as T13̄→2̄4(t, s, u).

However, now the process only occurs if t ≥ 4M2
π, whereas s, u ≤ 0. The u-channel is similarly

defined but now exchanging the second particle with the fourth instead of the third one. In the

left panel of Fig.16 we have plotted the s − t plane showing the physical regions where the s, t

and u-channels can occur.

The Mandelstam hypothesis states that the T13̄→2̄4(t, s, u) amplitude is the analytic continua-

tion of T12→34(s, t, u), and similarly for the u-channel. In particular, it states that there is a unique

analytic function T (s, t, u) that satisfies

T (s, t, u) =






T12→34(s, t, u), s ≥ 4m2, t ≤ 0, u ≤ 0,

T13̄→2̄4(t, s, u), t ≥ 4m2, s ≤ 0, u ≤ 0,

T14̄→32̄(u, t, s), u ≥ 4m2, s ≤ 0, t ≤ 0.
(16)

That this is the case can be shown diagrammatically in perturbation theory and so far no coun-

terexample is known, but a general proof beyond perturbation theory is lacking.

Together with the Mandelstam hypothesis one also assumes that singularities in the T (s, t)

amplitude are just those demanded by some physical cause. Part of the analytic structure is

similar to the non-relativistic case, although now formulated in terms of the s variable, while

keeping t fixed. Hence, there is a “physical” or “right” cut on the real axis from threshold

s = 4M2
π to +∞. In addition, process where bound states exist present a corresponding pole

below threshold, but they do not exist in the case of ππ scattering. Once again, there can be poles

associated to resonances, but since the amplitude also satisfies a Schwartz reflection:

T (s∗, t) = T ∗(s, t), (17)

for fixed real t and since resonance pole positions have imaginary parts, then these resonance

poles must come in conjugated pairs that lie on the second or unphysical Riemann sheet. Once

more, and for fixed t, the second sheet is defined for values of s over the cut as S II(s − iǫ, t) =

S (s + iǫ, t). But in the elastic case unitarity reads S (s, t)−1 = S (s, t)∗ and by the Schwartz
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Figure 17: Most relevant analytic structures of ππ partial waves below 1.5 GeV the right cut from 4M2
π to +∞, which

is actually a superposition of cuts that open at each new threshold, of which the most relevant one is that of KK̄ at

4M2
K

, which is shown explicitly. We also show the approximate position of the conjugated pairs of poles of the lightest

resonances (that would be in the second Riemann sheet). Note that the distances of the σ pole to the left cut and to the

physical cut are relatively similar.

reflection we find S II(s+ iǫ, t) = S −1(s+ iǫ, t). Since both sides of this equation are analytic, this

equality can be extended to the whole cut complex plane. However, a fundamental difference

with the non-relativistic case is pair creation, so that the physical cut is now a superposition of

cuts which open up at the threshold of any state that can be created once sufficient energy is

available in the process. Consequently the S matrices have now more Riemann sheets accessible

when crossing continuously the additional thresholds.

In addition, due to crossing symmetry, relativistic amplitudes have other cuts in the real axis.

This is due to the Mandelstam hypothesis, since now the same T (s, t, u) amplitude also represents

the u-channel process that has a physical threshold for u ≥ 4M2
π, which for fixed t means s ≤ −t.

In other words, for fixed t there is a cut from s = −∞ to s = −t. The analytic structure of ππ

fixed-t amplitudes is shown in the right panel of Fig.16.

As a final remark on crossing, let us point out that if we gather the amplitudes in the isospin

basis of Eqs.4 into a three isovector (T (0),T (1),T (2)), crossing relations can be rewritten in terms

of the simple matrices:

Cst =





1/3 1 5/3

1/3 1/2 −5/6

1/3 −1/2 1/6




, Csu =





1/3 −1 5/3

−1/3 1/2 5/6

1/3 1/2 1/6




, Ctu =





1 0 0

0 −1 0

0 0 1




, (18)

in the sense that, for instance T (I)(t, s, u) =
∑

I′ C
II′
st T (I′)(s, t, u), and similarly for the rest. Note

that C2
st = C2

su = C2
tu = 1.

So far, we have been discussing the analytic structure of the whole amplitude T (s, t, u), but

we have seen that the usual way of dealing with ππ scattering, and particularly so when looking

for resonances, is by means of partial waves t
(I)

J
(s) of definite isospin and angular momentum.

The analytic structure of these partial waves follows from that of T (s, t, u) after integration over

the scattering angle, which is nothing but an integration over t. The general case can be rather

complicated, see [167], but since we are dealing with ππ, where there are no bound states, and

in the isospin limit, where all particles involved have the same mass, then the resulting analytic

structure of ππ partial waves is quite simple. They obviously inherit the right-hand or physical

cuts at each new physical threshold, whereas upon integration over t, the left cut falls again into

the negative axis, but covering it from s = 0 to −∞ [167].

This is depicted in Fig.17, where we show the relevant cuts in the complex plane for ππ

partial waves in the region of interest for the lightest resonances, which are the ππ cut, the KK̄
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cut and the left cut. In principle, there are other right cuts opening at 4M2
π, 16M2

π, ... but we will

see that the inelasticity has only been measured close or above the KK̄ threshold. For illustration

we show the positions where the conjugated pairs of poles of the σ and ρ and f0(980) resonances,

to be discussed below, lie in the second Riemann sheet.

2.3.3. Poles and resonances

Before embarking on the details of dispersive calculations we should review the meaning of

the word “resonance” in connection with the f0(500). Three definitions are customarily used for

the mass and width of an elastic, background free and narrow resonance:

i) In a region where the phase shift raises from almost zero to ≃ 180o, the mass is identified

with the energy s1/2 at which the phase shift crosses 90o. The width corresponds to the

distance from the mass to the energy where δℓ = 45o, neglecting Γ2 terms. These defini-

tions are easily identified in the usual Breit-Wigner parameterization and therefore they are

sometimes called Breit-Wigner mass and width. Note that the modulus of the amplitude

reaches its maximum possible value precisely at this resonance mass. Hence this definition

corresponds to the intuition that a resonant behavior is where the interaction becomes as

strong as possible since at that point the cross section reaches a maximum, which usually

corresponds to a “peak” in the cross section.

ii) Once again, in a region where there is sharp increase of the phase shift by ≃ 180o, the mass

M is identified with the energy where the derivative of the phase shift δ(s) is a maximum

and the width with the inverse of that derivative in appropriate units: Γ = (Mdδ/ds)−1
M

.

This definition identifies a resonance as a metastable state, whose lifetime is the inverse of

the width (Wigner’s time delay theory).

iii) The mass and width of the resonance are identified from the associated pole position
√

sp

of the partial wave amplitude in the unphysical (or second) Riemann sheet, as
√

sp =

M− iΓ/2. This a well defined mathematical statement, but maybe less intuitive physically.

In the case of narrow and isolated resonances all three definitions coincide to first order in Γ/2M.

However, the σ is very broad and the two first definitions are inappropriate. Let us see why.

Concerning the first definition, we have already shown in Fig.2 the S0-wave phase shift for

ππ scattering δ
(0)

0
(s) and it does indeed cross π/2, but it does so at an energy of s1/2 ≃ 800 MeV,

where there might be a maximum of the modulus, but nothing that resembles a peak. Moreover,

as we have already commented, the position of such a peak can change from one process to

another, it is not a universal feature. For instance, the presence of a background phase or a zero

in the vicinity of the resonance, as it actually happens with the f0(500) as seen from ππ scattering,

can distort its shape. When the σ is produced in heavy-particle decays this zero is not present

and some vague peak is seen, but around 550 MeV.

The second definition can also be distorted by a background, but it has the advantage over

the first one that it may still provide a good approximation if this background is created by other

non-resonant dynamics and varies slowly. This is for instance the f0(980) case, as we can see in

Fig.2 which has fast increase of ≃ 180o around 980 MeV, but starting from ≃ 90o around 850

or 900 MeV (in addition, the shape is also somewhat distorted by the nearby KK̄ threshold).

However, there is nothing like a sharp increase by π from threshold to 900 MeV in the S-wave

(as compared to that of the ρ(770) meson seen in the right panel of Fig.2). Moreover, the energy

derivative of δ
(0)

0
(s) is definitely not maximum near 500 nor 800 MeV. Actually, the phase seems

to raise at a rather constant rate.
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All these considerations are nothing but a re-statement that, as we have repeatedly com-

mented, the partial wave amplitude does not resemble a Breit-Wigner shape with a clear peak

and a simultaneous steep rise in the phase. Nevertheless, and as already advanced in the intro-

duction, there exists a pole in the second Riemann sheet, but at very low mass and with very

large width. Thus, we are left with the third definition, which has the advantage that a divergence

cannot be removed or displaced by adding any background or other non-resonant contribution.

Under very general assumptions [210] the same pole should be present when observing the S0-

wave in any process.

In order to look for the pole on the second Riemann sheet associated to a resonance R which

appears in the ππ elastic partial wave t
(I)

J
let us recall that, for elastic scattering, the S -matrix in

the second Riemann sheet is the inverse of the S -matrix on the first. Hence, a pole located at√
sR = MR − iΓR/2 in the second sheet, corresponds exactly with the position of a zero of the

S-matrix partial wave S
(I)

J
(s),

S
(I)

J
(s) = 1 + 2 i f̂

(I)

J
(s) = e2 i δ

(I)

J , (19)

in the first (or physical) Riemann sheet. Thus, we can find the location of the resonance by

looking for the solutions of S
(I)

J
(sR) = 0 in the complex plane. This zero condition may be

written in a simpler manner as

cot δ
(I)

J
(sR) = − i , (20)

where, of course, cot δ
(I)

J
now corresponds to a function in the complex plane which has all the

singularities of the amplitude, except for the cut along the real axis above threshold where it

coincides with the physical cot δ
(I)

J
.

In practice, since the t-matrix partial waves are related to the S -matrix partial waves by

S
(I)

J
(s) = 1 − 2iσ(s)tI

J
(s), we can write the amplitude in the second Riemann sheet tII(s) in terms

of the one in the first Riemann sheet tI(s), as follows:

tII(s) =
tI(s)

1 + 2iσ(s)tI(s)
, (21)

where the determination of σ(s) is chosen such that σ(s∗) = −σ(s)∗ to ensure the Schwartz

reflection symmetry of the amplitude. In other words, on the upper half s plane we can take

σ = +
√

1 − 4m2/s as usual, whereas on the lower half s plane we must then take σ(s) = −σ(s∗)∗.
In addition, the coupling of a resonance to two pions can be defined from its pole residue as:

g2 = −16π lim
s→spole

(s − spole) tJ(s) (2J + 1)/(2k)2J . (22)

This residue is of interest for models of the spectroscopic nature of these resonances.

Back to Fig.17, we want to emphasize that, in contrast with the ρ resonance pole, the distance

of the σ pole to the left cut is comparable to the distance to the right cut and smaller than

to the inelastic KK̄ cut. This is why, in order to claim a precise and rigorous determination

of the σ parameters, the left cut must be under control, whereas its influence is negligible for

other resonances. At the end, the contribution of that cut is not too large, but its size has to be

established firmly if one wants to claim precision.
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2.3.4. Dispersion Relations

Now that we know the analytic structure of ππ scattering amplitudes on the first Riemann

sheet, we can use Cauchy’s theorem to relate the value of the amplitude at one given energy to

an integral of the amplitude over a contour. However, Cauchy’s theorem applies to one complex

variable whereas in scattering there are two independent variables: the energy and the scattering

angle, or s and t. We are interested then in single variable dispersion relations and this is achieved

by fixing one of them, or by integrating t to obtain partial waves that depend on s alone.

We have already seen the singularity structure of amplitudes for fixed t and thus the amplitude

at any given complex s in the analyticity domain can be obtained as an integral over the contour

C depicted in the right panel of Fig.16, as follows:

T (s, t, u) =
1

2πi

∮

ds′
T (s′, t, u′)

s′ − s
. (23)

The contour C is made of two parts: a circle of radius R centered at s′ = 0, and straight

lines parallel to the left and right cuts but infinitesimally above or below them by some ǫ′. Now,

if T (s, t, u) goes to zero faster than 1/s as |s| → ∞ and we let R → ∞ then the contribution

from the circular part of the contour vanishes. Thus, we are left with the contributions along

the cuts. Let us now recall that u′ = 4m2 − t − s′. Thus, remembering also that Eq.17, implies

T (s′ + iǫ′, t, u′ − iǫ′) = T ∗(s′ − iǫ′, t, u′ + iǫ′) and observing that the lines above and below each

cut run in opposite directions, we find

T (s, t, u) =
1

π

∫ ∞

4m2

ds′
ImT (s′, t, u′)

s′ − s
+

1

π

∫ −t

−∞
ds′

ImT (s′, t, u′)

s′ − s
, (24)

where, as usual, we have taken the ǫ′ → 0 limit and on the real axis we define T (s′, t, u) ≡
T (s′ + i0+, t, u + i0−).

The above equation is valid everywhere in the complex plane except on the singularities. If

we want the dispersion relation for the real axis, where we have the cut singularity, we must

actually consider the amplitude at s + iǫ with s real, and use the relation:

1

s′ − s − iǫ
= PV

1

s′ − s
+ iπδ(s′ − s), (25)

where PV denotes the principal value. Note that the effect of iπδ(s′ − s) on Eq.24 is to extract

iIm T (s, t, u) out of the first integral, which cancels exactly with the imaginary part on the left

side. Hence on the real axis we find:

ReT (s, t, u) =
1

π
PV

∫ ∞

4m2

ds′
ImT (s′, t, u′)

s′ − s
+

1

π

∫ −t

−∞
ds′

ImT (s′, t, u′)

s′ − s
. (26)

Therefore, for real values of s dispersion relations provide the real part of the amplitude from its

imaginary part.

If the amplitude T (s, t, u) does not tend to zero fast enough at∞, the circular contribution of

the contour C will not vanish. However, if we subtract the amplitude evaluated at another point

s0, we can write

T (s, t, u) − T (s0, t, u) =
1

2πi
(s − s0)

∮

ds′
T (s′, t, u′)

(s′ − s)(s′ − s0)
, (27)
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and now for the circular part to vanish it is enough to require T (s, t, u)/s to tend to zero at ∞
faster than 1/s. The so-called “once subtracted” dispersion relation now reads:

T (s, t, u) = T (s0, t, u) +
s − s0

π

∫ ∞

4m2

ds′
T (s′, t, u′)

(s′ − s)(s′ − s0)
+

s − s0

π

∫ −t

−∞
ds′

T (s′, t, u′)

(s′ − s)(s′ − s0)
. (28)

The price to pay is that one should know the amplitude at the subtraction point s0. If that is not

enough for convergence, one can make another subtraction, typically at the same point, to find

T (s, t, u) = T (s0, t, u) + (s − s0)
∂

∂s0

T (s1, t, u) +
1

2πi
(s − s0)2

∮

ds′
T (s′, t, u′)

(s′ − s)(s′ − s0)2
,

which is called a “twice subtracted” dispersion relation, etc. In principle, due to the Froissart

bound [212], σtot(s) < c(log s)2, two subtractions are enough to ensure convergence, although

sometimes more subtractions can be convenient for particular purposes.

At this point it is important to remark that the contribution from the “left cut” is usually

the most difficult one to calculate. However, for ππ scattering amplitudes, which are highly

symmetric since all particles involved are pions, there are certain cases in which the left cut

contribution can be recast in terms of amplitudes in the physical region, namely for Forward

Dispersion Relations, Roy and GKPY equations, that we will discuss below.

For textbook level references on ππ scattering and dispersive theory we refer again to [167,

39] together with the relatively more recent review on [168]. What follows next is a brief sum-

mary of the topics which are discussed at length in those references.

2.3.5. Forward Dispersion Relations for ππ scattering

A straightforward application of the previous equations occurs for forward (t = 0) ππ scatter-

ing. This is relevant not only because the equations are much simpler, but also because forward

scattering amplitudes are proportional to total cross sections which are relatively easier to mea-

sure compared to other observables. Actually, we have already seen in Sec.2.2.4 that these are

the only available data for ππ scattering above 2 GeV.

A simplification occurs due to the fact that we can write any ππ scattering amplitude in terms

of three amplitudes which are symmetric or antisymmetric under s↔ u crossing. The symmetric

ones are: π0π0 → π0π0 and π0π+ → π0π+, whereas the antisymmetric one is the amplitude where

isospin one is exchanged in the t-channel T It=1. In terms of the usual s-channel isospin states,

these amplitudes are written as:

T 00 =
1

3
(T (0) + 2T (2)), T 0+ =

1

2
(T (1) + T (2)), T It=1 =

1

3
T (0) +

1

2
T (1) − 5

6
T (2). (29)

An interesting remark when writing a forward dispersion relation is that, since t = 0, we can

change variables in the left cut integral from s′ to u′ = 4M2
π − s′. In particular, for T 00 we can

write:

ReT 00(s, 0, u) − T 00(4M2
π, 0, 0) =

(s − 4M2
π)

π

[

PV

∫ ∞

4M2
π

ds′
ImT 00(s′, 0, u′)

(s′ − s)(s′ − 4M2
π)

+

∫ ∞

4M2
π

du′
ImT 00(s′, 0, u′)

(u′ − u)u′

]

, (30)

where the principal value is taken so that we can use the above Eq.28 for s in the real axis. Note

that at high energies this amplitude is dominated by Pomeron exchange so that at very high s′

46



or u′ it grows as a logarithm (although as we have seen in Sec.2.2.4 it can be approximated to

a constant up to ∼ 20 GeV). Thus, in order to make each integral convergent we have used a

once-subtracted dispersion relation with the subtraction point chosen at threshold s0 = 4M2
π.

Now, since u′ = 4M2
π − s′ and u = 4M2

π − s, it is customary to omit the u and u′ variables

unless they are both needed to illustrate some symmetry explicitly, and so we will do in what

follows to ease the notation.

Therefore, since this amplitude is s ↔ u symmetric then T (s, 0, u) = T (u, 0, s) and we can

rewrite the integral over the left hand cut as an integral over the right cut, i.e.:

ReT 00(s, 0) = T 00(4M2
π) +

(s − 4M2
π)

π
PV

∫ ∞

4M2
π

ds′
(2s′ − 4M2

π)ImT 00(s′, 0)

s′(s′ − s)(s′ − 4M2
π)(s′ + s − 4M2

π)
. (31)

Note that this equation is written just in terms of the s-channel T 00 amplitude over its physical

region s′ ≥ 4M2
π, t = 0. It will also be interesting to evaluate this dispersion relation at s = 2M2

π,

where the amplitude is real and the principal value is not needed. The result is the following sum

rule:

K ≡ T 00(2M2
π, 0) − T 00(4M2

π, 0) +
8M4

π

π

∫ ∞

4M2
π

ds′
ImT 00(s′, 0)

s′(s′ − 2M2
π)(s′ − 4M2

π)
= 0. (32)

In the same way we obtain a Forward Dispersion Relation for T 0+, since it is also s ↔ u

symmetric and dominated at high energies by Pomeron exchange. It reads:

ReT 0+(s, 0) = T 0+(4M2
π) +

(s − 4M2
π)

π
PV

∫ ∞

4M2
π

ds′
(2s′ − 4M2

π)ImT 0+(s′, 0)

s′(s′ − s)(s′ − 4M2
π)(s′ + s − 4M2

π)
. (33)

Once again at s = 2M2
π we obtain a sum rule:

L ≡ T+−(2M2
π, 0) − T+−(4M2

π, 0) +
8M4

π

π

∫ ∞

4M2
π

ds′
ImT+−(s′, 0)

s′(s′ − 2M2
π)(s′ − 4M2

π)
= 0. (34)

It is important to remark that, by looking at Eq.29 we see that the integrand of each of the

two Forward Dispersion Relations in Eqs.31 and 33 depends on only two s-channel isospin am-

plitudes. Now, since the imaginary parts of these s channel isospin amplitudes are positive above

threshold, they cannot cancel against each other anywhere inside the integral. This property is

known as “positivity” and will be of relevance to keep uncertainties relatively small.

The Forward Dispersion Relation for the T It=1 amplitude is obtained following the same

steps, except for the fact that it is antisymmetric, T (s, 0, u) = −T (u, 0, s), and therefore one

arrives to

ReT It=1(s, 0) =
2s − 4M2

π

π
PV

∫ ∞

4M2
π

ds′
ImT It=1(s′, 0)

(s′ − s)(s′ + s − 4M2
π)
. (35)

Note that in this case no subtractions are needed, since the leading Reggeon for the I = 1 ex-

change is the ρ which implies that Im T It=1(s′, 0) falls off as ∼ 1/s′ . Now there is no positivity

in the integrand, which depends on the three isospin amplitudes with different signs, as seen in

Eq.29. Once again, the whole relation is written in terms of the T It=1 amplitude in its s-channel

physical region.
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2.3.6. Roy and GKPY Equations

Roy equations are an infinite set of coupled integral equations for partial waves, obtained

from the integration of fixed t dispersion relations plus s↔ u crossing symmetry, written in such

a way that all amplitudes appearing inside the dispersive integrals are calculated over the phys-

ical region, including those initially coming from left cut contributions. There is an extensive

literature on Roy equations, starting with the original derivation by Roy in 1971 [46], includ-

ing phenomenological applications [45, 47, 48, 49, 50, 186] as well as more formal works on the

structure of the equations, properties of the integral kernels, uniqueness of solutions, extension to

higher energies, etc [213, 214, 215]. These were mostly developed in the 70’s and nice introduc-

tions can be found as a collection of lectures in [216] or in textbooks of that time [39] as well as

the review by the very S.M. Roy [217]. However, the interest in Roy equations faded away until

the late 90’s and early 00’s. Our aim here is just to make a very brief introduction to Roy equa-

tions and then focus on the works used to obtain the f0(500) pole. Hence, for a detailed explana-

tion of different developments and a complete list of references before 2001 we recommend the

Roy-equation review in [112]. For us it suffices to say that the renaissance of Roy equations was

mainly motivated by a renewed interest in threshold parameters [112, 99, 218, 219, 220, 221].

This was in part due to a discussion about the size of these parameters in connection with the

pion mass counting in Chiral Perturbation Theory (ChPT) and the size of the chiral condensate

[222], but also fostered by the proposals to obtain a better experimental determination from pi-

onic atom experiments (which were finally carried out successfully and gave the results already

commented at the end of Sec.2.2.2 [178, 179]). Hence, in the 00’s, the whole ππ scattering was

revisited with Roy equations [112] including sometimes ChPT input [99] and solving the old

“up-down” ambiguity [38]. The use of ChPT is interesting because it is the low energy effective

theory of QCD and provides strong constraints on the subtraction terms in Roy equations [99].

Based on this approach a precise and rigorous dispersive determination of the σ was published

in 2006 [113].

More recently, a new set of equations has been derived [117, 223, 224], which are similar to

those of Roy but with one subtraction instead of two. These are known as GKPY equations and

have allowed for a precise determination of the f0(500) pole just from experimental data, without

using ChPT but relying at low energies on the recent and precise NA48/2 data already reviewed

in Sec.2.2.2. Another pole determination using standard twice-subtracted Roy equations and

some input from [112] has been obtained in [119]. As we have repeatedly emphasized, these

approaches are in fairly good agreement (also with the non-dispersive determination in [99]) and

have triggered the radical f0(500) revision in the RPP 2012 edition [2].

The idea behind Roy and GKPY equations is to project into partial waves the fixed t disper-

sion relations. In this way one obtains a dispersion relation for each given partial wave, which in

the case of ππ scattering have the usual right cut, plus a left cut starting from 0 and extending to

−∞. This is relatively straightforward and actually it is the basis for the unitarization techniques

that we will review in Sec.3.5. However, if one only does that, there is still a left cut where

the partial wave at unphysical values, s ≤ 0, are needed. Roy and GKPY equations make use

of s ↔ u crossing to recast the whole left cut of a given partial wave as a sum over all partial

waves in the physical channel. At the end, all input in the dispersive integrals is over the physical

region, but the price to pay is that all partial wave equations are now coupled. This is an infinite

set of coupled integral equations, but if one does not consider very high energies one can just

keep the lowest partial waves in the equation.

Let us then sketch the derivation of both Roy and GKPY equations. As explained above,
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the only real difference is that the former have one subtraction and the latter have two. Since

the standard twice-subtracted Roy equation have been much more extensively treated in the lit-

erature, we will sketch here the once-subtracted GKPY case, but the derivation of Roy eqs. is

parallel. Let us then start from a fixed t dispersion relation, once-subtracted as in Eq.28, but

choosing the subtraction point at s0 = 0, and recasting the left cut contribution in terms of the

variable u′ = 4M2
π − s′ − t, i.e.,

T (I)(s, t) = T (I)(0, t) +
s

π

∫ ∞

4M2
π

ds′
[

Im T (I)(s′, t)

s′(s′ − s)
− Im T (I)(u′, t)

u′(u′ − s)

]

. (36)

Each of these two integrands by itself would yield a divergent integral due to Pomeron contri-

butions to Im T , which grow like ∼ s′, however when taken together such contributions cancel

against each other [117]. In the twice subtracted case, i.e. the Roy equations as originally derived

by Roy [46], one does not even have to worry about this issue.

Neither the subtraction constant, nor the second piece of the integral are evaluated at physical

values of s ≥ 4M2
π. But this can be fixed by using the crossing matrices defined in Eq.18, i.e.

T (I)(u′, t, s′) =
∑

I′

CII′

su T (I′)(s′, t, u′), T (I)(0, t) =
∑

I′′

CII′′

st T (I′′)(t, 0). (37)

The subtraction term is still reexpressed in terms of T I′′ (t, 0) which depends on t, but then we can

write another dispersion relation for T I′′ (t, 0)

T (I′′)(t, 0) = T (I′′)(t0, 0) +
t − t0

π

∫ ∞

t0

ds′
[

Im T (I′′)(s′, 0)

(s′ − t)(s′ − t0)
−

∑

I′′′ C
I′′I′′′
su Im T (I′′′)(s′, 0)

(4M2
π − t − s′)(4M2

π − s′ − t0)

]

, (38)

which for convenience is subtracted at t0 = 4M2
π. By defining a

(1)

0
= 0 we can write T I(M2

π, 0) =

a
(I)

0
and gather all these results as follows:

T (I)(s, t) =
∑

I′

CII′

st a
(I′)
0

(39)

+
s

π

∫ ∞

4M2
π

ds′
[

Im T (I)(s′, t)

s′(s′ − s)
−

∑

I′ C
II′
su Im T (I′)(s′, t)

(s′ + t − 4M2
π)(s′ + s + t − 4M2

π)

]

+
t − 4M2

π

π

∫ ∞

4M2
π

ds′
∑

I′′

CII′′

st

[

Im T (I′′)(s′, 0)

(s′ − t)(s′ − 4M2
π)
−

∑

I′′′ C
I′′I′′′
su Im T (I′′′)(s′, 0)

s′(s′ + t − 4M2
π)

]

.

Thus the whole input into the dispersive integrals has been rewritten in terms of the s-channel

amplitude in its physical region s′ ≥ 4M2
π. This is an equation that the ππ amplitude must satisfy

exactly. Note that s ↔ u crossing for fixed t has been imposed in the amplitude and is therefore

guaranteed. However, symmetry under s ↔ t is not ensured, since it has only been used to

recast the subtraction constant. Thus, it is frequent to implement Roy and GKPY equations

together with some supplementary conditions like s ↔ t crossing sum rules, or only on a subset

of amplitude parameterizations that satisfy unitarity, since that property is also not ensured by

Roy or GKPY equations alone.

In principle, everything can now be recast in terms of partial waves by using the partial wave

expansion in Eq.5 for each one of the T (I), T (I′) and T (I′′). The equation for a particular ℓ partial

wave can be obtained by using the orthogonality of Legendre polynomials to extract the desired
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partial wave on the left hand side by multiplying by the appropriate Pℓ(t) and integrating over t

between 0 and 1. However, this creates a rather lengthy expression in the right hand side of the

equation, whose derivation we will not follow here, but just show the final expression which is

valid for both Roy and GKPY equations as it is customarily presented [45, 47, 112, 117]:

t
(I)

ℓ
(s) = S T

I

ℓ(s) +

2∑

I′=0

ℓmax∑

ℓ′=0

∫ smax

4M2
π

ds′K
II′

ℓℓ′ (s, s′)Im tI′

ℓ′ (s′) + DT
I

ℓ(s), (40)

where S T
I

ℓ stand for the subtraction terms, which as we have seen only depend on the scattering

lengths of the S0 and S2-waves. For the GKPY once-subtracted case, which we have used to

illustrate the derivation here, they are just constants, whereas for Roy equations they are first or-

der polynomials in s. The second term contains the dispersive integral of the partial waves in the

physical region multiplied by some integration kernels K
II′

ℓℓ′ (s, s′), which for the once-subtracted

GKPY case can be found in [117] and for the twice subtracted Roy equations in [45, 47]. It is

worth remarking that at large energies these kernels behave as ∼ 1/s2 for GKPY equations and as

∼ 1/s3 for Roy equations. Thus the weight of the high energy region is somewhat larger for the

former. However, note that only the ℓ′ ≤ ℓmax appear in the kernel term, which is only integrated

up to a maximum energy smax, typically chosen between 800 and 1100 MeV. In some works this

smax is also called the “matching energy s0”. The rest of waves and the high energy contribution

above smax are collected into the so-called driving terms DT
I

ℓ(s).

The reason for separating the lowest waves ℓ ≤ ℓmax from the rest is that Roy and GKPY

equations are an infinite set of coupled integral equations for all ℓ, but in practice they are only

used on the lowest waves, whereas the other waves are considered as input. At low energies

higher partial waves are subdominant and one expects that describing them with simple data fits

should be accurate enough. For the works dealing with the determination of the sigma ℓmax = 1

and thus only S and P-waves are treated with Roy equations [99, 112, 113, 117, 118, 119],

whereas D waves and higher are included in the driving terms. Recently [225] the D and F waves

have also been analyzed with Roy equations and when the resulting waves are used inside the

S and P wave driving terms, the changes are within the uncertainties of previous calculations

[117].

In addition, the energy integral is split into two parts and the region above smax is also in-

cluded into the driving terms, due to several reasons. In particular, as already discussed in

Sec.2.2.4, there are no data on partial waves above 2 GeV and even above 1.5 GeV the avail-

able data are not very reliable. Moreover the partial wave truncation may simply be a bad ap-

proximation above those energies. Furthermore, Roy equations do not have a unique solution

in the whole s range, although in certain regions one can guarantee the uniqueness of the solu-

tion by providing, for instance, the value of the S-wave scattering lengths and the phase at smax

(see [112, 113]). Thus, a possible approach is to consider everything above smax as input while

solving Roy equations below smax, obtaining a single solution. In practice this has been done

in [99, 112, 119] for S and P waves and twice subtracted Roy equations, considering all other

waves as input.

For the twice-subtracted case, which is the most widely used and the one derived in Roy’s

original work [46], the form of the equations is the same as in Eq.40, although now the sub-

traction terms are first order polynomials in s, whose coefficients, once again, only depend on

the scattering lengths of the S0 and S2-waves. The corresponding kernels can be found in [112]

and, as commented above, at large energies behave as ∼ 1/s3. On the one hand, this means that
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Figure 18: Domain of applicability of Roy (and GKPY) equations in the complex s plane (from [113]), in M2
π units .

The continuous contour corresponds to using s and t inside the Martin-Lehmann ellipse, which ensures convergence of

the partial wave expansion. The domain defined by the discontinuous line, established using just axiomatic field theory,

is only slightly smaller ([213, 169] and see [113] for details). The dots correspond to the positions of the conjugated

poles of the f0(500) and the f0(980), all them well inside the analyticity domain. Reprinted figure with permission from

I. Caprini, G. Colangelo and H. Leutwyler, Phys. Rev. Lett. 96, 132001 (2006). Copyright 2006 by the American Physical

Society.

for the twice subtracted equations the high energy input has a much lesser weight on the results.

On the other hand, since the subtraction terms are polynomials, the uncertainty in the threshold

parameters propagates to the results but grows with the energy, until they become very large. For

this reason the most relevant and precise results using twice subtracted dispersion relation make

use of additional ChPT information at low energies [99]. A comparison of the size of different

terms using only experimental input and one or two subtractions can be found in [117].

Concerning the validity of Roy equations, they require the use of the partial-wave series for

Im T , which converges inside the Lehman-Martin ellipse. However, by assuming Mandelstam

analyticity the Roy equations are valid in a somewhat larger region (see [217] for a review). The

resulting domain of validity of Roy equations in the s complex plane has been calculated in [113]

and is shown in Fig.18. In this figure the positions of the f0(500) and f0(980) conjugated poles

are shown, and they clearly lie inside this domain, showing the full consistency of the approach

when applied to determine the pole positions, to be reviewed in Sec.2.5. Comparing Fig.18 with

Fig.4 it is also evident that some of the poles obtained from some old naive models lie well

beyond the Lehman-Martin ellipse.

Note also that, if one assumes Mandelstam analyticity, in the real axis the applicability region

[46] is −4M2
π ≤ s ≤ 60M2

π i.e.
√

s ≤ 1150 MeV (see [217] for a review). In the seventies

[213, 214, 226] it was shown that this ∼ 1.1 GeV applicability bound could be overcome by

choosing different trajectories in the complex plane of kinematic variables, although at the price

of a considerable increase in complexity so that they have been rarely used. As one of the very

few examples, a first extension up to ∼ 1560 MeV [213], using manifestly crossing symmetric

dispersion relations in the variables x ∼ st + tu + us and y ∼ stu, has been used in [218]

in connection with the low energy ππ expansion and ℓ ≤ 2 resonances. There are even more

complicated dispersion relations over hyperbolae in the (s, t) plane that extend the validity to

almost 1800 MeV [214] and the existence of solutions up to infinity has also been studied in

[226]. However, due to the complexity of these formalisms, all applications relevant to extract
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the σ pole use the original formalism, similar to the one presented here, and therefore everything

above 1.1 GeV is input and part of the driving terms.

Let us now concentrate on the use of dispersion relations to obtain reliable descriptions of

data that will later be used to determine accurately the σ pole parameters.

2.4. ππ amplitude from dispersion relations

There are several ways in which dispersion relations can be used:

1) as consistency checks in order to discard inconsistent data sets,

2) as constraints when fitting data, yielding what has been traditionally known as “energy

dependent data fits” or “constrained fits to data”,

3) solving them in a certain physical region, to predict the amplitudes there, using as input

data from another region or from other channels,

4) to extend the amplitude from the physical region into the complex plane to look for reso-

nance poles (or sometimes zeros of dynamical interest like Adler zeros).

Focusing on the the most relevant developments for the major revision of the σ parameters in

the RPP 2012 edition, this subsection will review the first three uses, which concern the amplitude

for physical values of s, and the next subsection will be dedicated to pole determinations for

unphysical values of s.

2.4.1. Dispersion relations as consistency checks of data

We have already commented that Forward Dispersion Relations [173] and Roy equations

[49] had been used to show the inconsistency of “up” solutions. After some controversy and the

resurrection of the problem in the late 90’s, the ambiguity was definitely solved in [38] in favor

of the “flat-down” scenario, which was the only one fully consistent with Roy equations. That is

why we only plotted such kind of solutions in Fig.2 and have discarded other possibilities.

However, even within that class of solutions there are different data sets, which as shown

in Fig.2 are still inconsistent with each other within their statistical uncertainties. The consis-

tency of these different data sets below 900 MeV was checked in [176] against the T It=1 and

T 00 Forward Dispersion Relations in Eqs.31 and 35. For this purpose, very flexible conformal

expansions were fitted to the existent Ke4 data and different sets of the S 0-wave phase shifts in

the elastic region. The parameterization ensured elastic unitarity, the correct threshold behavior

and maximal analyticity domain in the s complex plane with a right and a left cut. Those confor-

mal expansions converged very rapidly and only required few parameters to attain an acceptable

χ2/d.o. f . Similar fits were performed for every other ππ scattering partial wave and used inside

the dispersion relations. These are called Unconstrained Fits to Data, or UFD for short. These

fits are uncorrelated from wave to wave, therefore they can be very easily changed if new and

more precise data ever become available in a particular wave. The functional form of these UFD

fits is relatively simple and is detailed in [176]. In addition a Regge description of high energy

ππ scattering similar to that explained in Sec.2.2.4 was also considered as input in the dispersive

integrals.

Next, in order to quantify how well the dispersion relations are satisfied, one has to compare

the input curve versus the dispersive solution over a given energy range. For this purpose ∆i(s)

is defined as the difference between the left and right sides of each dispersion relation i that
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Data sets d̄2 for T It=1 d̄2 for T 00

Global fit from [176] 0.3 3.5

Ke4+ Grayer et al. B 1.0 2.7

Ke4+ Grayer et al. C 0.4 1.0

Ke4+ Grayer et al. E 2.1 0.5

Ke4+ Kaminski et al. 0.3 5.0

Ke4+ Grayer et al. A 2.0 7.9

Ke4+ EM, s channel 1.0 9.1

Ke4+ EM, t channel 1.2 10.1

Ke4+ Protopopescu et al. VI 1.2 5.8

Ke4+ Protopopescu et al. XII 1.2 6.3

Ke4+ Protopopescu et al. VIII 1.8 4.2

Table 1: Fulfillment of the T It=1 and T 00 Forward Dispersion Relations, Eqs.35 and 31, by fits to the Ke4 data in [42, 109]

when combined with one phase shift analysis below 900 MeV: Note there are different solutions of the CERN-Munich

experiment by Grayer et al. [33] (solution D starts above that energy), Kaminski et al. corresponds to [36], EM to the

solutions of Estabrooks and Martin in [35] and Protopopescu et al. to the phase shift sets given in different Tables of [31].

The data corresponding to the eight sets that satisfy best these constraints are actually those plotted in Fig.2. The “Global

fit” parameterization in [176] was obtained from a fit to those Ke4 data and some average of different sets in the 870 to

970 MeV region, where they seem to be most compatible among themselves, when considering systematic uncertainties

of the order of 10o.

one wants to check, whose uncertainties are called δ∆i(s). Next, the average discrepancies are

defined as follows:

d̄2
i ≡

1

number of points

∑

n

(

∆i(sn)

δ∆i(sn)

)2

, (41)

where in [176] the values of
√

sn were taken at intervals of 25 MeV in the
√

2Mπ ≤
√

s ≤
0.925 GeV range. That is, they were calculated even below threshold. Note the similarity of d̄2

i

with an averaged χ2/(d.o. f .), so that d̄2
i
≤ 1 means that the two curves are close and therefore

there is a good fulfillment of the corresponding dispersion relation within uncertainties. However,

dispersion relations have not been imposed in the experimental analyses and, as we will see next,

large deviations will occur.

The results in terms of d̄2
i

are summarized in Table 1, where we observe that many of the

most commonly used data sets were very inconsistent with Forward Dispersion Relations and

Ke4 data, which in principle was the most reliable set (Note that the very precise NA48/2 data was

not available yet, so that the uncertainties in Ke4 were still rather large). Actually, the data sets

or parameterizations in the last six rows of the Table can be considered inconsistent even from a

conservative point of view, since the average of the two d̄2
i

for the two dispersion relations was

larger than 3 and in particular the d̄2 for the T 00 dispersion relation was larger than 4. Moreover,

the Grayer et al. set E, could also be discarded because its good consistency is only apparent, due

to having a much larger uncertainty than other sets and it only satisfies the dispersion relation

as long as it overlaps with other sets within a couple of standard deviations. This came as a

relatively big surprise since some of these data sets were among the ones most widely used in

the literature and therefore the conclusions of any work relying on them should be taken very

cautiously.

Finally, in [176] a so-called global fit was obtained by fitting the Ke4 data and a set of aver-

aged data points in the 870 to 970 MeV region, where they seem to be most compatible among
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themselves, to which a systematic uncertainty of the order of 10o was added to cover the different

sets. As it can be seen in Table 1, the average of the two FDR’s was also less than 3 and this is

why it has been included in the best five fits. It is worth noticing that it was very close to solution

C and not far from B. Since it contained information from several fits it was considered to be

more realistic concerning uncertainties.

2.4.2. Dispersion relations to constrain data fits

This is the most common use of dispersion relations in ππ scattering. Among others, sin-

gle channel dispersion relations for partial waves, in which the left cut and or the subtraction

constants are treated within some approximation have been widely used in the literature to fit

multiple data sets. Of particular interest are those works that implement two body unitarity ex-

actly (which is not directly implemented in Roy or Forward Dispersion Relations) and include

Chiral Perturbation Theory to approximate parts of the amplitude like the left cut or the subtrac-

tion constants. Most of these are generically known as Unitarized Chiral Perturbation Theory.

As we will see at the end of this section, this approach yields σ poles which are very consistent

with those obtained from Roy and GKPY equations, but their left cut and high energy parts are

just approximations, so that they do not aim at precise determinations of σ parameters. Actually,

although they existed for long and were certainly good enough to determine the σ pole existence

in the 400 to 500 MeV region, they did not trigger the recent radical change in the RPP 2012 σ

parameters. Nevertheless they are some of the most relevant methods in order to understand the

f0(500) spectroscopic classification and nature. For these reasons we will dedicate to them the

whole Sec.3.5.

Thus, let us focus on the four works [99, 113, 118, 119] considered “the most advanced

dispersive approaches” by the 2012 RPP edition, which were used to obtain the “restricted range”

of sigma parameters in Eq.2. Of those, only the pole determination of the Madrid-Krakow group

[118] was obtained from a dispersion relation using as input a constrained data fit, whereas in [99,

112, 119] the pole was extracted from solutions of Roy equations below 800 MeV, together with

some theoretical constrains on threshold parameters. Thus, we will review now the constrained

fits of [117] and in the next subsection we will comment on the solutions of [99, 112, 119].

In the previous section we have seen how even some of the most widely used phase shift data

sets are in strong conflict with dispersion relations. This should not come as a surprise since

these data have been extracted using models that contain large systematic uncertainties. There-

fore one can try to obtain consistent fits by using the dispersion relations not just as checks but

as constraints on the fit parameters. Since one is interested in both consistency and a relatively

good description of data, these constrained data fits are to be obtained from data sets which by

themselves are not too inconsistent with dispersion relations and require just a small improve-

ment.

Thus, on a first work [176] the three Forward Dispersion Relations in Eqs.31, 33 and 35

together with the two sum rules in Eqs.32 and 34 were imposed upon the five fits in the first rows

of Table 1. This was achieved by minimizing:

∑

i=T+−,T 00,T It=1

d̄2
i + d̄2

K + d̄2
L +

∑

k





pk − p
exp

k

δpk





2

, (42)

where d̄2
K,L are the discrepancies of the two sum rules in Eqs.32 and 34. As before in the disper-

sive integrals the UFD description was used for all other waves. The pk are all the parameters
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Data Fits Constrained with FDR d̄2 for T It=1 d̄2 for T 00 K

Global fit from [176] 0.4 0.66 1.6σ

Ke4+ Grayer et al. C 0.37 0.32 1.5σ

Ke4+ Grayer et al. B 0.37 0.83 4.0σ

Ke4+ Grayer et al. E 0.6 0.09 6.0σ

Ke4+ Kaminski et al. 0.43 1.08 4.5σ

Table 2: Fulfillment of the T It=1 and T 00 Forward Dispersion Relations, Eqs.31 and 35, and the sum rule K in Eq.32,

by the best fits in Table 1 after they have been constrained to satisfy Forward Dispersion Relations and sum rules. The

fulfillment of the sum rule is expressed in standard deviations. Note that the only fits that once improved satisfy the

Forward Dispersion Relations and simultaneously the sum rule are the Global fit and that of solution C.

of the UFD sets, which are therefore allowed to vary, but not very far from their unconstrained

values to ensure that the data is still reasonably well described.

The results of the best fits in Table 1 after this procedure are summarized in Table 2, where

one can see that the new constrained fits can be made to satisfy rather well the two Forward

Dispersion relations that involve I = 0. We also show the K sum rule in Eq.32, which also has

contributions from I = 0 but it can be noticed that only the constrained Global fit and the one from

Solution C satisfy it well. For this reason these two were considered the two best fits. Moreover,

since it was shown in [176] that the central value from the constrained fit to Solution C lied

inside the uncertainty band of the Global fit, but the uncertainties of the latter were considered

more realistic, from that moment the Global fit was considered as the benchmark for a precise

description of ππ data consistent with Forward Dispersion Relations.

Actually, the Global fit just described was the starting point of the Madrid-Krakow group

for further constraining the data fits to ππ data with Roy and GKPY equations, and extending

the analysis to higher energies, although the functional form was slightly improved throughout

a series of works [114, 117, 176, 204, 227]. The improvements were made in all waves and

included more flexible parameterizations, differentiable matching conditions, sum rules, etc. as

well as an update on new data, either at higher energies, or the latest NA48/2 data. In Table 3

we show how well the updated and improved UFD, which include the improved S0 “global-fit”,

satisfy the three Forward Dispersion Relations, three Roy Equations and three GKPY equations.

Note that the UFD fit does not always satisfy very well these dispersion relations. In particular

the GKPY equations for the S0-wave in the region above 932 MeV are satisfied poorly. There is

clear room for improvement.

On a second stage, nine dispersion relations were imposed on the previous fits as additional

constraints. This is achieved by minimizing:

∑

i

W2
i d̄2

i + d̄2
I + d̄2

J +
∑

k





pk − p
exp

k

δpk





2

, (43)

where now the d̄2
i

include not only the averaged discrepancies of the three FDRs up to a given

energy, but also those of the three Roy equations and the three GKPY equations. The discrepan-

cies of Roy and GKPY equations are defined in a similar way as we did for the FDRs in Eq.41,

but starting from threshold and up to 992 MeV or 1100 MeV. The discrepancies in the FDRs are

calculated this time up to 932 GeV or 1420 GeV. This is done to check the fulfillment in different

regions. In addition, d̄2
I,J are the discrepancies of the two sum rules in Eqs.9 and 10. There is

no need to impose the K and L sum rules, because they are well satisfied. The Wi are numbers,
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d̄2
i

UFD CFD UFD CFD

FDRs s1/2 ≤ 932 MeV s1/2 ≤ 1420 MeV

π0π0 0.31 0.32 2.13 0.53

π+π0 1.03 0.33 1.11 0.43

It=1 1.62 0.06 2.69 0.22

Roy Eqs. s1/2 ≤ 992 MeV s1/2 ≤ 1100 MeV

S0 0.64 0.02 0.56 0.04

S2 1.35 0.21 1.37 0.26

P 0.79 0.04 0.69 0.12

GKPY Eqs. s1/2 ≤ 992 MeV s1/2 ≤ 1100 MeV

S0 1.78 0.23 2.42 0.24

S2 1.19 0.12 1.14 0.11

P 2.44 0.68 2.13 0.60

Average 1.24 0.22 1.58 0.28

Table 3: Average discrepancies d̄2
i

of the unconstrained data fits (UFD set) and the constrained ones (CFD) for each

dispersion relation up to two different energies [117]. Note the clear improvement in consistency for the CFD set, as all

d̄2
i
< 1 in both energy regions.

typically between 3 and 7, to weight the dispersive constraints against the data description. They

are varied in some energy intervals to ensure that the dispersion relations are well satisfied in all

energy regions while not spoiling data. The price to pay is that now all the waves are correlated.

However, these new Constrained Fits to Data (CFD for short) are much more reliable than the

UFD set, being consistent with analyticity, unitarity, crossing, etc. This can be checked in Table 3

where the average discrepancies of this CFD set for the nine dispersion relations are given up

to different energy regions. Note that Forward Dispersion Relations were calculated up to 1420

MeV (we saw that beyond that energy phase-shift analyses became much less reliable), whereas

Roy and GKPY equations are limited to
√

s < 1100MeV as discussed in the previous section.

The resulting constrained S0-wave and inelasticity are shown in Fig.19 and Fig.20, together

with the unconstrained results. It can be noticed that the change in the S0-wave phase shift

from unconstrained to constrained in the S0-wave is very small, only sizable in the f0(980)

region or above. When comparing with Fig.2 note that below 900 MeV only the data which are

roughly consistent with dispersion relations and low energy Ke4 decays are shown. The very

small uncertainty band is driven by the very precise low energy data of NA48/2. Note also

that the smallest the uncertainty band the more difficult to satisfy the dispersion relation, so the

results of Table 3 are even more impressive. The latest CFD S0-wave is closer to the Grayer et

al. solution B, although this solution was slightly disfavored compared to solution C when only

Forward Dispersion Relations and the “Old Ke4 decay data“ were considered. This is largely due

to the recent NA48/2 data and the isospin correction [177] discussed in Sec.2.2.2, see Fig.6.

Concerning the inelasticity in Fig.20, the dispersive constraints clearly support the “dip-

scenario” since the inelasticity decreases to η
(0)

0
≃ 0.3 slightly above 1 GeV. In [117] it was

actually shown that forcing the non-dip scenario into the dispersive constraints requires a phase

that does not describe the data. The Gunter et al. data set, which stands for some preliminary

results of the E852 Collaboration [184] has not been included in the fit, but also favors the dip

solution. That the “non-dip” scenario is disfavored by Roy equations was also confirmed in

[119]. As we will see below, settling the issue of the inelasticity above K̄K threshold is relevant
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Figure 19: Fits to ππ scattering data from [117], both unconstrained (UFD) and constrained by dispersion relations (CFD)

as explained in the text. Note that the CFD parameterization is just a relatively small variation of the UFD, consistent

within uncertainties, except in the 1 GeV region. Compared to Fig.2, data sets that do not satisfy relatively well Forward

Dispersion Relations and sum rules are not shown [176]. The small uncertainty band is mainly driven by the precise

Ke4 data of NA48/2 [116]. The “Old K-decay data” correspond to older Ke4
experiments[42, 109]. As in Fig.10, all Ke4

experiments have been corrected for isospin and subtracted the δ1 phase as explained in Sec.2.2.2. Figure taken from

[118].
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Figure 20: Constrained (CFD) and unconstrained (UFD) fits to the S0 inelasticity from [117]. By comparing to Fig.11,

it is clear that the “dip-scenario” is the favored one. The data are as in Fig.11. Figure taken from [118].

for a precise determination of the f0(980) pole, and indirectly for the σ.

In Fig.21 we show the comparison between the CFD input and its corresponding dispersive

output from Forward Dispersion Relations (left column), Roy equations (central column) and

GKPY equations (right column). As usual, Forward Dispersion Relations extend up to 1400

MeV, whereas Roy and GKPY equations are valid only below 1100 MeV. It can also be noticed

that given this same input Roy equations are a much more stringent constraint than GKPY at low

energies, whereas GKPY equations are more stringent above 400 or 450 MeV. This is mainly

due to the linear propagation in s (quadratic in energy) of the uncertainties of the scalar threshold

parameters and the main motivation for the derivation of GKPY equations [117, 223, 224], with

just one subtraction instead of two. Note also that the CFD set is consistent within uncertain-

ties throughout the whole energy region. Moreover, in case one could doubt the data selection,

a recent statistical analysis [228] has shown that the UFD set, despite its assumptions on the

systematic uncertainties of the data, only violates marginally the normality requirements of the

residual distributions, which would be satisfied with rather tiny modifications of the data selec-

tion, leading to almost identical results perfectly consistent with statistical requirements, thus

reinforcing the results for the UFD set, which was the starting point of this whole approach. As

we will see below, this very consistent and precise data description will give rise to a reliable and

accurate f0(500) pole determination. But first let us comment on the other use of the dispersive

approach.

2.4.3. Solutions of Dispersion relations

Dispersion relations can also be solved to predict the amplitude in a certain physical region

from data or other constraints in other regions. With different variations, this is the approach

followed in the other three “most advanced” dispersive analysis [99, 113, 119] quoted in the

2012 RPP edition. The renewed interest in Roy equations in the 00’s was actually fostered by a

detailed work along these lines in [112], which was then used as a starting point or basic reference

for subsequent works.

The first issue to address within this approach is whether a solution exists and is unique once

the driving terms and scattering lengths are known. The answer is positive for the S and P-
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Figure 21: Consistency of the Constrained Data Fit in [117] with respect to dispersion relations. Left column: Forward

Dispersion Relations, direct means the input amplitude and dispersive stands for the result of the dispersive integral.

Central column: Roy equations for the S0, P and S2-waves Roy Equations. Right column: GKPY equations for the S0,

P and S2-waves. In Roy and GKPY equations, “in” means that the curve is calculated with the CFD parameterizations

whereas “out” stands for the dispersive result using CFD as input. The dotted vertical line marks the opening of the KK̄

threshold. The dark bands represent the uncertainty. Figures taken from [117].
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wave Roy equations in a region between threshold and a “matching” energy s0 chosen between

mρ ≃ 770 MeV and the energy where δ
(0)

0
= π/2. Since the latter occurred around 860 MeV for

the energy-independent analysis of Estabrooks and Martin [35] and the CERN-Munich solution

B of Grayer et al. [33] (which is the only one in the previous Hyams et al. [32] work by the same

collaboration), in [112] the matching energy was chosen at
√

s0 = 800 MeV 7. As explained

in Sec.2.3.6, the amplitude above that energy as well as higher partial waves are considered

input and included in the driving terms. Since at threshold the phase vanishes, the values of

the S and P phase shifts at the matching point define a boundary problem together with the

Roy equations. Note also that since Roy equations are solved exactly one is setting the 4π

contribution, which should open up at 560 MeV, exactly to zero. As commented in previous

sections, such inelasticity has not been observed below 1 GeV, and some estimates of its size in

some models [75, 76, 122, 123] show that it is indeed very small and does not alter significantly

the position of the σ pole.

Then, in [112] this problem was solved numerically by minimizing the difference between the

right and left hand of the Roy equations at 22 points. This was made by varying the parameters

of the simple parameterizations first suggested in [229]:

tan δ
(I)

J
= σ(s)k2J[a

(I)

J
+ BI

Jk2 +CI
Jk4 + DI

Jk6]

(4M2
π − sI

J

s − sI
J

)

, (44)

where one of the parameters is fixed from the value of the phase at the matching point. The

scattering length a
(2)

0
was tuned to avoid cusps at the matching point. Note that for a given value

of a
(0)

0
(which in the above equation is given in Mπ units) and a given input, Roy equations admit

just one solution without cusps for one value of a
(2)

0
. As shown by Morgan and Shaw [173], this

produces a “universal curve” which is almost a straight line in the (a
(0)

0
, a

(2)

0
) plane. However, due

to the uncertainties in the input this universal curve becomes a “universal band”. Interpolation

parameterizations of the BI
J
,CI

J
,DI

J
and sI

J
in terms of (a

(0)

0
, a

(2)

0
) can be found in [112]. Note that

by parameterizing the elastic phase shift, elastic unitarity is guaranteed.

The functional space spanned by these functions was large enough to reach differences be-

tween the left and right sides of the Roy equations of the order of 10−3, much smaller than the

experimental uncertainties there. Note that this is a very different approach to that in [117],

which we described in the previous subsection, since there dispersion relations were only im-

posed within experimental uncertainties in a fit to data, not solved. Thus, traditionally the UFD

and CFD of [117] would have been called “energy dependent data analyses”. In contrast, in the

case of [99, 112, 119] no data on the S or P phases shifts are used as input below 800 MeV and

should be considered as predictions. We show in Fig.22 the resulting S0-wave phase shifts from

[112] as the region between the dashed curves.

The predictions of Roy equations can be made even more accurate by imposing further the-

oretical constraints from chiral symmetry, which implies relations between amplitudes. In par-

ticular, at low energies chiral symmetry implies that in a low energy and pion mass expansion of

the amplitudes, only certain terms are allowed, which depend on a few phenomenological con-

stants at each order. This expansion is known as Chiral Perturbation Theory (ChPT) [54, 55] and

will be explained in detail in Sec.3.3. What is relevant now is that this chiral expansion can be

7As seen in Fig.2 other experimental data sets, like solution C, may reach π/2 before 800 MeV, but the choice is also

consistent with the later findings for the UFD and CFD fits in [117].
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Figure 22: ππ scattering S0-wave phase shift. Solutions of Roy equations below 800 MeV with or without imposing

chiral symmetry constraints (shaded region [99] or region between dashed curves [112], respectively). Reprinted from

Nucl. Phys. B 603, 125 (2001). G. Colangelo, J. Gasser and H. Leutwyler, “ππ scattering”. Copyright 2001, with

permission from Elsevier.

matched to the phenomenological expansion of the amplitudes provided by the Roy equations,

thus providing further constraints on the solutions of the Roy equations. This was done in [99]

using the phenomenological representation obtained from Roy equations in [112]. The matching

procedure, which was carried out up to order k6 (or M6
π, which both correspond to a two-loop

calculation in ChPT) is rather technical and the reader is referred to [99] for details as well as for

the implications on the low energy parameters of ChPT. As a matter of fact, one of the main re-

sults obtained by combining Roy equations and ChPT concerns the s-wave ππ scattering lengths.

Actually, the sharp predictions obtained within the framework of Roy equations triggered an in-

tense experimental program. This effort culminated in the NA48/2 precise measurement of the

ππ scattering phase at low energies, which not only provided precise values of threshold parame-

ters, but also turned out to be very relevant for the dispersive determination of the σ parameters,

as we have seen in the previous section, and for the RPP selection of σ results. The verification

of these ChPT+Roy equations predictions —at a time when lattice methods were not yet provid-

ing significant results— was crucial for the acceptance of the theoretical picture that underlies

the analysis of ChPT. It showed, for instance, that the theoretical alternatives developed in [222],

although logically coherent, are not viable as they are not consistent with what is observed.

Nevertheless, for this σ review the most relevant result is the S0-wave phase shift from [99],

which is also shown in Fig.22 as a continuous line. Note that the uncertainties of the Roy equation

solution with chiral symmetry constraints (gray band in Fig.22 are smaller than without chiral

constraints, although, of course, they lie within the uncertainty of the solutions of Roy equations

alone (area between dashed lines).

These solutions were revisited first in [221] in view of the almost simultaneous Ke4 decay
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results of the E865 collaboration and a general agreement with the solutions in [99] was found,

with discrepancies never much beyond the one standard deviation level. Note that those Ke4

results were practically superseded by the recent NA48/2 data and by the need to include a

sizable isospin correction as explained in Sec.2.2.2. After some debate [189, 230], the Roy

equation solutions in [99] were also shown to be compatible with the CFD fits of the Madrid-

Krakow group [117] described in the previous section, although only after the final NA48/2 data,

corrected from isospin, were included in the latter analysis and the value of δ
(0)

0
(mK) − δ(2)

0
(mK)

was removed from the CFD fits (see [189, 230, 231, 232, 233] for details). This fairly reasonable

agreement between the CFD parameterization and the [99, 112] predictions can be seen in Fig.23.

In addition, in [119] the S0-wave solution of Roy equations in [112] has been extended up

to the KK̄ threshold, where the new matching point is located. The P and S2-waves are taken

as input from the results in [112] but including the latest S-wave scattering lengths provided by

NA48/2. Note that setting the matching point at the KK̄ threshold8 does not imply a unique

solution. Thus, for the same input as in [112], including the phase at 800 MeV, another condition

has to be imposed on the derivative of the phase shift at the two-kaon threshold. Roy equations

are solved below 800 MeV, but between this energy and 4m2
K

, data on the phase shift is fitted.

For this, a small modification of the S0-wave Schenk parameterization in Eq.44 is used to ensure

the derivative condition at KK̄ threshold. Below 800 MeV the results are very similar to those

in [112] and [117], as can also be seen in Fig.23. From 800 MeV up to the two-kaon threshold,

the difference between the UFD or CFD parameterizations and this Roy equation solution is

somewhat larger, as can be seen in Fig.22, but not dramatic. As we will see in the next subsection,

this will be in part the cause of the relatively small different values of the pole positions obtained

when using the constrained fits or the Roy equation solutions.

2.5. Precise determination of the f0(500) pole from dispersion relations

Once we have seen that there are accurate descriptions of ππ scattering amplitudes which are

consistent with data and dispersion theory, we are in a position to review the dispersive extraction

of the σ pole. The very same dispersion relations that have been imposed or solved to ensure the

consistency of the data description in the real axis can now be used to calculate the value of the

amplitude at any point on the first Riemann sheet of the complex s plane.

However, since we are interested in resonances and their associated poles we need the value

of the amplitude on the second Riemann sheet. Fortunately, we have already seen in Sec.2.3.3

that in the elastic regime the S matrix partial wave on the second Riemann sheet is the inverse

of the S matrix partial wave on the first, so that we are actually looking for zeros of the S matrix

on the first Riemann sheet, namely S
(I)

J
(s) = 1 − 2iσ(s)tI

J
(s) = 0. Note that this relation does

not hold for the forward S matrix, which in order to be inverted would require knowledge of

other values of t , 0. Hence, one can continue it to the first Riemann sheet, but its values on the

second Riemann sheet require more information that just t = 0 amplitudes. Moreover, even if we

were able to continue the Forward Dispersion Relations to the second sheet and find poles, we

would not be able to determine the spin of the associated resonance (at most we could determine

its isospin depending on which FDRs the pole appears, and tell if the spin is even or odd).

Therefore, when looking for poles and resonances one uses partial wave dispersion relations,

in which we have seen that the partial wave unitarity condition allows for a straightforward

continuation to the second sheet and the spin of the resonance is completely determined. Of

8as usual, isospin breaking is neglected and mK is the average of the charged and neutral masses.
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Figure 23: ππ scattering S0-wave phase shift. We show the central value of the Roy equation solution with chiral

symmetry constraints in [99] (CGL) and [119] (Moussallam) versus the central values of the Constrained Fits to Data in

[117] (CFD). Note the fairly good agreement of these approaches.

course, once these equations had been implemented in the physical region, the analytic extension

is straightforward, or even easier, since the principal values which were needed on the real axis

are no longer present. In addition, the residue of the pole in the second Riemann sheet can be

easily calculated and related, via Eq.22, to the coupling of the resonance to two pions gσππ.

At this point it is important to emphasize that making the analytic extension to the complex

plane by means of a partial wave dispersion relation is model independent because in that way a

continuation to the complex plane by means of a particular functional form or model is avoided.

The only relevant issue is to have a data description which is consistent with dispersion relations

in the physical region and then the analytic continuation to complex values of s is performed with

the dispersive integral, whose only input lies on the real axis. Usually one uses physically moti-

vated functional forms, or simple polynomials at different energies which are carefully matched

onto each other at different physical regions, but a spline or a curve drawn by hand would equally

do as long as it satisfied dispersion relations and described the data. Note that these functional

forms may not have an analytic continuation to the complex plane if they are made by matching

pieces, or, if made from models, these may have different analytic structures depending on what

resonances or poles one starts from. Therefore, when using models or particular functional forms

instead of dispersion relations, the results for the poles can be very model dependent. Of course,

if a resonance is relatively narrow and well isolated, simple parameterizations can provide a good

approximation, but the σ is extremely wide and thus the analytic continuation has to be made

very carefully. In particular, as discussed in Sec.2.3.2, it is important to have the left cut under

control to claim precision. Certainly there are many models that make very reasonable analytic

extensions and approximations, many of which we will review in the following sections, but un-
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Eqs.
√

sσ (MeV) |gσππ|
Caprini, Colangelo, Leutwyler [113, 234] Roy 441+16

−8
− i(272+9

−12.5
) 3.31+0.17

−0.08

Moussallam. [119] Roy 442+5
−8
− i(274+6

−5
) -

Garcı́a-Martı́n, Kaminski, Roy (445 ± 25) − i(278+22
−18

) 3.4 ± 0.5 GeV

Peláez, Ruiz de Elvira [118] GKPY (457+14
−13

) − i(279+11
−7

) 3.59+0.11
−0.13

GeV

Table 4: Poles and residues of the f0(500) resonance obtained from the analytic continuation to the complex plane using

dispersive methods. The input in the integrals only comes from the physical region in the real axis, where it is consistent

with data and dispersion relations. The two first rows use as input solutions of Roy equations: either below 800 MeV

[113] or solutions below 800 and constrained fits up to 2MK [119]. Since they basically share all other input, they are

almost identical. The last two rows are obtained [118] from the analytic continuation using Roy or GKPY equations of

an input which is not a solution but a fit to data constrained by Roy and GKPY equations up to 1.1 GeV and Forward

Dispersion Relations up to 1.42 GeV.

fortunately other models do not and get plain wrong poles and artifacts. It is therefore advisable

not to rely blindly on any model or specific parameterization to perform the analytic continua-

tion in search for the σ pole. One has to check the analytic properties first. Doing otherwise has

been one of the main sources of confusion when dealing with the existence and the parameters

of the σ meson and that is why the appearance of dispersive model-independent approaches has

triggered the major revision of the σ pole in the 2012 RPP edition.

Hence, we have collected in Table 4 the poles and couplings that have been obtained by using

Roy or GKPY equations to perform the analytic extension to the complex plane. On the one hand,

the poles in the first two rows are obtained from solutions [113, 119] of Roy equations and they

basically share the same input, except that the solutions of [113] made use of theoretical ChPT

constraints at low energy, whereas the most recent one [119] includes the NA48/2 data and fits

data from 800 MeV to the two-kaon threshold instead. Also, in [113], the input δ
(0)

0
= (82.3+10

−4
)o

at 800 MeV was taken conservatively in order to include more data sets, whereas in [119] those

additional sets were ignored and δ
(0)

0
= 82.3o ± 3.4o was assumed as input, as done in [112].

This explains the smaller and much less asymmetric uncertainties in [119] compared to those in

[113]. On the other hand, the last two rows in Table 4 are not obtained from solutions but from

data fits constrained to Roy and GKPY equations as well as Forward Dispersion Relations. Then

either Roy or GKPY equations are used for the analytic continuation. Note that these two pole

extractions are very consistent, although the one from GKPY equations is more accurate, since

the subtraction term uncertainties do not grow with energy as in Roy equations. Despite differing

in the approach and the input above KK̄ threshold and other waves, the results in all four rows

are quite consistent. The same fair agreement is found for the coupling to two pions.

Therefore, in order to be conservative and include the differences between the results in

Table 4 as systematic uncertainty, the following band was suggested in Sec.1

√
sσ = 449+22

−16 − i(275 ± 12) MeV, |gσππ| = 3.45+0.25
−0.22 GeV (45)

as a “conservative dispersive estimate”. This has been obtained by combining the first and fourth

rows of Table 4. This estimate covers completely the result in the second row. The third row

is less relevant since it is just a less accurate check of the fourth row, performed by the same

authors [118]. Following a similar procedure to combine uncertainties, a conservative dispersive

estimate for the coupling is also provided in Eq.45. The RPP 2012 edition includes the result of

[99] as one of the “most advanced dispersive results”, but as the very authors explain in [99] their
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√
sσ (MeV) |gσππ| (GeV)

Dobado, Peláez [78] 440 − i 245 -

Oller, Oset [84] 445 − i 221 -

Colangelo, Gasser, Leutwyler [99] 470 ± 30 − i(295 ± 20) -

Oller [130] (443 ± 2) − i(216 ± 4) 2.97 ± 0.04

Zhou et al.[104] 470 ± 50 − i(285 ± 25) -

Garcı́a-Martı́n, Ynduráin, Peláez [114] 474 ± 6 − i(254 ± 4) 3.58 ± 0.03

Caprini [115] 463 ± 6+31
−17
− i(259 ± 6+33

−34
) -

Mennessier, Narison, Wang [121] 452 ± 13 − i(259 ± 16) 2.64 ± 0.10

Peláez, Rı́os [235] (fit D) 453 − i 271 3.5

Caprini et al.[236] 457 ± 28 − i (292 ± 29) 3.8 ± 0.4

Table 5: Other relatively recent determinations of the σ pole using some form of analytic properties or data constrained

by Roy equations and chiral symmetry [99]. The different methods are briefly explained in the text.

calculation is obtained from the specific parameterization, whose functional form was given here

in Eq.44, not from the dispersive formalism. Some of these authors with another collaborator

performed the corresponding dispersive pole extraction in [113], thus superseding that of [99],

which is nevertheless listed in the third row of Table 5.

At this point it is important to remark that the effect of removing completely the contribution

of the left-hand cut was also studied in [113] leading to a pole at
√

sσ = 500 − i260 MeV. So the

whole left hand cut contribution decreases the f0(500) mass by δM ∼ 60 MeV but increases the

width by δΓ = 24 MeV .

Of course, good approximations to these poles were already obtained before the full treatment

with Roy or GKPY equations became available. As a matter of fact, as long as the model or

parameterization does not have artifacts, is fitted to a reasonable set of data and has some minimal

analyticity requirements, a σ pole is always found at a fairly reasonable place around 400 to 550

MeV in mass with a large width. Some models even have an approximation to the left cut and

then the resulting pole is very close to the dispersive result.

For instance, in Table 5 we have collected a sample of poles obtained from several parameter-

izations that meet some of the previous requirements. From top to bottom they are ordered from

older to more recent. One should not be misguided by the tiny uncertainties attached to some

of these results, since systematic uncertainties associated to the model are rarely evaluated and

these may come from the approximations on the left cut or high energy contributions, the data

selection, the analytic continuation, etc... Hence, when uncertainties in that table are comparable

or even smaller than the uncertainties of the dispersive determinations, they should be considered

just statistical uncertainties mainly coming from the fit to the data that has been fitted. These er-

rors are expected to be much amplified by the analytic extrapolation to a pole situated deep in

the complex, since analytic continuation is an ill-posed (or unstable) problem in the Hadamard

sense [236, 237].

With this caveat about uncertainties in mind, let us comment on the different entries of Table

5. The result in the first row was obtained from a dispersion relation for the inverse amplitude in

the elastic approximation [78], which ensures elastic unitarity and where the left cut and the sub-

traction constants are approximated within NLO ChPT. In the second row the N/D method was

used. This method consists of one dispersion relation for the numerator of the amplitude, con-
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taining an approximated left cut, and another dispersion relation for the denominator, containing

the physical cut where unitarity is imposed exactly [84]. The result in the third row is obtained,

as just commented above, from the phenomenological parameterization of the solutions of Roy

equations in [99]. The fourth row is a reanalysis [130] with the methods of [84] where the cou-

pling is also provided. The fifth row corresponds to the analysis using a partial-wave dispersion

relation plus chiral and crossing constraints, where the left cut is approximated by ChPT to two

loops and a cut-off as an additional parameter. Both the sixth [114] and seventh [115] rows use

conformal mappings, which maximize the analyticity domain of the phenomenological parame-

terization, to fit the recent Kℓ4 and other data. The eighth row [121] corresponds to an analytic

K-matrix model with a form factor shape. The ninth row is again the Inverse Amplitude Method

but to two loops [235] with additional constraints on the pion mass dependence from lattice. In

the last row we show the result of an analytic method to extract the pole without using the integral

representation, which uses Padé approximants and the CFD parameterizations of [117] as input.

As seen in Table 5 all these approaches and models provide a fairly consistent description of the

f0(500).

The interest of many of these models goes beyond the simple determination of the f0(500)

parameters and may provide an understanding of the dynamics that generates the σ meson, how

it relates to other resonances and QCD, and even how an f0(500) description in other processes

can be related to its properties in ππ scattering. In particular, the poles obtained using ChPT

constraints will be treated in more detail in the next section.

3. CHIRAL SYMMETRY AND THE f0(500)

As we have shown in previous sections, the existence of a light and very broad σ meson has

been firmly established for almost two decades and its parameters have been determined with

relatively good precision by means of dispersive analyses and data within the last decade. In

this section the connection of this resonance with chiral symmetry and QCD will be reviewed.

In particular me will make extensive use of the modern techniques of effective Lagrangians.

Recommended textbooks on this modern perspective are [238, 239, 240, 241].

3.1. Chiral Symmetry

Since the physics we are interested in occurs below 1 or 1.5 GeV at most, we can restrict

the QCD Lagrangian to the lightest N f = 3 quark flavors, q j = u, d and s. For brevity we have

omitted the quark color indices by gathering the Nc quark fields with different colors into a vector

q j. Then the QCD Lagrangian can be written as

LQCD =

N f∑

j=1

q̄ j(x)
(

iD6 −m j

)

q j(x) − 1

4

N2
c−1
∑

a=1

Ga
µν(x)G

µν
a (x) (46)

Ga
µν(x) = ∂µAa

ν − ∂νAa
µ + g f a

bcAb
µAc

ν, D6 µ = (∂µ − igtaAa
µ/2)γµ,

where Aa
µ, with a = 1...(N2

c −1) are the gluon fields, γµ the Dirac matrices, g is the strong coupling

constant, f a
bc

are the structure constants of the S U(Nc) group and T a are the S U(Nc) generators.

We have kept Nc arbitrary, because the study of the Nc dependence will be very relevant in Sec.4.

However, in real life Nc=3 and T a = λa, i.e. the S U(3) Gell-Mann matrices.
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In practice, the so-called “current-quark masses” [2] mu = 2.3+0.7
−0.5

MeV , md = 4.8+0.7
−0.3

MeV ,

ms = 95 ± 5 MeV that appear in this Lagrangian9 are much smaller than typical hadronic scales

of order ∼ 1 GeV . Thus it makes sense to consider first the “chiral limit” of vanishing quark

masses for the N f = 2 or N f = 3 lightest quarks, in which the Lagrangian becomes invariant

under the S U(N f )L × S U(N f )R group of transformations L and R given by:

qL,R −→ UL,RPL,Rq = exp

(

−iθL,R
j

T j

2

)

qL,R, (47)

where now T j are the generators of the S U(N f ) group, namely T j = λ j for N f = 3 and T j = τ j,

the Pauli matrices, for N f = 2. In addition, qL,R stand for the quark field projections:

qL,R = PL,R q =

(

1 ∓ γ5

2

)

q. (48)

While parity transforms these projections into each other, this cannot be achieved with a rotation,

thus it seems as if they had some “handedness”. That is the reason why they are known as the

left and right components of the quark field and the symmetry is called a “chiral symmetry” 10.

Classically, this would imply the conservation of the charges associated to the following vector

and axial currents:

V
j
µ = q̄γµT jq, A

j
µ = q̄γµγ5T jq. (49)

Note that the set of “vector” transformations corresponding to θa ≡ θL
a = θ

R
a is a subgroup called

S U(3)L+R or S U(3)V . Axial transformations correspond to θa = θL
a = −θR

a and despite not

forming a subgroup, the notation is frequently abused and their set is called S U(3)A.

Thus, if N f light quarks were massless, hadrons would appear in multiplets of S U(N f )L ×
S U(N f )R. Of course, quarks are not exactly massless and small perturbations within this classi-

fication are expected; of the order of a few MeV for u and d quarks and of the order of a hundred

for the strange one. However, only multiplets of S U(3)V are actually observed. For instance,

there is a clear JP = 1− nonet of vector mesons formed by the three ρ(770), the four K∗(892),

the ω(770) and the φ(1020). Their mass difference can be easily explained by the strange quark

in the K∗(892) or the two strange quarks in the φ(1020). But the closest JP = 1+ axial-vector to

the ρ(770) is the a1(1260), almost 500 MeV heavier. These two particles do not have strangeness

and their mass difference cannot be explained by the tiny masses of the u and d quarks. Given

the fact that there are no other parameters that break the S U(3)L×S U(3)R chiral symmetry in the

QCD Lagrangian, this and other similar examples imply that it must be spontaneously broken

down to S U(3)V . This means that axial charges do not annihilate the vacuum. That is, there are

states |φk(pµ)〉 such that:

〈0|A j
µ|φk(pµ)〉 = i f j pµδ

jk
, 0, (50)

Therefore, the vacuum is not invariant under chiral symmetry transformations and the main mea-

sure [242, 99] of this spontaneously broken invariance is the non-vanishing chiral condensate

〈0|q̄q|0〉. In the chiral limit, Goldstone’s theorem then implies the appearance of an octet of

massless Nambu-Goldstone bosons (NGB)—one per broken symmetry generator. Due to the

small quark masses these NGB acquire a small mass and are called pseudo-NGB, but the rel-

evant fact is that they are still separated from the other mesons by a large gap. As a matter of

9Actually these are renormalized masses within the MS renormalization scheme at a scale µ = 2 GeV .
10From the Greek “χǫιρ” (kheir), for “hand”.
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fact, for N f = 2 these pseudo-NGB are nothing but the three pions, whereas for N f = 3 they also

comprise the four kaons and the eta, which form an octet several hundreds of MeV lighter than

any other octet of mesons. Thus, Eq.50 implies that the f j are to be identified with the pion, kaon,

and eta decay constants. In addition, since the pseudo-NGB are massive, Eq.50 above implies:

〈0|∂µA
j
µ|φk(pµ)〉 = f jm

2
φ jδ

jk, (51)

which is known as the Partially Conserved Axial Current relation (PCAC), since this current

is conserved except for the the explicit chiral symmetry breaking induced by the small quark

masses.

Note also that if one restricts the Lagrangian to the two lightest quarks, the same pattern is

reproduced, this time with S U(2) instead of S U(3) groups. The S U(2)V subgroup is nothing but

isospin symmetry.

The existence of NGBs and a mass gap has important consequences on the dynamics of

mesons at low energies, particularly for the f0(500), that will be reviewed throughout this sec-

tion. The rigorous and systematic way to implement these chiral constraints is through the low

energy effective theory of QCD, which is known as Chiral Perturbation Theory (ChPT). Unfortu-

nately, ChPT is an energy expansion and cannot describe resonances and their associated poles,

but just their low energy effects. However ChPT can be combined with dispersion theory, giv-

ing rise to an approach generically known as unitarization, which is able to describe resonances

while incorporating chiral constraints at low energy. All these issues will be the subject of the

next subsections. However, we will start describing a simple and widely used model that cap-

tures many, but not all of the main low energy features of chiral symmetry. It will be used to

introduce some basic concepts and notation, but the issues in which it deviates from QCD and

the experimental observations will be pointed out too.

3.2. The Linear Sigma Model

A very simple and popular model to deal with the σ and chiral symmetry breaking is the

Linear Sigma Model (LσM), proposed in 1960 by Gell-Mann and Levy [11]. Nucleons will be

omitted since they are much heavier than pions and the σ meson and therefore not relevant for

our purposes. We will also neglect quark masses and their explicit quiral symmetry breaking for

the moment and introduce them later. Thus, if we group the pions and the sigma meson into

φA = (σ, πa) with A = 0, 1, 2, 3 and a = 1, 2, 3, then the Lagrangian reads:

LLσM =
1

2
∂µφ

A∂µφA − V(φ) =
1

2
∂µφ

A∂µφA +
µ2

2
φAφA − λ

4
(φAφA)2 (52)

=
1

2
∂µσ∂

µσ +
1

2
∂µπ

a∂µπa +
µ2

2
(σ2 + πaπa) − λ

4
(σ2 + πaπa)2, (53)

where λ > 0 and summation over repeated indices is assumed. One of the most interesting

features of this model is that it is renormalizable. The φA notation is useful to make explicit the

O(4) invariance of this Lagrangian, i.e., rotations of the φA field. The fact that O(4) rotations are

linear transformations among πa and σ fields, is why the LσM is called “linear”. In addition, the

φA notation makes it easy to identify the µ2 < 0 case with a λφ4 theory for φA fields of mass µ2.

Note that in this case the potential V(φ) has a unique minimum at σ = πa = 0.

However, if µ2 > 0 the potential has a degenerate set of minima at σ2 + πaπa = µ2/λ. Note

that this is the equation of a 4-sphere that has O(3) degeneracy. If these minima are identified

with the vacuum, this implies that one combination of the σ and πa fields has a non-vanishing
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vacuum expectation value. Without loss of generality we can choose 〈σ〉 =
√

µ2/λ ≡ v, since

other combinations describe the same physics and can be brought to this case by renaming the

fields. Then 〈πa〉 = 0. By defining the shifted field σ̃ = σ − v, the Lagrangian can be rewritten

as:

L = 1

2
∂µσ̃∂

µσ̃ +
1

2
∂µπ

a∂µπa − 1

2
(2µ2)σ̃2 − λvσ̃(σ̃2 + πaπa) − λ

4
(σ̃2 + πaπa)2 +

λv4

4
. (54)

Note that the σ̃ field has acquired a mass M2 = 2µ2 = 2λv2 whereas the three πa remain massless.

Let us also remark that in order to increase the σ̃ mass while keeping the vacuum expectation ν

constant, the λ coupling should be made larger. This new Lagrangian no longer exhibits explicitly

the O(4) symmetry, but just an O(3) symmetry, i.e., only πa field rotations. That is, there is an

O(4)→ O(3) spontaneous symmetry breaking.

The above symmetry breaking pattern is isomorphic to S U(2)L × S U(2)R → S U(2)L+R. To

see this it is enough to recast our fields into a 2× 2 matrix Σ = σI+ iτaπa, where τa are the Pauli

matrices. Then, the massless LσM Lagrangian becomes

LLσM =
1

4
Tr(∂µΣ

†∂µΣ) +
µ2

4
Tr(Σ†Σ) − λ

16
[Tr(Σ†Σ)]2, (55)

where in the first line it is now apparent that the Lagrangian is invariant under S U(2)L × S U(2)R

transformations Σ → LΣR†, with L and R unitary S U(2)L or S U(2)R matrices, respectively.

Note that these are still linear transformations. Once again the minimum of the potential is not

unique. It requires Tr(ΣΣ†) = 2v2 and, as before, the Σ does not vanish in vacuum, i.e. there

is a spontaneous symmetry breaking. Now, defining Σ̃ ≡ Σ − vI = σ̃I + iτaπa, the vacuum

condition reads Tr(Σ̃Σ̃†) = 0. But note that if L = R then Σ̃ → LΣ̃L†, so that the vacuum is

invariant under L = R transformations, which form the subgroup S U(2)L+R. In other words, as

already advanced, the O(4) → O(3) spontaneous symmetry breaking pattern can be recast as

S U(2)L × S U(2)R → S U(2)L+R.

In addition, since ΣΣ† = (σ2+πaπa)I, we can write Σ(x) = S (x)U(x), where U(x) is a unitary

matrix and S (x) a real field such that S 2(x) = v2 in vacuum. As before, we can now redefine the

field separating its vacuum expectation value as S (x) = v + σ̂(x). Then we can rewrite the LσM

in terms of σ̂(x) and U(x) as follows:

LLσM =
1

2
∂µσ̂∂

µσ̂ − 1

2
(2µ2)σ̂2 − λvσ̂3 − λ

4
σ̂4 +

(v + σ̂)2

4
Tr(∂µU†∂µU), (56)

where some irrelevant constant terms have been dropped. Once more the scalar field σ̂ has a mass

squared of 2µ2. Being unitary, the U(x) matrix can be parameterized as U(x) = exp(iτaπ̂a/v).

By reexpanding U(x) in powers of 1/v one can check that the π̂a remain massless and thus

correspond to the 3 NGB associated to the 3 spontaneously broken symmetry generators. Note

that the relations between the σ̂, π̂a and σ̃, πa fields are not linear. Moreover, L and R acting

on the π̂a fields are no longer linear transformations, which is why the π̂a fields are called the

non-linear realization of chiral symmetry.

Nevertheless, the relation between σ̂, π̂a and σ̃, πa fields, when expanded in powers of 1/v,

reads σ̂ = σ̃ + ... and π̂a = πa + .... Under these conditions there are theorems ensuring that the

same observables result from both Lagrangians [243]. For instance, we have already seen that

Mσ̂ = Mσ̃ and this holds to all orders for the physical mass of the scalar-isoscalar field in the

model. Thus, for simplicity we will just use the generic name Mσ. For other parameterizations

also used in the literature we refer to [238, 240].
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As we commented in the previous section, in QCD these NGB are identified with pions and

then v = f0, the pion decay constant in the chiral limit. In real life f0 ≃ fπ = 92.3 MeV.

Of course, the LσM would be at most an effective theory of QCD since not all hadrons are

present. In particular, within S U(2) there are only four explicit degrees of freedom: a scalar

isoscalar singlet σ̃ and a pseudoscalar-isotriplet, which are the pions. The full S U(2)L × S U(2)R

chiral symmetry of QCD would require the existence of degenerate multiplets with opposite

parity. However, since this full symmetry is spontaneously broken these multiplets are no longer

degenerate but occur with larger masses. For the S U(3) case there is a scalar singlet and a

pseudoscalar octet of NGB. Once more the companion multiplets with opposite parity would

be much heavier due to the spontaneous symmetry breaking. Therefore, the LσM could be

considered at most as an effective theory valid for energies well below the mass of these heavier

opposite-parity multiplets, or any other resonance like the ρ(770). Furthermore, we will see that

with the present precision the LσM does not reproduce the observed low energy behavior beyond

the leading order in a momentum expansion.

An interesting feature of the LσM Lagrangian written as in Eq.56 is that the λ coupling has

disappeared from the term containing pions. We already saw that the large σ̂ mass limit implied

a large coupling λ and strong interactions for the σ field. However, the pion self couplings,

which only see the v constant, do not become strong in this heavy σ limit. Moreover, since

π̂a always appear in a term with derivatives, their interactions at low energies are always weak,

indeed vanishing at zero momentum (for the massless case). Furthermore, the Mσ → ∞ limit

implies that σ̂→ 0, and the only term that survives in Eq.56 is

LMσ→0 =
v2

4
Tr(∂µU†∂µU). (57)

This means that in the Mσ → ∞ limit the σ̂ decouples completely from the pions and we are

left with a pure theory of NGB. Note that once the σ̂ field has been removed, there is no way to

recast the π̂a fields into a linear representation of the chiral group. Therefore the Lagrangian in

this limit and its extensions with other chirally symmetric Lagrangians written in terms of just

the U(x) field are generically called non-linear sigma models.

In practice, if the σ̂ field has a finite mass Mσ = 2µ2, one can “integrate it out” and obtain

an effective low energy theory of pions in terms of their quadrimomenta or derivatives over Mσ.

For a textbook introduction to “integrating out” heavy fields within the path integral formalism

the reader is referred to [238, 240] whereas detailed calculations with heavy resonances can be

found in [54, 56]. Here it suffices to explain that intuitively this “integrating out” theσ amounts to

expanding in powers of momenta over Mσ all the Feynman diagrams where the σ is exchanged.

In the S U(2) case, the resulting Lagrangian, which we write in the exponential notation [238],

is:

LLσM ≃
f 2
0

4
Tr(∂µU†∂µU) +

f 2
0

8M2
σ

[Tr(∂µU†∂µU)]2 + ..., (58)

where the dots stand for higher orders in the derivatives. The leading order term, corresponding

to Mσ → ∞ is common to all theories with the same symmetry breaking pattern, but the second

one is specific of the LσM. We will see below that the size of that term for Mσ ≃ 500 MeV and

the absence of other terms at that order is incompatible with observations. This has been well

known for long [54] in the literatur, and well described at the textbook level [238]. Therefore,

the LσM provides only a first approximation to low energy QCD, which is not sufficient given

the present level of precision. Nevertheless it is still interesting because it can provide some
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qualitative understanding, correct to leading order, of hadron physics at very low energies. Of

course, with additional extensions the agreement can be improved and many modifications exist

in the literature, which will be reviewed in Subsec.3.9.

The matrix parameterizations are interesting for our purposes because it is straightforward to

generalize the LσM to S U(3)L × S U(3)R → S U(3)L+R by simply using unitary 3 × 3 matrices.

In this case U(x) = exp(i
√

2Φ(x)) where

Φ(x) ≡





1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η





. (59)

In the S U(3) case there are eight NGB which remain massless corresponding to the eight broken

generators, which are now identified with the pions, the kaons and the eta. In principle, one can

still keep just one scalar field S . However, there are interesting generalizations by promoting the

S field to a unitary matrix Ŝ (x), that now represents a full scalar nonet. This is a “generalized”

S U(3) LσM [14] and will be discussed in Subsec.3.9. Note that by integrating out all scalar fields

in the Ŝ (s) matrix it leads again to the same low energy expansion as in Eq.58, where MS would

be now the mass of the scalar nonet in the S U(3) limit of equal quark masses m̂ = ms. Of course,

once one starts including other fields, more chirally symmetric terms are possible. However,

we will see in the next section that the generic terms produced in the low energy expansion

to NLO by a heavier scalar nonet respecting the QCD spontaneous symmetry breaking pattern

have been studied in [56] and they are again inconsistent with getting a contribution from a light

scalar around 500 MeV. The correct description of the σ should therefore avoid this kind of NLO

unobserved contributions to the low energy expansion. Any scalar field contributing to the low

energy effective Lagrangian at next to leading order must be much heavier than 500 MeV. Since

as we have seen in previous sections a σ around 500 MeV exists, it must be introduced in a way

that does not contribute to the low energy expansion to that order. In the following sections we

will see how this consistent description can be achieved.

So far we have ignored quark masses, which are the only source of explicit chiral symmetry

breaking in the QCD Lagrangian. As commented in the previous section, these are sufficiently

small to be treated as a perturbation. This means that the σ direction is no longer an arbitrary

choice but corresponds to the direction slightly favored by the small explicit breaking. Con-

versely, the mass term is in the direction of σ and it is then natural to write:

Lmass = cσ =
c

4
Tr(Σ† + Σ) =

c(v + σ̃)

4
Tr(U† + U). (60)

By expanding the U(x) matrix, one sees that the pions acquire a common mass M2
π = c/ fπ, since

this is still the isospin-conserving formalism. In contrast, within the S U(3) formalism one has

different masses for the non-strange and strange quarks, which are introduced as follows:

Lmass =
1

4
Tr(M0(Σ† + Σ)), (61)

where M0 = 2B0 diag(m̂, m̂,ms).

Note that, in principle, other choices of symmetry breaking terms are possible and indeed

will be present in the general chiral low energy effective theory to be reviewed in the next sub-

section. For instance one could include non-linear terms on the quark mass but, since this is a
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perturbation to the Lagrangian in the chiral limit, a linear term is supposed to provide a good

first approximation. Moreover, this one already ensures the fulfillment of the Gell-Mann-Okubo

relation [244]: 4M2
0 K
− M2

0 π − 3M2
0η = 0, which is rather well satisfied by the physical masses.

Up to here, we have been discussing the Lagrangian or tree-level mass of the σ meson.

However, its value is corrected at higher orders in the coupling constant expansion. In particular,

when taking into account interactions the σ decays to two pions and acquires a width. This

means that the one-loop σ propagator has a complex pole. Being a renormalizable model, the

position of this pole can be calculated perturbatively to NLO [54, 245]. In the chiral limit one

finds:

sσ = (2λ f 2
π )

[

1 +
3λ

16π2

(

−13

3
+ π
√

3 − iπ

)

+ O(λ2)

]

, (62)

where the constant −13/3+π
√

3 appears due to the choice of renormalization scheme and there-

fore fπ is the decay constant renormalized to NLO within the same scheme.

If, as usual, we rewrite the pole position as sσ = (Mσ − iΓσ/2)2, this means that up to NLO

within the LσM the pole position is at:

M2
σNLO = (2λ f 2

π )

(

1 +
3λ

16π2
(−13

3
+ π
√

3)

)

, ΓσNLO =
(2λ f 2

π )

MσNLO

3λ

16π
. (63)

Let us do some simple numerics. The observed Mσ ≃ 450 MeV in Eq.3 is obtained by setting

λ ≃ 10, which then yields Γσ ≃ 225, i.e., about a factor of 2 too small with respect to the

conservative dispersive estimate in Eq.3 or the RPP2012 estimate in Eq.1. If on the contrary one

imposes Γσ ≃ 550 MeV , then λ ≃ 19 and Mσ ≃ 670 MeV , which is a much higher pole mass

than obtained by the precise dispersive determinations or the RPP2012 Eq.1. For λ ≃ 15 one

finds Mσ ≃ 400 MeV and Γσ ≃ 570 MeV , which would fall within the RPP2012 estimate but

outside the conservative dispersive estimate. One should nevertheless take into account that the

interaction is becoming somewhat strong, as the NLO correction to Mσ amounts to ≃ 15% of the

total. Out of the chiral limit one expects the width to be even narrower since there is considerably

less phase space to decay into two pions and therefore one would need an even larger coupling

constant to account for the large width, although this would now lead to a heavier σ, when one

would actually prefer otherwise. A large λ may lead to concerns about the convergence of the

theory. For this reason the σ pole has also been calculated with resummations of LσM diagrams

and Padé unitarization techniques [13]. This will be commented in Subsec.3.9 below.

In summary, the NLO description of the pole is not consistent with the most precise disper-

sive determination of the σ pole, although it still can be considered a relatively fair qualitative

approximation.

Before concluding this section, a couple of comments are in order. First , the LσM is very

relevant in electroweak physics because when the subgroup S U(2)L×U(1)Y is gauged (the Y sub-

script referring to the third generator of S U(2)R) it provides a representation of the electroweak

spontaneous symmetry breaking sector of the Standard Model. In that case the spontaneous

symmetry breaking scale is v ≃ 250 GeV and the NGB are not seen because they become the

longitudinal components of the massive W±,Z0 electroweak bosons through the Higgs mecha-

nism. The massive σ̃ field is actually the Higgs boson. For this reason the σ meson is sometimes

referred to as “the Higgs boson of QCD”. This is very misleading, not only because the LσM is

not the correct effective theory of QCD at low energies, but because there is no Higgs mechanism

in QCD and the NGB are actually seen in the spectrum as pions. Moreover it is easily checked

that by rescaling the σ mass by v/ fπ the Higgs would come out with a mass higher than 1 TeV
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and with a large width of a similar order. This is at odds with the observation of a ∼125 GeV

candidate.

Second, an observation in relation to Nambu-Jona-Lasinio or extended Nambu-Jona-Lasinio-

like models. In principle these are inspired in QCD by integrating out the gluonic degrees of

freedom, which leads to quartic interactions between quarks that generate a mass gap (see the

reviews in [246]). This gives quarks a constituent mass of a few hundred MeV and spontaneous

symmetry breaking of QCD occurs. Therefore NJL contain Nambu-Goldstone modes which

can be identified with pions. However, to make contact with the hadronic world, an effective

interaction theory with diagrams similar to those in the LσM is extracted from resummations, or

there is some other kind of bosonization leading generically to a LσM. If it is the simplest LσM,

all the above considerations apply again. Of course, it can also lead to extended versions of the

LσM, or chiral Lagrangians with just mesonic degrees of freedom, for instance including vector

mesons. Thus we are led again to effective theories of mesons that will be commented below.

In particular, the LσM and any other Lagrangian in terms of mesons which respects chiral

symmetry can be recast (see for instance [56] and [246]) at low energies within a general ex-

pansion in terms of NGB known as Chiral Perturbation Theory. This is a model independent

and systematic framework to deal with chiral symmetry at low energies, which provides a well

defined connection with QCD and that we will briefly review next, since it plays a key role in the

present understanding of the f0(500) meson.

3.3. Chiral Perturbation Theory

The existence of a mass gap between the pseudo-NGB and the rest of hadrons means that,

at low energies, pions, kaons and the eta are the only relevant degrees of freedom. Therefore

the low energy effective Lagrangian of QCD can be written in terms of only these fields, as a

chiral expansion in their derivatives (i.e., momenta) and masses. Due to the symmetries of QCD,

including its spontaneous chiral symmetry breaking, only a finite number of independent terms

exist at each chiral order. This systematic approach expansion is known as Chiral Perturbation

Theory (ChPT) [53, 54, 55]. Apart from the original references, for pedagogical introductions

the following books [238, 239, 240, 241] and reviews [247, 248] are recommended.

The leading order (LO) S U(3) ChPT Lagrangian in the absence of other sources or fields (like

photons, weak bosons, etc, which can also be introduced in the Lagrangian but are not relevant

for our present discussion) only depends on the meson masses and the symmetry breaking scale

given by the meson decay constants. Since to this order all decay constants are the same, f0 =

fπ = fK = fη, the LO Lagrangian reads:

L2 =
f 2
0

4
Tr(∂µU†∂µU + M0(U + U†)), M0 = 2B0 diag(m̂, m̂,ms), (64)

where as usual f0 is the pion decay constant in the S U(3) chiral limit and M0 is the tree level

mass matrix, which is considered a perturbation due to the small quark masses. As discussed

in Subsec.3.2, this mass term implies that the Gell-Mann–Okubo relation [244] is obtained at

leading order. Thus, the chiral expansion is performed in terms of momenta and NGB masses,

with the following counting: O(p2) = O(M2
0
). With this counting for the mass terms, sharp

predictions were obtained in the framework of Roy equations combined with ChPT [99], which

were confirmed by the NA48/2 collaboration [116], disfavoring an alternative counting scheme

for mass terms developed in [222]. This was indeed one of the main motivations for the renewed

interest on Roy equations in the early 2000’s.
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Note that the Lagrangian above is universal in the sense that, since it only depends on f0 and

meson masses, the leading order of the low energy expansion of any model respecting the QCD

symmetries, having the same spontaneous chiral breaking scale and yielding the GMO relation at

leading order, will necessarily lead to this very same Lagrangian. Actually, we have already seen

in Subsec.3.2 that the above Lagrangian can be obtained from the LσM in the heavy σ limit.

Being universal, the scattering partial waves from this Lagrangian are frequently called Wein-

berg’s low energy theorems and read:

t
(0)

0
=

2s − M2
π

32π f 2
π

, t
(1)

1
=

s − 4M2
π

96π f 2
π

, t
(2)

0
=

2M2
π − s

32π f 2
π

. (65)

At this point we may recall that already in the early sixties it was shown that one consequence of

chiral symmetry was the existence of Adler zeros [97] at energies of O(M2
π) in the scalar waves.

It is easy to check that at this order they actually occur at s = M2
π/2 for I = 0 and at s = 2M2

π for

I = 2, both them certainly below the two-pion threshold 4M2
π.

In contrast, higher order terms are not universal. Actually, each higher order Lagrangian term

is multiplied by a Low Energy Constant (LEC), whose value is not fixed by f0 and the masses

alone, but by the specific underlying dynamics. These LECs can be interpreted as interaction

vertices or couplings. For instance, within SU(3) the NLO Lagrangian, in the absence of external

sources, reads:

L4 = L1Tr
(

∂µU†∂µU
)2
+ L2Tr

(

∂µU†∂νU
)

Tr
(

∂µU†∂νU
)

+ L3Tr
(

∂µU†∂µU∂νU†∂νU
)

(66)

+ L4Tr
(

∂µU†∂µU
)

Tr
(

M0U + M0U†
)

+ L5Tr
(

∂µU†∂µU(M0U + U†M0)
)

+ L6

[

Tr
(

M0U + M0U†
)]2
+ L7

[

Tr
(

M0U − M0U†
)]2
+ L8Tr

(

M0UM0U + M0U†M0U†
)

,

where the equations of motion from the LO Lagrangian have been used to eliminate some other

possible terms in favor of these eight alone. Note that for the SU(3) case the relevant eight NLO

LECs are called Li. There would be more LECs if one considered the couplings to other fields,

but these are irrelevant for our purposes in this review. The observed values of these LECs are

specific of QCD since, in principle, other models would yield different values.

It is important to remark that L1, L2 and L3 appear in terms with derivatives but no meson

masses and therefore survive in the chiral limit, whereas the other constants appear in terms

containing meson masses. Actually, the latter are responsible for the renormalization of the

masses and decay constants. Eight parameters may seem a lot, but not all LECs are equally

important numerically for meson-meson scattering, which generically is driven by the three first

and is not very sensitive to the values of L4 and L6. Moreover, the role of L7 is very minor, since,

as we will see below is related to the exchange of the very heavy η′(960) meson.

There is an S U(2) version of ChPT [54] which has less terms because the mass matrix is

proportional to the identity and also because some of the above operators are not independent.

For instance, in SU(2) one finds 2Tr(∂µU∂µU†∂νU∂
νU†) = [Tr(∂µU∂µU†)]2. Thus the L1 and L3

terms in S U(3) combine into a single 2L1 + L3 term in S U(2). In this way, the eight independent

terms in the S U(3) NLO ChPT Lagrangian above become just four independent terms in S U(2).

The associated LECs, now called li, are related to the S U(3) ones by:

l1 = 4L1 + 2L3 − νK/24, l2 = 4L2 − νK/12, (67)

l3 = −8L4 − 4L5 + 16L6 + 8L8 − νη/18, l4 = 8L4 + 4L5 − νK/2.
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The νP = (log M2
P
/µ2 + 1)/(32π2) terms are due to integrating out the kaons and etas, with

P = K, η respectively. In this review we will use the S U(3) notation.

Within ChPT, observables can be calculated as in any Quantum Field Theory, using for in-

stance Feynman diagrams. The relevant observation is that there is a well defined power counting

for each diagram, which gives its energy power as D = 2 +
∑

n Nn(n − 2) + 2NL, where Nn is

the number of vertices from the Lagrangian terms with n derivatives (or masses) and NL is the

number of loops. For each observable, infinities appearing in loops from diagrams of a given

chiral order are renormalized by combinations of LECs coming from the ChPT Lagrangian at

that order. In this way, although ChPT is not a renormalizable theory, it provides finite results

for all observables order by order in the energy expansion. It is easy to check that each loop

suppresses a diagram by a factor of p2/(4π f0)2, or M2
i
/(4π f0)2, with Mi = Mπ,MK ,Mη.

In this review we are mainly interested in ππ scattering but, later on, when studying the

spectroscopic classification and nature of the σ, other meson-meson NLO amplitudes will be

of interest. Thus, for later use it is convenient now to illustrate the ChPT approach with the

NLO meson-meson scattering amplitude calculation. Within ChPT, scattering amplitudes are

obtained as an expansion T (s, t, u) = T2(s, t, u) + T4(s, t, u) + T6(s, t, u)..., where T2k stand for

the O(p2k) contributions, corresponding to k − 1 loops. The generic diagrams contributing up to

NLO are shown in Fig.24. Diagrams like “a” provide the O(p2) leading order, are constructed

with vertices from Eq.64, and are completely determined from meson masses and f0. All other

diagrams contribute at NLO, i.e. O(p4). The loop diagrams “c”, “d” and “e” are responsible

for the s, t and u cuts. In particular, in the s-channel and for partial waves, diagrams “c” are

responsible for the physical cut and unitarity, whereas diagrams like “d” and “e” provide the left

cut. “Tadpole” diagrams like “g” are due to mass and field renormalizations. The divergences in

the loop diagrams cancel against the combination of Li LECs that appear in tree level diagrams

like “b” with L4 vertices. As usual in perturbative Quantum Field Theory calculations, divergent

loop integrals are regularized by introducing a dependence on some arbitrary regularization scale.

To preserve chiral symmetry explicitly throughout the calculation, dimensional regularization to

dimension D is used. Then, the divergent parts are renormalized by the LECs

Li = Lr
i (µ) + Γi

µD−4

32π2

[
2

D − 4
+ γE log(4π) − 1

]

. (68)

This is the so-called MS − 1 scheme. In the above equation 2Γ1 = 2Γ2 = 3Γ4 = Γ5 = 3/8,

Γ6 = 11/144 and Γ8 = 5/48. Since Γ3 = Γ7 = 0, L3 and L7 are finite and need no renormalization,

but all other LECs become scale dependent:

Lr
i (µ) = Lr

i (µ0) +
Γi

16π2
log

(
µ0

µ

)

. (69)

In particular the relations between S U(3) and S U(2) LECs above refer to their renormalized

value at the same scale µ.

For all observables, the µ dependence cancels order by order against the regularization scale

dependence of loop diagrams. Note that to NLO the masses and the decay constants must be

renormalized and thus depend on the LECs, since they are also an expansion in powers of the

quark masses (but not the momenta). In particular, the decay constants fπ, fK and fη are no longer

equal beyond leading order.

Similarly, the NNLO T6(s, t, u) contribution contains two loop diagrams with LO vertices,

one-loop diagrams with one LO and one NLO vertex, as well as tree diagrams with NNLO
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T4(s,t,u)=O(p4) T2(s,t,u) 

O(p2) 

a                b                  c                     d                        e                       f                  g 

Li 

Figure 24: Classes of diagrams that appear in the NLO ChPT calculation of meson-meson scattering.

vertices. The number of NNLO LECs in ChPT needed for all processes is very large, but within

S U(2) only six combinations are needed in ππ scattering calculations.

The NLO ChPT calculation of ππ scattering was given within the SU(2) formalism in [54].

Within the SU(3) formalism, ππ, πK and πη elastic scattering to NLO were first given in [249]

and the two independent KK scattering amplitudes in [110]. The remaining three independent

NLO amplitudes ηη, Kη and Kη→ Kπwhere given in [111], purging and unifying the truncation

conventions of the previous five which were also recalculated. As we will see in the following

subsections, all these calculations have been widely used within unitarization formalisms to gen-

erate resonances, and in particular the σ. To NNLO, which corresponds to two-loop calculations,

only the SU(2) ππ scattering amplitude, which was given in [250, 251], has been unitarized to

study the σ, although SU(3) NNLO calculations exist for ππ and πK scattering [252].

Let us now comment on the LECs. Unfortunately, these cannot be calculated using perturba-

tive QCD, but have to be determined phenomenologically either from experiment or models (see

for instance [253]), or from theory using lattice calculations. The latter are periodically reviewed

by the FLAG working group [254] and there is a fair agreement between the phenomenological

and theoretical calculations. Since here we are mostly interested in phenomenological applica-

tions, in Table 6 we provide several sets of phenomenological determinations of the eight NLO

LECs. Note that all LECs are of the order of 10−3 or smaller. Recall that, due to renormalization,

all LECs except L3 and L7 acquire a renormalization scale and scheme dependence, so that the

values in the Table correspond to µ = Mρ ∼ 770 MeV within the MS − 1 scheme, which is

the usual one in ChPT [54, 55]. Dimensional regularization is used to preserve chiral symmetry

explicitly throughout the calculations.

Since we are concerned with the σ meson, one of the most interesting ways to understand the

values of the LECs is the fact that they are saturated by the effect of the lowest lying resonances.

As a matter of fact, ChPT can be understood as the effective mesonic Lagrangian obtained by

integrating out all particles and resonances heavier than pions, kaons and etas. Intuitively, this is

nothing but expanding the heavier particle propagators ∼ 1/(s−M2
R
) ≃ −1/M2

R
... at low energies

s ≪ M2
R
. Thus, all possible hadronic interactions between NGB where one of these heavier

particles is exchanged are then approximated by contact terms between NGB. But if these respect

all QCD symmetries it is then possible to recast these contact terms order by order in terms of

the LECs. Conversely, the values of the LECs can be understood as the sum of all contributions

from heavier resonances expanded at low energies. This is the Resonance Saturation hypothesis.

Moreover, since heavier resonances are more suppressed due to their larger masses, one expects

the dominant contribution to come from just the lowest multiplets of each kind. This is sometimes

called the Single Resonance Approximation (SRA). In particular, in [56] it was found that apart

from L7, which is saturated by the η′(960) meson, and is not very relevant for our purposes here,
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103 GL NNLO NLO IAMIII FitI FitII RS V S S 1

[55] [255] [255] [102] [256] [256] [56]

Lr
1

0.7(3) 0.53(06) 1.0(1) 0.60(9) 1.10 0.74 0.6 0.6 -0.2 0.2 O(Nc)

Lr
2

1.3(7) 0.81(04) 1.6(2) 1.22(8) 1.11 1.04 1.2 1.2 0 0 O(Nc)

L3 -4.4(2.5) -3.07(20) -3.8(3) -3.02(6) -4.03 -3.12 -3.0 -3.6 0.6 0 O(Nc)

Lr
4

-0.3(5) ≡ 0.3 0.0(3) ≡ 0 -0.06 0.00 0.0 0 -0.5 0.5 O(1)

Lr
5

1.4(5) 1.01(06) 1.2(1) 1.90(3) 1.34 1.26 1.4 0 1.4(a) 0 O(Nc)

Lr
6

-0.2(0.15) 0.14(05) 0.0(4) -0.07(20) 0.15 -0.01 0.0 0 -0.3 0.3 O(1)

L7 -0.4(2) -0.34(09) -0.3(2) -0.25(18) -0.43 -0.49 -0.3(b) 0 0 0 O(1)

Lr
8

0.9(3) 0.47(10) 0.5(2) 0.84(23) 0.94 1.06 0.9 0 0.9(a) 0 O(Nc)

Table 6: Values of the NLO LECs multiplied by 103. Columns two to seven provide renormalized values in the MS − 1

renormalization scheme at the scale µ = Mρ. The second column corresponds to [55], which became the reference values

for many years. Columns three and four come from the recent review [255], one using NNLO formulas and the other

just the NLO expressions. IAMIII comes from a fit to phase shifts and inelasticities [102] with the coupled channel

IAM (only statistical uncertainties shown), whereas Fit II is an elastic IAM fit which also includes lattice information on

mass dependences [256]. The “RS” column corresponds to the Resonance Saturation estimates obtained in [56]. In the

next columns we have made explicit the vector “V”, scalar octet “S ” and scalar singlet “S 1” contributions to the total

RS estimate. The values (a) are input and (b) is saturated from a heavier pseudoscalar singlet resonance, basically the

η′(960). In the last column we show the leading behavior in the 1/Nc expansion as calculated in [55, 257]. Note that

in some of the phenomenological determinations Lr
4

is set to 0, or to 0.0 ± 0.3, since it is very small from resonance

saturation, is suppressed at large Nc and it is hard to determine precisely from data.

all other Li NLO LECs were fairly well understood as Li = LV
i
+ LS

i
+ L

S 1

i
, where LV

i
is the

contribution from the lightest octet of vector resonances, LS
i

is the contribution from the lightest

octet of scalar resonances and L
S 1

i
is that from the lightest scalar singlet. These contributions

read [56]

LV
1 =

G2
V

8M2
V

; LV
2 = 2LV

1 ; LV
3 = −6LV

1 ,

LS
1 = −

c2
d

6M2
S

, LS
3 = −3LS

1 ; LS
4 = −

cdcm

3M2
S

, LS
5 = −3LS

4 , LS
6 = −

c2
m

6M2
S

, LS
8 = −3LS

6 ,

L
S 1

1
=

c̃2
d

2M2
S 1

, L
S 1

4
=

c̃d c̃m

M2
S 1

, L
S 1

6
=

c̃2
m

2M2
S 1

(70)

where GV , cd, cm, c̃d and c̃m are the coupling constants of the vector and scalar resonances to

NGB fields allowed by the QCD symmetries (see [56] for definitions), which can be determined

phenomenologically. By setting MV = 770 MeV and MS = MS 1
= 983 MeV the size of the

different contributions can be read in Table 6 under the “V”, “S ” and “S 1” columns. The sum of

these contributions can be read under the “RS” column and it can be seen that it provides a fairly

good approximation to the phenomenological parameterizations. Of course, one has to keep in

mind that these contributions are obtained from a tree level interpretation of a resonance model

and carry no renormalization scale dependence, but intuitively they are expected to provide a

good approximation to the phenomenological evaluated at a scale in the range 0.5 to 1 GeV

[56], as it happens indeed. This observation will be very relevant in Subsec.4.3, when dealing

with the Nc behavior of amplitudes. In Table 6 we can also observe that, in general, the largest

contributions come from the vector exchange and that the scalar singlet barely contributes or

its contributions are largely canceled by the scalar octet. This is nothing but a manifestation of

the classic Vector Meson Dominance approach proposed by Sakurai [258] before the advent of
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QCD. Concerning the scalars, the “S ” and “S 1” contributions were obtained with MS ≃ 1 GeV .

Note that trying to identify MS 1
= Mσ = 450 MeV would lead to very different values from

those observed since, apart from yielding contributions 4 times larger than those provided in the

table, the scalar octet contributions will not cancel against the singlet ones in L1, L4 and L6.

Therefore, we are now in position to compare with the expectations from integrating out the

σ in the LσM. This is a textbook exercise (see [238]), corresponding to cm = c̃m = cd/2 = c̃d/2

and c2
d
= 3 f 2

π /14 above. We already provided the expansion of the massless LσM up to four

derivatives in Eq.58. This gives the LσM prediction for the three LECs that survive in the chiral

limit, L1, L2, L3. By looking at Eq.58, we see that L2 = 0 whereas 2L1 + L3 = f 2
π /4M2

σ > 0. This

is already at odds with the non-vanishing value of L2 and the negative sign of 2L1+L3 in Table 6.

Actually, the prediction for all LECs when integrating out the σ in the LσM is:

2L1 + L3 = 2L4 + L5 + 8L6 + 4L8 =
f 2
π

4M2
σ

, L2, L7 = 0. (71)

It is easily checked that this does not correspond to the observed values of the LECs, not even

qualitatively, due to the different signs and different hierarchy pattern of the observed LECs.

Therefore, the LσM is not the correct low energy effective theory of QCD since it already differs

from it at NLO, although it is true that it reproduces the LO. In particular, the σ from the LσM

does not correspond to the f0(500) observed in nature, since integrating it out would give the

wrong LECs. Of course, it can be observed that most, but not all, of the problem comes from

the absence of vector mesons, which as we have already seen dominate the NLO contributions,

which therefore cannot be mimicked with an scalar only. In addition the 2L4 + L5 + 8L6 + 4L8

combination, where vectors do not contribute, comes too large, by at least a factor of 2 or 3 when

using Mσ ≃ 500 MeV.

The last column in Table 6 provides the leading behavior of the NLO LECs according to the

1/Nc expansion, obtained from [55] and from [257] for L7. The interest of the 1/Nc expansion

[105, 106] is that it is the only perturbative approach to QCD that is valid in the whole energy

regime. This approach will be briefly reviewed in Subsec.4.1. Here it suffices to say that the

QCD coupling g scales as 1/
√

Nc, the number of gluons as N2
c and the number of quarks per

flavor as Nc. At leading order in this expansion only planar diagrams contribute and only those

without quark loops. Since quarks are the only ones carrying flavor and can only be external lines

in meson diagrams as those of ChPT, the Nc behavior of any operator in the ChPT Lagrangian

can be calculated by counting the flavor traces. This allows for a model independent extraction

of the Nc dependence of each operator in L4 and correspondingly the Li behavior [55, 257].

Before finishing this subsection it is worth mentioning that there is a recent extension of the

usual SU(2) ChPT formalism to allow for a σ degree of freedom [259]. Note that this theory has

a well-defined power counting in powers of momenta as well as pion and σ masses, over a chiral

symmetry breaking scale Λχ. The LO Lagrangian compared to that of the LσM differs in two

aspects: the self-interactions of the scalar field are set to zero (in principle these are reconstructed

perturbatively at higher orders) and it has four low energy constants describing the most general

interactions between the σ and the pions to that order. The LO description is, of course, rather

crude and needs input from lattice-QCD to make predictions for the S -wave parameters, which

still do not come out very close to the experimental determinations. A considerable improvement

is expected at NLO, although so far this formalism has only been explored to NLO to compare

with lattice results on the quark mass dependence of fπ and Mπ.

Let us then summarize this subsection: we have seen that ChPT provides the QCD low energy

effective theory that contains all possible Lagrangian terms containing pions, kaons and the eta,
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which are compatible with QCD symmetries. Unfortunately this is just an expansion and by

itself cannot reproduce resonances although ChPT can provide useful information about heavier

resonances from their contribution to the values of the LECs. Surprisingly, despite being the

lightest resonance, the σ does not contribute to the LECs, which already suggests that it has a

different nature from other resonances.

It would nevertheless be desirable to implement the chiral symmetry constraints in the de-

scription of resonances, but before doing that it is important to recall the relation between reso-

nances and unitarity.

3.4. Unitarity

The impossibility of describing resonances with the ChPT expansion is closely related to the

fact that since the energy behavior of ChPT amplitudes at large s is dominated by polynomials,

their modulus can grow indefinitely and eventually they will violate unitarity. The elastic uni-

tarity condition is particularly simple for elastic partial waves. In Sec.2.1 we wrote it for f̂
(I)

ℓ
(s)

and we recast it here for the t(s) = f̂ (s)/σ(s) normalization, which is more usual in the ChPT

context,

Im t(s) = σ(s)|t(s)|2, (72)

where we recall that σ(s) = 2k/
√

s and that σ(s) ≃ 1 as soon as the energy is sufficiently above

threshold. Therefore, the following bounds hold

|t(s)| ≤ 1/σ(s), Re t(s) ≤ 1/2σ(s). (73)

Note that for simplicity we have suppressed the isospin and angular momentum indices. A

definition of a strong theory is precisely one that saturates the unitarity bounds. Actually, as

we have already seen, one of the intuitive characterizations of resonances is that they saturate

the unitarity bounds above (this is definition “i” in Sec.2.3.3), although that only applies to well

isolated, elastic and narrow resonances.

Still, within ChPT partial waves are obtained as an expansion t(s) = t2(s) + t4(s) + t6(s)...

where t2k ∼ O(p2k). However, once this series is truncated it cannot satisfy elastic unitarity

exactly since the highest powers on the left and right sides of Eq.72 cannot match. Of course,

ChPT satisfies elastic unitarity perturbatively:

Im t2(s) = 0, Im t4(s) = σ(s)t2(s)2, Im t6(s) = 2σ(s)t2(s)Re t4(s), ... (74)

The extension of the unitarity condition to the case when two two-body channels |1〉 and |2〉,
are coupled and open (i.e. accessible at a given energy) is straightforward. For this purpose we

define:

T (s) =

(

t11(s) t12(s)

t12(s) t22(s)

)

, Σ(s) =

(

σ1(s) 0

0 σ2(s)

)

, (75)

where ti j is the partial-wave amplitude between states |1〉, |2〉 and σi = 2ki/
√

s, with ki the CM

momentum of the particles in the corresponding |i〉 state. Then the unitarity relation for energies

where only those two channels are open reads:

Im T (s) = T (s)Σ(s) T ∗(s), (76)

which is nothing but the matrix version of Eq.72. Let us remark that this form of the unitarity

relation is also valid for an arbitrary number k of open two-body states, in the energy region
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where they are the only accessible states. It is enough to define the corresponding T and Σ

matrices as k × k matrices.

Once more, the ChPT partial waves cannot satisfy coupled channel unitarity exactly. Never-

theless using the T -matrix notation, for the case of k open two-body channels, they once again

satisfy

Im T2(s) = 0, Im T4(s) = T2(s)Σ(s)T2(s), ... (77)

for energies where only those k channels are open.

In the next subsections we will review the formalisms that can describe resonances by imple-

menting unitarity while simultaneously incorporating the ChPT expansion at low energies up to

a given order. These are generically known as unitarization methods.

3.5. Unitarization: Elastic ππ scattering

We have just seen that unitarity plays a very important role as soon as the interaction becomes

strong and therefore in the resonance region. For elastic meson-meson scattering it is most

convenient to recast the unitarity condition. Eq.72, in terms of the inverse amplitude, since then

Im
1

t(s)
= Im

t(s)∗

|t(s)|2 = −
Im t(s)

|t(s)|2 = −σ(s), (78)

where in the last step we have used Eq.72. This means that the imaginary part of the inverse of an

elastic partial wave is known exactly. Therefore, a unitary elastic partial wave above threshold

simply reads:

t(s) =
1

Re t(s)−1 − iσ(s)
(79)

The inelastic case of several coupled two-body states can be treated similarly starting from

the matrix unitarity relation Eq.76, which can be recast as Im T (s)−1 = −Σ(s). In other words,

the imaginary part of the inverse of the partial wave matrix is known exactly. Therefore a unitary

matrix of partial waves in the energy region where only k two-body states are open reads:

T (s) = [Re T (s)−1 − iΣ(s)]−1, (80)

which is just the matrix form of Eq.79.

A very popular and relatively simple approach is the so-called K-matrix method,

t(s) =
K(s)

1 − iσ(s)K(s)
, (81)

where Re t(s) has been approximated by K(s), which is a real function for real s, typically a

polynomial or rational function in s. It is especially popular in the coupled channel case, where

K(s) becomes a real matrix. This method may work fine in the real axis, but one has to be careful

on its extensions to the complex plane. For instance, since σ(s) has a pole at s = 0 then Eq.81

forces all partial waves to vanish at s = 0, which is unphysical. In addition, it generically lacks a

left cut. Nevertheless, in the physical axis above threshold, or even close to it, the K-matrix may

provide more reasonable results. Note, however, that as we already saw in in Fig.17, the σ pole,

which is the one we are interested in, is not very close to the physical axis and is relatively close

to the left cut and the s = 0 region.

As we will see, in the physical s axis, all elastic unitarization methods can be recast into Eq.79

and all the coupled channel ones (with only two-body accessible states) into Eq.80. The problem,
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of course is to calculate Re T (s)−1. In the literature this is sometimes presented as an arbitrariness

in the unitarization procedure, but the issue is just to obtain the best possible approximation to

Re t(s)−1 and to determine in what range of s it is valid. In principle, the more constraints are

incorporated in the calculation of Re t(s)−1, the better. These constraints are symmetries, more

terms from ChPT at low energies, analyticity, etc. We mention here analyticity, because in order

to study resonances it is not only important that the approximation describes the data, but it is

also essential that it has a sound analytic extension of t(s) into the complex plane. Recall that

Eqs.79 and 80 are only valid in the physical part of the real axis. For instance, it is better that the

σ(s) factor in Eq.79 comes from an analytic function which does not have the spurious analytic

structure that is present in simple approaches like the K-matrix.

3.5.1. The simplest unitarized model with chiral symmetry

As an illustration, let us work out the very simple approach where we approximate Re t(s)−1 ≃
1/t2(s), i.e., by just the LO ChPT result, to find

t(s) ≃ 1

1/t2(s) − iσ(s)
=

t2(s)

1 − iσ(s)t2(s)
. (82)

Of course, by re-expanding the above equation for small s the LO ChPT result is recovered. Note

also that not only the algebraic unitarity condition is implemented in Eq.82, but also a right cut

is inherited from σ(s), although only elastic unitarity is fulfilled. This implies the existence of a

second Riemann sheet, where we can look for poles associated to resonances. Using Eq.21, the

pole condition in the second Riemann sheet is easily obtained:

tII(s) ≃ t(s)

1 + 2iσ(s)t(s)
→ ∞, ⇒ 1 + iσ(s)t2(s) = 0, (83)

where, as discussed in Sect.2.3.3, on the upper half s plane σ = +
√

1 − 4M2
π/s as usual, whereas

on the lower half s plane we must then take σ(s) = −σ(s∗)∗.
The solution to the pole condition depends on t2(s), which is different for each isospin and

angular momentum. Let us recall that t2(s) are the low energy theorems that we already provided

in Eq.65. Thus, within this approximation for the scalar isoscalar wave we find a pole at sσ as

the solution of

σ(sσ)(2sσ − M2
π) = i32π f 2

π . (84)

With fπ = 92.3 MeV and Mπ = 139.57 MeV the pair of conjugated poles is found at
√

sσ ≃
(493 ± i441) MeV . For later purposes it is very relevant to notice that in the chiral limit Mπ = 0,

this simple model yields [238]: √
sσ = (1 − i)

√
8π fπ, (85)

which numerically translates into
√

sσ ≃ (467 ± i467) MeV .

Remarkably, the mass of these estimates is already within the RPP12 estimate in Eq.1 and

not far from the more stringent “Conservative dispersive estimate” in Eq.3. The width, however,

comes out too large by somewhat less than a factor of 2. This result is fairly good, taking into

account that this is just a purely theoretical prediction of the simplest unitarized model which

implements some chiral constraints. Recall that no data has been fitted, there are no NLO terms,

no left cuts, inelasticities, etc.

In contrast, if we follow similar steps for the vector channel, the pole is now a solution of

σ(sρ)(sρ − 4M2
π) = i96π f 2

π , namely sρ ≃ (1170 ± i1119) MeV . This is a very bad approximation

81



of the ρ(770), whose mass is 400 MeV lighter and its half width is about 15 times smaller. The

ρ(770) is not well approximated within this simple approach.

Straightforward caveats to this method are that: i) the approximation Re t(s) = t2(s) has been

used well beyond the applicability range of ChPT, ii) crossing symmetry is violated because

there is no left cut, iii) there are no inelastic effects, iv) spurious poles can also appear in the first

Riemann sheet. In the next subsections, we will review more elaborated unitarization techniques

which improve on these caveats. In addition, we will consider higher orders of ChPT.

3.5.2. The elastic Inverse Amplitude Method

Since we are particularly worried about having sound analytic properties, the best way is

to implement unitarity from Eq.78, by writing a dispersion relation for the inverse amplitude

instead of the amplitude itself [62, 63, 64, 78]. For convenience, and since t2(s) is real, instead

of 1/t(s) we define G(s) = t2(s)2/t(s), that also has a right cut and a left cut (LC), which has the

same form for the integrand as the right cut. Since we have already seen that scalar waves have

dynamical Adler zeros [97] in the low energy region below threshold, we also allow for a pole

contribution PC(s) in G(s). Therefore, a dispersion relation for G(s) reads:

G(s) = G(0) +G′(0)s +
1

2
G′′(0)s2 +

s3

π

∫

RC

ds′
Im G(s′)

s′3(s′ − s)
+ LC(G) + PC(s). (86)

In the elastic approximation, unitarity in Eq.78 together with Eq.74 allow us to evaluate exactly

Im G = −σt2
2
= −Im t4 on the right cut. In addition, since in the low energy region G =

t2
2
/(t2 + t4 + ...) ≃ t2 − t4 + ... we can also approximate at low energies Im G(s) ≃ −Im t4(s) on the

left cut, and write LC(G) ≃ −LC(t4) + .... Note that there are three subtractions, i.e. the factor of

1/s′3, because t4 grows as s2. These subtractions suppress the high energy part and in particular

the inelastic contributions. Hence, the integrals are dominated by the low energy region where

it is justified to use ChPT. As explained in Sec.2.3.4, the price to pay for the three subtractions

is that the dispersive integrals only determine the amplitude up to a second order polynomial

G(0) + G′(0)s + 1
2
G′′(0)s2. However, its coefficients are nothing but the values of the inverse

amplitude or its derivatives at s = 0, for which the chiral expansion can be safely applied. In

particular, to one-loop, G(0) ≃ t2(0) − t4(0), G′(0) ≃ t′
2
(0) − t′

4
(0) and G′′(0) = −t′′

4
(0), since

t′′
2

(0) vanishes. Let us neglect for the moment the pole contribution PC(s), which is of higher

order and only numerically relevant below threshold. Then one finds that all contributions can

be recast as:

G(s) ≃ t2(0) + t′2(0)s − t4(0) − t′4(0) − t4(0)
s2

2
− s3

π

∫

RC

ds′
Im t4(s)

s′3(s′ − s)
− LC(t4)

= t2(s) − t4(s), (87)

where in the final step we have used that the first two terms are just t2(s) whereas the rest of

the terms are nothing but an exact dispersion relation for −t4(s). Recalling that we defined

G(s) = t2(s)2/t(s), we arrive at the elastic formula for the Inverse Amplitude Method (IAM)

[62, 63, 64, 78]:

t(s) ≃
t2
2
(s)

t2(s) − t4(s)
. (88)

Remarkably, this simple equation ensures elastic unitarity, inherits the analytic properties of the

dispersive integral, and at low energies matches ChPT to NLO. In addition, as seen in Fig. 25
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Figure 25: Results from IAM fits to elastic ππ, πK scattering data and lattice results on the quark mass dependence of

the masses and decay constants [256]. The continuous and dashed lines correspond to the IAM with the FitI and FitII

LECs in Table 6, respectively. For comparison, the dotted lines stand for the results of the IAM with the ChPT LECs

obtained from the two-loop analysis of Ke4 decays of [260]. The results of standard NLO ChPT with the same set of

LECs are shown as dot-dashed lines. Figures taken from [256]

it describes fairly well data up to somewhat less than 1 GeV. The IAM curves in that plot were

obtained in a recently updated fit to elastic ππ, πK scattering data, plus lattice results on the

quark mass dependence of the masses and decay constants [256]. Note that the continuous and

dashed lines correspond to the FitI or FitII sets of LECs in Table 6, which are fairly compatible

with the pure ChPT determinations. Some small differences on the LECs can be expected since

the IAM fits data up to higher energies than one would use for plain ChPT and also because the

IAM contains the part of the higher order ChPT contributions that are needed for exact unitarity.

For these reasons the IAM LECs can be expected to lie somewhere in between the NLO and

NNLO determinations of the LECs with pure ChPT. In the figure we also show the result of a

naive extrapolation of ChPT, which seems to work in all waves up to roughly 500 MeV, although

it does much better in the scalar isoscalar channel. One of the striking features of that plot is that

the Breit-Wigner like resonance shape of the ρ(770), which is not seen in standard NLO ChPT, is

naturally generated within the NLO IAM, since even with the standard values of the parameters

the resonant shape is clearly visible, although somewhat displaced unless the LECs are refitted.

Incidentally, recalling that the perturbative unitarity of ChPT implies Im t4 = σt2
2
, i.e., Eq.74,

we can recast the NLO IAM in Eq.88 as

t(s) =
t2
2
(s)

t2(s) − Re t4(s) − iIm t4(s)
=

1

1/t2(s) − Re t4(s)/t2
2
− iσ(s)

. (89)

which is of the general form in Eq.79. Thus it is usual to present naively the NLO IAM as nothing

but including the NLO expansion of Re 1/t(s) = 1/t2(s) − Re t4(s)/t2
2
... into the general elastic

unitary form in Eq.79. Note however that Eq.79 is only valid on the real axis, whereas from

the previous derivation it is clear that the IAM is valid in the whole complex plane, although,

of course, it is a better approximation near the unitarity cut, and becomes worse near the left

cut or the very small region where PC(s) is sizable. This naive way of presenting the IAM does

not make explicit its analytic properties, since taking the real part of an analytic function is not

generally an analytic function. In addition it seems that the NLO expansion of the amplitude is

being used for all values of s when in fact it is only needed at s = 0 for the subtraction constants

and at low energies for the left cut, since the right cut is exact, at least in the elastic regime. In

particular, the IAM differs from the usual K-matrix approach in that, apart from having a left cut,

it only has the form of Eq.79 on the physical cut, but is rather different outside. For instance, it

does not have the generic zero at s = 0 of the K-matrix unitarization.
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Moreover since the NLO IAM can also be written as t2/(1 − t4/t2) it is usually called a

Padé approximant. Let us recall that the [m,n] Padé approximant of a function f (z) is a rational

function R(s) = (a0 + a1z + ...amzm)/(1 + b1z + ...bnzn) whose first (n+m) derivatives at z = 0

are equal to those of f (z). Indeed, if f (z) can be expanded as f (z) = f (0) + f ′(0)z + ... the [0,1]

Padé approximant reads f (0)/(1 + f ′(0)z/ f (0)), similarly to the NLO IAM. However, contrary

to f (0) and f ′(0), which are numbers, t2(s) and t4(s) are functions of s which contain not only

polynomial but logarithmic functions with cuts. Therefore the IAM cannot be interpreted as a

Padé approximant in the s variable. If anything, it would have the same formal expression of a

Padé approximant in powers of 1/ f 2
0

, the inverse of the decay constant.

Now, the IAM is an analytic function with the same cut structure of t(s), namely, a left cut

approximated to NLO ChPT as well as a right or unitarity cut, which is calculated exactly within

the elastic approximation. This right cut can be observed in the left panels of Fig.26, where we

plot Im t(s) approximated with the NLO IAM. Thus, if we cross continuously the cut from the

upper half plane of the first sheet, we end up in the lower half of the second sheet, where we

can look for poles. By so doing, two poles are found, one corresponding to the σ resonance in

the scalar-isoscalar wave and another one for the ρ(770) in the vector wave. Already in 1996

[78], before the inclusion of the f0(600) in the RPP, it was found
√

sρ = (760 − i75) MeV

whereas
√

sσ = (440− i245) MeV, in remarkable agreement with the most recent determinations.

A more recent update [235], including modern Ke4 data, yields Mσ = (453 − i271) MeV in

good agreement with the Conservative Dispersive Estimate given in Eq.3. Since these poles are

obtained from dispersion relations, they were already listed in Table 5. Note that no uncertainties

are given because the systematic uncertainties of higher orders, or of approximating the left cut

and keeping the elastic approximation, are not easy to quantify. But looking at Fig.25 and the

curves obtained without fitting the LECs, these can be estimated to be of the order of 10 or 15%.

These poles can be found in the right panels of Fig.26. We do not see the conjugated pole

in the upper half plane because it lies in the second sheet, whereas in those plots the upper half

plane is still in the first sheet when it is continuously connected to the lower half in the second,

so that the cut is not visible and the amplitude looks continuous across the real axis.

The ρ and the σ poles can be generated either with the SU(2) or the SU(3) elastic NLO IAM.

However, when using the SU(3) formalism, it is also possible to describe the elastic Kπ scattering

[64, 63, 78] in which the K∗(892) and κ (or K∗
0
(800)) associated poles are also found. Moreover,

the IAM has also been applied to elastic πN scattering, within NLO and NNLO Heavy Baryon

ChPT, where it is able to describe the ∆(1232) resonance [261].

The IAM can be easily and systematically extended to higher orders of ChPT. The dispersive

derivation is analogous and, for instance, to NNLO one arrives at [78]:

t(s) ≃ t2(s)2

t2(s) − t4(s) + t4(s)2/t2(s) − t6(s)
, (90)

which satisfies all the properties already discussed for the NLO IAM, but when re-expanded re-

produces the ChPT series up to NNLO. The two-loop ChPT was thoroughly studied in [235, 262].

As a matter of fact, the updated IAM pole commented above and listed in Table 5 corresponds

to a NNLO IAM fit [235]. Note that since D and higher waves have t2(s) = 0, for their unita-

rization with the IAM, the NNNLO, i.e., O(p8) would be necessary. No such calculation exists,

but by considering only the O(p8) leading term in the chiral limit, which just adds one more free

parameter, it has been shown that the f2(1270) resonance could also be generated with relatively

reasonable values of the LECs [263].
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Figure 26: Im t
(0)

0
(s) and resonance poles calculated with the elastic NLO IAM [78]. On the left panels we show the

first Riemann sheet, where the cut in the real axis can be observed between the upper and lower halves of the complex s

plane (note we give units of
√

s for a better visualization of the
√

spole = MR − iΓ/2 relation). If from the first sheet on

the upper half the cut is crossed continuously, one arrives to the second Riemann sheet, where resonance poles can be

found. The upper panels correspond to the scalar-isoscalar wave, where the σ pole is located deep in the complex plane.

For comparison, the vector wave is shown in the lower panels, where the ρ(770) pole can be seen to lie much closer to

the real axis than that of the σ. Figures taken from [78].
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For completeness, and even though it will be negligible except for high quark masses when

studying the quark mass dependence of resonances in Sec.3.8 below, let us now include the pole

contribution PC ignored so far. Its contribution can be calculated explicitly from its residue [264]

and, to one-loop, we find a modified IAM (mIAM) formula:

tmIAM =
t2
2

t2 − t4 + AmIAM
(91)

AmIAM = t4(s2)−
(s2−sA)(s−s2)

[

t′
2
(s2)−t′

4
(s2)

]

s−sA

,

where sA is the position of the Adler zero in the s-plane, and s2 its LO approximation. The

standard IAM is recovered for AmIAM = 0, which holds exactly for all partial waves except

for the scalar ones. In the usual IAM derivation [78] that we have followed above, AmIAM is

neglected, since it formally yields a NNLO contribution and is numerically very small, except

near the Adler zero, where it diverges. However, if AmIAM is neglected, the IAM Adler zero

occurs at s2, correct only to LO, it is a double zero instead of a simple one and a spurious pole of

the amplitude appears close to the Adler zero. All of these caveats are removed with the mIAM.

The differences in the physical and resonance region between the IAM and the mIAM are less

than 1%. Thus, the only real application of the mIAM will be in Sec.3.8 for large Mπ, since as

we will see the σ poles “split” into two virtual poles below threshold, one of them approaching

the unphysical Adler zero region, where the standard IAM fails.

In summary, we have introduced the elastic Inverse Amplitude Method, which combines

ChPT and dispersion relations, within the elastic approximation. Within this formalism the elas-

tic cut and unitarity are implemented exactly and the ChPT expansion is recovered up to the

desired order. In its derivation ChPT is only used for the subtraction constants or the left cut,

which is justified, since the former correspond to values of the amplitude at very low energies

and the second is subtracted to suppress the high energy contribution. Also, crossing symmetry

is not exact, but holds up to the order to which the left cut contribution is being calculated within

ChPT.

We have dedicated a long section to this approach, not only because it has been very suc-

cessful in describing elastic meson-meson and pion-nucleon scattering, but because it is able to

generate the poles of the resonances that appear in these elastic processes without any a priori

assumption about their existence or nature. Moreover, note that no additional parameters are

needed beyond the LECs of ChPT, which encode the underlying dynamics QCD. In particular the

result is still fully renormalized and there is no residual dependence on the regularization scale.

This will allow us to investigate the dependence of resonance properties on QCD parameters

such as quark masses and the number of colors in Secs.3.8, 4.1, 4.2 and 4.3.

3.5.3. Chiral unitarization method with crossing symmetry constraints

As we have seen, as soon as one imposes elastic unitarity exactly on the physical cut, since

one is dealing differently with the left cut, crossing symmetry is violated. However, in [104] a

unitarization method was combined with crossing symmetry constraints in order to determine

the σ parameters. Unitarity was guaranteed by writing the S matrix as a product S = ΠiS
pi S cut,

where S pi contained simple unitary expressions for isolated poles. The number of poles to use

in this part of the S-matrix has to be decided from the outset, whereas S cut = exp(2iσ(s) f (s).

The f (s) function represents the non-resonant part and has a left and a right cut, so that it obeys

a dispersion relation similar to that in Eq.26, although for just one variable. Being f (s) basically
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the logarithm of the S matrix, its dispersion relation only needs one subtraction. The left hand

cut is then calculated using ChPT. Much as it happened with the IAM, this approximation is only

valid at low energies. In the IAM the use of the inverse function meant that the left cut converges

with the three subtractions, but in this case, with only one subtraction, the authors imposed a

cutoff of the order of 2 GeV2 in both the left and right-cut integrals.

Of course, this does not ensure crossing, but the authors of [104] then performed fits to data

and to the the so-called Balachandran-Nuyts-Roskies crossing symmetry relations [265] until

they were satisfied at the level of 1%. This turns out into a simpler dispersive approach than Roy

or GKPY equations, while improving the treatment of crossing symmetry from most unitarized

models, although nevertheless crossing symmetry is not exact.

The analytic properties of the model allow for a sound continuation to the complex plane

and the determination of a σ pole at Mσ = 470 ± 50 MeV and Γσ = 570 ± 50 MeV, which we

included in the fifth line of Table 5. This result has larger uncertainties than other entries in that

table, but it is actually more reliable than many others due to a careful analysis of the systematic

errors induced by various theoretical uncertainties, like different cutoffs, the treatment of the

scattering data in the vector partial wave, how to weight the constraints from crossing symmetry,

the inclusion of two or three poles in S pi , etc.

Interestingly, it was also shown that without the constraints from crossing sum rules, this

unitarization method would lead to Mσ = 542 ± 50 MeV and Γσ = 546 ± 50 MeV, showing once

more the relevance of crossing symmetry for a precise determination of the σ pole, which was

achieved later by means of Roy and GKPY equations, as explained in the previous section.

3.6. Unitarization: Meson-meson coupled channels

So far we have only studied the elastic channel. In practice this is quite enough to have a

maybe not very precise but fair representation of the f0(500) meson, since ππ scattering is elastic

up to the KK̄ threshold, i.e. ∼ 1 GeV.

However in order to understand other properties of this meson, like its classification in SU(3)

multiplets, it is also relevant to take into account other channels and even some other meson-

meson scattering amplitudes, either because they couple to ππ scattering or because it is in those

other channels where the multiplet partners of the σ appear. For all means and purposes, it will

be enough to consider coupled scattering of two-meson states. As we have already commented

4π, 6π, ... states, are almost negligible in practice below 1.4 GeV.

We already presented in Eq.80 the general form of the T matrix on the real axis that satisfies

coupled channel unitarity when several two-body states are energetically accessible. We only

need an approximation to Re T−1. In what follows we will present different coupled channel

methods, which on the real axis can be understood as different approximations to the ChPT series

Re T−1 = T−1
2

(1 + T4T−1
2
...). Note that these are called “approximations to the series” because

for simplicity and practicality some of these methods neglect parts of the contributions to higher

terms in these series. Typically, these methods differ in their treatment of left cuts and/or the

inclusion of additional parameters besides those of ChPT, being in this respect generally more

relaxed that in the elastic case.

Before describing in the following subsections the particulars of each coupled channel unita-

rization technique, let us emphasize that all them provide very similar results for meson-meson

scattering. In particular, they all find a light scalar nonet made of the σ, κ, f0(980) and a0(980)

whose generation is dominated by the meson-meson loop dynamics, which is driven by the lead-

ing order interactions of the ChPT Lagrangian. In contrast, vector meson poles require infor-
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mation on the NLO LECs of ChPT or, alternatively, have to be introduced by hand from a La-

grangian. Those unitarization methods reaching beyond 1.2 GeV also find that the data can be

described with just one “preexisting” (surviving in the large Nc limit) scalar nonet around 1 GeV.

These results are very robust and the effects of the neglected or approximated left cuts and the

many-meson intermediate channels do not change this basic scenario.

3.6.1. The N/D Method

The classic N/D method was derived in 1960 by Mandelstam and Chew [277], precisely to

explain the ππ low energy interaction. Although the derivation starts from the double-dispersive

representation it finally yields relatively simple integral equations. These lead to unitary am-

plitudes on the real axis. As usual, the left cuts are approximated and more often neglected.

Therefore although based on dispersion relations, in practice it is not as well suited for precision

studies as Roy-like or Forward Dispersion Relations. However it is very useful for understanding

the origin and nature of resonances. Let us briefly sketch the derivation here. In principle, all

other methods can be recast into this one, although this might involve further integral equations

and approximations, and is more practical to use directly the formulas provided by the methods

themselves.

The N/D method provides a solution to the unitarity condition in Eqs.72 or 76, depending on

whether one is in an elastic or inelastic regime, respectively. For simplicity let us concentrate first

on the elastic case. In order to cancel explicitly the vanishing threshold behavior of the partial

wave, let us define the “reduced” amplitude t̂IJ(s) = t(s)/k2J . For the sake of brevity, let us also

drop the IJ subindices. The reduced amplitude can then be written as t̂(s) = N̂(s)/D̂(s), where

D̂(s) only contains the right hand cut and N̂(s) only the left hand cut of t(s). Of course we are

free to multiply D̂(s) and N̂(s) by the same factor without affecting t̂(s). Thus, any pole can be

removed from either D̂(s) or N̂(s) by introducing in the other function the corresponding zeros

and customarily N̂(s) is chosen free of poles, which can nevertheless appear in D̂(s).

Now, due to their analytic structure in the complex s plane, in the real axis below threshold

D̂(s) is real whereas N̂(s) is real outside the left cut. In addition, above threshold Im D̂(s) =

N̂(s)Im t̂(s)−1 = −σ(s)N̂(s)k2J due to unitarity. In contrast Im N̂(s) = D̂(s)Im t̂(s) over the left

cut. This implies that the following dispersion relations can be written:

N̂(s) =

n−J−1∑

m=0

a′msm +
(s − s0)n−J

π

∫ sL

−∞
ds′

D̂(s′)Im t̂(s′)

k2J(s′)(s′ − s)(s′ − s0)n−J
, (92)

D̂(s) =

n−1∑

m=0

âmsm − (s − s0)n

π

∫ ∞

sth

ds′
k2J(s′)σ(s′)N̂(s′)

(s′ − s)(s′ − s0)n
+

∑

i

γi

(s − si)
. (93)

where sL is the branching point of the left cut (0 for ππ scattering but could be different for other

processes), n is the number of subtractions required to have N̂(s)/sn−J → 0 when s→ ∞. Apart

from Im t̂(s) on the left hand cut, the subtraction constants of D̂(s) and N̂(s) make all the input

needed. The poles in D̂(s) are known as Castillejo-Dalitz-Dyson (CDD) poles [278] and lead

to zeros in the partial wave. Of course, it is always possible to multiply N(s) and D(s) by a

polynomial to convert these poles into subtraction constants [39, 167].

Frequently, Eqs. 92 and 93 are solved by setting Im t̂ = 0 on the left hand cut, which is

therefore neglected. In such case it is possible to take N̂(s) = 1, by including all the possible
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zeros of the polynomial
∑n−J−1

m=0 a′msm as CDD poles in D̂(s), so that:

t̂(s) =
1

D̂(s)
, D̂(s) =

J∑

m=0

amsm +

MJ∑

i

Ri

s − si

− (s − s0)J+1

π

∫ ∞

sth

ds′
k2J(s′)σ(s′)

(s′ − s)(s′ − s0)J+1
, (94)

where we have taken into account that n = J + 1, and the subtraction constants am and the CDD

pole residues have been redefined and renamed. With these conventions, Eq. 94 is the most

general structure of an elastic partial wave of angular momentum J when the left hand cut is

neglected [84].

Once again, in the real axis above threshold Eq.94 can be recast into the general form of

the elastic unitary partial wave provided in Eq.79. It is enough to note first that the imaginary

part of the integral in Eq.94 is such that Im D̂(s)/k2J = −σ(s) above threshold. Second, we

identify Re t−1(s) = Re D̂(s)/k2J . Of course, the advantage of the N/D method is that we have a

dispersive representation where the right cut of the inverse amplitude is treated exactly within the

elastic approximation. It is also free of the s = 0 singularities of the K-matrix, since the right-cut

structure is that of the dispersive integral, whose imaginary part only coincides with σ(s) on the

real axis above threshold. If the left cut had not been neglected, it should have been introduced

perturbatively through N̂(s), which is rather cumbersome.

At this point is where QCD dynamics comes into play to give meaning to the subtraction

constants in Eq. 94. In particular, in [84] these were split into am = aL
m + aS L

m , where the term

aL
m is O(Nc) and aS L

m is O(1) in the QCD 1/Nc expansion. As we will see in Subsec 4.2, this is

due to the fact that in the 1/Nc expansion the meson-meson amplitude is generically O(1/Nc). In

addition, the integral of Eq. 94 is O(1). Therefore when Nc → ∞, Eq. 94 becomes:

D̂∞(s) =

J∑

m=0

aL
msm +

M∞
J∑

i

R∞
i

s − si

≡ k2J/t∞(s), (95)

where aL
m and R∞ are the Nc leading parts of am and Ri, respectively, and M∞

J
the number of

leading CDD poles. Now, defining

gJ(s)k2J ≡
J∑

m=0

aS L
m sm − (s − s0)J+1

π

∫ ∞

sth

ds′
k2Jσs′

(s′ − s)(s′ − s0)L+1
, (96)

we arrive at

t(s) =
[

1/t∞(s) + gJ(s)
]−1 . (97)

Note that the loop contributions are all inside g(s) and therefore all the terms in t∞ should cor-

respond to tree level structures, which in addition are leading in the 1/Nc expansion. Crudely

speaking, these structures exist before unitarization and thus the poles in t∞(s) are informally

called “preexisting resonances”, which survive in the Nc → ∞ limit. The unitarization is ac-

complished through the function gJ(s), since Im 1/t(s) = Im gJ(s) = −σ(s), which on the real

axis leads to the general form of a unitary amplitude in Eq.79. Note that this g(s) function is

divergent and therefore depends on a renormalization scale. Dimensional regularization, instead

of a cutoff, is customarily used, but the scale dependence remains in gJ(s).

This formalism can be easily generalized to scattering processes with multiple coupled chan-

nels by employing the usual matrix notation [84]. Then t, t∞ become T , T∞ and gJ is a diagonal
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matrix whose elements are given by Eq. 96, evaluated with the appropriate masses for each chan-

nel. Once again Im gJ(s) = −Σ(s) and the N/D method neglecting the left cut can be easily recast

into the general matrix form for a unitary T -matrix in Eq.80.

In [84], t∞ was obtained from the lowest order ChPT Lagrangian and the poles from the

exchange of resonances at tree level in the s-channel. Namely T∞ = T (2)(s)+T RES. The tree level

exchange of resonances was described with the same Lagrangian used to study the Resonance

Saturation Hypothesis [56] that we discussed in Subsec.3.3, although their couplings and masses

were fitted to data after unitarization. The exchange of resonances in crossed channels was not

included, consistently with neglecting the left cut, and the residual dimensional regularization

scale was set to the natural value µ = Mρ. The very nice result for the S0-wave, which is the

one of interest for this review, is shown on the right panel of Fig.27. There we can see that the

inclusion of explicit resonances in the unitarization process has allowed to extend the description

of ππ scattering up to 1.5 GeV. The price to pay, of course, is the presence of explicit resonances

and their couplings in the Lagrangian, in contrast to the simple Chiral Unitary Approach that we

will review next, which only has one free parameter (the cutoff).

Now, apart from the relatively nice description of the data, the relevance of this approach

[84] is that, apart from the “preexisting” poles, which have acquired a width due to unitariza-

tion, new poles appear. These new poles are sometimes called “dynamically generated”, which

can be confusing for people outside the field. Of course the only dynamics is that of QCD.

However, the name “dynamically generated” is often used in the community meaning that the

dominant dynamics that generates these poles is mainly due to unitarization, namely, to loops

with LO ChPT vertices, which intuitively means meson-meson physics rather than quark and

gluon physics. The resonances generated predominantly by this kind of effects do not survive in

the large-Nc limit (at least with parameters similar to those in Nc = 3, since they could contain a

small mixture of “preexisting” states, that would survive that limit, although at a rather different

position). In hindsight 11, within this approach, calling a state “preexisting” actually means that

it cannot be “dynamically generated” from the scattering of two light NGB-pseudoscalars in the

scalar channel. But this does not exclude the possibility that it might be dynamically generated

from other channels. Of course, the whole point of this discussion is that the σ and the other

light scalar resonances can be naturally described as“dynamically generated” from the scatter-

ing of two light NGB-pseudoscalars in the scalar channel. Whether the preexisting states are

genuinely preexisting or dynamically generated from other channels is interesting, but accessory

to the main topic of this report. The relevant point is that in scalar meson-meson scattering they

have to be included explicitly.

The results from [84] showed that including two preexistent nonets was not demanded by

data, since one of them would almost decouple, would have an almost undetermined mass and

would yield narrow unobserved resonances. Thus, only one “preexisting” nonet was needed,

and its mass was slightly above 1 GeV, clearly separated from the physical mass of the σ meson

around 500 MeV. In addition the N/D method also yielded some poles dynamically generated

from the loops. The clearly “dynamically generated” poles were the σ, the a0(980) and the κ,

whereas the f0(980), being so close to the “preexisting” nonet, was generated from a mixture of

dynamics of the two kinds. The effect of the exchange of resonances in crossed channels was

also estimated in [84] and it did not seem to alter significantly the results. The method was also

extended to the vector sector, where both the ρ(770) and K∗(892) were identified as “preexisting”

resonances.

11I thank J.A. Oller and E. Oset for this clarification.
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Figure 27: S 0-wave ππ scattering. Left (from [79]): described by unitarizing LO ChPT with the Chiral Unitary

Approach, Eq.101. Note that the cutoff is the only free parameter and comes out of order 4π fπ ≃ 1.2GeV . The citations

in the plot correspond to the original figure in [79]. Right (from [84]): the same wave unitarized with the N/D method

[84], which includes LO ChPT as well as an explicit multiplet of “preexisting” scalar resonances above 1 GeV, which

allows for a fair description of data up to 1500 MeV. Left figure reprinted from Nucl. Phys. A 620, 438 (1997), J. A. Oller

and E. Oset, “Chiral symmetry amplitudes in the S-wave isoscalar and isovector channels and the σ, f0(980), a0(980)

scalar mesons”. Copyright 1997, with permission from Elsevier. Right: reprinted figure with permission from J. A. Oller

and E. Oset, Phys. Rev. D 60 (1999) 074023. Copyright 1999 by the American Physical Society.

Therefore, the spectroscopic picture of two light scalar nonets generated with different dy-

namics received a strong support. The lightest one is predominantly due to rescattering effects,

or unitarization, whereas the heavier one, slightly above 1 GeV is predominantly made of “pre-

existing” states that will survive the large Nc limit, although becoming very narrow.

This two-nonet approach has been revisited and/or refined in the literature, for instance from

the BSE perspective in [83], as already commented in Subsec.3.6.2, even including perturbative

left cuts, or by adding σσ and ρρ states in [122]. Moreover, there are extensions to U(3) that

include the η′ and then study the σ and other light s-wave resonances within this unitarization

approach [279, 280]. In some cases the cutoff dependence is recast in the form of subtraction

constants. In any case, the basic picture of two nonets is always found, although the specifics of

the more massive states can change slightly. This has led, for instance, to an identification of a

possible glueball candidate around 1.7 GeV with these methods [122].

Of course, one of the main ingredients of this approach is the explicit inclusion of the “pre-

existing resonances” and the assumption of their specific Nc dependence, as well as the minimal

couplings in [56]. In the subsections that follow we will review other unitarization methods,

which do not introduce explicit resonances but just the LECs of ChPT without any spurious pa-

rameters. Of course this will limit the applicability to 1.2 GeV at most, but will be useful also

for other purposes.

As a final remark, let us note that, in principle, the techniques to be described next can be

recast into an N/D form. This is straightforward in the elastic case, since these methods provide a

relatively simple parameterization of each partial wave t(s) and its phase shift δ(s). In such case,

a D(s) function, with the correct right-hand cut structure, is given by the Mushkelishvili-Omnés

function [437]12:

D(s) = exp

(

− s

π

∫ ∞

sth

ds′
δ(s′)

s′(s′ − s)

)

, (98)

12In Sec.[437] we show will present the Mushkelishvili-Omnés method in more detail to describe form factors for

σ→ γγ decays.
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where the integral can be subtracted or CDD pole terms can be added if needed. Hence we define

N(s) = t(s)D(s), thus carrying the left-hand cut singularities if the method has not neglected

them. One can deal with the coupled channel case similarly, but in matrix form.

In practice, of course, one uses the simpler expressions given by each one of the particular

approaches that are described next.

3.6.2. The Chiral Unitary Approach and Bethe-Salpeter Equations

We already saw in Subsec.3.5.1 that a qualitatively correct σ pole could be generated with the

simplest unitarized model, Eq.82, which uses just the LO ChPT result. The mass came surpris-

ingly close to its actual value although the width came a factor of two too large. In contrast, both

the mass and the width of the vector meson obtained with the same method were too different

from the physical values for the ρ(770). This suggests that the NLO ChPT contribution in the

IAM plays a relatively small role for the scalar waves, but an important one for the vector ones.

Thus, if one is only interested in the scalar waves, one could make the radical approximation

that the only interaction vertices that are needed are those of LO ChPT [79]. Let us first study

this approximation and then how to extend the treatment to include higher orders.

If only T2 amplitudes are to be considered, since they come from tree level diagrams that

do not have logarithms nor cut singularities, they can be identified with the potential V in the

Bethe-Salpeter equations (BSE, similar to the Lippmann-Schwinger equations but in a relativistic

framework), which read T = T2 + T2GT . Here, T2(p1, p2; q) is the matrix of O(p2) ChPT partial

waves for two incoming mesons with four-momenta pi and two outgoing mesons, one of them

with four-momentum q. The second term in the equation is defined as:

(T2GT )il = i

∫

d4q

(2π)4

T2 i j(p1, p2; q)

q2 − m2
1 j
+ iǫ

T jl(q; p′
1
, p′

2
)

(P − q)2 − m2
2 j
+ iǫ

. (99)

The subindex i corresponds to the |i〉 state, which consists of two mesons with total four-momentum

P, one with mass m1i and initial four-momentum p1 whereas the other one has mass m2i and ini-

tial four-momentum p2.

A relevant remark [79] is that if T2 is separated in an on-shell part plus an off-shell term, the

latter, when used inside Eq.99, does not have to be calculated, since to a very good approximation

it can be reabsorbed numerically into the definition of masses and decay constants. This is called

the “on-shell factorization” approximation of T2 and T from Eq.99 reducing the BSE to pure

algebraic relations, i.e. T = T2 + T2GT , where G is a diagonal matrix given by

Gii = i

∫

d4q

(2π)4

1

q2 − m2
1i
+ iǫ

1

(P − q)2 − m2
2i
+ iǫ

. (100)

Diagrammatically this function corresponds to the “bubble” created by the two circulating mesons

in diagrams of type “c” in Fig.24. The on-shell factorization has simply factorized the external

legs out from this bubble. A different derivation of this “on-shell factorization” starting from

unitarity and using a dispersion relation for T−1 can be found in [84, 266]. Note that the above

integral diverges and has to be regularized. A cutoff was used in the seminal works [79, 80], but

it can be easily translated into a dimensional regularization scale [81]. For simplicity we will

often refer to this scale as “cutoff”. The solution of these algebraic equations is:

T = [1 − T2G]−1T2, (101)
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which is known as the Chiral Unitary Approach [79]. Having zero range interactions, this is

actually equivalent to the so-called the Chew-Mandelstam method [277, 39] rather than to what

is usually understood by BSE. Formally, it can be reinterpreted as the geometric series T =

T2 + T2GT2 + T2GT2GT2 + T2GT2GT2GT2...., so that this method can be diagrammatically

interpreted as the resummation of all diagrams with one, two, three ... bubbles in the s-channel,

with only O(p2) vertices to connect them. Since Im G = Σ = −Im T−1 this method is very similar

to the simplest unitarization method of Eq.82 in matrix form. Unitarity in coupled channels is

therefore ensured. In addition, and in contrast to the K-matrix approach, it is free from s = 0

singularities thanks to using the G(s)ii functions. Actually, Eq.101 above can be recast into the

generic coupled channel form, Eq.80. First one has to neglect all diagrams in the chiral series

depicted in Fig.24, except the “c” or “bubble” diagrams, i.e., T4 ≃ T c
4
. In a second step one

uses the “on-shell” factorization to obtain T4 ≃ T c
4
≃ T2GT2 with everything written in terms

of physical masses and coupling constants. Thus the Chiral Unitary approach amounts to the

following approximation: Re T−1 = T−1
2
− Re G.....

Note that Re G(s) provides an additional higher order contribution beyond the simple LO

that appeared in the simplest unitarization scheme and that this new contribution depends on a

cutoff. Now, recall that we have already seen that the simplest LO unitarization provided a fair

qualitative approximation to the scalar channels, so that the NLO and higher order contributions

should be relatively small. However, this small new contribution made it possible in [79] to

describe remarkably well the existing data on the isoscalar and isovector scalar waves of ππ→ ππ

and ππ → KK̄ scattering by means of Eq.101 up to 1250 MeV with a unique cutoff of order 1

GeV for all partial waves. The result for the ππ S 0-wave can be seen on the left panel of Fig.27.

In [267], It was noted that in the region below 1 GeV, the resulting phase seems to prefer the

highest data points, which is in some tension with Roy Equation analyses. However, the result is

remarkable taking into account that it only depends on one parameter. In addition, the poles of

theσ and f0(980) mesons, shown in Fig.28, were generated simultaneously in the scalar-isoscalar

wave whereas that of the a0(980) appeared in the scalar-isovector wave. In a follow up of this

approach [268], the same two pairs of conjugated poles were found and a”molecular” nature of

the f0(980) was advocated from the position of additional poles in other Riemann sheets.

In contrast, it was not possible to generate the vector mesons with such a natural cutoff only,

since they required taking into account the “polynomial contribution” from the “b” diagrams in

Fig.24, which contains the Li. In the literature these two different generation mechanisms have

been called “dynamical generation” versus “dynamical reconstruction” [269]. This emphasizes

that in the former case, i.e. for the σ, it is mainly the loop dynamics that generate the resonance,

with very little or at least not explicit information about it in the Lagrangian. In contrast, in the

latter case, some information on the resonance is needed before unitarization, which can be either

contained in the LECs, as we have just seen with the IAM and the ρ(770), or, as we will see later,

by including explicitly in the Lagrangian some ’bare’ approximation to the state, for instance its

large-Nc limit. For a general discussion on these two mechanisms, see [269].

Actually it was soon shown [80] that by considering also the tree level NLO “b” diagrams

in Fig.24 it was possible to describe not only the isoscalar and isovector S-waves, but the P

waves and isotensor waves simultaneously and up to 1.2 GeV. In terms of the graphs in Fig.24

this amounts to considering the approximation Re T ≃ T2 + T b
4
+ T2GT2... to the full NLO

result. Interestingly, the ρ(770) and K∗(892) vector meson poles where found simultaneously

with those of the full light scalar nonet, comprising the σ, f0(980), a0(980) and κ resonances.

This was achieved with a cutoff of order 1 GeV, which guaranteed the description of the scalars,

and fairly reasonable Li constants, which ensured the description of the vectors. The fact that
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Figure 28: Surface and contour plots showing the imaginary part of the ππ scattering scalar-isoscalar partial wave. Note

the poles of the σ and f0(980) in the lower half plane of the second Riemann sheet and how far from the real axis the

former is compared to the latter. This result is generic of coupled channel formalisms for unitarizing ChPT. Figure taken

from [81].

all these resonances could be obtained with this crude approximation to the full NLO ChPT

amplitudes triggered the interest in completing the full NLO ChPT calculation, which is needed

for the coupled channel IAM that will be reviewed below.

The interest of these works [79, 80], apart from generating simultaneously the members of

the light scalar nonet from simple implementations of chiral symmetry, unitarity and analytic-

ity, is that they showed that the dynamics responsible for the scalars is very different from that

responsible for the vector mesons. The former are dominated by meson loops with LO ChPT

interactions, which only contain information on the size of the spontaneous symmetry breaking

scale, i.e a mesonic scale, whereas vectors are dominated by the effect of the NLO Li, which

contain the details of the underlying QCD dynamics, i.e., quark and gluon degrees of freedom.

Due to its simplicity and effectiveness, the method, in its many variations, has become ex-

tremely popular and successful in other instances, like meson-nucleon interactions [270], where

one wants to study resonances whose generation is dominated by two-particle loops that can be

described with chiral Lagrangians (see the review in [271]). Still, being so simple, the Chiral

Unitary approach has some straightforward caveats, which are the complete absence of left cuts,

the fact that it is not completely renormalized and therefore has a residual cutoff dependence

and the use of the on-shell factorization approximation. For meson-meson scattering S-waves

these contributions seem to be rather small and the approach provides very satisfactory results.

However, these caveats triggered the investigation of more elaborated unitarization techniques.

In particular, the effect of the on-shell factorization approximation was studied in [83]. In

these works the Bethe-Salpeter equations were actually solved in the ladder approximation with-

out using the on-shell factorization. In addition, this approach allowed for a systematic expan-

sion of the potential V in which not only the LO, but also the NLO contributions to the potential

could be considered. Moreover, in principle the left cut could also be included perturbatively.

Of course, the price to pay is that the solution is not algebraic anymore. The results for ππ

scattering, which are the ones we are interested in here, are very similar to those achieved with

the Chiral Unitary approach with just the LO for the scalar waves or including the Li for the

P-waves. This supports again that the dynamics dominating the generation of scalars is different

from that generating vector mesons. Finally, it was also shown that, by neglecting the crossed

channel contributions, the BSE could be solved algebraically. The general solution gave rise to
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an amplitude of the N/D type, with striking similarities to a Padé approximant, although not

exactly of the IAM form. This approach to the BSE with chiral Lagrangian constraints has been

recently revisited for meson-meson scattering in [142, 272] and it has also been quite successful

in the generation of resonances in meson-baryon scattering [273]. Moreover, the algebraic BSE

Eq.101 is also able to generate [274] the poles associated to the f0(1370) and f2(1270) reso-

nances in ρρ scattering, from the contact terms and tree level ρ meson exchange obtained within

the “hidden gauge formalism”, which is a particular realization of chiral symmetry including

heavier resonances. Extensions of this unitarized formalism also describe successfully decays

[275] or production of the f2(1270) in heavier meson decays [276].

3.6.3. The coupled channel Inverse Amplitude Method

The generalization of the elastic NLO IAM in Eq.88 to coupled channels is straightforward.

It is enough to introduce the NLO ChPT expansion Re T−1 = T−1
2

(1 + T4T−1
2
...) into Eq.80,

recalling that, as we already saw in Eq.77, Im T4 = T2ΣT2. This leads to:

T (s) = T2(s) [T2(s) − T4(s)]−1 T2(s). (102)

This equation is called the coupled channel IAM since it is nothing but the matrix form of Eq.88

[80, 81, 110, 111]. Formally, it reproduces the low energy expansion of ChPT T ≃ T2 + T4 + ....

On the physical cut, this is similar to the K-matrix approach if one approximates K = Re T−1 by

the NLO ChPT expansion. However in this case Re T−1 is not a polynomial matrix, but contains

logarithmic functions and their corresponding cuts, as required by the ChPT expansion.

Note that for this approach one needs the fully renormalized NLO calculation of all the

elements of the T4 matrix. This means once again that no spurious parameters are needed, but

just those of NLO ChPT Lagrangian. However, when this method was first applied [80, 81] only

a few of the T4 elements were available: (ππ [54], Kπ and Kη scattering [249]). This led to a

partial approximation to the NLO IAM that we have called the NLO Chiral Unitary Approach

and has been discussed in Subsec.3.6.2. Nevertheless, triggered by the successful results of this

partial approximation, the full one-loop KK̄ → KK̄ and KK̄ → KK̄ calculations were soon

completed [110].

Thus when Eq.102 was applied to the coupled ππ, KK̄ states [110], the S and P waves up

to 1.2 GeV were nicely described by fitting data with fairly reasonable Li parameters [110].

Since amplitudes were fully renormalized this means that the σ and f0(980) poles were not an

artifact of previous approximations, like on-shell factorization, a spurious cutoff, etc, but were

actually consistent with the NLO ChPT expansion. In [111] the NLO ChPT amplitudes between

two-NGB states, i.e. ππ, KK̄ Kπ, Kη, ηπ and ηη, were calculated with common simplifications

and normalizations. When applying to them the coupled channel IAM in Eq.102 a fairly good

description of all existing data on meson-meson scattering below 1.2 GeV was achieved, as can

be seen in Fig.29.

Once again poles were found [102] for the complete scalar nonet, i.e. the σ, κ, f0(980)

and a0(980) , as well as those of the ρ(770) and the K∗(892) vectors. Due to the existence of

conflicting data sets, which required the addition of some estimated systematic uncertainties, as

well as to the use of different ChPT conventions equivalent to NLO but differing at higher orders,

several sets of Li could be fitted. Generically the Li come out somewhere in between the NLO

and NNLO determinations of the LECs using standard ChPT. This can be seen in Table 6, by

comparing the IAMIII column with those of NLO and NNLO Li. This is fairly reasonable since

the unitarization procedure is somehow taking into account some higher order diagrams.
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Figure 29: Description of meson-meson scattering data with the coupled channel NLO IAM. Figure taken from [111]
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Thus, coupled channel unitarized ChPT is able to describe well the existing data and to

generate the poles of the light scalar nonet, with fairly reasonable values of the NLO low energy

constants. However, there are several caveats. As usual, the unitarity cuts are treated exactly

within the two-body approximation, whereas left cuts are just approximations. Actually, some

spurious left cuts are generated [110, 111] when they are treated non-perturbatively. This is a

generic and very old problem of unitarization formalisms and K-matrix approaches and it also

occurs in other coupled channel approaches, not only in the IAM. The reason is that unitarity

cuts are common to all elements of the T -matrix, but left cuts can be different for diagonal and

non-diagonal elements. Although left cuts come out correctly in the ChPT calculation of each

T4 element, when obtaining the inverse in the coupled channel IAM, Eq. 102, the determinant

mixes all left cuts for all elements. This also happens if matching the ChPT series with any

approximation to Re T−1 in other unitarization techniques. So, rigorously, spurious left cuts

appear in the partial waves. Moreover, having the wrong left cuts means that there cannot be a

dispersive derivation for the coupled channel IAM as it exists for the elastic one. Fortunately

though, their numerical effect is very small, of the order of a few per cent [110, 111], and that is

why the coupled channel IAM still gives a rather good description of data and resonances.

Note that these caveats do not apply to the elastic IAM, which is obtained from a dispersion

relation and in this sense it is much better founded. Fortunately, when dealing with the σ meson

the elastic formalism is more than enough for many purposes. But for this reason, we have to

emphasize once more that the IAM is not intended for precision calculations.

As a summary to all meson-meson scattering unitarization sections, we have reviewed how

the σ meson can be generated by unitarization of Chiral Perturbation Theory. These techniques

not only describe the meson-meson scattering data but allow for reasonable analytic continua-

tions and generate the poles associated to the lightest scalar mesons, which are largely domi-

nated by two-meson-loop dynamics. The pole of the σ comes out very close to that obtained

by the dispersive data analyses used for precision determinations of the σ properties seen in

Sec.2.3.4. Therefore, the main properties of the σ are well described once data, chiral symmetry

and unitarity are implemented within a scheme with decent analytic properties. Of course, when

unitarizing certain approximations are made: on the left cut, or neglecting many-body inelastic

channels, etc, but these have been investigated and are small. Thus, although these unitarization

methods cannot compete in precision with the more rigorous dispersive approaches, they provide

a connection to Chiral Perturbation Theory (ChPT) and therefore to the QCD parameters. In par-

ticular, in Subsec.3.8 below we will review how the σ depends on quark masses and in Section 4

we will study how the σ depends on the number of QCD colors Nc. But to end the unitarization

subsection, let us comment on how unitarized meson-meson scattering amplitudes can be used

to describe the effects of the σ meson in other processes, by providing the final state interactions

of decay products.

3.7. Unitarization: The σ in other processes

Once meson-meson amplitudes are properly unitarized they can be used to describe the final

state interactions of two mesons that appear in another process, typically the decay of heavier

particles like the φ, J/Ψ, D or B mesons. In principle, different light resonances can be produced

in the decay of these mesons, but here we will concentrate in the production of the f0(500) or σ.

The very basic idea can be illustrated with the process A → ππ in the isoscalar-scalar chan-

nel and in the elastic regime, which is described by an amplitude, or form factor F(s). The

initial state A is anything other than two pseudoscalar mesons, so that we are not dealing with
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meson-meson scattering. Such processes may be triggered by whatever mechanism, like elec-

troweak interactions, but once the pions are produced, they re-scatter strongly and produce the

σ. Neglecting electroweak corrections, elastic unitarity demands that ImF(s) = σ(s)F(s)t
(0)

0
(s)∗,

where as usual σ(s) ≡ 2k/
√

s, and t
(0)

0
is the scalar-isoscalar partial wave. Note that |F(s)| is not

constrained by the previous equation, which can be multiplied by any real function. However,

the phase of F must be equal to that of t
(0)

0
(s) (Watson’s theorem). Thus, we know the phase of

F(s) and that the sigma pole must be present in F(s). But there is already a function with those

properties, which is the unitarized tu(s), so that we can define Fu(s) ≡ R(s)tu(s), with R(s) a real

function in the real axis and no poles. Customarily Fu(s) is also called a unitarized amplitude. In

practice, R(s) is obtained by matching the above expression to the ChPT calculation of F(s).

For instance, when using the ChUA to LO in ChPT and the expansion of F(s) = F0(s) + ...,

then Fu(s) = F0(s)tu(s)/V(s), where V(s) is the LO calculation of t(s), namely, the low energy

theorems in Eq.65. This approach is easily generalizable to coupled channels by considering

F(s), t(s) and R(s) as matrices. As we will see next, in the last years it has been applied to

describe a great deal of experimental data in which the σ resonance is produced. The relevance

of this approach is that it makes the production process consistent with the scattering data, for

which we have seen in previous sections that there are very strong constraints about unitarity,

analyticity, as well as for the pole position itself. Hence, this a much more constrained and

complete treatment that just considering sums of Breit-Wigners as it is usually done in many

experiments.

This approach is also applicable if there are other particles in the final state, namely A→ Bππ,

as long as the interaction of B with the two pions is negligible. This is of course the case if B

only has electroweak interactions with the pions, but in practice it is also the case of many other

processes even if B is made of other hadrons.

For example, a relatively narrow peak in the σ region is seen in the J/ψ → pp̄π+π− decay

[281] with a shoulder in the ρ(770) region. A good description of this process within the coupled

channel ChUA was obtained in [282] including an apparently narrower σ.

This apparently narrower σ is very common in production processes compared to the very

wide, almost non-resonant shape observed in scattering. Compare, for instance the low peak

around 450 MeV in the J/ψ → ωπ+π− decay observed by the BES Collaboration and shown

here in Fig.5, with the absence of any structure around 450 MeV in the ππ scattering phase in

the left panel of Fig.2. This narrowness is easily explained within the unitarized formalism. To

fix ideas, let us use the very simple LO ChUA, following [283]. Here the production vertex VP

gives the LO form factor that we generically called F0(s) and the Bethe-Salpeter equations lead

directly to the generic amplitude above, that we write now as VPtu(s)/V(s). Since in the σ region,

2s >> m2
π, the production amplitude behaves as tu(s)/s. It is this s in the denominator that makes

the broad structure of the σ in tu(s) look narrower. Actually, the decays J/ψ → ωπ+π− and

J/ψ → φπ+π− have been nicely described within a ChUA matching up to NLO with ChPT in

[284] or to LO plus the addition of the exchange of vector and axial-vector mesons [283].

Furthermore, the BES Collaboration has also measured the production of the σ in ψ(2S ) →
J/ψπ+π− [95]. In their analyses they first used different Breit-Wigner forms, which are strongly

model dependent, as we have already discussed, and do not have the correct final state phase

for the ππ system nor a σ pole consistent with dispersion relations. However, they have also

explicitly shown next that their data can be described with a ChUA with a pole fixed at 469 −
i203 MeV. The formalism for this decay is basically the same we have just described for decays

of the J/ψ into a vector and two pseudoscalars and was treated in detail in [285].
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Note that the structure of the vertex that produces the vector-pseudoscalar-pseudoscalar state

is responsible either for the smallness or even lack of σ signal in the φπ+π− final state compared

to that of the f0(980) or to the large σ signal in the ωπ+π− and J/ψπ+π− final states. The sigma

or the f0(980) are generated by rescattering once this “filtering” is determined at the production

vertex.

The filtering of the initial production vertex is also responsible for the tiny contribution of the

σ meson to φ→ γPP, where P are pseudoscalars. In this process there is a clear f0(980) signal,

nicely described by treating the final state interactions with the ChUA [286, 287], but a very small

one from the σwhich is also swamped by other effects [287] which are more model dependent. It

is very illustrative that within a LσM supplemented with ChPT constraints [289], this filtering is

due to the production vertex being proportional to m2
σ−m2

K
, which is very small. Thus, although a

priori this φ radiative decay was considered promising to study scalars [290], this filtering makes

it only suitable for the f0(980) but not very useful for drawing robust conclusions about the σ.

Similarly, this filtering effect has also been recently described [291] in semileptonic decays of D

mesons, where in Ds decays the f0(980) is nicely observed but not the σ and the opposite occurs

in D+ decays.

Finally, this filtering is also relevant to interpret the recent LHCb measurements: the σ was

clearly seen in B
0 → J/ψπ+π− data [288], with little strength for the f0(980), but the opposite

situation was previously measured in B0
s → J/ψπ+π− data [292]. Once again these effects can be

easily accommodated within the ChUA approach to model the final state interactions [293].

This technique has also been applied to D0 decays into K0
s and two pseudoscalar mesons,

which were measured in [294, 295], allowing for a unified study of the σ together with the

f0(980) as well as the a0(980) from the same decay.

Of course, the approach just discussed does not directly apply without further assumptions

when three particles exist in the final state as in the D → K0
s MM decays. In particular, in [296]

it is assumed that the process has several steps: First D → K0
s R, where R is f0(500) or f0(980)

for MM = ππ and R = a0(980) for MM = πη. Next the R→ MM decay occurs. The final step is

the rescattering of the MM. Note that in the last two steps the K0
s is assumed to be an spectator.

The process is modelled initially from the quark level to obtain the appropriate symmetry factors

to produce the K0
s R state, including some hadronization constants and production vertices. The

unitarized scattering amplitude, in this case using the ChUA described in previous sections, is

only used in the last step, to describe the MM distribution. The results reproduce well the basic

experimental features.

3.8. Quark mass dependence

The quark mass dependence of the f0(500) is relevant for our understanding of the σ nature

and spectroscopic classification but also because it allows for a connection with lattice QCD.

ChPT provides a rigorous expansion of NGB masses in terms of quark masses mq, which

appear through the lowest order NGB meson-mass matrix M2
0
∼ mq, as we saw in Eq.64. Thus,

the dependence of resonance parameters on quark masses can be studied simply by changing the

NGB meson masses in the unitarized amplitudes.

To LO ChPT it was shown in [130] that, by restoring exact SU(3) symmetry in an N/D

chiral unitarized approach, the poles of the lightest scalar mesons became degenerated into an

octet and a singlet. The poles of the octet were those of the κ, the a0(980) and one particular

combination of the σ and f0(980). This was achieved by setting the pion, kaon and eta masses to

the same value, not only in the scattering kinematics but also in the leading order ChPT vertices.
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Figure 30: Trajectories of the poles that appear in coupled channel unitarized amplitudes of different isospin as the pion,
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from [130]. Reprinted from J. A. Oller, “The mixing angle of the lightest scalar nonet,” Nucl. Phys. A 727, 353 (2003).

Copyright 2003, with permission from Elsevier.

In addition all values of the subtraction constants (or the cutoff, since they can be translated

into one another) were also made equal. The pole trajectories in the complex plane from their

physical positions to those where SU(3) is restored are shown in Fig.30. This result was very

relevant because it showed explicitly that all those scalar resonances do form a nonet, without any

a priori assumption about their existence or nature, but just chiral symmetry, unitarity, analyticity

and a data fit.

Higher order unitarized calculations of the quark-mass dependence of light mesons have

only been carried out in the elastic regime, but as we have already seen, if one is not looking

for precision, elastic unitarization techniques are quite enough to deal with the sigma. The IAM

has been used in these studies since it deals approximately with the left cut and because its only

parameters are those of ChPT at each order, without the need to make assumptions on subtraction

constants or cutoffs where some spurious mass dependence could hide. In particular, the ρ(770)

and σ parameter dependence on the averaged non-strange light quark-mass m̂ has been studied

within the unitarized SU(2) elastic IAM formalism to NLO in [297] and to NNLO in [235].

In addition, the ππ elastic scattering phases dependence was also studied in [298] with the same

methods. Moreover the ρ(700), σ, κ(800) and K∗(892) dependence on both the non-strange quark

mass m̂ and the strange one ms was studied in [256] within the SU(3) NLO IAM formalism.

If the elastic approximation is to be used, the range of values of Mπ that can be considered

should fall within the ChPT range of applicability and allow for some elastic ππ and πK regime

below KK̄ or Kη thresholds, respectively. Being very optimistic, this means Mπ ≤ 440 MeV

[256], but we will see it is even less at NNLO. Higher order corrections are expected to become

larger as Mπ is increased, but this uncertainty can be studied by unitarizing the NNLO.

Thus, the left panel of Fig. 31 shows the NLO IAM results [297] for the Mπ dependence of

Mρ and Mσ (defined from the pole position
√

spole = M − iΓ/2), normalized to their physical

values. The bands cover the SU(2) LECs uncertainties only. Let us denote in this subsection the

physical mass of the pion by M
phys
π . From Mπ = 0 up to 2.4 M

phys
π both the sigma and ρ(770)

masses are described by rather smooth curves, monotonously increasing with Mπ. Note that Mσ

grows somewhat faster than Mρ in that region. This effect has also been observed on the lattice

100



0 1 2 3
mπ / mπ

phys

0.5

1

1.5

2
σ vs. ρ
Mass of

1 2 3 4 5

Re (√

s / mπ)

-1.5

-1

-0.5

0

0.5

1

1.5

Im
 (

√
 s 

/ 
m

π
)

π
π

 t
h

re
sh

o
ld

Figure 31: Left: Mπ dependence of the σ (dark band) and ρ(770) (light band) masses in units of their physical values

[297]. The bands cover only the uncertainties in the SU(2) LECs. Right: in Mπ units the σ (dashed line) and ρ(770)

(dotted line) pole trajectories on the second Riemann sheet of the complex plane as Mπ is increased from their physical

value (first point in their trajectories). Both Mσ and Mρ grow with Mπ, but the 2-pion threshold grows faster, so that in

Mπ units both resonances seem to approach threshold. Note that in the original works [297] the notation mπ was used

instead of Mπ. Figures taken from [138] (left) and [235] (right).

[299]. However, around 2.4 M
phys
π there is a striking splitting in the curve describing the evolution

of the σ mass, which does not occur anywhere for the ρ(770).

This splitting can be understood by looking now at the right panel of the same Fig. 31, which

shows the trajectories followed by theσ and ρ(770) pole positions in the second Riemann sheet of

the complex plane as Mπ is varied. Note the use of Mπ units in order to see the pole movements

relative to the two-pion threshold, which is fixed at 2 in the figure. Then, since the two-pion

threshold at 2Mπ grows faster with Mπ than both Mσ or Mρ, both resonance masses seem to

decrease in Mπ units. Let us now look at the conjugated pair of ρ(770) poles, which reach the

real axis at the same time they cross threshold. This is a generic feature of resonances with J ≥ 1

[300]. Then, one of them jumps into the first sheet and stays below threshold in the real axis as a

bound state, while its conjugate partner remains on the second sheet practically at the very same

position as that in the first. In contrast, as seen in the right panel of Fig. 31, the conjugated σ

poles meet in the real axis below threshold, becoming virtual states. Contrary to some common

belief, and crudely speaking, scalars can have a pole-width even if there is no phase-space avail-

able because their pole-mass is below the two-pion threshold. This is also a generic feature of

poles in S -wave amplitudes [300]. Similar movements were found in potential models [76, 301],

unitarized quark models [302],finite density analysis [303], or in general studies of chiral sym-

metry restoration [304]. Moreover, the non-analyticity of the hadron mass when the conjugate

poles reach the real axis has been recently studied in detail within the general formalism of Jost

functions in [305, 306]. The conclusion for the σ is a similar warning to that raised in Ref. [297]

about naive mass extrapolations for states which appear near thresholds on the lattice, although

within a more general framework.

Another example of the pole moving below threshold but keeping a finite width may also

occur [304] when increasing the ππ attraction in the σ channel relatively to other scales, for

instance in the process of chiral restoration with temperature or in medium.

Once the pair of poles has reached the real axis, they do not have to be conjugated anymore

and, as Mπ increases, they lie on the real axis with two different pole masses. What is found for

the σ [300] is that one pole moves towards threshold and for Mπ ≃ 3.3 M
phys
π it jumps through
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Figure 32: Left: mπ dependence of the σ (dark band) and ρ(770) (light band) widths in units of their physical values

[297]. The dotted line, almost overlapping with the ρ(770) results, shows how the ρ(770) width would change from the

phase space reduction only, assuming a constant coupling of the resonance to two mesons. In contrast, the behavior

of the σ width does not follow the variation of phase space only, represented by the dot-dashed line. Right: the ρππ
and σππ couplings as obtained from the modulus of their pole residues in ππ scattering calculated within NLO IAM

[256, 297]. Note the ρππ almost constant behavior versus the strong mπ dependence of σππ around the splitting point

into two branches. Figures taken from [297] (left) and [309] (Right). Right figure reprinted with permission from G. Rios,

C. Hanhart and J. R. Pelaez, AIP Conf. Proc. 1322, 452 (2010). Copyright 2010, AIP Publishing LLC.

the branch point to the first sheet, staying in the real axis below threshold, very close to it as Mπ

keeps growing. The other σ pole moves down in energies away from threshold and remains on

the second sheet. This is why there is a ”splitting” on σ-mass curve on the left panel of Fig. 31,

each new branch corresponding now to one of the two poles in the real axis below threshold.

Since this lower pole may get close to the Adler zero region, it is important to remark that all

calculations were performed with the modified IAM of Eq.91, which differs very little form the

IAM everywhere except near the Adler zero region, where it does not have spurious singularities

and reproduces better the Adler zero. Let us also remark that these very asymmetric poles could

signal a prominent molecular component [182, 307, 308], for large pion masses, which might be

studied on the lattice.

Next, in the left panel of Fig. 32 the Mπ dependence of Γρ and Γσ normalized to their physical

values are compared. Note first that both widths become smaller as Mπ increases. One could then

wonder if this decrease is just due to phase space, since the two-pion threshold is increasing faster

than both resonance masses. Hence this decrease is compared in Fig. 32 with the expected phase

space reduction as resonances approach the ππ threshold. Note that Γρ follows very well this

expected behavior, which implies that the ρππ coupling is almost Mπ independent, as shown in

the right panel of the same figure (continuous line) [297, 309]. The coupling is defined as the

modulus of the square root of the pole residue. This result is very relevant because the very

small Mπ dependence of the ρππ coupling was assumed in a lattice study [310] but was later

found in the lattice calculation [311]13, which did not assume it from the start. Moreover it also

seems consistent with other recent lattice calculations [312] and [313]. Still, this comparison

between lattice and ChPT couplings must be taken cautiously, because lattice computations are

performed at rather large pion masses from the unitarized ChPT point of view and their couplings

are obtained from a phenomenological model fitted to the phases obtained on the lattice, not from

13Check the numbers in the Erratum.
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the residue of the pole. However, the fair consistency with the lattice findings for the ρ(770)

gives relative confidence on the unitarization method and its results for the σ, which have not

been tested on the lattice yet.

Back to Γσ, it can also be seen on the left panel of Fig. 32 that it deviates from the pure phase

space reduction expectation. Once again the coupling can be extracted from the pole residue

and is also shown on the right panel of Fig. 32. The Mπ dependence of Γσ is rather mild near

the physical region, but it becomes very strong around the splitting point. Note that this time

there are “upper” and “lower” branches above the splitting point, both varying strongly with

Mπ. This behavior might be a hint of some relevant or even dominant “molecular” component

[308, 314, 315] within the σ at large Mπ masses.

Of course, one might wonder how robust the NLO IAM results are as Mπ becomes very

large. Hence, the left panel of Fig. 33 shows the sigma mass Mπ dependence calculated with

the NNLO IAM [136], i.e. to two-loops, which can be compared with the NLO IAM results

already discussed in Fig.31. The calculation of uncertainties is more cumbersome at NNLO and

thus there are four different fits to data and lattice results on the Mπ dependence of fπ and the

NGB masses [136]. It can be noticed that the NLO and NNLO results look qualitatively similar,

although the NNLO calculation places the splitting point slightly below Mπ = 300 MeV, instead

of the 240 MeV found at NLO. The ρ(770) coupling is still found to be quite independent of Mπ

and the σ width and coupling have the same NNLO qualitative behavior than to NLO, although

taking into consideration a lower splitting point.

This is in qualitative agreement with the lattice findings in [164], where a bound state seems

to exist for Mπ ≃ 325 MeV. Let us nevertheless recall the caveats raised from the very authors of

[164], since they cannot calculate accurately the width, and some possibly relevant contributions

from “disconnected contractions” have not been included in the calculation. While finishing this

report the first lattice calculation of ππ scattering in the scalar isoscalar channel which takes into

account such contribution has appeared [316]. The amplitude is calculated for Mπ = 236 and

391 MeV. For the higher pion mass a bound state at 758 ± 4 is found, which is qualitatively

consistent with the predictions of the NNLO IAM we have just described. As seen in the left

panel of Fig. 33, the upper branch of fit D predicts a bound-state pole in remarkable quantitative

agreement with this lattice findings. For Mπ = 236 MeV the lattice phase shift is described with

several parameterizations that fulfill unitarity (although without a left cut), like a K-matrix, and

all them display a pole deep in the second Riemann sheet of the energy-squared complex plane,

with a very large imaginary part, corresponding to a very wide resonance. They do not observe

any significant change in the sigma coupling to two pions, but that is also consistent with the

IAM because, as seen in the right panel of Fig.32 the coupling at Mπ = 236 and 391 MeV is

also relatively similar, since the expected singularity is placed between those two masses but far

enough to be seen in any of them.

In addition, there is another relevant piece of support for this whole picture coming from

the lattice. The NLO IAM analysis can also be extended to SU(3) [256] in order to include

strangeness. This allows for a study of the strange quark mass dependence of all the resonances

generated with IAM, and in particular of the sigma, which is completely negligible. But the

SU(3) NLO IAM also generates the κ scalar meson and the K∗(892) vector meson. The depen-

dences of the mass of both resonances on the pion mass are shown as curves on the right panel of

Fig. 33. Note, on the one hand, the very similar smooth behavior of the K∗(892) vector compared

to that of the ρ(770) vector in Fig.31. On the other hand, note the striking similarities between the

κ in Fig. 33 and the σ in Fig.31. This similar mass dependence could be expected, since we have

already argued that the κ is very similar to the σ but in πK instead of ππ elastic scattering. Thus,
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Figure 33: Left: Dependence of the sigma mass Mσ on the pion mass, from the NNLO (two-loops) IAM [136]. Different

curves represent different fits on [136]. The thin continuous line shows the 2mπ threshold. Right: mπ dependence of the

κ(800) (solid line) and K∗(892) (dashed line) masses [256]. All masses and widths are defined from the pole positions as

obtained from NLO IAM fits. Figures taken from [235] (left) and [317] (right).

as for the σ, we see a splitting point, above which the κ becomes a virtual state. The relevant

point is that this virtual κ state has been recently claimed in a lattice calculation of πK scattering

at high pion masses [166], which once more gives support for the unitarized ChPT approach that

we have reviewed in this subsection.

The dependence of the σ properties upon quark mass variations has also been the subject

of interest in relation to Cosmological and Anthropic considerations. As commented in the

introduction, the σ exchange is responsible for the most part of the nucleon-nucleon attraction

and thus a small variation in its parameters could lead to different nuclear binding energies,

transition rates, etc... In particular the cosmological production of light nuclei, or the stellar

production of carbon (very fine-tuned through the triple-α process) could be severely affected by

changes in the quark masses, leading to a Universe very different to the one we live in. On the one

hand it may also lead to Cosmological bounds on the variability of quark masses. On the other

hand, this has Anthropic implications which lie far beyond the scope of this review. Incidentally,

some of the most recent and advanced analyses of these σ effects have been estimated by means

of some form of unitarized ChPT [318] and then implemented in different ways inside the NN

potential and Cosmological models, which are also beyond the scope of this review.

Finally, while preparing this review a study of the dependence of the mass and width of the σ

and ρ resonances on the QCD θ angle has appeared in [319], following a very similar approach to

the one just reviewed here to study the quark mass dependence. The ρ(770) mass only decreases

very slightly as |θ| grows, whereas the σ mass suffers a bigger decrease but only when |θ| > π/2.

The widths of both resonances increase following the larger phase space available due to their

respective mass decrease.

To summarize this section, the quark mass dependence of scalars calculated within the Chiral

Unitary Approach, strongly supports their identification within a single nonet below 1 GeV. In

addition, one should also keep in mind that their quark mass dependence is a prediction of QCD

that could be tested on the lattice. For the particular case of the sigma we have seen that this

mass dependence has been calculated at higher orders within unitarized ChPT and provides a

connection with lattice QCD. The approach seems reliable, at least semi-quantitatively, because

it is shown to give good results for the ρ(770) for which lattice calculations exist. Moreover,
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for high quark masses the sigma becomes a bound state, with one pole in the first sheet and

another one in the second at somewhat different positions. Such a bound-state pole has been

very recently found in lattice calculations [316]. Thus, at those quark mssses, the UChPT sigma

can be interpreted as a meson-meson composite state. Similar results are predicted for the κ and

have been recently corroborated on the lattice. It is also worth noting that the sigma quark mass

dependence is of relevance for Cosmological and Anthropic considerations.

3.9. Other approaches

In the previous subsections we have addressed, by means of unitarized Chiral Perturbation

Theory, the description of meson-meson scattering, which is the process with strongest con-

straints to determine the sigma parameters and behavior. ChPT provides the most general de-

scription up to a given order in terms of pions, kaons and etas. Then, without a priori assumptions

about the existence and properties of light scalars, these are generated from unitarization.

However, there are other approaches in which the scalar mesons, and sometimes even other

fields, are introduced from the start. This can be done by using ad hoc functional forms that

respect unitarity and resemble a resonance exchange, or by considering some specific form of

Lagrangian interactions for these heavier fields among themselves and with pions, kaons and etas.

Lacking a well defined power counting, as in ChPT, the choice of interactions relies on a judicious

choice of terms, based mostly on symmetries, lowest dimensionality and simplicity. Sometimes

the choice is also guided by some quark-level model. In most cases, interactions are treated at tree

level, by considering that the parameters of the Lagrangian are some kind of effective couplings,

which absorb loop effects. This is usually enough to get a rough description of masses and

decays. Note, however, that very often the mass and widths given for the σ and other scalars do

not correspond to poles in the complex plane but depend on the parameterization used to describe

each resonance. When this parameterizations are judiciously chosen these parameters come out

relatively similar to those obtained from the poles in Subsec.2.5.

Often these models can be considered extensions of the LσM, which at least includes the

leading order ChPT interaction between pions, kaons and etas. However, as soon as meson-

meson scattering is included in the picture, some form of unitarization is frequently incorporated.

With the advent of ChPT and dispersive methods, these simple approaches are mostly con-

sidered “toy-models”14 or qualitative approximations, semi-quantitative at best. However, these

models, without really aiming at precision, have been historically very important to establish

the existence of the σ, its differences with ordinary mesons and its spectroscopic classification.

One advantage of these models is the ability to calculated in a simple way many other processes

beyond scattering, in which scalars are involved. In addition, they frequently set the stage for

further discussions about mixing, composition, spectroscopic classification, etc, particularly for

heavier scalars.

Unfortunately, the problem with these models is that different choices of coupling or mass

terms, of the choice of resonances that are included in the calculation, the observables fitted,

etc, can sometimes lead to different conclusions about the nature, mixing, etc... of a state. The

existence of precise dispersive determinations of the σ, κ and f0(980) should help reducing this

apparent arbitrariness in the future.

In this subsection the most popular or influential models based on mesonic degrees of free-

dom will be briefly reviewed. Most of them lead to some form of “effective chiral Lagrangian”.

14See for instance the abstract in [100] or the conclusions in [124].
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The only exception is the Krakow-Paris model which uses separable potentials in which the QCD

chiral symmetry breaking pattern is not incorporated. In the next Section, a specific subsection

will be devoted to some of “quark-level” models.

3.9.1. Extended and Unitarized LσM

When discussing the LσM in Subsec.3.2 above, we already noted that a Padé type unitariza-

tion had already been applied back in 1970 within the S U(2) case [13], in order to sum the strong-

coupling perturbation series and satisfy unitarity. Padé approximants were actually applied to the

ππ scattering amplitude computed from the truncated LσM to second order in the coupling ex-

pansion. Thus, if a partial wave was calculated perturbatively as t(s) = λt1(s) + λ2t2(s) + ...,

where we have suppressed the I, J indices, that partial wave was then approximated by t[1,1] =

λt2
1
/(t1 − λt2). This may look similar to the unitarization of ChPT reviewed in the previous sub-

sections, but it is not, since there the terms in the series correspond to higher orders in the energy

expansion, whereas here they correspond to higher orders in the coupling constant of a particular

model. The definition of M2
σ was the value of s (in the real axis) at which the real part of the

Padé denominator vanishes. The only two free parameters were fπ and the coupling λ. When fπ
was taken at its physical value it was found that Mσ ≃ 425 MeV and its width was 220 MeV, far

too narrow for our present knowledge. In addition a ρ-like vector appeared at 600 MeV as well

as a second scalar resonance around 870 MeV, not too far from the present f0(980). Note that

these two resonances were not included in the original Lagrangian. The best fit required a too

large fπ = 125 MeV, yielding Mσ = 530 MeV, but still a too narrow Γσ = 310 MeV and a far too

narrow Γρ = 35 MeV. Although the qualitative features were there and some crossing symmetry

checks were shown to be satisfied to good accuracy, for the knowledge already available in the

70’s the unitarized LσM was clearly insufficient.

Nevertheless, the unitarized S U(2) LσM has been revisited often [15, 16, 132, 320], using

different approximations, and always yielding a “semi-quantitative” description of ππ scattering,

requiring the presence of a broad scalar around 400-650 MeV. It was even shown [86] that the

mesonic S U(2) LσM could be generated dynamically from the one-loop treatment of a quark-

level LσM Lagrangian, although in this case the σ mass came around 650 MeV. It is interesting

also to note that if only the tree level LσM is unitarized, the σ resonance mass width comes

now somewhat too large, in the 650-750 MeV range, in contrast to what happened in the Padé

approach up to second order. Also, the Lagrangian or “bare” σ mass comes out around 1 GeV,

very different from the resonance mass.

The LσM extension to three flavors and S U(3) was carried out in [321, 14]. In [89] a broken

U(3) × U(3) LσM was compared with experimental data on masses and decays of the lightest

scalar and pseudoscalar mesons. The comparison was performed at tree level. The model has six

parameters, which included three symmetry breaking terms. By fixing Mπ, MK and M2
η′ + M2

η ,

fπ and fK to their physical values, there is just one parameter left, which only changes the σ and

f0(980) masses and couplings to two-meson states. Only a very crude description was achieved,

since the a0(980) came at ∼ 1030 MeV, the σ at ∼ 620 − 650 MeV, the f0(980) at ∼ 1200 MeV

and a Kπ-resonance at 1123 MeV. At that time the existence of a κ meson below 1 GeV was

unclear and this last pole was identified with the K∗(1430) instead of a light κ. Such a large

mass difference between the a0(980) and the K∗(1430) was complicated to understand if they

belonged to the same multiplet [124]. Nevertheless, in a later review [124] the author claimed

growing evidence for a light nonet which comprised a κ with an undetermined mass. We will

comment again about this model in Subsec.4.6.3 below.
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Almost simultaneously an SU(3) LσM was also being used as a template for a possible clas-

sification of light scalars by S. Ishida and collaborators. By analyzing ππ [98] and Kπ [322]

scattering data they found that σ and κ poles where necessary. In these works an ad hoc defor-

mation of the Breit-Wigner formalism was used. In a later model [88] they considered “plausible

to regard the σ(600), κ(900), a0(980) and f0(980), forming with the members of the π nonet a

linear representation of S U(3) chiral symmetry”. As usual, with a tree level analysis, the LσM

can accommodate qualitatively the masses of these states. Only with that information it was sug-

gested to assign these states to q̄q configurations. However, the values of the mass and widths of

the σ and κ do not describe well our present knowledge.

Going beyond just tree level masses and decays, meson-meson scattering was also studied

within a unitarized SU(3) LσM in [100], which was considered as a “toy-model” by the authors.

The method consisted in unitarizing with a K-matrix the tree level approximation. The results for

the σ did not change much with respect to the S U(2) case. The sigma mass quoted is 457 MeV

and the width 632 MeV. Once again the “bare” or Lagrangian-mass came out higher, around 850

MeV. The model was able to describe the f0(980) shape correctly and a fairly good description of

data was found, although it was also shown that giving up the renormalizability constraint could

be helpful for the fit above 1 GeV. In the second part of this paper the possibility of including

a second nonet at higher energies within a chiral framework was sketched. We will discuss this

issue in a separate subsection below.

Another recent extension of the LσM are the works by the Frankfurt group in [323, 324].

On a first instance the two flavor case was considered [323]. Here vector and axial-vectors

were included, although in a less restrictive framework that usual, in which these fields ensure

global instead of local U(2) × U(2) invariance, guided by the fact that the symmetry is global

in QCD as well. In addition, terms of dimension four were added in order to calculate all two-

meson decay widths as well as ππ scattering lengths. The parameters of the model are then

fitted to data on decays. By choosing an appropriate potential the scalar-isoscalar and scalar-

isotensor masses scale as O(1) and its width as O(1/Nc). The Nc scaling was a consequence

of the assumptions that the I = 2 vector corresponds to the ρ(770), the I = 1 pseudoscalar

corresponds to the pion and that both are quarkonia. No further assumptions about the fields

were made and that leads to the above Nc behavior, which, as we will see in Subsec.4.1 is the

expected behavior for q̄q resonances. However, if these two fields were identified with the σ and

a0(980), respectively, the width of the σ came out too small. The alternative assignment f0(1370)

and a0(1450) yielded the correct widths but an incorrect scattering length. This was interpreted

as a need for more scalar degrees of freedom and thus the model was extended to three flavors

in [324]. A “surprisingly good” fit to meson masses, decay widths and decay amplitudes was

obtained, in which once again the preferred assignment was for q̄q scalar mesons to be above 1

GeV. Note that this time the q̄q assignment of a strange scalar resonance could also be studied,

and consistently it also preferred to be identified with the K∗(1430). According to the authors

this indicated the need for an additional nonet of scalars below 1 GeV that should not match

a q̄q assignment. In addition, the role of the glueball mixing with quarkonia has been studied

within this extended LσM and the conclusion is that the f0(500) glueball component, if any, is

strongly subdominant [325], with the f0(1710) as preferred scalar glueball candidate [326]. All

in all, the extended version of the LσM in [323, 324] is a much more complete version including

not only scalars and pseudoscalars but also vectors and axial-vectors within a single theoretical

framework. This could be interpreted as an effective approach offering a rather realistic treatment

of the meson spectrum, although given the large number of physical resonances it is of course
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not complete (but there is an ongoing effort to extend it further15). Nonetheless, the agreement

with data is quantitatively alright in all channels, arguably with the exception of the I = 0 scalars.

The reasons for this are the experimental uncertainties and the various possibilities for mixing

scenarios in the isoscalar sector.

In summary, the SU(3) LσM has the basic ingredients of the lightest scalar nonet and when

applied at tree level gives a qualitative, but not accurate, description of the masses. Since it

is consistent with the LO ChPT amplitudes, when unitarized it can provide a semi-quantitative

description of scattering data. If supplemented with additional resonances with other quantum

numbers, or Lagrangian terms, the agreement can even be improved. When sufficient experimen-

tal data is included in the picture, and as long as one aims just for a semiquantitative description,

it preferably points out at a non q̄q nature of the lightest nonet. However, as carefully warned by

many of the practitioners, it should just be considered a toy model.

3.9.2. Syracuse model

One of the most elaborated approaches for scalars has been developed over the years by

Schechter and collaborators at Syracuse University. They have explored both the linear and

non-linear representations and have included explicitly different sets of resonances. They con-

tributed very significantly to the σ and κ comeback in the mid 90’s and the identification of the

members of the lightest scalar nonet as the σ, κ, f0(980) and a0(980). They have described not

only mass relations and decay calculations but meson-meson scattering as well. A predomi-

nantly tetraquark-like configuration for the lightest scalars is favored in their models, with strong

rescattering effects due to “regularization”, i.e. some form of unitarization.

In particular, in [108] the study of violations of the partial-wave unitarity bound, Eq.73, was

shown to favor the existence of a sigma resonance. The approach relied on the observation that

at leading 1/Nc ππ scattering reduces to a tree-level exchange of an infinite number of width-

less resonances (see Subsec.4.1 below). Thus, a model was built by including the non-linear

LO ChPT Lagrangian in Eq.64, plus the tree level chiral invariant exchange of the ρ(770). This

delayed drastically the onset of unitarity violations but even the addition of other leading Nc res-

onances like the f0(1300), f2(1270) and ρ(1450) was not sufficient to restore unitarity. However

the inclusion of a broad and light scalar-isoscalar resonance was enough to satisfy the unitarity

bound up to 1.3 GeV. This broad state was “presumably not of the simple q̄q type” and hence its

exchange would be subleading in the Nc counting. In a later work of the group [77], the f0(980)

and the K̄K threshold were added to the analysis and it was possible to obtain a good description

of ππ scattering data up to ∼ 1.2 GeV.

In connection with our previous discussions it is worth noting that the σ was parameterized

by a “regularized” description proportional to MσG/(M2
σ − s − iMσG′), where G , G′. Thus,

this shape was not identical to a Breit-Wigner. From the data fit, it was found that Mσ ≃ 525 −
560 MeV and G′ ≃ 370 − 470 MeV. A strong support for a κ meson below 1 GeV was also

obtained in [327] following a relatively similar approach, but applied to Kπ scattering.

Then, with these evidences for both the σ and κ, an effective Lagrangian was built [87]

incorporating explicitly a scalar nonet into a LσM. In [87], an analysis of mass terms was carried

out.

We will follow here the formalism in [87] because it is a basic template for many other

15F. Giacosa and D. Parganlija, private communication.

108



models. In particular the following scalar matrix is used:

S ≡





S 1
1

a+
0

κ+

a−
0

S 2
2

κ0

κ− κ̄0 S 3
3




; a0 =

S 1
1
− S 2

2√
2

, S 1 =
S 1

1
+ S 2

2
+ S 3

3√
3

, S 8 =
S 1

1
+ S 2

2
− 2S 3

3√
6

,

(103)

where the last two combinations are isosinglets but only the last one belongs to the octet. Note

that S 1 and S 8 are expected to mix due to S U(3) breaking. Following the “ideal mixing” idea of

Okubo [328], which works well for vector mesons, but now for 0+ instead of 1− fields, the “ideal

mixing model” allows for the following mass terms:

Lmideal
= −aTr(S S ) − bTr(S SM), M = diag(1, 1,ms/m̂). (104)

Diagonalizing the fields with this mass Lagrangian leads to the “ideally mixed” mass eigenstates

S 3 = S 3
3

and S 12 = (S 1
1
+ S 2

2
)/
√

2. Moreover, with only these terms the masses of the fields in

Eq.103 satisfy the constraints M2
a = M2

12
= 2M2

κ − M2
3
, which have two kinds of solutions:

M3 > Mκ > Ma = M12, (105)

M12 = Ma > Mκ > M3. (106)

Intuitively, the first solution is easily interpreted in terms of q̄q mesons, by identifying S b
a ∼ qaq̄b,

with q1, q2, q3 = u, d, s. In this way S 3 = ss̄ whereas S 12 has no strangeness, so that the heavier

mass of the strange quark will roughly explain the mass hierarchy in Eq.105. However, the

observed mass hierarchy of light scalars, M f ≃ Ma ≃ 980 MeV, Mκ ∼ 700−800 MeV, Mσ ∼ 500

MeV does not fit into this pattern, but rather into that of Eq.106.

Thus, in the physical case it is Jaffe’s tetraquark structure [52] the one that allows for a more

natural quark-level interpretation. In particular, by defining Ta = ǫabcq̄bq̄c and T̄ a = ǫabcqbqc

then, schematically, one can identify:

(S b
a) ∼ (TaT̄ b) =





s̄d̄ds s̄d̄us s̄d̄ud

s̄ūds s̄ūus s̄ūud

ūd̄ds ūd̄us ūd̄ud




, f0(980) = S 12, σ = S 3

3. (107)

This isoscalar meson identification is referred to as “dual ideal mixing”. The observed mass

hierarchy is roughly recovered because each additional strange quark increases the mass of the

meson by some hundred MeV. But let us remark that within the effective Lagrangian approach

of [87] it is not necessary to assume any internal quark structure for the mesons.

In [87] it was shown that the previous rough agreement could be improved by adding the

following two terms to the mass Lagrangian: −cTr(S )2 − Tr(S )Tr(SM). Terms quadratic in

the quark masses were neglected assuming that quarks masses can be treated as perturbations.

The parameters could now be fixed from the f0(980), a0(980) and σ masses (for the latter 550

MeV was taken). This resulted in a prediction 685 < Mκ < 980 MeV, in fair agreement with

observation. The price to pay is that now the isoscalar fields do not follow the ideal nor the dual

ideal mixing. The new mixing scheme can be defined by the angle θs, where
(

σ

f0

)

=

(

cos θs − sin θs

sin θs cos θs

) (

S 3

S 12

)

. (108)

Ideal mixing corresponds to θ = 90o and dual ideal mixing to θ = 0o. By studying the masses

only, two solutions were found: θs ≃ −21o and θs ≃ −89o. More information was needed to

decide which was the preferred solution.
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Thus, in order to take resonance decay data into account, more Lagrangian terms were con-

sidered, coupling the S matrix to a pair of pseudoscalar matrix fields containing pions, kaons and

etas. These terms contained two derivatives to respect chiral symmetry and the NGB nature of

pseudoscalars. Terms with higher derivatives were neglected for simplicity. When considering

only decays to pions and kaons, the analysis involved only two additional parameters, allowing

for a description of κ → Kπ, σ → ππ, σ → K̄K, f0 → ππ and f0 → K̄K decays. For the width

calculation a MG/(M2 − s − iMG′) form was again assumed for the σ and κ. This adds another

two parameters. The outcome of the analysis was a preferred mixing angle θs ≃ −17o ± 4o. This

result was closer to the “dual ideal mixing”scenario and therefore supporting the predominant

tetraquark interpretation over the regular q̄q nature. Nevertheless, both the σ and κ were treated

differently from the f0(980) and a0(980) due to the regularized functional form with the G and

G′ parameters. This was some kind of unitarization, therefore suggesting that meson loops also

play a very relevant role in the nature of the σ and κ. It should be remarked that no dynamical

quark-level dynamics were assumed so that the tetraquark/molecule discussion was not really

addressed, just the mixing pattern.

This angle can be compared with the results obtained in [130] within the unitary chiral ap-

proach already discussed in Subsecs.3.6.2 and 3.8. Using just the leading order ChPT partial

waves and a relatively simple coupled-channel unitarization scheme, the poles associated to all

the members of the multiplet could be calculated. By changing to the singlet/octet basis instead

of the charge basis, one can calculate the couplings, i.e. the residues of the poles, to these states

and infer the mixing angle. In [130] a mixing angle θ = +19o ± 5o with respect to the S 1, S 8

states is found, which translates into θs ≃ +36o ± 5o, which also disfavors the q̄q interpretation.

No description of meson-meson scattering was done within [87, 329], although, as com-

mented in the previous subsection, the group has addressed this issue in [100] by unitarizing the

S U(3) LσM. The resulting masses of both approaches are fairly consistent.

A relevant observation emphasized in [100] is that q̄q states, “tetraquarks” or “molecules”

made of four quarks but rearranged as two pseudoscalar mesons transform the same under

S U(3) × S U(3) 16. Thus, from these transformations alone one cannot differentiate the inner

structure of scalar mesons. Within these models it all reduces once again to the mass hierarchy

and its interpretation in terms a constituent quarks and their mixings, as it was done in [87].

The group has also studied the effect of introducing a heavier scalar nonet into this picture

and has refined the model in several subsequent works [131]. This will be commented in the

next subsection together with other models that also consider two scalar nonets within a chiral

framework.

3.9.3. Two-nonet chiral models

Not only the lightest scalar mesons have difficulties fitting into a q̄q scheme. If one wants to

accommodate the f0(1370), f0(1500), f0(1700), a0(1450) and K∗
0
(1430) into such an scheme, the

first observation is that there is one more isoscalar than needed to form another nonet of heavier

scalars. As already commented, this could be due to the presence of an additional glueball state,

which, as we saw in the introduction, is predicted by lattice calculations [152] to be in the 1.5 to

1.8 GeV region. But even for those states that cannot mix with a glueball there is some trouble,

because the a0(1450) and the K∗(1430) are nearly degenerate, whereas in a q̄q scheme the later

16U(1)A transformations differ between these configurations, but their effect could be absorbed by some parameters of

the model.
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should be some few hundred MeV heavier, as it would contain one strange quark. Also, the

f0(1500) is almost degenerate with the a0(1450). Given the fact that many of these states have

widths of some hundred MeV and that the σ and κ are also very wide, it also seems very likely

that they could mix. A simultaneous treatment of these two multiplets seems then appropriate.

Thus, the Syracuse model was extended [329] within the framework of non-linear chiral

Lagrangians by incorporating another S ′ matrix containing a conventional q̄q nonet. In this

model, mesons in the the heavier scalar nonet interact with the previous S -matrix through the

following term

Lmix = −γTr(S S ′). (109)

This interaction form can be justified within QCD from instanton dynamics [330] and as we will

see in Subsec.4.6 it has also been used in other approaches. For simplicity, the analysis is carried

out in the “unmixed” approximation for the lightest nonet, which for γ = 0 would then exhibit a

“dual ideal mixing”. Still, the masses and two-meson decays of all these resonances can be fitted

rather nicely and “economically”. Within this scheme the σ comes out as mostly tetraquark

but with some significant mixing of a heavier scalar above 1 GeV. Once again no dynamical

quark-level dynamics were assumed and different dynamical tetraquark models (conventional

tetraquark, diquark-antidiquark, molecules...) could fit within this formalism.

The two-nonet model was also considered in [124, 331] with the same coupling between the

two nonets as in Eq.109. However a “Higgs-like” mechanism at the hadron level was at work,

where the axial-vector mesons “ate up” a nonet of pseudoscalars so that at the end there was

only one nonet of pseudoscalars and two nonets of scalars. Since these models predict a large

mixing between “tetraquark” and q̄q components, but are also dominated by large meson-meson

rescattering, in [124] it was conjectured that these components may have a different spacial

distribution inside the resonance. In particular it was suggested that “near the center” they were

dominated by a diquark-antidiquark structure in an S-wave, mixed with some q̄q component,

but that further away these four particles would rearrange into a meson-meson state. For softer

energies one would then be seeing the outer meson-meson structure, whereas for more energetic

probes one might be seeing a tetraquark configuration. The model in [331] is used as a realization

of the conjecture that the composition of the scalars might be seen different depending on the

energy used to probe them. However, taking into account that at present we are still discussing

the composition, there is little evidence of its spacial distribution, if there is any. In addition, the

spacial distribution could be highly model dependent.

There is another model [103] which, despite having also two chiral nonets, finds the op-

posite mixing pattern, namely, that the scalars with a predominantly “tetraquark” structure are

the heavy ones. The mixing is, however, very strong, so that the ”tetraquark“ component in-

side the sigma would still be rather large, although not dominant. In this case, apart from the

instanton-induced mixing, additional mass terms are included to provide an inverted hierarchy

for the lightest scalars. As in previous examples, this model yields just a rough approximation to

masses and decays, but, as pointed out by the very author, in this case it is not able to describe

properly the decays in the isoscalar sector. Therefore it could actually be interpreted as evidence

against the possibility to construct a model where the light scalar nonet is mainly a q̄q and the

heavier one mainly a tetraquark. In addition, as it will be discussed in Subsecs.4.2 and 4.3, a

predominant q̄q nature is disfavored by the large-Nc behavior of the σ found within unitarized

NLO and NNLO ChPT. Such a component can only be subdominant and at large-Nc if its mass

is above 1 GeV. We will also see in Subsec.4.5 that a recent calculation of the σ pole Regge

trajectory using dispersion theory also shows that it does not behave as a meson predominantly
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made of a q̄q state.

Finally, there is yet another model by the Frankfurt group [134] in which the mixing between

a diquark-antidiquark nonet and q̄q nonet has been studied by means of chiral Lagrangians. A

similar analyses on decay constants, masses, etc, is performed and yet again the usual conclusion

is reached. Quoting the authors: “scalar states below 1 GeV are mainly four-quark states and the

scalars between 1 and 2 GeV quark-antiquark states, probably mixed with the scalar glueball in

the isoscalar sector”.

3.9.4. The Krakow-Paris multichannel model

This is the only model to be reviewed here in which chiral symmetry is not implemented

at the Lagrangian level 17. We nevertheless include it here because it has received quite some

attention and, for our purposes regarding the sigma chiral symmetry and dispersion theory, it

yields an important estimate on the size of the effect of the four pion state on the sigma pole. The

formalism makes use of relativistic propagators within a system of coupled Lippmann-Schwinger

equations to analyze ππ and K̄K scattering data. Thus, it bares some vague resemblance with

the BSE method above. As far as the σ parameters are concerned the two-channel model [74]

is already a good enough approximation, since they are barely modified by the three-channel

formalism [75, 76]. The two-channel model can be schematically recast in momentum space as:

〈~p|T |~q〉 = 〈~p|V |~q〉 +
∫

d3k

(2π)3
〈~p|V |~k〉〈~k|G|~k〉〈~k|V |~q〉, (110)

where V,T,G are symmetric 2×2 matrices (1 = KK̄, 2 = ππ) and 〈~k|Gi j|~k〉 = δi j/(E−2Ei(s)+ iǫ),

E is the total energy and Ei(k) =

√

k2 + M2
i
. The interaction is then parameterized by a separable

(non-local) potential:

〈~p|V11|~q〉 = λ11g1(p)g1(q), 〈~p|Vn2|~q〉 = λn2gn(p)g2(q) + λm3gn(p)g3(q), n = 1, 2, (111)

where a third index has been included to simplify the notation of the five coupling constants λi j

and the following form factors are used:

gi(p) =

√

4π

Mi(p2 + β2
i
)
, M1 = MK , M2 = M3 = Mπ, (112)

which introduce three parameters more, called “range parameters”, βi. This separable formalism

implies that the T matrix is also separable and Eq.110 becomes algebraic, which makes the model

very manageable. With these 8 parameters a remarkable fit to data is achieved up to 1.4 GeV

[74]. In addition, the solutions are analytic and can be continued to the complex plane in search

for poles. The model finds a σ pole that would not be present if the relativistic effects had not

been included. In addition, two more poles are found, one around 1400 MeV and another one

corresponding to the f0(980) that becomes a compact K̄K molecule (∼ 0.7 fm) if the coupling to

ππ is switched off.

In order to improve the description of the 1300-1600 MeV region, an effective 4π channel,

called σσ, was added to the model [75, 76]. The resulting sigma pole of the latest model update

17From 1997, the scalar-isoscalar scattering length from ChPT was imposed as a further constraint on the fit, but that

did not change the results in any significant way. R. Kaminski, private communication.
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has Mσ = 523±12 MeV and Γσ = 518±14 MeV. These values are well within the RPP 2012 esti-

mate but outside the conservative dispersive estimate suggested in Eq.3 of the present report. Of

course, one has to take into account that this is a very simple model, with no left cuts, and a very

specific choice of potential and form factors, which necessarily only provide an approximation

to the actual amplitude in the complex plane.

More interestingly, this model allows for an estimation of the effect of the 4π intermediate

channel: it only shifts the σ mass by 6 MeV and the width by 8 MeV. This is one of the two

instances where this effect has been estimated. Despite having all the approximations commented

above, we consider this rough estimate relevant, because the 4π state is not included in the σ

pole determinations from Roy and GKPY equations that we have reviewed in Sec.2. When the

σ parameters are obtained using exact solutions of Roy equations [113, 119], the 4π is simply

neglected below the matching energy, whereas when Roy and GKPY equations are used just as

fit constraints, one merely assumes that the effect might be included in the estimated systematic

uncertainties. Judging by the size of these estimates, the RPP2012 “radical” or restricted range

Eq.2 seems to have a too small uncertainty attached. In contrast, the conservative dispersive

estimate proposed here in Eq.3 has an uncertainty that covers well enough this source of error.

3.9.5. Conformal symmetry in chiral models: A dilaton model and gravity duals

To end this section, we will briefly summarize two kind of models whose driving motivation

or main feature is not chiral symmetry but conformal symmetry, although they are formulated

consistently wit the requirements of spontaneous chiral symmetry breaking. First, we will intro-

duce one in which an spontaneous breaking of conformal symmetry is assumed to occur in QCD.

Second we will review other models in which a dual correspondence holds between an (almost)

conformal field theory in our space and a gravitational theory in another space.

Thus, let us first comment on how the recent and precise σ determinations also lead to re-

visit [332] the old ideas [333] that the vacuum 〈qq̄〉 condensate, in the chiral limit, may also

break spontaneously scale invariance. This spontaneous scale breaking might occur if the (non-

perturbative) running of the QCD coupling with three light flavors has a fixed point in the infrared

limit. In such case an extra NGB appears, which is massless in the chiral limit and has been

identified with the sigma. An effective chiral invariant Lagrangian, alternative to SU(3) Chiral

Perturbation Theory, can be build with an explicit sigma field, which couples to the vacuum via

the energy momentum tensor and a counting scheme in which M2
σ = O(M2

K
) has been proposed

in [332]. Such couplings for the sigma are like those of a dilaton in the context of nonlinear

realizations of conformal symmetry, and this is why the sigma is also called a dilaton within this

context, but should not be confused with the dilaton in gravitational or similar contexts. It should

be noted that the sigma in this formalism becomes a quark-antiquark state, whose width scales as

Γ = O(1/Nc). The arguments that disfavor the linear sigma model when integrating out the sigma

do not apply directly here because the interaction terms are different. An interesting phenomeno-

logical feature of this model is a natural explanation for the ∆I = 1/2 rule in kaon decays with

the KSσ coupling fixed from γγ → ππ and KS → γγ. The authors of [332] claim that the “lowest

order appears to be a good approximation”, but that this is part of a “wider program to obtain

numerically convergent” expansions in the scalar-isoscalar sector. They also point out that more

stringent tests would require explicit calculations of σσσ, σσππ,... couplings and that some uni-

tarization procedure may check whether it produces small corrections to lowest order results. To

my view, it would also be interesting to get a precise description of ππ scattering phase shifts as

well as threshold parameters, because we have already seen many examples in which getting the

mass and width of the sigma is not enough. Moreover, the proposed qq̄-like large Nc behavior
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of the σ is rather unnatural as we will discuss in Sec.4.2 when discussing model independent

observables without using standard ChPT (the unitarized ChPT results of Sec.4.3 cannot be used

in this context because this scenario follows different assumptions). Also, the qq̄ nature is not

naturally reconciled with the Regge behavior to be discussed in Sec.4.5 obtained without any a

priori assumption on the sigma nature. Finally, there is the issue of classifying the rest of scalars

in multiplets, and the evident similarities of the σ with the κ or K∗
0
(800) resonance, which could

not be a dilaton.

In a second kind of approaches, the fact that in the chiral limit QCD is relatively close to

a conformal theory has raised much interest on the conjectured “holographic” correspondence

[334], or duality. This occurs between the strongly coupling limit of a (super-)conformal field

theory (CFT) defined on the Anti-de-Sitter (AdS) asymptotic boundary, and the propagation

of weakly coupled strings in a higher dimensional AdS space. This “AdS/CFT” holographic

description of large-Nc (N = 4 supersymmetric) gauge theories has triggered the study of their

dual gravitational picture, in which the spectrum of the gauge theory strong regime might be

computed semiclassically in the dual theory weak regime. In practice this conjecture has been

implemented within a five-dimensional theory holographically dual to strongly coupled QCD

(AdS/QCD) [335].

Some caveats must be be kept in mind, though. QCD is not supersymmetric nor really a

conformal theory, so that a mass scale related to the typical hadronic scale must be incorporated in

the dual theory. This can be done with a hard “wall”, i.e. a cutoff, or a soft “wall” that effectively

cuts off the AdS space in the infrared region . The “soft-wall “scenario is implemented with a

dilaton field in the dual space (not to be confused with the dilaton model discussed right above).

Moreover the results of this duality would not correspond to QCD but to its large-Nc limit. Still,

these models may be theoretically attractive because they may provide some understanding of

some non-perturbative QCD features, since they could be calculated perturbatively in the dual

space.

In principle, these models can implement the spontaneous chiral symmetry breaking pattern

of QCD and the existence of eight NGB and could even be reformulated into a Chiral Lagrangian

for mesons. This is why we have included them in this Section. Actually, some of them have

been recast into Chiral Perturbation Theory, even giving specific predictions for some of the Low

Energy Constants [336].

A thorough description of all models based on this formalism is far beyond the scope of this

report. The main reason is that the performance of holographic models is particularly disappoint-

ing for the sigma resonance. Most holographic models of meson spectra just avoid dealing with

the sigma and concentrate in mesons on linear Regge trajectories or heavier scalars, if any scalar

at all. In addition, when dealing with heavier scalars, very often these are not isoscalar states.

Finally, even when discussing the sigma, only the mass is estimated, but not the width, which is

its most salient feature. And even the mass is usually far from the values that have been well-

known for long and very far from those established with precision from the dispersive analyses

we have reviewed in this report. Actually, the historical confusing situation around the σ meson

that we have illustrated in Sec.1.1 and the fact that the σ mass was listed in the RPP with a 400

to 1200 MeV uncertainty, has lead some authors to consider models with sigma masses of 100

or 200 MeV [337, 338], well below the two-pion threshold. Those models do not describe the

lightest scalar resonance, even qualitatively.

A first reason for the difficulty of dual models to describe the sigma is that meson masses in

these models are usually obtained by fitting parameters to Regge linear trajectories. However, as

we will see in Sec.4.5, it has been well known for long from phenomenology that the σ meson
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does not fit well into these linear trajectories [144] and it has been shown recently that dispersion

theory and the precise σ pole determinations imply that its trajectory must be non-linear [145].

If it was linear, it would give a very bad description of ππ scattering.

Actually, when the sigma mass with a large uncertainty is considered together with other

mesons in dual model fits, either the resulting sigma mass or the fit itself do not come out partic-

ularly well [338, 339, 340]. Some authors are well aware of this problem and have checked that

removing the f0(500) or the f0(980) from their fits results “in a much better fit to the model” [339]

and that this could be due that these scalar states “mix with scalar excitations, scalar glueballs,

and possible four quark states” or that “it may be that either the lowest or first radially excited

state has been misidentified” (actually these authors do find their lightest scalar state around 800

MeV).

A second reason is that, in principle, results of dual models belong to the large-Nc limit where

in general, and as will be seen in Sec.4.1, meson widths tend to zero. As a consequence there

are no reliable dual estimates of the most salient feature of the sigma: its huge width. Actually,

most dual models that deal with the sigma simply ignore its width. Moreover, we will also see

in Sec.4 that it is very likely that the lightest scalar q̄q state might appear around 1 GeV in the

large-Nc limit. Due to mixing, this 1 GeV state might be a subdominant component of the σ at

Nc = 3, but the sigma, as such, would no longer exist around 500 MeV in the large Nc limit.

It is interesting to find that some of the most popular dual models follow this pattern and find

the lowest scalar-isoscalar state around 1 GeV [341, 342, 343, 344]. In most cases this state

is directly identified with the f0(980), although it was also identified with the sigma [341, 343]

when its mass was still listed as 400-1200 MeV in the PDG, which is not possible any longer.

However, as pointed out by some of the very authors of these models [342, 344], for the f0(500),

is that at large-Nc no state is found around 500 MeV. Therefore they do not describe the σ. But it

is very plausible that such a state around 1 GeV might correspond to a subdominant component

of the sigma that is seen at large-Nc, and which, being of a qq̄ nature, might have a linear Regge

trajectory.

Given the relatively poor results in the description of the σ meson from dual models when

considering it a qq̄ state, the tetraquark description has also been explored. Interestingly, it has

been found [345] that it is possible to find an attractive interaction “strong enough to render the

tetraquark the lightest scalar meson, about 20% lighter than the qq̄ ground state”. This definitely

goes in the right direction, although maybe not enough to describe a ∼450 MeV sigma. Actually,

the author points out that “To meet quantitative phenomenological expectations would probably

require some additional contribution”.

In view of the situation, a description of the sigma remains a challenge for holographic mod-

els.

3.10. The σ meson and Chiral Symmetry restoration

We cannot finish this section about Chiral Symmetry and the σ without mentioning the role

it plays in the Chiral Symmetry Restoration (CSR) [346]. This restoration has become a basic

ingredient of our present understanding of the QCD phase diagram and of hadron physics under

extreme conditions of temperature T and baryon density. Such conditions are achieved nowadays

in Heavy-Ion and Nuclear Matter experimental facilities such as RHIC, CERN (ALICE) and soon

at FAIR. This is an extense topic by itself that lies far away from our main scope and therefore

we will provide little more than a few comments on some basic or recent references.

First of all, lattice simulations support that deconfinement and CSR take place very close to

one another in the phase diagram. Different lattice groups have explored until very recently the
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phase diagram and other thermodynamic properties [347, 348, 349]. For the case of vanishing

baryon chemical potential, the QCD transition becomes a crossover for the physical case of

2+1 flavors, at a critical temperature Tc ∼ 145-155 MeV. For finite baryon chemical potential,

new phases and features arise such as a possible critical line and critical point [350] and color

superconductivity [351], which are in principle realizable in physical systems such as neutron

stars, although the present lattice knowledge in that case is not so well established due to the

fermion determinant sign problem.

An important conclusion of lattice analysis is also that the transition is compatible with the

O(4) universality class for two light flavors in the chiral limit [352]. Actually, one of the simplest

model realization of CSR had been historically the LσM within the O(4) → O(3) breaking pat-

tern [353, 354] where the σ-component of the O(4) field acquires a thermal vacuum expectation

value and mass both vanishing at the transition in the chiral limit and π−σ mesons degenerate as

chiral partners. A relevant role for theσ/ f0(500) meson is naturally expected for its sharing of the

quantum vacuum numbers. Over recent years, an understanding of the σ role is being achieved

also within the modern approach of unitarized ChPT, in which one can eschew the LσM caveats

commented in previous sections. In particular, unitarization techniques for ππ scattering within

ChPT at finite temperature allow to define a I = J = 0 thermal pole at
√

sp = Mp(T ) − iΓp(T )/2

whose trajectory in the complex plane as T varies shows some interesting features [355, 356].

Thus, the sudden drop of Mp(T ) towards the two-pion threshold can be interpreted in terms of

CSR, as opposed for instance to the I = J = 1 ρ(770)-channel where the mass drop is much

softer. Actually, it has been recently shown [357] that the scalar susceptibility saturated with

this σ, with squared mass M2
S
= M2

p − Γ2
p/4, develops a maximum near Tc compatible with

lattice data, unlike the pure ChPT prediction which is monotonically increasing. On the other

hand, chiral partners in the scalar-pseudoscalar sector are understood through degeneration of

correlators and susceptibilities [357] which is also compatible with the behavior of the lattice

thermal masses in the corresponding channels [348]. In addition, introducing nuclear density

effects combined with temperature reveals new in-medium decay channels for the σ state, which

in particular accelerate the migration of the pole to the two-pion threshold [356]. The latter anal-

ysis extends previous work on ππ scattering at finite density in this channel [358]. Moreover,

relatively similar pole trajectories to those described in Subsec.3.8, where the real part of the

sigma pole position moved below threshold, have also been observed when studying a general

framework for chiral symmetry restoration. These pole movements could in principle be helpful

to discriminate different inner structures proposed for the σ through the so-called “σ-softening”,

i.e. its becoming a sharper resonance, in a medium with high temperature and/or density [304].

Furthermore, the role of the σ state for CSR could become more complicated if its possible

tetraquark component is also considered at finite temperature [359].

As a final comment, we should recall that after its recent revision in the RPP 2012 edition, the

sigma has the same status as other meson resonances, with an uncertainty of plus or minus a few

tens of MeV. A priori, it is no longer justified to ignore its presence or to use it with inappropriate

parameterizations (Breit-Wigner forms, etc..) when trying to describe the hadron medium. So

far, this has been the case of most analysis and in particular those based on the so-called Hadron

resonance Gas [360, 361]. Thus, it would be desirable to revisit the effect of neglecting the σ or

of using inadequate parameterizations to describe it. Some recent studies indicate that its effect is

crucial in some particular observables regarding CSR [357], whereas the effect of the σ has also

been shown to compensate largely with the isospin 2 channel for other observables like scalar

susceptibilities [362] . Actually this cancellation between the isoscalar and isotensor channels

in hadron resonance gases was already found in [363] and in view of the present parameters of
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the f0(500) meson it has been suggested that the sigma meson should not be included in Hadron

Resonance Gas models (unless the isotensor wave is included too), as long as one is interested

in isospin-averaged observables [364]. Furthermore, if the sigma is implemented and the low

energy part is important for a given observable, we have shown in previous sections that the

simplest LσM, which is the model most widely used for this purposes, is insufficient to describe

our present knowledge.

4. THE SPECTROSCOPY AND NATURE OF THE f0(500)

“-’Is there any point to which you would wish to draw my attention?’

-’To the curious incident of the dog in the night-time.’

-’The dog did nothing in the night-time.’

-’That was the curious incident,’ remarked Sherlock Holmes.”
Silver Blaze. Sir Arthur Conan Doyle, 1892.

This final section will be devoted to the spectroscopic classification of the f0(500) and to the

discussion of its nature. As it happened with the curious incident of the dog in the night-time,

much of what we know about the curious features of the σ is not about what it does or what it is,

but about how it does not behave, what it does not have or what it is not: it does not behave as an

ordinary Breit-Wigner resonance, it does not have a peak as other resonances, it does not have a

steep rise of the phase, it does not cross π/2 at its nominal mass, it does not have the expected

Nc behavior, it does not saturate the low energy constants of ChPT, there is nothing like “scalar

meson dominance” and it cannot be fitted into linear Regge trajectories.

Its spectroscopic classification, namely, to what S U(3) multiplet it belongs, has been a matter

of debate for almost as long as flavor symmetry was proposed. However, it is completely settled

by now, once the κ or K∗
0
(800) pole has been firmly established, as we already discussed in

Subsec.1.3.1 in the Introduction. The evidence for this particle has been mounting over the years,

but after the recent determination of its parameters within the rigorous and model-independent

Roy-Steiner dispersive formalism [127], questioning the existence of this pole means questioning

causality, since the Kπ scattering data in the elastic region is not very controversial. Moreover,

we have actually seen how a similar pole is generated in unitarized ChPT and is shown to be a

requirement to describe scattering data in other chiral approaches and a similar pole has also been

recently found in conformal parametrizations constrained with Forward Dispersion Relations

[128]. The existence of the κ forces the lightest scalar nonet to be made of the σ, κ, a0(980) and

f0(980). When studying the quark mass dependence of unitarized chiral amplitudes in Sec.3.8

we have actually seen how their combinations degenerate into an octet and a singlet.

However, the σ composition in terms of quarks and gluons is still a matter of debate. First

of all, as already stressed in the Introduction, the intuitive Fock-space decomposition is not well

defined within the gauge field theory relativistic formalism. Thus, the σ constituents should be

understood in the same sense as when we say within the quark model that the nucleon is made

of three quarks. This may refer to “constituent”, “dressed” or “valence” quarks and gluons. In

quark models the LS coupling scheme is customarily used to classify eigenstates of the two-

particle Schrödinger equation describing bound q̄q pairs. The total spin operator is ~S = ~S q + ~S q̄,

which added to the orbital angular momentum defines the total momentum ~J = ~L + ~S . Parity is

also defined as P = (−)L+1, so that states are labeled by JP. Note that although only electrically

charged particles are charge conjugation C = (−)L+S eigenstates, C is often used together with

J and P to label as JPC the whole multiplet to which the neutral particle belongs. In terms of
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spectroscopic notation where L = 0, 1, 2... is denoted by S , P,D..., scalar mesons are 0+ states so

that they correspond to 2S+1LJ =
3P0,

3P1,
3P2... states. The lightest 0+ mesons are then expected to

have the lowest possible momentum, so that they should be 3P0. Note that in order to form scalar

q̄q mesons we need at least angular momentum L = 1, which means that scalars are expected

to be heavier than 3S 1 states, which are JP = 1−. But the latter are nothing but the ρ(770) and

its multiplet partners, which are definitely heavier than the σ. The lightest scalars are therefore

expected to be heavier tan the ρ(770), typically above 1 GeV. Actually, the lightest tensor 2+ state

found is the f2(1270), which should correspond to a 3P2, thus, having the same orbital angular

momentum as the scalars. Note that the same scheme between the σ and ρ is applicable to the

the κ and K∗(892).

It is true that the f0(980) and a0(980) are heavier than the ρ(770), so one may try to consider

them as the light scalars of a multiplet with heavier scalar mesons like the K∗(1430) and one

of the several f0 states above 1 GeV (see for instance [17]). Moreover, if the κ or K∗
0
(800) was

not well established it would make sense to investigate the possibility that the sigma may be a

glueball [150, 120, 151]. However, once the κ existence is well confirmed in a model-independent

analysis [127] it needs some lighter partners without strangeness to form a multiplet and the only

candidate is the σ. Furthermore, there is not a single lattice calculation of the glueball that yield

its mass as low as 500 MeV [152], all them actually place the glueball well above 1 GeV, in the

1.5 to 1.8 GeV region.

But then, once the lowest nonet members have been identified as the f0(500), K∗
0
(800),

a0(980) and f0(980), the fact that they are lighter than the lightest vector nonet ρ(770), K∗(892),

ω(770) and φ(1020), strongly suggests that they do not fit well in a q̄q scheme. In addition, the

expected q̄q mass hierarchy is not observed since the K∗
0
(800) (whose pole mass is actually below

800 MeV in several determinations listed in the RPP 2012) would have one more strange quark

and should therefore be heavier than the a0(980) and at least one of the isoscalars. At his point is

when different models of non-q̄q configurations come into play. We will review the most popular

ones below.

Note however that there is also a molecular interpretation that considers light scalars as pri-

marily made of two bound mesons, in a similar way as we consider the deuteron made of two

nucleons rather than six quarks. This subtlety should be kept in mind when when dealing with

quark-level models, to be reviewed at the end of this section.

So far we have been commenting the hints of a light-scalar non-ordinary nature basing our

reasoning in models at the quark or constituent level. However, in this section we will review first

other approaches that also address the nature of the f0(500), but avoid referring to its constituents.

In such case one looks for ways in which it deviates from an ordinary feature or behavior followed

by most other mesons. This is the case of the Nc dependence and its classification into Regge

trajectories, where we will see that the σ deviates from the ordinary behavior. The first one is

particularly relevant because it provides a link to QCD parameters.

4.1. Mesons and the 1/Nc expansion

The 1/Nc expansion [105, 106], where Nc is the number of colors in the QCD Lagrangian,

Eq.46, is of interest because in principle it is the only QCD perturbative expansion that is also

valid in the low energy regime. For this report, the most relevant application is that it provides

a clear identification of the leading order 1/Nc dependence of different kinds of states. For our

purposes it is enough to review some very basic results within this formalism. For pedagogical

introductions we refer to [238, 365, 366, 367].
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Note that the number of quark fields of a given flavor is now Nc, whereas the number of

gluons is N2
c − 1 ∼ O(N2

c ), so that at large Nc gluon exchanges dominate over quark exchanges.

Moreover, in order to have a smooth large-Nc limit for the running coupling constant, the QCD

coupling g must scale as 1/
√

Nc. Under these conditions it is possible to show that the domi-

nant diagrams in any process are planar. Actually, as long as the diagram is planar, exchanging

any amount of gluons does not change the Nc counting. However, non-planar exchanges are

suppressed by 1/N2
c factors. In addition internal quark loops are suppressed by factors of 1/Nc.

Therefore, quarks only appear as external lines, which may define the initial and final states, for

instance providing flavor quantum numbers.

In order to study the behavior of mesons, it is useful to define local quark bilinears B = q̄Γq

where Γ contains some desired Lorenz and flavor structure. Then, a generic n-point function

〈B1...Bn〉 is O(Nc). As it is customary, and unless necessary, indices, position dependence, her-

mitean conjugation, time ordering, etc, will be suppressed for simplicity, but can be traced back

in the original references. Assuming confinement in color singlets and since intermediate quark

loops are 1/Nc suppressed, it can be shown that the only singularities in 〈B(k)B(−k)〉 can be

one-q̄q-meson poles [106]. In other words

〈B(k)B(−k)〉 =
∑

n

f 2
n

k2 − M2
n

. (113)

This has a series of consequences from QCD. First, being a sum of planar diagrams, the left hand

side has a smooth large Nc limit, so that q̄q-meson masses must also have a smooth limit, inde-

pendent of Nc. Therefore q̄q mesons are stable Mn ∼ O(1). Second, from asymptotic freedom

it is known that the left hand side behaves logarithmically for large k2. Third, the matrix ele-

ments of B to create a meson are fn = 〈0|B|n〉 ∼ O(
√

Nc). In particular, the pion decay constant

fπ defined in Eq.50, behaves as fπ ∼ O(
√

Nc), and the same happens for the decay constants

of the kaons and eta, as well as with the pion decay constant in the chiral limit f0, since mass

corrections do not change the 1/Nc counting.

Now, the width of a q̄q meson created from bilinear B currents is obtained from the three-

point function: once again 〈BBB〉 ∼ O(Nc). But the creation of each meson requires one 〈0|B|n〉
term, which all together contribute with a N

3/2
c factor. Therefore the amplitude that connects these

three mesons and describes one meson decaying into the other two must be ∼ 1/
√

Nc. The decay

width, being proportional to the modulus squared of the amplitude is therefore Γn ∼ O(1/Nc).

From now on we will often call this M ∼ O(1), Γ = O(1/Nc), the Nc ordinary-meson behav-

ior, because this is how the familiar q̄q mesons behave. As will be commented below other kinds

of mesons, like q̄qg hybrids [368], or the most intuitive tetraquark configurations, are indistin-

guishable from q̄q-mesons just from their Nc behavior.

By analyzing the Nc behavior of the four-point function 〈BBBB〉 ∼ Nc one can study meson-

meson scattering amplitudes. Now, four 〈0|B|n〉 factors are needed to create the four mesons, thus

contributing with N2
c so that the scattering amplitude behaves as 1/Nc. Note that this is consistent

with the LO ChPT amplitudes being t ∼ 1/ f 2
π , as we saw in Eq.65.

Concerning glueballs, a similar analysis can be carried out by considering gluonic currents

JG = Tr(Ga
µνG

µν
a ). Glueball masses are also found to be M ∼ O(1). However, glueball decay

widths turn out to be Γ ∼ O(1/N2
c ). In other words, glueballs are expected to be even narrower

than ordinary q̄q mesons. As we will see right below, in Subsec.4.2, this will play very strongly

against the glueball interpretation of the f0(500).

The analysis can be extended to tetraquark states [52]. But here one should separate several
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possible configurations. The first one is just two mesons propagating freely. To fix ideas, and

since we are interested in the σ case, this two-meson state can be denoted by |ππ〉. Trivially,

it has M ∼ O(1) and since the amplitude to itself is O(1), its “width to two mesons” is Γ ∼
O(1). The second configuration is what is most frequently understood by a tetraquark, in which

independently of Nc there are always two valence quarks and two antiquarks present, i.e. a qq̄qq̄

configuration. This we will call T . But for Nc > 3 there is yet a third possible generalization of a

Nc = 3 tetraquark [137, 369], namely a state made of Nc − 1 quarks and Nc − 1 antiquarks (with

all quarks antisymmetrized in their color indices and the same for all antiquarks). This we will

call (Nc − 1)q̄q or “polyquark”.

The calculation of the usual tetraquark configuration is obtained by considering quark quadri-

linears, but evaluated at the same point, i.e. Q =
∑

i j Ci jBi(x)B j(x), where Ci j are coefficients to

obtain the desired quantum numbers. This form can always be reached by Fierz transformations

[365]. In his Erice lectures [365], S. Coleman maintained that tetraquarks did not exist (presum-

ably implying that they were broad) in the large Nc limit, because the two-point function of the

q̄qq̄q currents are dominated by the creation and annihilation of two-meson states. This became

common knowledge until very recently, when Weinberg pointed out [370] that such an argument

only applies to leading order disconnected diagrams, whereas a possible tetraquark pole should

appear in the connected part. Let us then write:

〈QQ〉 =
∑

i jkl

[

Ci jCkl〈BiB j〉〈BkBl〉 + 〈BiB jBkBl〉connected

]

. (114)

The first term counts O(N2
c ) and leads to the original reasoning in [365]. However, since the

tetraquark pole can only exist in the second term, which is O(Nc), then the same behavior we

found for B also follows for T , namely, the tetraquark mass is MT ∼ O(1) and ΓT ∼ O(1/Nc)

[370]. Thus, the most intuitive tetraquark configurations have an ordinary Nc behavior indistin-

guishable from q̄q mesons. Of course, in certain cases a further suppression can occur and some

particular tetraquarks, if they exist, should be even narrower [371].

Finally, there is the polyquark proposed by R. L. Jaffe in [137, 369]. Its analysis is more

complicated because the number of constituents grows with Nc and diagrams that by themselves

would be suppressed can contribute to the leading order because their number also grows with

Nc. This feature is similar to what happens with baryons in the large-Nc limit and the correct

scaling properties are obtained through a mean-field approximation [106, 372]. In such cases,

the mass of the state also grows with the number of constituents, i.e. MP ∼ O(Nc). The polyquark

to ππ coupling decreases exponentially [368] with Nc because as Nc grows it is harder and harder

to annihilate all constituents except the two quark-antiquark pairs that make the final pions.

However, the decay of the (Nc − 1)q̄q into one pion and an (Nc − 2)q̄q is O(1) [106, 372]. The

couplings among all these different states have been calculated explicitly in [372].

The mass and width behavior of all these states has been collected in Table 7. In the sections

below these results will be used to show that a dominant ordinary composition is very disfavored

for the σ, and a glueball dominant composition even more so. However, there are hints of a

possible mixing with a subdominant ordinary component, although heavier than the physical

mass of the σ.

So far we have analyzed the Nc behavior of different kinds of mesons. Let us now turn to

the ChPT Lagrangian that we briefly reviewed in Subsec.3.3. It is written in terms of the U(x)

matrices, which can be expanded in powers of πa/ f0 meson fields, which can be considered quark

bilinears to LO in the 1/Nc counting. Therefore the LO Lagrangian operators behave as O(Nc)
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qq̄ gg qq̄g ππ T (qq̄qq̄) (Nc − 1)qq

M O(1) O(1) O(1) O(1) O(1) O(Nc)

ΓTot O(1/Nc) O(1/N2
c ) O(1/Nc) O(1) O(1/Nc) O(1)

Table 7: Leading behavior in the 1/Nc expansion of the mass and width for various configurations in QCD. The first three

are intrinsic, non-fissible configurations (conventional meson, glueball, hybrid). The last three are states that may break

apart into two or more mesons without the need for creating any additional quarks (two mesons, tetraquark, polyquark).

Table taken from [368].

in the 1/Nc expansion. This is the case of terms with a single flavor trace like those appearing

in the LO ChPT Lagrangian of Eq.64, consistently with the f0 ∼ O(
√

Nc) and M0 ∼ O(1). The

flavor trace corresponds to the only quark line that connects all meson operators in leading 1/Nc

diagrams.

A similar reasoning applies for the the terms multiplied by L3, L5, L8, which therefore scale

as O(Nc). However, the NLO ChPT Lagrangian contains terms with two flavor traces, like those

accompanying the L4, L6 and L8 low energy constants (LECs). The additional trace corresponds

to an additional quark loop, which as we have already commented brings a 1/Nc suppression

factor. Hence L4 and L6 scale as O(1) in the 1/Nc expansion. Naively, one would think that L1

and L2 should also be O(1), since they appear in Lagrangian terms with just one flavor trace.

However the SU(3) matrix relations were used to eliminate the structure 〈∂µU†∂νU∂
µU†∂νU†〉

in favor of the L1 and L2 terms. Since this term is O(Nc) its behavior is inherited by L1 and L2.

Still, the combination 2L1 − L2 is O(1). Finally, L7 ∼ O(1) but obtaining this behavior is rather

subtle [257]. The derivation is beyond our scope, but it is due to the apparent conflict between

integrating out the heavy η′(960) meson to recover the L7 term in QCD, while taking the large

Nc where the η′(960) becomes very light. The behavior of all NLO LECs is provided in the last

column of Table 6.

There is an additional subtlety to the Nc scaling of the LECs, due to renormalization. Looking

back at Eq.69, it can be noticed that the logarithmic scale dependence of the LECs is O(1/Nc).

Therefore, when stating that some Li behaves as O(Nc) or O(1), the scale µ at which this behavior

is being imposed must be chosen. Different choices of µ introduce a subleading uncertainty.

Typically the Nc scaling is applied for µ = 0.5 to 1 GeV. Actually the expected Nc hierarchy

between LECs is roughly observed in the phenomenological values provided in Table 6, which

correspond to µ = Mρ ≃ 770 MeV.

In the next subsections we will make use these Nc scaling properties to obtain information

about the nature of the f0(500) resonance.

4.2. Model independent observables with enhanced 1/Nc suppression.

This subsection is dedicated to an approach that only makes use of the 1/Nc expansion and

the properties of the ππ scattering partial waves obtained from the dispersive representation of

the data that we described in Sec.2. This approach is therefore model independent and is useful

to enhance some non-ordinary meson features. This is done by studying observables whose

deviations from unity are strongly suppressed for ordinary mesons, thus allowing the use of the

1/Nc expansion at the physical value Nc = 3. As we will see this method strongly disfavors

the identification of the f0(500) as an ordinary qq̄ resonance or a Weinberg tetraquark, and very

strongly as a glueball.

Let us recall the three criteria used to identify resonances, reviewed in Subsec.2.3.3: by the

phase reaching π/2 at its mass, by the maximum of the phase shift derivative and by the pole
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ρ(770) K∗(892) σ/ f0(500) κ/K∗
0
(800)

a −0.06 ± 0.01 0.02 −252+119
−156

-2527

b 0.37+0.04
−0.05

0.16 77+28
−24

162

Table 8: Coefficients of the strongly suppressed corrections from unity in the Eq.116 observables assuming that the

resonance has an ordinary nature. These were obtained in [143] from the dispersive analyses of [117, 118, 127]. For q̄q

resonances, a and b are expected to be of order one or less. This is nicely satisfied by the ρ(770) and the K∗(892), but

both the σ and κ would require a and b unnatural values by several orders of magnitude. For the glueball interpretation

of the σ the situation is even more disfavored, see the main text. Table taken from [143].

position. Let us then suppose that a resonance has a pole at sR = M2
R
− iMRΓR. 18 Now, since an

ordinary resonance behaving as MR ∼ O(1) and ΓR ∼ O(1/Nc) becomes narrow in the large Nc

limit, it was shown in [139] that the scattering phase shift of the elastic partial wave where the

resonance appears satisfies:

δ(M2
R) =

π

2
− Re t−1

σ

∣
∣
∣
∣
M2

R
︸     ︷︷     ︸

O(N−1
c )

+O(N−3
c ), δ′(M2

R) = − (Re t−1)′

σ

∣
∣
∣
∣
M2

R
︸         ︷︷         ︸

O(Nc)

+O(N−1
c ). (115)

The first equation is simply telling us that, according to the first criterion, the pole mass MR

tends to the energy where the phase is π/2 in the infinitely narrow resonance limit. But it also

tells us the Nc order of the deviations. The second equation is less intuitive but tells us that the

derivative of the phase at MR grows with Nc since the resonance becomes narrower and narrower.

This criterion was studied in [139] for the f0(500) with a relatively inconclusive result about its

assumed q̄q behavior.

However, the previous equations are very useful to build the following adimensional observ-

ables [143]:

π
2
− Re t−1/σ

δ

∣
∣
∣
∣
M2

R

≡ ∆1 = 1 +
a

N3
c

..., − [Re t−1]′

δ′σ

∣
∣
∣
∣
M2

R

≡ ∆2 = 1 +
b

N2
c

.... (116)

which are 1 up to corrections suppressed by 1/N2
c or 1/N3

c , respectively. Hence, for an ordinary

resonance in the physical world Nc = 3, one would naturally expect these observables to be 1 up

to O(4%) and O(10%) corrections, respectively.

For simplicity it is better to express the deviations in terms of a, b, which are naturally ex-

pected to be of order one or less (cancellations with higher order terms can substantially decrease

their effective value, but not increase it). The calculation of these observables in [143], which we

list in Table 8, made use of the dispersive analysis of scattering phase shifts in [117], together

with the corresponding σ and ρ(770) pole positions given in [118]. Note that all numbers in

the table are obtained from physical scattering amplitudes at Nc=3. The coefficients of the light

vector mesons ρ(770) and K∗(892) come out, as expected for ordinary q̄q mesons, of order one

or less. However, for the σ and the κ the parameters are two or more orders of magnitude larger

than expected for an ordinary MR ∼ O(1) and ΓR ∼ O(1/Nc) behavior.

18Note we have slightly changed our notation here, from sR = (MR − iΓR/2)2, to follow the usual notation for these

studies in the literature. The 1/Nc counting of the mass and width is still the same. Also, t(s) here has an opposite sign

compared to that in [139, 140].
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In the same work [143], a similar study was also carried out for a glueball composition,

whose width scales as O(1/N2
c ). In such case then:

∆1 = 1 +
a′

N6
c

, ∆2 = 1 +
b′

N4
c

. (117)

Following the same procedure as before a′ = −6800+3200
−4200

and b′ = 2080+760
−650

were found for

the f0(500). In other words, a very dominant or pure glueball nature for the f0(500) is strongly

disfavored by the 1/Nc expansion of QCD, even more than the q̄q interpretation. This is because

it would require even more unnatural coefficients, this time too large by three to four orders of

magnitude.

Let us recall that nothing but the QCD 1/Nc expansion at Nc = 3 has been used. This

is not a large-Nc result nor the large-Nc limit. In addition, the input comes from the model

independent dispersive analyses of the amplitudes. This is a model-independent result which

strongly disfavors the existence of a predominant q̄q or non-glueball component for the f0(500).

A dominant component of the f0(500) in the form of the standard 4-quark generalization of

tetraquarks to arbitrary Nc is as disfavored as much as the ordinary q̄q meson. Of course, this

does not exclude the possibility of such subdominant components inside the f0(500), it only

disfavors them being dominant.

Finally, let us remark that this method does not provide the Nc dependence of the σ meson.

As we review next, this can be obtained from unitarized Chiral Perturbation Theory.

4.3. Nc dependence from unitarized ChPT

We have seen in Subsections 3.5 and 3.6 that the σ meson can be nicely described by unita-

rization of the ChPT amplitudes. In particular, some methods do not require further parameters

than the low-energy constants of ChPT, or LECs, up to a given order. Now recall that in the last

column of Table 6 the leading 1/Nc scaling of the LECs was provided, which is model indepen-

dent. Moreover, the leading order 1/Nc behavior of the NGB masses is O(1) and the pion decay

constant scales as fπ ≃ f0 ∼ O(
√

Nc). Hence it is straightforward to obtain the leading 1/Nc

behavior of the resonances generated with unitarization methods by simply scaling all ChPT

parameters according to their 1/Nc leading behavior.

Let us first examine the “simplest unitarized model with chiral symmetry ” presented in

Sect.3.5.1, which only makes use of the LO ChPT Lagrangian. Recall that we saw in Eq.85 that

in the chiral limit this model yields
√

sσ = (1 − i)
√

8π fπ ∼ O(
√

Nc). That is, the sigma mass

and width both grow as
√

Nc. Since NGB masses are O(1), mass corrections do not modify

this leading Nc behavior. Of course, this very simple model is only able to generate a crude

approximation to a light sigma, since it comes about a factor of 2 too wide in practice. But this

is already a suggestion that the f0(500) pole may not behave in the expected way for an ordinary

meson. In contrast, recall that this method is not able to yield even a crude description of the

ρ(770), so that we do not get any hint of its behavior in this way.

Actually, in [108] it was shown that a reasonable description of ππ scattering could be

achieved by including, besides the LO chiral Lagrangian, all tree-level exchanges of large-Nc

leading resonances, except at low energies, where it was shown the need for a sigma pole, which

had to be included explicitly with an ad hoc unitary functional form. In that work, it was already

claimed that this σ was presumably “not of the simple q̄q type” and its exchange should be of

subleading order in the large Nc.
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Now, as seen in Subsecs.3.5 and 3.6, a very good description of the f0(500) and the other

light resonances is achieved when the NLO ChPT amplitudes are unitarized. Since we want to

avoid any spurious Nc dependence, but just to keep the one dictated by the LECs and f0, the

most straightforward implementation of the Nc dependence is through the Inverse Amplitude

Method (IAM), reviewed in Subsecs.3.5.2 and 3.6.3. Recall that this method directly uses the

fully renormalized T2 and T4 amplitudes.

However, some subtleties have to be kept in mind. First, a priori, one should be careful not to

take Nc too large and in particular to avoid the Nc → ∞ limit. The reason is that this is a limit in

which meson loops are more suppressed than direct resonance exchange, whereas unitarization

methods are devised for strongly interacting theories where meson loops are very important. As

shown in Sec.3.5.2, the derivation of the IAM from a dispersion relation relies on the fact that

the exact elastic contribution on the right or unitarity cut dominates the dispersion relation and

that NLO ChPT provides a good approximation to the subtraction constants. Since the IAM

describes the data and the resonances, within, say 10 to 20% errors, this means that at Nc = 3

other contributions, like those on the left cut, are not approximated badly. But meson loops,

responsible for the unitarity cut, scale as 3/Nc whereas the inaccuracies due to the approximations

scale partly as O(1). Thus, we can estimate that those 10 to 20% errors at Nc = 3 may become

100% errors around Nc ∼ 30 or Nc ∼ 15, respectively. Hence, results [107, 136] beyond Nc = 30,

and even beyond Nc ∼ 15 should be interpreted with care. Another reason to keep Nc not too far

from 3 is that the SU(3) ChPT formalism does not include the η′(980), whose mass is related to

the UA(1) anomaly and scales as
√

3/Nc. Nevertheless, by keeping Nc < 30, its mass would be

> 310 MeV and still the pions would be the only relevant degrees of freedom in the σ region. Of

course, there could be special cases in which the IAM could still work for very large Nc, as it is

has been shown for the vector channel for QCD [139, 140]. But that is not the case for the scalar

channel, which, if used for too large Nc may lead to poles in the third quadrant [139, 140] for

some values of the LECs, which lack a clear physical interpretation.

The second subtlety to keep in mind is that the LECs are renormalized quantities and have

a renormalization scale dependence, which of course cancels in physical observables. However,

one has to decide at what renormalization scale the 1/Nc scaling applies and choosing one renor-

malization scale or another amounts to shifting part of the observed value of the LECs from the

leading to the subleading contribution. This causes an uncertainty that is usually estimated by

allowing the renormalization scale µ to vary between 0.5 and 1 GeV, which is the same range

used to compare the measured LECs to their Resonance Saturation estimates.

The Nc scaling of IAM resonances was studied using the IAM to one-loop (NLO) in coupled

channels in [107] and to two-loops (NNLO) in the elastic case in [136]. Thus, Fig.34 shows the

behavior of the ρ(770) and σ masses and widths found to NLO in [107]. On the left panel it

can be seen that the ρ(770) mass and width follow nicely the expected behavior for a q̄q state:

M ∼ 1, Γ ∼ 1/Nc (dashed curves). The bands just cover the uncertainty in the renormalization

scale where the LECs are scaled with Nc.

In contrast, also in Fig.34 it can be seen that the σ shows a different behavior from that of

a pure q̄q near Nc=3, particularly because its width, seen in the right panel, grows with Nc, i.e.

its pole moves away from the real axis. We can nevertheless see that the width Nc dependence is

relatively close to the
√

Nc behavior found with the simple unitarization of the tree level ChPT

amplitude, which we commented at the beginning of this subsection. The Nc dependence to NLO

of the mass, shown in the central panel, is more uncertain.

A rather similar behavior to that of the σ was also found for the κ resonance in [107], once

again suggesting a very similar nature for these two scalar mesons. Actually, within the same
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Figure 34: Mass and width Nc-behavior of the ρ(770) and σ resonances form the NLO IAM [107]. All values are

normalized at their Nc = 3 physical values. As explained in the main text, the bands cover the uncertainty due to the

choice of renormalization scale where to apply the Nc scaling. Left: the ρ(770) mass and width compared to their

respective expected qq̄ behavior (dashed lines). Center: σ-meson mass versus Nc compared to the expected constant

behavior of an ordinary meson (dashed line). Right: σ-meson width versus Nc compared to several different behaviors

represented as dashed lines. Figures taken from [107].
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Figure 35: Trajectories of the ρ(770) (left) and σ (right) poles in the complex plane as Nc is varied away form 3. The

lighter curves on the right plot indicate the uncertainties when varying the regularization scale µ in the usual range, as

recalculated in [148]. In the case of the ρ(770) the three lines almost overlap and are not plotted in the left figure. Figure

taken from [148].

coupled-channel NLO IAM calculation [107] it was found that the whole lightest scalar octet

made of the σ, κ, f0(980) and a0(980) have Nc behaviors at odds with those of ordinary mesons,

although in the case of the a0(980) there was some region of parameter space where it could still

behave as such. The K∗(892) vector resonance, not shown here, was also calculated in [107] and

has an ordinary behavior very similar to the ρ(770).

The trajectories of the ρ(770) and σ poles in the complex plane are shown in Fig.35, obtained

with updated NLO IAM fits in [148]. On the left panel the ρ(770) pole is found to move towards

the real axis as soon as Nc is increased, becoming a narrower resonance, but keeping an almost

constant mass. It should be noted that it was found in [138] that if µ is made ∼ 1.2 GeV , the

ρ(770) stops behaving as a qq̄ meson, which reinforces the choice of 0.5 to 1 GeV as the range

where the renormalization scale µ should be varied to scale the LECs with Nc. Back to the figure,

on the right panel we observe the trajectory followed by the σ pole, which moves instead deep

into the complex plane as Nc is increased from 3 to Nc ∼ 10 or 12. However, beyond that Nc the

uncertainty is so big that the σ trajectory could keep moving far from the real axis or it may even
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the elastic NNLO IAM [136] imposing the ρ(770) to behave as a q̄q. Note that up to Nc ≃ 12 the σ mass and width do

not behave as for ordinary mesons. Beyond that value the sigma shows an ordinary behavior, but for a mass roughly 2.5

times larger than its physical value. Figure taken from [136].

fall back [136, 140, 141]. Let us therefore separate the analysis into the near-Nc=3 and large-Nc

regions.

In the near-Nc=3 region, the non-ordinary behavior of the pole that we have just seen was

already found in the simplest unitarization model of the LO ChPT amplitude as discussed at the

beginning of this subsection. Basically, it can be traced back to the dominant role of two-meson

loops in the dynamics responsible for the σ [84, 140]. The IAM approach has been revisited

several times with slightly different fits to data or some simplifications and the non-ordinary

behavior near Nc=3 seems very robust [140, 148, 373]. Moreover, there is also a NNLO IAM

calculation within S U(2) ChPT [136]. In this case a χ2-like function was defined to measure

how close a resonance is from a q̄q-like Nc behavior. But if this function is minimized one can

try to impose an ordinary behavior into a resonance. Thus, in [136] it was first shown that to

NLO it is not possible to make σ behave predominantly as a q̄q while describing simultaneously

the data and the ρ(770) q̄q behavior, thus confirming the robustness of the NLO conclusions for

Nc close to 3.

In order to check this robustness, a NNLO IAM fit was made to data but, since there are four

more parameters at NNLO than NLO, it was also constrained to reproduce the Nc q̄q behavior

for the ρ(770) [136]. This is called a “ρ as a q̄q fit”. The resulting Nc behavior for the σ mass and

width is displayed in Fig.36. There we can see that, once again, in the near-Nc=3 region both the

mass and the width grow, i.e. the σ is not behaving as an ordinary meson. Moreover, the non-

ordinary behavior of the σ in the near-Nc = 3 region has also been found in other unitarization

techniques, as in [140, 141]. In particular, in [280, 374], using a chiral unitary approach but

within the leading order 1/Nc U(3) formalism, a similar non-ordinary behavior was found once

more from the Nc behavior close to three. As expected the η′(980) does not seem to play a

significant role in this rather robust statement. Also, the inclusion of explicit heavy and ordinary

resonances does not make the σ to behave predominantly as an ordinary meson [142].

Therefore, the σ pole behavior in the near-Nc = 3 region can be considered a very strong

hint of a predominantly non-ordinary nature of the σ meson in particular, and of the whole light

meson nonet in general. As commented in the introduction, by 2007 this behavior was considered

“... the only reliable identifications of observed effects that may be examples of a different class

of hadrons” [137].
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Of course, the above statement does not exclude the existence of some mixing with ordinary

or glueball components, as long as they do not dominate the dynamics that generate the physical

f0(500). There are actually hints about these possible subdominant components, but since they

come from the behavior of the pole for relatively larger values of Nc, they are not so conclusive.

Let us then consider the large-Nc region. Turning back to the right panel of Fig.35, we see

examples of the two generic scenarios found in the literature, exemplified by the borders of the

uncertainty band. In the first scenario, after an initial non-ordinary behavior the curve labeled

“µ = 1000 MeV ” falls back into the real axis, the mass stabilizes and the width decreases. As a

matter of fact this is the behavior expected for ordinary mesons and may be a hint of a subdomi-

nant ordinary component, arising as loop diagrams become suppressed when Nc grows. Actually,

as it can be seen in Fig.36 this was the preferred behavior of the NNLO IAM analysis [136] above

Nc ≃ 12. As commented above, it was not possible to make this component dominant without

spoiling the fit or the ordinary ρ(770) behavior. Hence, it is very important to emphasize that this

possible ordinary subdominant component appears at a mass about 2 to 2.5 times larger than

the physical f0(500) mass. Therefore this behavior would suggest that there is a small mixing of

the σ with an ordinary meson component whose mass is around 1 or 1.5 GeV, precisely where

it is widely accepted that an ordinary scalar nonet exists. This behavior bears a remarkable re-

semblance to unitarized quark model calculations [146] in which a quark-antiquark state above 1

GeV can be deformed into the physical σmeson pole by making a ππ−qq̄ interaction sufficiently

strong.

On the second scenario, exemplified by the curve labeled “µ = 500 MeV ” it behaves rather

differently, and the σ pole moves deep into the complex
√

s plane. But note that this is actually

the third quadrant of the s plane, so that there is no clear physical interpretation for such a pole

[140, 142].

Either one or both of these two general behaviors have been found in other unitarization

approaches. For instance, this has been revisited in [142], by unitarizing the ππ scattering ampli-

tude within a Bethe-Salpeter like method, but including explicitly one heavy ordinary multiplet

for each allowed JP quantum numbers. In particular the lightest ordinary scalar multiplet is set

around 1 GeV. In this way one is also including the 1/Nc leading contribution of these resonances

to all orders in the chiral expansion, instead of just to NLO as in the IAM. The conclusions ob-

tained from the region near Nc = 3 are the same, the predominant component of the σ is not of

an ordinary nature. However, for large Nc two generic scenarios were found, similar to the sce-

narios described above. In this case, in the first scenario the σ subdominant ordinary component

coincides with the heavier ordinary scalar included explicitly in the Lagrangian. In contrast, in

[280] only the second large-Nc scenario is found, where the σ moves away from the physical cut

as Nc increases far from 3. Nevertheless, within this approach there is also a scalar state around

1 GeV that survives at large Nc, although in this case it is naturally identified as a component of

the f0(980). Note, however, that there is some controversy [142] on the correct identification of

the leading 1/Nc terms and the extrapolation of the amplitude to Nc , 3 in [280].

The Nc behaviors of scalars has also received recent attention from lattice QCD [375, 376].

In this case the large Nc limit is calculated, which is not exactly the same approach followed

throughout this section —recall we are rescaling all parameters with their leading Nc behavior—

but might be compared with the largest Nc values. The scenario where the lightest scalar mass

for large Nc is comparable or above the ρ(770) mass, is qualitatively consistent with the latest

lattice calculations [377] finding that the ratio Mscalar/Mρ ≃ 1.13 ± 0.10 in the Nc → ∞ limit.

In conclusion, the predominantly non-ordinary nature of the sigma is also very strongly sup-

ported by its leading-1/Nc behavior near Nc=3 from unitarized ChPT. Meson loops are respon-
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sible for this dynamics. For larger values of Nc the uncertainties in the unitarization methods

do not allow a conclusive statement. However, one possible scenario suggests the existence of

mixing with a subdominant ordinary component with a mass around 1 GeV. For the other sce-

nario, where the sigma pole moves deep in the complex plane, there is not any clear physical

interpretation yet.

There is, however, a further semi-quantitative argument that we will review next, which the

first scenario fulfills naturally but not the second unless some additional contributions from other

resonances are taken into account.

4.4. Semi-local duality

A well-known feature of the real world (at Nc = 3) is that of “local duality” [378] (see

[199, 200] for textbook introductions). At low energies the scattering amplitude is fairly well

represented by the exchange of resonances (with a background), which as energy increases be-

come wider and increasingly overlap. This overlap generates a smooth Regge behavior described

by a small number of crossed channel Regge exchanges. Detailed studies of hadron-hadron scat-

tering show that the sum of resonance contributions at all energies “averages” the higher energy

Regge behavior. Thus, s-channel resonances are related to Regge exchanges in the t-channel and

are “dual” to each other. Namely, one can use either formalism to describe data, at least “on

the average” (to be defined below). Regge exchanges are also built from q̄q and multi-quark

contributions. However, in the isospin 2 ππ-scattering channel there are no resonances, and so

Regge exchanges with these quantum number necessarily involve multi-quark components. Ex-

periment tells us that even at Nc=3 these components are suppressed compared to the dominant

q̄q exchanges. Hence, semi-local duality means that in π+π+ → π+π+, which is an I = 2 process,

the contribution from low energy resonances must cancel “on the average”, or at least be much

smaller than in processes with other isospins. Now, using the crossing relations in Eqs.18 the

I = 2 t-channel amplitude can be recast as a function of s-channel amplitudes:

Im T (It=2)(s, t) =
1

3
Im T (Is=0)(s, t) − 1

2
Im T (Is=1)(s, t) +

1

6
Im T (Is=2)(s, t). (118)

However T (Is=2) is repulsive and small. This is for instance seen in panel “e” of Fig.29, which

shows the largest I = 2 partial wave. Therefore the strong cancellation occurs between T (Is=0) and

T (Is=1), which are dominated at low energies by the f0(500) and ρ(770) resonances, respectively.

Hence, semi-local duality requires the contributions from these two resonances to cancel “on the

average”. Since no other resonances appear in the I = 2 wave at large Nc, it remains small and

there is no reason why this suppression should disappear as Nc increases.

The relevance of this feature for the nature of theσ is that, as seen in the previous subsections,

it seems to have a rather different Nc behavior compared to ordinary mesons like the ρ(770).

Semi-local duality implies that the σ behavior cannot be such that the cancellation just described

disappears at larger Nc. But this might happen if the σ disappeared completely from the spectrum

as Nc increases, unless the large-Nc contributions of other resonances are fine tuned to cancel that

of the ρ(770). Such a fine tuning is unlikely since these other resonances are already subdominant

at Nc=3.

This “on the average cancellation” is properly defined via Finite Energy Sum Rules like:

F(t)21
n ≡

∫ νmax

νth
dν Im T (It=2)(s, t)/νn

∫ νmax

νth
dν Im T (It=1)(s, t)/νn

, ν = (s − u)/2. (119)
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νmax 400 GeV2 2.5 GeV2 2 GeV2 1 GeV2

F21
1

0.021 ± 0.016 0.180 ± 0.066 0.199 ± 0.089 -0.320 ± 0.007

F21
2

0.057 ± 0.024 0.068 ± 0.024 0.063 ± 0.025 -0.115 ± 0.013

F21
3

0.249 ± 0.021 0.257 ± 0.022 0.259 ± 0.022 0.221 ± 0.021

Table 9: Values of F21
n using the ππ scattering parameterization in [204] and different cutoffs. All F21

n ratios for a 20

GeV cutoff turn out very small, but it can be seen that the suppression has already occurred when smax is still ∼1 or 2

GeV2. Table taken from [148].

Then semi-local duality means that on the “average” and at least over one resonance tower,

we have: ∫ νmax

νth

dν ν−nIm T (It)(s, t)Data ∼
∫ νmax

νth

dν ν−nIm T (It)(s, t)Regge, (120)

where the Regge amplitudes can be calculated with parameterizations available in the literature,

which are expected to work for t ≪ s. For this reason semi-local duality integrals were evaluated

at t = 0 and t = 4m2
π [148]. As we discussed in Subsec.2.2.4, for very small t and particularly for

t = 0, different Regge parameterizations of ππ scattering are fairly compatible, as seen in Fig.12.

This fair agreement is enough for the “on the average” estimates needed for semi-local duality

arguments. Therefore, the rigorous definition of semi-local duality is that |F(t)21
n | ≪ 1. Since

the Regge trajectories do not depend on Nc, still one should find |F(t)21
n | ≪ 1 when increasing

Nc, due to a strong cancellation between the ρ(770) and the f0(500). In principle this would not

occur if the f0(500) disappeared completely from the spectrum.

The NLO and NNLO IAM have been used [148] to check the Nc dependence of semi-local

duality suppression in ππ scattering amplitudes. As expected, the I = 2 s-channel amplitude

remains repulsive as Nc increases, and still there is no resonance exchange. Since the IAM is

only valid in the low energy region the influence of the high energy part on this cancellation was

first checked explicitly for Nc = 3. In particular, in Table 9 we show the value of the FESR

for different cutoffs using the dispersive ππ [204] data parameterization as input, instead of the

IAM. Note that local duality is satisfied for Nc=3 since |F(t)21
n | ≪ 1 and, at least for n=2,3, the

main suppression already occurs below 1 GeV, where the IAM can be applied. Therefore, the

IAM can be used to check the main part of the FESR suppression with Nc, by simply calculating

the unitarized partial waves tJ(s) and reconstructing T Is=I using the partial wave series in Eq.5.

However, we already commented that to NLO and NNLO, the IAM can only be unitarized in the

S and P-waves, since higher waves have a non-vanishing imaginary part only at higher orders in

ChPT. Thus, in [148] it was checked that the effect of higher waves on Eq.119 is around 10%, and

it is dominated by the f2(1270) resonance, which is a nice Breit-Wigner like ordinary resonance,

whose Nc behavior was easy to implement.

Once the Nc=3 framework is set, if Nc is increased the ρ(770) mass remains roughly constant

and its width becomes narrower. Also, for not too large Nc we have already seen that the σ

moves deeper into the complex plane. However, for larger Nc there were basically two scenarios

that were presented at the end of the previous subsection. In the second scenario the f0(500)

disappears from the spectrum and its contribution to the total cross section below 1 GeV becomes

less and less important. Hence the ratios |F(t)21
n | grow and there is a conflict with semi-local

duality. This is shown by the thin lines of Fig.37. It is important to remark that this is a generic

problem for any model where the f0(500) contribution vanishes at large Nc, not just for the

IAM. For instance, as pointed out in [142], it could be an issue for the model described in

[379] built within the unitarized quark model proposed in [17], where all scalars below 2 GeV
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Figure 37: In the scenario where the f0(500) disappears from the spectrum there is no FESR suppression and local

duality fails as Nc grows. However, in the scenario where the σ has a subleading ordinary component around 1 GeV, this

component ensures local duality even when increasing Nc. Recall that the IAM is only expected to give good quantitative

results up to Nc = 30 at most. Beyond that, the curves are just extrapolations to show that the scalar contribution above

1 GeV would be enough to stabilize the ratios at the required small values. Figures taken from [148].

except the glueball could be described with q̄q seeds dressed by hadron loops, but the σ had no

correspondence whatsoever with these seeds. Potentially this may lead to violations of semi-local

duality at large Nc.

However, in the first scenario found in the previous subsection, there is a subdominant ordi-

nary component for the f0(500) with a mass somewhat above 1 GeV. This behavior corresponds

to curves like that labeled µ = 1000 MeV in Fig.35 and occurred naturally within the two-loop

IAM [136], as seen in Fig.36. In [148] it was found that this heavier subdominant component

emerging at larger Nc was enough to ensure the cancellation with the ρ(770) contribution required

by semi-local duality. The suppression effect is shown by the thick lines of Fig.37. Note the gray

area above Nc = 30, where we have already discussed that the IAM is not reliable and therefore

the results there are merely qualitative. It is just displayed in order to show that the presence of

a scalar contribution above 1 GeV stabilizes the ratios at small values, but that without such a

component the suppression required by semi-local duality disappears..

Therefore, semi-local duality seems to favor naturally the first scenario, in which the σ has a

subdominant ordinary component with a mass around 1 GeV. In such case it would be a compo-

nent of the f0(980) the one that becomes relevant at Nc >> 3. Thus, the support from semi-local

duality for the subdominant component is based on naturalness and the absence of fine tuning,

apart from the fact that the Nc behavior has a simple explanation in terms of the relatively well

established ordinary scalar nonet above 1 GeV. However, as shown in [280], if one also takes

into account part of the subleading Nc scaling contributions (corresponding to the NLO in the so-

called ǫ expansion), a particular choice of the vector coupling GV , tunes the ρ and S 1 masses to

be equal in the large Nc limit and considers the variation with Nc of the f0(980), it is still possible

to satisfy semi-local duality at large Nc even if the σ does not have any subdominant ordinary

component around 1 GeV [280]. However, if one also includes the J = 2 f2(1270) resonance the

F21
3

ratio is spoilt again, so that one would have to assume that additional cancellations from even

heavier resonances must occur. Note also that, as previously commented, the implementation of

the Nc scaling in [280] has been questioned in [142], where the first scenario is also found.
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4.5. Regge theory and the f0(500)

Another well-known feature of q̄q hadrons is that they can be classified into linear (J,M2)

trajectories relating the angular momentum J and the mass squared with a universal slope of

the order of 0.8 − 0.9 GeV −2. In the case of mesons these trajectories are intuitively interpreted

in terms of quark-antiquark states, since they are similar to those obtained from the relativistic

rotation of a rigid rod or of a flux tube connecting a quark and an antiquark. Strong deviations

from this linear behavior would suggest a rather different nature and the scale of the trajectory

would also indicate the scale of the mechanism responsible for the presence of a resonance. In

particular, the σ is almost never listed as a member of linear trajectories because it does not

fit very well into this classification. For instance, in the very complete study of meson Regge

trajectories in [144] the “enigmatic” σ meson was omitted from the “q̄q trajectory supposing it

is alien to this classification”.

Recently, it has been shown [145] how to calculate, instead of fit, the Regge trajectories of

resonances appearing in elastic two-meson scattering, using a dispersive formalism for the tra-

jectory. The phenomenological input is the pole position and residue associated to the resonance.

The only chiral constraint is that in the scalar scattering amplitude the Adler zero is introduced

explicitly. Within this approach, trajectories of resonances widely accepted as q̄q mesons like the

ρ(770), K∗(892) and K1(1400) vectors, the f2(1270) and f ′
2
(1525) tensors, and even the K∗

0
(1430)

scalar come out almost real and linear with a ∼ 0.8 − 0.9 GeV −2 slope [145, 380, 381], as ex-

pected. In contrast the σ and κ trajectories come out very different, confirming their non-ordinary

nature. Let us briefly review this approach and how the resulting σ trajectory looks like, because

it also provides a relevant hint on the σ nature and structure.

A textbook introduction to Regge amplitudes and their analytic properties, with almost the

same notation we follow here, can be found in [200]. An elastic ππ partial wave with angular

momentum l near a Regge pole can be written as

tl(s) = β(s)/(l − α(s)) + f (l, s), (121)

where f (l, s) is a regular function of l, and the Regge trajectory α(s) and residue β(s) are analytic

functions, the former having a cut along the real axis for s above threshold. Recall that in Regge

Theory l is promoted to a complex variable. Nevertheless, if the pole dominates in Eq.121, the

elastic unitarity condition in Eq.72 implies that, for real l,

Imα(s) = σ(s)β(s). (122)

In the residue it is convenient to make explicit the threshold behavior as well as the cancella-

tion of the poles of the Legendre function appearing in the full amplitude. Thus the β(s) function

is rewritten as [382]

β(s) = γ(s)ŝα(s)/Γ(α(s) + 3/2), (123)

where ŝ = (s − 4M2
π)/s0. The dimensional scale s0 = 1 GeV2 is introduced for convenience and

the so-called reduced residue γ(s) is an analytic function, whose phase is known because β(s) is

real in the real axis.

It is then possible to write dispersion relations for α(s) and β(s), which are related via Eq.122,

leading to [145, 382]:

Reα(s) = α0 + α
′s +

s

π
PV

∫ ∞

4m2
π

ds′
Imα(s′)

s′(s′ − s)
, (124)

131



Imα(s) =
σ(s)b0 ŝα0+α

′ s

|Γ(α(s) + 3
2
)|

exp



 − α′s[1 − log(α′s0)]

+
s

π
PV

∫ ∞

4m2
π

ds′
Imα(s′) log ŝ

ŝ′ + arg Γ
(

α(s′) + 3
2

)

s′(s′ − s)



, (125)

where PV denotes “principal value” and α0, α
′ and b0 are free parameters to be determined

phenomenologically. As already seen in Sec.3.3, scalar ππ scattering partial waves have Adler

zeros below threshold. This can also be made explicit in β(s). In practice it is enough to multiply

the right hand side of Eq.125 by 2s − M2
π, which ensures the Adler zero position is correct to

leading order in ChPT. In such case the 3/2 has to be replaced by 5/2 inside the Euler Γ functions

in order not to spoil the large s-behavior. Then b0 has dimensions of GeV−2. For a given set of

α0, α
′ and b0 parameters the above equations, or those modified to have an Adler zero, can be

solved iteratively.

The Regge trajectory of a resonance is then obtained [145] by imposing that the solution of

Eqs.125 must yield a pole in Eq.121 for the angular momentum of that resonance, and varying

α0, α
′ and b0 to fit the pole position and residue to the values of the physical resonance pole. For

the σ and ρ(770) calculations [145], their pole parameters are taken from the precise dispersive

representations of ππ scattering data [118] that we already discussed in Sec.2.5. In particular,

the σ pole position and residue correspond to those in the last line of Table 4. In contrast, for

the f2(1270), f ′
2
(1525), K∗(892), K1(1400) and K∗

0
(1430) calculations [380, 381], their scattering

pole parameters are taken from phenomenological parameterizations: in the case of the f2(1270)

from the dispersively constrained fit of [117], also commented in Sec.2.5, and in the rest of cases

from their RPP 2012 values [2].

Thus, the left panel of Fig. 38 shows the resulting Regge trajectories for the σ and ρ(770)

resonances, whose parameters are given in Table 10 [145]. The imaginary part of αρ(s) comes

out much smaller than the real part, and the latter grows linearly with s. This is the behavior

expected for the ρ(770) as an ordinary meson. Taking into account the approximations, and

that the errors in the parameters only correspond to the uncertainty in the input pole parameters,

the agreement with previous ρ(770) trajectory determinations is remarkable. Actually, fits of

the ρ(770) trajectory in the literature yield: αρ(0) = 0.52 ± 0.02 [202], αρ(0) = 0.450 ± 0.005

[2], α′ρ ≃ 0.83 GeV−2 [144], α′ρ = 0.9 GeV−2 [202], or α′ρ ≃ 0.87 ± 0.06GeV−2 [384]. The

results for the K∗(892), K1(1400), f2(1270), f ′
2
(1525) and K∗

0
(1430) are also very consistent with

an ordinary behavior. The trajectories also come out almost real and linear, with the slope α′

consistent with the 0.8-0.9 GeV−2 expected value. However, for the latter three resonances the

uncertainties are larger, mostly due to the fact that they have a small inelasticity, which has been

considered as a source of uncertainty [380, 381].

In contrast, as seen in the left panel of Fig.38, the f0(500) trajectory is not evidently linear

and its α′ is about two orders of magnitude smaller than for ordinary linear trajectories. This

provides strong support for a non-ordinary nature of the σ meson. In addition, the resulting

scale of tens of MeV, or at most hundreds, for α′σ, is more typical of meson physics than of

quark and gluon interactions. Moreover, the very small slope excludes the possibility that any

of the other known isoscalar resonances may lie on its trajectory. As a further check, when in

[145] an ordinary linear trajectory was imposed on the σ, the fit to the σ pole became very poor,

particularly for the coupling, and the resulting Regge-pole amplitude in Eq.121 in the physical

region was qualitatively very different from the data. The situation is very similar for the κ, which

once again suggests a relatively similar composition for both resonances [381].
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Figure 38: Left: αρ(s) and ασ(s) Regge trajectories, s dependence as calculated in [145]. Right: The same ασ(s) and

αρ(s), plotted in the complex plane. The dotted lines are the extrapolation of the [145] results beyond s = 2 GeV2. Within

the input pole parameter error bands, in the case of the σ, two types of solutions are found. One set (pattern-filled band)

has a loop in the Imα − Reα plane. The other (gray lines), having slightly higher α′ does not form a loop. At energies

below s = 2 GeV2, both are similar to the trajectories of the Yukawa potential V(r) = −Ga exp(−r/a)/r, shown here for

three different values of G [383]. For the G=2 Yukawa curve [383] a ≃ 0.5 GeV−1 ≃ 0.1fm can be estimated. This could

be compared, for instance, to the S-wave ππ scattering length ∼ 1.6 GeV−1 ≃ 0.3fm. Figure taken from [235]

α0 α′ (GeV−2) b0

ρ(770) 0.520 ± 0.002 0.902 ± 0.004 0.52

f2(1270) 0.9+0.2
−0.3

0.7+0.3
−0.2

1.3+1.4
−0.8

f ′
2
(1525) 0.53+0.09

−0.45
0.63+0.20

−0.04
1.33+0.64

−0.07

K∗(892) 0.32±0.01 0.83±0.01 0.48±0.03

K1(1400) −0.72+0.13
−0.03

0.90+0.01
−0.07

6.02+0.39
−1.13

K∗
0
(1430) −1.15+0.23

−0.15
0.81+0.08

−0.1
4.04+1.26

−2.43
GeV−2

σ/ f0(500) −0.090 + 0.004
− 0.012

0.002+0.050
−0.001

0.12 GeV−2

κ/K∗
0
(800) 0.28±0.02 0.15±0.01 0.44±0.04 GeV−2

Table 10: Parameters of Regge trajectories calculated, not fitted, for different resonances in [145], using the integral

equations in Eq.125 fitted to their pole parameters. The σ and ρ(770) trajectories were calculated in [145], whereas the

f2(1270), f ′
2
(1525), K∗(892), K1(1400), K∗

0
(1430) and K∗

0
(800) results come from [380, 381]. The trajectories of the first

six resonances came out linear and consistent with a universal slope α′ ≃ 0.8− 0.9 GeV −2. In contrast the σ and κ scalar

mesons do not follow a linear trajectory and their slope, calculated at their pole masses, is much smaller.
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Furthermore, in the right panel of Fig. 38 the striking similarities between trajectories of

the f0(500) and those of Yukawa potentials in non-relativistic scattering [383] can be noticed,

particularly below s = 2 GeV2. From the Yukawa G=2 curve in that plot, which lies closest the

low-s part of the f0(500) trajectory, it is possible to estimate a ≃ 0.5 GeV−1 ≃ 0.1fm, following

[383]. Thus it seems that the range of a Yukawa potential that would mimic the σ trajectory

at low energies is comparable, but smaller than the ππ scattering length in the scalar isoscalar

channel ≃ 1.6 GeV−1 ≃ 0.3 fm or the charge radius of the pion 〈r2〉1/2 ≃ 0.66 ± 0.02 fm. Thus,

the trajectory is similar to a meson-meson Yukawa potential but with a characteristic length

smaller than expected. This is not necessarily related to the size of the σ meson, among other

things because being a non-normalizable state it does not have a well-defined size. Actually,

the recent calculation [385] of its quadratic scalar radius leads to a complex quantity 〈r2〉σs =
(0.19 ± 0.02) − i(0.06 ± 0.02) fm2, which suggests a rather compact scale as well.

Of course, these results are most accurate at low energies (thick continuous line) and the

extrapolation should be interpreted cautiously. Nevertheless, the Regge trajectory found for the

f0(500), apart from explaining why the σ is alien to the ordinary liner Regge trajectory classi-

fication, suggests that it looks more like a low-energy resonance of a short range potential, e.g.

between pions, than a bound state of a confining force between quarks and gluons.

4.6. Quarks and gluons within the f0(500)

The main problem to interpret the σ as well as other light scalar states is that, due to its strong

character, the QCD perturbative expansion in powers of its coupling does not work at energies

below 1.5 or 2 GeV. Unless using other schemes like the 1/Nc expansion or lattice-QCD, one

has to rely on relatively crude models. These can be very informative and provide some intuitive

understanding, but several caveats have to be kept in mind. For instance these models usually

start by assuming either a confining potential or some boundary conditions or a constituent mass

for quarks and gluons in order to generate a bound state spectrum. These confining potentials are

often motivated by some QCD considerations and symmetries. One is then tempted to talk about

q̄q mesons, glueballs, tetraquarks, etc, and one may even define mixing between these states.

But these confined or bare states cannot be directly compared to the physical states because

the latter decay and have widths. In particular, the σ has a width which is even larger than its

mass. As we will see, the most usual way to deal with this fact is either to bosonize the quark

model and end up with some form of low energy effective Lagrangian or to introduce purely

phenomenological amplitudes at best remotely based on QCD, sometimes even reduced to just

one parameter, to describe the coupling of bound states of quark and/or gluons with the observed

mesons. At this point meson-meson states or “meson-molecules” should be considered together

with the previous list of possible states that make up a meson, although the definition of these

states is very model dependent. Actually, dealing simultaneously with quarks, gluons and meson

states should raise some concerns about double-counting of states, not always addressed in the

literature. In any case, the most elaborated models, those really trying to obtain a somewhat

realistic description, include rescattering effects, i.e. some sort of unitarization with the scattering

coupled channel, which is absolutely needed if scattering observables are to be described. At

this point the connection with the initial QCD quarks and gluons has blurred considerably. For

instance, it is very hard to disentangle tetraquarks from meson-molecules or rescattering effects

and sometimes this just depends on how they are defined on each work. Moreover, the mixing

pattern of bare states could be drastically changed when the states acquire a large width and

mix with another state state through an additional mechanism. This should not be understood

as a criticism, since all these caveats are well known and frequently emphasized by the very
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authors of the models, whose simplifications are deliberately made for the sake of simplicity and

intuition. With these caveats in mind, some of these models have actually provided an intuitive

understanding, starting with QCD degrees of freedom, of the dynamics that give raise to σ and

other scalars mesons. For this reason the most popular and relevant models, which have become

benchmark references in the literature, will be reviewed briefly in the final part of this section.

But before that, let us briefly comment on lattice-QCD calculations.

4.6.1. Lattice QCD

Many lattice studies for the ρ(770), which appears in the isovector ππ scattering channel exist

in the literature [310, 311, 312, 386]. Actually, in Sect.3.8 we have already commented how

the ρ(770) quark mass dependence obtained from unitarized ChPT agrees reasonably well with

lattice results, given the differences between both approaches. In particular the very small quark

mass dependence of the gρππ observed in UChPT was also seen on the lattice [310, 311, 312].

However, the study of the σ has some well-known difficulties on the lattice and lattice studies

are more scarce. First of all, this state has a very large width and we have already seen that meson-

meson dynamics play a very important, if not the most important, role in the generation of the

σ. This is not easy to implement on the lattice. Quenched approximations should therefore be

treated with care.

In addition, lattice calculations are often made with large quark masses and we saw in Sub-

sec.3.8 that strong non-analyticities might be expected if the quark mass dependence is to be

extrapolated from higher masses. The σ at high masses could appear as a bound state or a vir-

tual state before it becomes the wide object that we observe at the physical pion mass. Moreover,

there is the added complication of the so called “disconnected diagrams”. i.e. closed quark loops,

which present an additional challenge to the calculations. These are important because otherwise

the states being calculated are not genuine flavor-singlet states.

In a pioneering work, Alford and Jaffe [161], ignoring quark-loops and quark annihilation

found that diquark-antidiquark correlations were sufficient to create bound 0+ states with no

exotic quantum numbers and for sufficiently large quark masses.

A few years later the SCALAR Collaboration, made a full lattice QCD calculation of scalar

mesons [162]. In this work a clear σ state appears for which the inclusion of the disconnected

diagrams is necessary. It should be noted, however, that this is for relatively large pion mass,

since Mπ/Mρ ≃ 0.7 − 0.77 − 0.83 for different values of the lattice parameters. Since Mσ/Mρ =

1.11 − 1.34 − 1.6, respectively, the σ cannot decay into two pions, so that there is no estimate

of its width. However, if the naive chiral limit is taken the σ mass becomes much smaller than

the ρ mass. Thus, although the lattice calculation is still far from describing the physical f0(500)

the results are nevertheless very encouraging. Finally, it is worth remarking that in a very recent

work by the same group [165], the significance of four-quark components in isoscalar mesons

has also been studied, by calculating the propagators of “molecular” and tetraquark states as well

as singly connected diagrams. Once again it is shown that within this framework, disconnected

diagrams are essential for four-quark states to exist. Their conclusion is that “the light iso-

singlet scalar meson σ may be the molecular state”, with a mass of approximately 2Mπ. Of

course, these results are not obtained for the physical pion mass, but for a much a larger one,

but this seems to be in qualitative agreement with a naive extrapolation of the unitarized ChPT

results in Subsec.3.8, whose applicability region is limited to lower pion masses.

Lattice calculations at lower pion masses exist. As we already commented in Subsec.3.8, for

Mπ ≃ 325 MeV a bound state in ππ is found in [164], which compares well with the extrapo-

lation of the unitarized ChPT results. However, the authors warn about the absence of discon-
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nected diagrams in their calculations. Moreover, previous lattice studies [163], in the quenched

approximation, had also suggested the existence of a tetraquark/mesonium one-particle state for

Mπ ∼ 180 − 300 MeV.

We have also commented in Subsec.4.3 that there are recent lattice studies for QCD in the

large-Nc limit [375, 376, 377]. This is not exactly the same LO 1/Nc behavior studied within

unitarized ChPT, but it shows that the scalar mass in this limit is not below the ρ mass.

In addition, lattice results for other light scalars have important implications for the σ. For in-

stance, the SCALAR Collaboration has also performed a study of the κ meson within a quenched

lattice approach [387] in order to check whether such a state, without the contribution of the

disconnected diagrams, could have mass as small as 800 MeV. They found that it is not possible

and that such a low mass κ “may have another unconventional structure”. Moreover, we also

commented in Subsec.3.8 that a virtual κ state has been found in [166] at high pion masses, con-

sistently with the findings of unitarized ChPT. As we have repeatedly emphasized, the existence

of the κ at low energies and with a similar structure to the σ discards by itself the σ glueball

interpretation. Furthermore, the σ as a glueball interpretation is hard to maintain in view of the

lattice results, which, as we have already commented, all place the glueball around 1.5 to 1.8

GeV [152].

The methods to extract scalar resonance parameters from lattice are developing very fast. In

this sense, the study conducted in [388] using the Lüsher formalism [389] and synthetic lattice

data generated with the Chiral Unitary Approach, in order to obtain scattering results in the

continuum, is very illustrating. Indeed, it is found that many lattice energy levels of different

volumes and with high accuracy are needed to determine with only relative precision the f0(500)

pole. That work also offers a strategy to find phase shifts in the continuum from lattice levels

using an auxiliary potential based on the Chiral Unitary Approach. Using Lüsher’s formalism,

lattice data was also obtained for isospin-2 ππ scattering phase shifts [390]. This channel has less

complications than that with isospin 0, due to the double charge and the absence of the so-called

”disconnected diagrams”.

Moreover, in a recent lattice work [391], which studied the two-pion correlator within the

quenched approximation, an f0(500)-like 0++ state was found in the two-pion channel with a

mass of 609 ± 80 MeV, when a linear extrapolation to the physical values of only their lowest

quark mass results was performed. This work included the most important annihilation diagram,

i.e. the “partially disconnected” or “singly connected” one, but omitted the “doubly connected”

one. The authors considered their “exploratory” findings consistent with the f0(500) meson,

given the approximations of the approach.

Finally, while finishing this report, it has appeared the first lattice calculation [316] of ππ

scattering in the scalar-isoscalar channel including all such contributions and evaluated at two

different unphysical pion masses. For Mπ = 391 MeV a bound state at 758 ± 4 is found, qualita-

tively consistent with the NNLO IAM predictions commented in Sec.3.8. It would be interesting

to know if a mirror pole in the second sheet appears in a very symmetric position or not, to study

the molecular nature of this state. For Mπ = 236 MeV, the lattice phase shift is later described

with different parameterizations that fulfill unitarity (but without a left cut), like a K-matrix. It is

found that all them present a pole in the second Riemann sheet of the energy-squared complex

plane, with a very large imaginary part, thus representing a very wide resonance.

In summary, there are very promising results on the lattice that find a σ/ f0(500) and those

which have addressed its nature claim that its dominant component is of a non-ordinary nature.

This technique is evolving impressively fast and the last achievements are very remarkable. Still,

it would be desirable to have calculations at more pion masses, particularly as close as possible
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to the physical mass. This might help understanding the evolution of the σ from a bound state

at large pion masses into a wide resonance for the physical mass, as well as confirm the present

dispersive determinations of ππ scattering. Lattice QCD is making a continuous and impressive

progress and this is one of the directions we hope can be explored thoroughly in the near future.

4.6.2. Tetraquarks-molecules

The title of this subsection emphasizes the difficulty in disentangling different configurations

involving two quarks and two antiquarks at the microscopic level. As commented above models

lack a description of the hadronization process, so that the tetraquark label just corresponds to

a convenient way of parameterizing symmetry transformations or a particular mixing or mass

hierarchy scheme. Very often the authors of “classic” tetraquark models admit that their states,

after hadronization and final-state meson-meson rescattering, may also be understood as some

kind of meson-meson state or molecule.

The first model proposing a non-ordinary nature for the σ together with the κ, a0(980) and

f0(980) was given by Jaffe already in 1977 [52] and this has become a reference model. Up to that

moment tetraquark states were expected to have a mass around 1400 MeV, just by extrapolating

from the masses of ordinary mesons like the ρ(770), with two constituents, and of baryons with

three. However following a semi-classical approach to the MIT bag model, which had been

relatively successful describing ordinary mesons and baryons so far, it was shown that S-wave

q2q̄2 bound states appeared as a light scalar nonet below 1 GeV.

In this first model confinement is built ab initio by assuming a constant energy density

∼ 50 MeV/fm3 inside an spherical cavity (the “bag”) defined by some boundary conditions to

guarantee that only color singlet hadrons exist. Inside the bag non-strange quarks are massless

and couple to gluons as in QCD. The parameters of the model were fixed by the analysis of q̄q

mesons and q3 baryons. The success of the approach relies on the dominance of the magnetic

contribution of the gluon interaction; without it tetraquarks would appear around 1400 MeV. The

model predicts two 0+ nonets, one below 1 GeV, including the σ, κ, a0(980) and f0(980) (see

Fig.3 for the old notation) plus an entire nonet of pure q̄q states bound in a P-wave, sitting above

1 GeV.

It is at this point that the widths and decays have to be estimated. Note that contrary to the

decay of a q̄q meson into a pair of q̄q mesons, which require the creation of a quark pair (OZI-

allowed transition), for tetraquarks to decay into two-mesons no quark-line has to be created, they

simply have to fall-apart (OZI-superallowed transition). Sometimes this mechanism is also called

dissociation. Then the decays are introduced through a “change of coupling transformation”

which consists in rewriting the q2q̄2 neutral states as a linear superposition of two mesons with the

same total quantum numbers multiplied by some coefficients. These coefficients are determined

up to a universal multiplicative factor and provide the amplitude for a meson to decay into a

particular two-meson channel. Since these decays proceed by dissociation, these resonances

become very broad as soon as their mass is well above the threshold of the two-meson state to

which they couple the strongest. This naturally describes the large width of the σ and the κ versus

the narrowness of the f0(980) and a0(980), which lie so close to the K̄K threshold.

One of the main concerns about this model is the proliferation of states that have not been

observed, which nevertheless could be due to the fact that they are very wide. Relatively soon

this problem was addressed [392] by using the R-matrix method [393] to relate discrete quark-

model spectra calculated with boundary conditions to scattering data. The conclusion was that

quark-model eigenstates should not automatically be interpreted as evidence for S -matrix poles,

but just as estimates of forces between scattering mesons. Actually it was recently argued, also
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by Jaffe in [137], that in the case when the mass of the quark model q2q̄2 state is below the

dominant K̄K decay threshold, the tetraquark state might be interpreted as a bound K̄K state

coupled to the ππ continuum and that there is no clear distinction between the proposed q2q̄2

state and a meson-meson molecule.

In the literature there are different interpretations of what a tetraquark is. Not only does the

tetraquark/molecule dichotomy exist, but also the “diquark-antidiquark” tetraquark configuration

[159] has been discussed in the literature. In this case a fully antisymmetrized quark pair, denoted

by [q1q2], is said to form a diquark, which is then combined with the antisymmetrized antidiquark

to form a color singlet. By considering all flavor configurations one then obtains a flavor nonet

which is identified with the usual light scalar nonet. For instance, the neutral members of the

octet are:

f0 =
([su][s̄ū] + [sd][s̄d̄])

√
2

, σ0 = [ud][ūd̄], a0 =
([su][s̄ū] − [sd][s̄d̄])

√
2

, κ = [ud][s̄d̄].(126)

The authors of [159] then assume octet symmetry breaking and write the most general expres-

sion for the mass in terms now of meson fields, which depends on four parameters. Then they

diagonalize the mass matrix and identify the eigenvalues with four physical masses of the σ,

f0(980), a0(980) and κ. The physical σ and f0(980) come as eigenstates of the mass matrix and

are actually a mixture:

|σ〉 = − sin φ| f0〉 + cos φ|σ0〉, | f0(980)〉 = cos φ| f0〉 + sin φ|σ0〉, (127)

with tan 2φ ≃ −0.19, i.e. φ ≃ −5.4o. But this mixing angle has to be interpreted with care because

so far these states do not have a width. In particular, when a width is included, the spacial wave

function becomes non-normalizable and strictly speaking the above rotation between normalized

states is ill defined. In addition, the states do not even have a well defined mass. Thus, Eq.127

should be interpreted as the mixing that would exist if no meson-meson decay and rescattering

were present, i.e. if the σ and f0(980) were stable. It is true that mixing equations like Eq.127

are frequently used for other pairs of particles like ω − φ, η − η′ or even ω − ρ, but compared to

their masses these are much narrower than the σ, and neglecting their width one does not expect

a dramatic change in their formation mechanism, structure or dynamics, particularly in the first

two cases. But this is obviously a bad approximation for the σ, whose width is comparable to

its mass. Still, that equation could be of some interest for the σ if the kets only represent the

flavor part of the state, as given for instance by the well defined two-meson asymptotic states

(i.e., neglecting the pion and kaon electroweak decay), stripped of the spacial part describing the

resonance. This is a common abuse of notation, but outside that flavor context its use is not really

justified [394].

For the above reasons, the recent LHCb claims [288] about the non-tetraquark nature of the

sigma based on ratios of B meson decays into light scalars, only hold within a very particular

and unrealistic model with strong assumptions, as emphasized in the very abstract of the second

reference in [288]. In particular, the model [395, 396] makes use of Eq.127 above. For the

tetraquark case the model identifies the “bare” | f0〉 and |σ0〉 with the definitions in Eq.126, and

in the q̄q case | f0〉 = |s̄s〉 and |σ0〉 = |n̄n〉, where |n̄n〉 = (|ūu〉 + |d̄d〉)/2. No meson-meson state is

considered and therefore the large width of the |σ0〉 and the meson-meson state are neglected in

the mixing. After this assumption, the model arrives, for instance for the case of quarkonia, to:

B(B̄0 → J/Ψ f0(980))

B(B̄0 → J/Ψ f0(500))

Φ(500)

Φ(980)
= tan2 φ, (128)
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where it is implicitly assumed that the dynamics to create a σ and an f0(980) are the same and

cancel in the ratios. But looking at the σ huge with of hundreds of MeV against the tiny tens of

MeV width of the f0(980), as well as to the difference in masses, this assumption does not seem

realistic. Actually, using this kind of ratios to extract mixing angles or other meson properties

implies two radical assumptions: I) that neglecting the huge σ width does not change its nature

and the dynamics of its formation, the internal structure and distribution of its components, and

II) that these dynamics, structure, distribution of components, etc, are exactly the same for the

f0(980). In the model [396] used by LHCb [288], this is done in two steps. First, in the pertur-

bative diagrams made with quarks, all the complications of hadronization and the formation of

mesons are included in some F
f

B
form factors and someZ{ constants representing ”the coupling

amplitude that depends on the quark configuration after the B̄ meson decay and the quark content

of the light meson in either the q̄q or tetraquark model”. Second, it is claimed that all these form

factors and amplitudes cancel in ratios in such a way that only the kinematics and the simple fla-

vor factors remain in their ratios of amplitudes. Thus, these F
f0
B
Z f0/F

σ
B
Zσ ratios become 1 in the

q̄q case and 1/2 for a naive tetraquark. But for instance, decays and formation processes might

depend on the value of the quark wave functions at the origin (or their derivatives, or many other

things) and there is no reason why this effect should be the same for the σ and f0(980). Moreover

there are effects of pion/kaon loops, which can contribute differently to the σ and f0(980) and,

at least for the sigma, are huge. Something similar might happen in order to form the σ and

the f0(980). Therefore, there should be a ratio F
f0
B
Z f0/F

σ
B
Zσ, which for each particular model

may contain flavor factors in the form of sines or cosines, but apart from that, there is not even

a reliable calculation of its order of magnitude, and assuming a particular value of order one is

definitely not justified [394].

We already pointed out in the introduction to this section that it is a relatively usual weakness

of some quark-level analyses to treat hadronization with a single parameter, common to all res-

onances, with no energy dependence, etc, assuming it does not affect much the results obtained

without hadronization.

Moreover, for these branching ratios measured at LHCb [288], there is the additional caveat

that the σ is described by means of a Breit-Wigner formalism, which as we have seen repeatedly

in this report, is incorrect for the sigma. Therefore, the separation between decays into σ and

f0(980) is strongly model dependent. Nevertheless, if one wants to take those σ and f0(980)

branching ratios at face value, and only within this crude mixing model, which neglects widths

and assumes identical hadronization amplitudes for the sigma and the f0(980), the tetraquark

nature is strongly disfavored. Surprisingly, a recent reevaluation of this model including isospin

breaking, which one would naively expect to be a minor correction, reaches the opposite conclu-

sion [397], favoring the tetraquark structure. Hence, even ignoring the above caveats it is hard

to reach a robust conclusion. In any case, the main problem is that there is no systematic way

to include meson-meson states and the σ width into these naive mixing pictures, since the naive

mixing equations at the very beginning would be ill defined and the simple relation between the

measured branching fractions and the nature of light scalar states would be lost. Actually, the

ratio of hadronization amplitudes in Eq.128 most likely has a complicated energy dependence

given the different shapes of the two resonances and is in practice unknown. These are funda-

mental caveats to the use of B0 decays in order to discern the nature of the σ and f0(980) in a

model independent way, by means of naive mixing schemes. To conclude, the use of branching

ratios as in Eq.128 does not provide any meaningful information about the physical σ composi-

tion.

A model independent dispersive formalism has recently become available for the analysis of
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the B̄0
d/s
→ J/ψππ decays [398]. Being model independent, this analysis avoids Breit-Wigner

parameterizations, does not discuss any naive mixing scheme of the form of Eq.127 nor the

interpretation of the nature of scalar states. However, it is worth remarking that the hadronization

form factor of the s̄s into the two pions (the ones resonating into a σ or an f0(980) meson), is

much more elaborated than just a constant.

A strong diquark-antidiquark component mixed with conventional q̄q configurations were

also found for several scalar states within a non-relativistic quark model in [160]. In this case the

σ is found to be predominantly a q̄q, but this model only calculates masses of bound states within

a Schrödinger equation which does not contain two-meson states and rescattering so that this σ

does not have a width, which is an essential for the understanding of the physical σ. The model is

well suited though for heavy quark mesons and when some results are rescaled for narrow states

like the f0(980) and a0(980) it compares well with experimental data on two-photon decays. No

attempt of such a calculation for the σ is done.

Actually, following the general pattern discussed in the introduction to this section, a phe-

nomenological parameter is usually needed to connect bound or bare states with the physical

ones. This is particularly important for the σ given its very large width. Such a parameter is

included in the model [159] in order to connect with hadron physics. In this case the “fall apart”

mechanism is not at work, but here dissociation is understood as the process where a q̄q pair is

switched between the diquark and the antidiquark to form two colorless q̄q mesons. In the exact

SU(3) limit there is only one such amplitude, which is then approximated by a single parameter.

A convenient choice is A = ta+→K̄0K+ . Therefore, we once again meet this usual feature of quark-

level analysis, which is that hadronization is frequently described in a simple way by a single

parameter. In this case it is explicitly assumed that this decay mechanism does not change the

previously calculated masses. Then, “without attempting a systematic fit” a very crude descrip-

tion of the scalar widths is tried. However, the σ width comes out as 325±50, which lies outside

the RPP2012 very conservative estimate and even farther from the conservative dispersive esti-

mate in Eq.3. In addition, the resulting κ width is 138 MeV, to be compared with 557 ± 24 MeV

from the rigorous Roy-Steiner dispersive analysis in [127]. Of course, we are comparing here

with pole parameters which do not correspond precisely to the mass and widths quoted in [159].

By adding other SU(3)-allowed phenomenological couplings some improvement can be found

for OZI allowed decays, but the κ comes out even narrower, ∼ 60 MeV, the f0(980) → ππ

coupling is too small and the a0(980)→ ηπ too large.

Thus, in order to solve these drawbacks, in a subsequent work [147] this model was improved

by considering an instanton-induced, six-fermion effective Lagrangian. The light scalars are

still predominantly described as diquark-antidiquark configurations with a phenomenological

transition parameter allowing their decay into two mesons. The addition of the new interaction,

apart from providing an additional amplitude to bring the f0(980) and a0(980) decays into a better

agreement with data, also produces a mixing between the “tetraquarks” and a nonet of q̄q mesons

identified around 1200-1700 MeV.

An introduction to instantons is far beyond the scope of this report and for that purpose

[365] is highly recommended. Suffices it to say that instantons are solutions of the Euclidean

gauge-field equations, corresponding to stationary points of the action19. Thus, they dominate

the functional integral in the path integral formalism and for the semi-classical approximation

they are the most relevant kind of solutions. As it is argued in [147], QCD instantons generate

19For fixed winding number. See [365] for details.
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an effective interaction of the form LI ∼ det(q̄i
L
q

j

R
), where i, j are flavor indices and summation

over color is understood. With three light flavors, this includes a diquark-antidiquark-q̄q mixing

term of the type Tr([q̄q̄]i[qq] jq̄ jqi). If the diquark-antidiquark mesons are collected into an U(3)

S matrix and the q̄q mesons into their corresponding S ′ matrix, this mixing can be recast into the

form of Eq.109 already introduced when discussing the chiral Lagrangian approach of the Syra-

cuse group [329] in Subsec.3.9.2. This provides more flexibility in the fits through an additional

parameter, but it also requires a consistent identification of q̄q mesons above 1 GeV. Within this

improved model [147], the new numerical analysis of masses and decays leads again to a rela-

tively small σ − f mixing angle |φ| < 5o, and the problems with the a0(980) and f0(980) decays

are fixed. However, in their best fit the σ and κ decay amplitudes are still close to a factor of 2 too

small. Thus, this model gives just a qualitative picture for the two lightest scalar resonances, but

of course, one has to take into account the simplicity of the approach. The model is nevertheless

important to confirm the relevance of the mixing with the ordinary nonet above 1 GeV.

Although discussed in more detail in section in Subsec.3.9 it is worth mentioning here that the

models using chiral Lagrangian formalisms, including those of the Syracuse group, also indicate

that in order to understand the masses and decays scalar mesons below 2 GeV, a two-nonet

scenario, plus possibly a glueball state, seems unavoidable. The preferred solutions suggest that

the main component of the states of the lowest nonet involve two-quarks and two-antiquarks,

although their specific arrangement is unclear. In addition, the unitarized ChPT approach in

coupled channels, explained in detail in Subsec.3.6, also supports strongly the existence of two

nonets below 2 GeV, the lightest one being dynamically generated, which means that the two-

meson loops play the most relevant role in its formation. In contrast, the nonet above 1 GeV

would have a predominantly ordinary nature.

Consistently with the latter approach, the f0(980) and a0(980) can be very naturally under-

stood as meson-meson molecules [58], although they have a small decay width due to the exis-

tence of another open state to which they can also decay. This is one of the possible pictures we

have in mind when talking about states involving two quarks and two antiquarks. This molecular

scenario has been explored in the literature [58, 308, 315] and gives a very successful account of

the two-meson and electromagnetic decays of these resonances. In addition, it has been observed

in the chiral unitary approach [79] or the Krakow-Paris model [76], which describe very well the

existing ππ and K̄K scattering data, that if the ππ channel is decoupled from K̄K, the f0(980) be-

comes a true bound state below the K̄K threshold. Of course, the f0(500) pole does not lie below

ππ threshold nor even very close to it. For these reasons, the “molecule” name is less adequate,

but the meson-meson loops definitely play a big role in its existence and in the values taken by its

mass and width, consistently with the f0(980) and a0(980) molecular interpretation. Moreover,

we have seen in Subsec.3.8 when discussing the quark mass dependence of the f0(500) within

unitarized ChPT, that for sufficiently high quark mass it becomes a virtual state, but that if that

behavior is extrapolated to higher masses, the σ ends up becoming a molecular state.

By molecular state one often means “composite” or “made of other mesons”, and therefore

sometimes the non-molecular tetraquark is called “elementary”, i.e. not made of other mesons.

Obviously all them are composite objects made of quarks and gluons. Frequently “molecules”

are identified with extended objects, larger than the typical hadronic size, whereas the word

“tetraquark” is kept for “compact” states of typical hadronic size, like the ordinary qq̄ mesons.

Unfortunately size is only well defined for stable states, not resonances. In particular, we already

commented that for the sigma the classical mean square scalar radius calculation yields a com-

plex number 〈r2〉σs = (0.19±0.02)− i(0.06±0.02) fm2 and, if it could be used as a measure of the

scales involved in the formation and decay of the sigma, comes out rather small [385]. We also
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saw in the previous subsection that the pion-pion Yukawa potential that would mimic the Regge

trajectory calculated from the σ pole position and residue also has a rather small scale of the or-

der of 0.1 fm. Since this scales are smaller than the pion-pion scattering length they suggest that

there is some dynamical effect at work in a scale intermediate between the pure meson physics

and the pure quark-level dynamics.

For a bound state strongly coupled to a single scattering channel, as in the case of deuterium,

Weinberg [314] developed a model-independent criterion to determine whether it was closer to a

composite state of the scattering particles, or if it was a state that would exist even in the absence

of the scattering process. The two pure-elementary or pure-molecular states are just the extreme

cases of a continuous of configurations between them. A considerable amount of work has been

devoted to extend this model-independent criterion to resonances [308, 399], but sooner or later

there is a requirement of vicinity to the threshold that the f0(500) does not fulfill. A very recent

generalization of this criterion, using a particular definition of compositeness, suggests that the

f0(500) may have a 40% of ”two-body compositeness” [400], which in other models would be

identified with a ”molecular” component. The nature of the remaining elementary component

cannot be addressed with this criterion and could still be any mixture of compact tetraquarks,

quarkonia or even gluonia.

Of course, it is likely that the predominant composition of the σ might be a superposition

of different possible arrangements of two quarks and two antiquarks, plus some subdominant q̄q

or even glueball components. Let us remark that that in Subsec.3.9.3 we have already discussed

proposals where all these arrangements also respond to a different spacial distribution. However,

given that the present experimental data on the σ does not seem enough to resolve the composi-

tion or mixings, the possibility to disentangle an spacial distribution within the σ looks very far

fetched.

As a final comment, one might be worried that conventional tetraquarks have been recently

shown to depend on Nc in the same way as ordinary mesons, which plays against them being the

main component of the f0(500). However, as repeatedly stated, that counting only applies in the

large Nc limit and only to the most straightforward and intuitive tetraquark definition in the large

Nc limit. There are other arrangements, like the so-called polyquark or the molecule, that do not

become narrow at large Nc.

4.6.3. Unitarized quark-models

Another interesting model of light scalar mesons was proposed already in 1986 [60] and has

been refined or reformulated over the years [401]. We will briefly sketch it here following its

application to discuss the nature of light scalars in [146]. It should be remarked that the very

authors of [146] state that “The model is undoubtedly an over-simplification; this is deliberate,

so as to expose the essential features”. Nevertheless, despite not being aimed at precision, the

model provides an acceptable phenomenological description of data and captures the different

dynamical origins of two multiplets of mesons: a standard one and a non-standard one. As

already discussed, relatively similar conclusions were also obtained from the 1/Nc expansion of

unitarized ChPT.

The model considers relativistic Schrödinger equations matched on both sides of a sphere

of radius r0. Inside the sphere, there is a confining potential for q̄q pairs, which is basically

described by a flavor-blind harmonic oscillator. This choice is not crucial and any other confine-

ment spectrum could be used [401]. Actually most of the attention is paid to the ground states

and most potentials around the ground state are well approximated to first order by a harmonic

oscillator. The solutions are joined at r0 with plane waves for meson pairs. There is a universal
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coupling λ between q̄q pairs. The solution of a Schrödinger equation outside the sphere is recast

in terms of a multichannel T -matrix which, due to the simplicity of the model can be written in

closed form (see [146] for details). The transition radius r0 between the q̄q and meson-meson

sectors aims at modeling string breaking at a sharp distance, as approximately observed on the

lattice [402]. Although there is no explicit inclusion of chiral symmetry in the potentials, the use

of relativistic reduced masses for the two-meson channels leads to zeros in the amplitudes near

the position of the actual Adler zeros (for instance at s = 0 for ππ scattering, which would be the

Adler zero position in the chiral limit). The parameters r0 and λ are determined from fits to data,

including ππ and Kπ scattering phase shifts, Ke4 and J/ψ → ωππ decays, the scattering length

from ChPT in [99], as well as φ→ γa0(980) and p̄p→ ωa0(980) line shapes.

Once the data has been fitted and the parameters have been determined it is possible to look

for poles in the T matrix for different quantum numbers. It is found that the model is able to

generate poles for the σ, κ, f0(980) and a0(980), i.e. the whole light scalar nonet. In particular,

the σ pole is located in the range (476−628)− i(226−346) MeV, which has a considerably good

overlap with the RPP 2012 revised estimate given in Eq.1, although it does not overlap by very

little with the Conservative Dispersive Estimate suggested in this report in Eq.3. Therefore the σ

pole is quite acceptable, keeping in mind the deliberate simplifications of the model.

The interesting features of this model are that, on the one hand, and as remarked by the

authors, “resonance formation arises from rescattering processes..., i.e, unitarization effects”,

thus bearing some resemblance to the results already reviewed on unitarized ChPT approaches

in Sec.3. On the other hand, there is no one-to-one correspondence between the full-model spec-

trum and the “bare” spectrum of their inner confining potential. Actually, for each scalar ”bare”

q̄q ground-state, two resonances are produced by the λ coupling to the continuum. Moreover the

lightest one turns out to be a “non-regular” meson, whereas the heavier one, appearing around

1.3-1.5 GeV is a “regular” one. This was a remarkable piece of evidence for the two-nonet

picture, when this feature was first observed in [60].

Within this approach, a “regular” meson is defined as having a resonance width proportional

to the square of its coupling. In this model, the σ and the lightest scalar nonet do not show this

behavior. This is illustrated in Table 11 where the pole positions of all light scalars are shown

for different values of the q̄q-meson-meson coupling λ. The preferred value of the coupling

is λ ∼ 3 GeV−3/2. The interesting observation is that if the coupling λ is made weaker, the σ

mass and width grow. Therefore, it seems that the “bare” q̄q seed inside the sigma is heavier

than 1 GeV. However, as already commented, the physical σ-meson is dominated by rescattering

effects, which make the pole appear at a much lower mass.

In previous sections we have seen that the σ pole also describes a trajectory in the complex

plane as Nc is changed within unitarized ChPT. As a matter of fact, increasing Nc amounts to

make QCD weaker, since its coupling scales as g/
√

Nc. In particular, increasing Nc suppresses

meson loops, i.e. rescattering, faster than other contributions to the meson-meson amplitudes.

Now, when Nc is increased not too far from its physical value of 3, the σ is seen to increase its

pole mass and its pole width, which is a very similar effect to the one described here. For larger

Nc the behavior is more uncertain, although the most favored behavior still has an increasing

mass but a decreasing with beyond some given Nc. Of course, the λ coupling is hard to relate

to specific QCD parameters like Nc. But it seems that at least around their physical values both

approaches seem to suggest a similar predominantly non-q̄q behavior.

Further interest on this model comes from other applications to hadron physics, and partic-

ularly from its success describing some charmed mesons, which are hard to fit in simple quark

models, as “cousins” of light scalar mesons [403].
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λ σ κ f0(980) a0(980)

1.5 942 - i794 — — —

2.0 798 - i507 — — —

2.2 738 - i429 791 - i545 — 1081 - i8.0

2.4 682 - i368 778 - i472 — 1051 - i25

2.6 633 - i319 766 - i409 1041 - i13 1024 - i45

2.8 589 - i278 754 - i355 1028 - i26 998 - i61

3.0 549 - i243 743 - i309 1015 - i35 978 - i60

3.5 468 - i174 717 - i219 976 - i37 896 - i142

4.0 404 - i123 693 - i155 948 - i38 802 - i103

5.0 308 - i50 651 - i69 889 - i34 711 - i40

7.5 216 + i0 610 + i0 752 - i25 632 + i0

10.0 142 + i0 560 + i0 633 - i17 577 + i0

Table 11: Movement of the σ, κ, f0(980) and a0(980) poles as the coupling constant λ is varied in the unitarized quark-

model of [146]. Bound states are indicated by “+i0”. Units are MeV for the poles and GeV−3/2 for λ. Reprinted from

E. van Beveren, D. V. Bugg, F. Kleefeld and G. Rupp, “The Nature of sigma, kappa, a(0)(980) and f(0)(980),” Phys. Lett.

B 641, 265 (2006). Copyright 2006, with permission from Elsevier.

A similar “unitarized” quark-model was also proposed by Tornqvist in [18], in which fits

to ππ and Kπ s-wave scattering data as well as to the a0(980) resonance peak were performed.

In this model a scalar nonet was included a priori to represent the quark-level “bare” states

which are also mixed with the meson-meson open channels. In addition, the model includes all

two-light-pseudoscalar thresholds, constraints from Adler zeros and flavor symmetric couplings.

Unitarity and some basic analyticity properties were implemented through a formalism closely

related to the K-matrix, or to a very deformed Breit-Wigner parameterization. A similar “dou-

bling” of the poles that took place in the previous model also occurs here, namely, when the

effective coupling with the continuum becomes large enough, twice as many poles can appear in

the physical spectrum, compared to the number of “bare” poles originally put in. At first [17],

the σ was missing because poles deep in the complex plane were not searched for. The σ pole

within this model was later found in [18] at
√

sσ ∼ 470− i250 MeV, which is consistent with the

present RPP2012 conservative estimate and even the conservative dispersive estimate proposed

in Eq.3. In the words of the author [124], “The new poles can then be interpreted as being mainly

meson-meson bound states, but mixed with the states which are put in”.

However, it should be noticed that within this model a κ meson was not found in Kπ scat-

tering. Actually, in a later work [89] within the S U(3) LσM, that we briefly commented in

Sec.3.9.1, the author identified the K∗(1430) as the member of the lightest nonet. This is be-

cause the Kπ scattering pole in the s-wave was obtained around 1100 MeV. However since all

other light meson masses, except the a0(980) came out about 200 MeV too high, it would have

been even more natural to identify it with the κ. Unfortunately at that time the κ was searched

around 900 MeV, and the work in [126] was understood [124] as a strong argument against a κ

resonance, when, as we commented in the introduction, it was only ruling out a κ at 900 MeV,

but not its existence below, which is not disputed in [126]. In a 2002 review [124] Tornqvist and

Close actually claimed growing evidence for two nonets, where the lightest one would be made

of the σ, a0(980), f0(980), and a κ, although its mass was left undetermined. In that review they

actually suggested that the tetraquark and molecule configuration may actually coexist within

light scalars, the former predominantly in the inner part and the latter in outer layers. This has

already been discussed in sufficient detail in Subsec.4.6.2.
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Thus, unitarized quark-models once again provide further support for the two-nonet picture

of light scalars, with the lightest one having a predominantly non-ordinary nature.

4.6.4. Sum rules

Before commenting on the different results in the literature let us very briefly sketch some

concepts of the sum rule formalism. For a general introduction we recommend the textbook [404]

or the seminal reference [405]. The approach is very general and here we will only concentrate

on works related to the σ meson. Generically, in this approach one extracts hadron masses and

couplings from two-point correlator functions of hadronic currents Jh(x), defined as:

Πh(q2) ≡
∫

d4xeiqx〈0|T Jh(x)Jh(0)|0〉, (129)

where the currents are chosen with the desired numbers to be studied, which in our case are those

of the sigma. Namely, the vacuum numbers. On the one hand, these correlators can be calculated

within QCD by means of the operator product expansion (OPE)

ΠOPE
h (q2) ≃

∑

D=0,2,4...

1

−q2

∑

dimO=D

CO(q2,Λ)〈O(Λ)〉, (130)

where Λ is an arbitrary scale (of the order of 1 or 2 GeV) that separates the low and high-

energy regimes, CO are the so-called Wilson coefficients, calculable within perturbative QCD,

and 〈O(Λ)〉 are the condensates of operatorsO of dimension D, made of gluons and quarks, which

encode the non-perturbative QCD contributions. Hence, the first critical issue to be considered

is the truncation order of the OPE. Moreover, although the values of the lowest condensates have

been determined from phenomenology, those of higher order are customarily obtained from the

lowest condensates using the factorization ansatz, which, strictly speaking is only valid in certain

limits, like the large-Nc limit [406].

On the other hand, such a calculation can be recast in terms of a phenomenological represen-

tation, which is done by means of the following dispersion relation:

Πh(q2) =
1

π

∫ ∞

0

ds
Im Πh(s)

s − q2 − iǫ
≡

∫ ∞

0

ds
ρh(s)

s − q2 − iǫ
, (131)

where we have introduced the “spectral function” ρh(s) = Im Πh/π. Note that the above disper-

sion relation is unsubtracted but subtractions can also be considered. Thus, the second critical

issue regarding sum rules is the phenomenological representation of the spectral function. Cus-

tomarily it is approximated by the “duality” ansatz, in which the lowest resonance that couples to

those currents is represented as a pole that dominates the low energy region below some energy

s0, above which the “QCD-continuum” obtained from the OPE is again used. Namely:

ρh(s) = f 2δ(s − M2) + θ(s − s0)
1

π
ΠOPE

h (s), (132)

where M and f are the mass and coupling constant (or residue) of the lightest resonance that

couples to that specific current. Sometimes the residue is normalized differently by extracting

an additional factor of M2 in front of the delta function. In principle heavier resonances could

also be described explicitly by delta functions and setting the onset of the continuum at higher

energies. Let us remark that representing the coupling of the current to a resonance by a delta
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function is nothing but its narrow width limit and this is an important caveat for the use of sum

rules with a resonance as wide as the sigma. We will see below that this issue has been addressed

in the literature.

Having the OPE correlator both in the theoretical and phenomenological sides is very in-

convenient. This is why the final ingredient in the sum rule approach is to perform a Borel

transformation to suppress the continuum contribution, arriving to the following sum rule equa-

tion:

f 2e−M2/M2
B =

∫ s0

0

ds ρOPEe−s/M2
B , (133)

where MB is an arbitrary parameter called “Borel mass”, which is conveniently chosen in the

region where the parameters of the analysis become reasonably stable, i.e., the “Borel window”.

Within the SR approach the σ meson was studied in 2001 in [149] by using the scalar-

anomaly current. For our purposes it is enough to remark that this current is made of glueball

and q̄q operators, so that the analysis was based on gluonia and quarkonia components. Both

the narrow width and factorization hypothesis were used either in a Borel transform (there called

a Laplace transform because it is actually the inverse Laplace transform) or sometimes also

considering subtractions for the energy suppression. The results of this work showed that “un-

mixed scalar quarkonia ground states are not wide, which excludes the interpretation of the σ

as a q̄q”. While preparing this review, an additional work [407] on sum rules and the sigma

has obtained that the mass of the lightest q̄q scalar resonance has a lower and upper bound of

0.78 GeV < Mσ < 1.28 GeV. These bounds are obtained from dimension 4 and 6 operators al-

though the main contribution stems from the latter. The author states that the ”analysis confirms

a widespread idea that the f0(500)-meson represents an exotic state”.

Concerning unmixed gluonia, in [149] it was pointed out that for a sigma mass around 500

MeV the gluonia width should be relatively narrow, i.e., less that 100 MeV (very consistent with

the expected 1/N2
c suppression of glueball decay into two pions). This work then questioned the

light sigma interpretation of the scattering data, since it could not be accommodated within the

q̄q nor the glueball interpretation. Actually, since in 2011 the PDG still allowed for a 400 to

1200 MeV sigma, the glueball interpretation with a 1 GeV mass and 0.8 GeV width for the σ

was fairly reasonable. However, throughout this report we have reviewed how we finally know

that the σ resonance mass lies around 500 MeV and has a roughly 550 MeV width. Therefore, as

of today, the conclusion to be drawn of the sum rule study in [149] is that the sigma cannot be an

unmixed gluonia nor q̄q. Actually, given the gluonia very small width for a 500 MeV mass, not

even a dominant glueball component seems likely. To this, of course, we have to add the facts

repeatedly discussed in previous sections, that the glueball appears well above 1 GeV both in

quenched and unquenched lattice calculations and that the κ resonance, very similar to the σ but

with strangeness, has been firmly established with dispersion relations. In short, when reading

the sum rule analysis in [149] with our present knowledge about the sigma mass and width, one

must conclude that it strongly disfavors that the f0(500) may have a predominant quarkonia or

gluonia nature.

Therefore, once more one is led to study tetraquark structures. This was actually carried out

by the end of 2004 in [408], by following [159] and considering different diquark-antidiquark

currents with the quantum numbers of the whole light scalar nonet, including of course, a σ(500).

The “pole plus continuum” approximation, Eq.132, was used and the OPE was considered up to

dimension six. The decay constants were then determined with the sum rules from the values of

the meson masses. In particular for a 500 MeV σ mass it was found that gσππ = (3.1±0.5) GeV ,

in remarkably good agreement with the “conservative dispersive estimate” given in Eq.45.

146



However, following indications [409] that for multiquark states potentially important contri-

butions to the sum rules could arise from operators with dimension D > 6, the sum rules for

diquark-antidiquak of [408] were revisited in 2006 [410] with operators up to D = 8, assum-

ing factorization. The effect of those operators lead to the “destruction” of the sum rule and

no evidence for the coupling of such tetraquark structure to the light scalar nonet, although the

possibility that this could change with other interpolating diquark currents was also suggested.

Actually, an alternative current structure, called “instanton” current, was studied up to D = 10 in

[411] and shown not to spoil the sum rule, giving support for a σ around 780 MeV and a smaller

residue than in [408], so that the agreement with the present knowledge is somewhat worse. It

was nevertheless pointed out that mixing with other states may change this result. As usual this

result made use of the “pole plus continuum” ansatz, but the effect of two-pion intermediate

states was included in a later work [412], showing that the resulting σ state had a very strong

coupling to the two-pion state.

The study of all possible combinations of tetraquark currents was started by the Beijing-

Osaka group in [413], where it was shown that five independent local tetraquark currents exist.

Studying all possible combinations of these currents is very relevant because it allows to optimize

the linear combination to have a good Borel window and other relevant properties. The study was

carried out first with linear combinations of only two currents and to dimension 8 in the OPE.

In addition, the general criticism about the use of delta functions to represent resonances was

addressed. By including a finite Gaussian width in the resonance representation the results did not

change much. Actually, it was found that there was a significant component of the scalar meson

coupled to the tetraquark current without going through two-mesons, thus justifying the use of the

narrow width approximation. In this work the masses of all members of the light scalar multiplet

came about right (600 MeV for the σ) and following the mass hierarchy Mσ < Mκ < M f0 ,Ma0
,

giving support for the tetraquark structure of these states. Moreover, when following the same

approach with a q̄q current, up to dimension six, the resulting scalar masses came out, once again,

larger than 1 GeV, thus disfavoring the dominant q̄q-component interpretation of light mesons.

In 2009 this SR approach [414] was completed by considering linear combinations of all the

currents, thus exploring the whole space of local tetraquark currents. Interestingly, it was pointed

out that, although in [413] the current basis was expressed in terms of diquark-antidiquark cur-

rents, one could have chosen a basis of meson-meson currents, which is equivalent and expands

the same space of local tetraquark currents. This implies that for generic linear combinations

one cannot distinguish whether the scalars are diquark-antidiquark or meson-meson molecules.

However, the tetraquark currents with a single term do not lead to good results meaning that the

σ “probably has a complicated structure”. This is the usual problem we have already found with

other approaches, where by “tetraquark” different kinds of structures are meant, possibly mixed

between them. In addition, the ππ continuum contribution was found necessary to obtain a good

sum rule signal. The final mass of the σ within this very general scheme was (530 ± 40) MeV ,

well within the present PDG range, but somewhat higher than the conservative dispersive esti-

mate, although one has to take into account that this “mass” determination does not necessarily

correspond to a pole mass.

Finally, in [415] the singlet and octet scalar-isoscalar tetraquark currents were studied sepa-

rately and up to dimension D = 12 in the OPE, finding that they have masses around 700-850

MeV and 600-750 MeV respectively. If the sigma is assumed to correspond to the ideally mixed

state with just up and down quarks, its mass comes around 600-800 MeV. Interestingly, in this

work the effect of a large width in the determination of resonance parameters within the sum

rule approach was studied, by going beyond the pole approximation for the spectral function. It
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was shown that there is a sizable effect in the size and location of the Borel stability window, but

that the difference in the mass determination is of the order of 20% between considering a zero

width or a 400 MeV width for a Breit-Wigner like resonance. This shows the robustness of the

sum rule prediction of a sigma mass below 800 MeV from tetraquark currents, suggesting, once

more, that “the σ meson has largely four-quark components”.

In summary, as it happened with previous formalisms, sum rule approaches show that the

quarkonia interpretation of the f0(500) is strongly disfavored. Once again, such ordinary q̄q

states appear above 1 GeV. The glueball interpretation might have been acceptable if the σ lied

around 1 GeV, or above, but it is also strongly disfavored by our present knowledge that its

mass is around 500 MeV. The sum-rule description in terms of tetraquark currents yields sigma

mesons below 1 GeV (as well as the other light scalars) with values closer to 500-600 MeV and

reasonable couplings to two-pions. At this point there are no studies of tetraquark-q̄q mixings

within the sigma, although some sum-rule studies have been performed for non-singlet light

scalars [416].

4.6.5. Schwinger-Dyson/Bethe-Salpeter approach

Schwinger-Dyson equations are just the full Quantum Field Theory equations for the Green

or correlation functions of different operators. They are derived within the functional formalism

from the vanishing of total derivatives of currents associated to symmetries or conserved quan-

tities. They can also be interpreted as resummations of the perturbative series, if these were to

converge. Their solution does not correspond to the systematic perturbative series expansion and

usually involves some kind of truncation, although respecting the main symmetries. Typically

the equations are formulated in a given gauge and with some phenomenologically sound ansatz

for the non-perturbative vertices of the theory. The first approximation is called the “rainbow-

ladder” (RL), in reference to the kind of diagrams it contains, which visually resemble a ladder.

While the Dyson-Schwinger equations generally couple Green functions with different number

of particles, the Bethe-Salpeter equations instead organize each n-body Green function in terms

of its irreducible part (i.e., interaction) and the free propagation of the n particles. They are

widely used near a pole of the Green function to obtain the coupling of that resonance or bound

state to its n constituents, the resulting equation being similar to a Schrödinger one in four di-

mensions. Since a description of this approach is rather technical and very far from our scope,

we just refer the reader to [417] for a textbook introduction to these equations and to [418] for a

review of the application to hadron physics.

In recent times, as the situation with light scalars and particularly the f0(500) became clearer,

these techniques have also been applied to these resonances. Thus, ππ scattering was studied

within this formalism in [419, 420] in a chirally symmetric way using the RL approximation. In

[420], when comparing the results with simple one-meson exchange amplitudes, both a ρ and

a scalar meson were found around 741 and 670 MeV, respectively, although with a very small

width of 172 MeV for the σ. However, it was pointed out that significant corrections beyond RL

as well as from pion loops were expected. Actually, in [421] it was confirmed that by identifying

the light scalars as quark-antiquark 3P0 states, the lightest scalar meson came around 600-700

MeV within the RL approximation, but it was then shown that beyond this approximation the

lightest scalar comes out between 1 and 1.1 GeV. Relatively similar results were found in [422],

using a different ansatz: The lightest scalar-isoscalar qq̄ meson appears around 600 MeV within

the RL approach, but around 800 to 880 MeV beyond that approximation. It should be noted

that the ρ(770) mass appears around 880 MeV too, although once again it was argued that “pion-

cloud” effects may bring its mass closer to its physical value. Therefore, once more it seems that
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the physical σ meson is far too light to be accommodated as an ordinary qq̄-meson within this

formalism.

Thus, the attention has also turned very recently to tetraquark operators [423] treated within

a Bethe-Salpeter formalism. In particular, in [423] the full four-body equation for the tetraquark

was approximated by a coupled set of two-body equations with meson and diquark constituents.

In this way, the lightest scalar tetraquark was found around 400 MeV. It is important to remark

that its wave function was dominated by the ππ constituents, in agreement with the f0(500)

molecule picture. A very recent calculation that has appeared when finishing this report [424],

indicates that the full four-body calculation does not change much these results, with the lightest

tetraquark showing up again around 400 MeV and with a meson-meson molecule interpretation

still preferred.

4.7. The σ→ γγ decay

The relevance of radiative decays of scalar mesons is that, naively, they would be propor-

tional to the squared charges of the meson constituents as well as to the distribution of those

constituents inside the meson. In this sense, by studying the σ → γγ decay one may expect to

learn about the f0(500) composition. However, life is not that simple. On the one hand, a sig-

nificant improvement in the determination of the “decay width” has been achieved over the last

decade, mainly due to new data and to the use of model independent dispersive techniques. On

the other hand, as of today, the interpretation of the result in terms of constituents is inconclusive

and still a matter of debate. If anything, it may once again suggest that intermediate ππ loops

play a very significant role.

Let us then review first the determination of the “decay width”:

Γ(σ→ γγ) =
α2|σ(Mσ)gσγγ|2

4M2
σ

. (134)

Note that that we write “decay width” between inverted commas, because, as correctly pointed

out in the RPP “Note on scalar mesons” [2] and emphasized in almost every work on this issue,

this equation actually corresponds to a narrow width approximation. Nevertheless, once the

coupling is known, the above equation provides an unambiguous definition that, following [425,

426], has become standard in all references.

Given that this is a narrow width approximation, in the last years it has also become usual to

identify Mσ with the real part of the f0(500) pole position, sσ, as we have been doing throughout

this review. Next, the coupling is obtained as the residue of the f0(500) pole in the second

Riemann sheet of the S-wave isospin zero γγππ scattering amplitude. Around the pole this

amplitude can be parameterized as F I=0
II

(s) ∼ gσγγgσππ/(s − sσ). Normalizations vary in the

literature. Of course, one needs to know gσππ, which in turn is obtained from the sigma-pole

residue in the S-wave isospin zero ππ scattering partial wave, t
(0)

0
(s), thoroughly discussed in

Sec.2.4 of this review. In particular, some recent determinations of |gσππ| have been listed in

Tables 4 and 5, which are all fairly consistent with our conservative dispersive estimate |gσππ| =
3.45+0.25

−0.22
in Eq.45.

In 1990, data on γγ → π+π− between 350 MeV and 1.6 GeV was provided by the MarkII

collaboration at SLAC [427] and later on by the CELLO detector at PETRA above 750 MeV

[428], whereas data on γγ → π0π0 from threshold to about 2 GeV was published by the Crystal

Ball Collaboration at DESY [429]. More recently, very high statistics analyses have been pro-

vided by the Belle Collaboration for the charged final state above 0.8 GeV [430] as well as for
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Figure 39: Data on of γγ → ππ together with their description using a dispersive Roy-Steiner formalism. Left Panels:

Figure 5 from [445]. ”Total Cross sections for γγ → π0π0 [429, 431] and γγ → π+π− [427, 428, 430] for |cosθ| ≤ 0.8
and |cosθ| ≤ 0.6, respectively”. Right panel: Figure 6 from [445]. ”Total cross section for γγ → π0π0 for |cosθ| ≤ 0.6
in the low energy region”. With kind permission from Springer Science and Business media, Springer The European

Physical Journal C, (2011) 71:1743, ”Roy-Steiner equations for γγ → ππ”, M. Hoferichter, D. Phillips and C. Schat,

Figures 5 and 6.

the neutral one above 0.6 GeV [431]. These data can be found in Fig.39. Roughly speaking,

data is dominated by S-waves, which only couple to the two-photon helicity state with positive

parity. In particular the prominent shape of the f2(1275) resonance can be easily identified. The

smaller D-waves also couple to the two-photon helicity state with negative parity. The charged

reaction, shown in the lower left panel, is dominated by the Born amplitude at low energies. In

contrast, the Born term is absent in γγ → π0π0, which roughly explains why its cross section,

shown in the two upper panels, is about an order of magnitude smaller at low energies. As a

consequence, the strong rescattering effects become particularly relevant for the π0π0 final state,

making it remarkably sensitive to the σ meson.

From the theory side the neutral case turns out to be particularly interesting because its lowest

order within ChPT vanishes, making the NLO independent of the low-energy constants [432,

433]. However, the NLO result does not yield a very good description of data, although it

improves considerably with unitarization techniques [433, 434, 435], in which the σ and/or the

f0(980) are generated or, when going beyond 1 GeV, other resonances are included explicitly.

The interest on this process triggered the first two-loop full calculation within ChPT [436], which

yields a fairly reasonable agreement with data within the low-energy region. Of course, plain
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ChPT cannot reproduce the σ pole and for this some dispersive or unitarization treatment is

customarily used.

A relatively simple but rigorous formalism implementing some basic dispersive constraints

was already formulated in [425] using the Mushkelishvili-Omnès method [437]. This method

has been applied with slight variations [434, 426]. For the sake of concreteness, we follow here

[425, 426, 438, 439, 440, 441, 119] and illustrate it with scalar waves, which are the most relevant

for this report. As usual, the γγ → ππ partial wave F I(s), has a right cut above s ≥ 4M2
π and a

left one from s = 0 to −∞. Let us define a LI(s) function with the same left cut as F I(s), so that

F I(s)−LI(s) only has a right cut. As s→ 0 Low’s theorem [442] requires F I(s) to be equal to the

one-pion-exchange Born term, which therefore dominates LI(s) at low energies. Now, Watson’s

final state theorem, requires the phase of F I(s) to be the same as that of the corresponding ππ

partial wave in the elastic regime (in principle up to multiples of π, but since both phases tend

to zero at threshold this ambiguity is removed). This constraint can be implemented through the

Mushkelishvili-Omnès function defined as:

ΩI(s) = exp

[
s

π

∫ ∞

4M2
π

φI(s′)

s′(s′ − s)
ds′

]

, (135)

where φI(s) is the phase of F I(s) along the right cut. In particular, in the ππ elastic region the

corresponding scattering phase shift is equal to φI(s). Now, a twice-subtracted dispersion relation

for (F I(s) − LI(s))/ΩI(s), which only has right hand cut, can be written as:

F I(s) = LI(s) + scIΩ
I(s) +

s2

π
ΩI(s)

∫ ∞

4M2
π

LI(s′) sin φI(s′)

s′2(s′ − s)|ΩI(s′)| . (136)

Note that Low’s theorem [442], which implies F I(s)−LI(s)→ 0 when s→ 0 has been used to get

rid of a subtraction constant. The problem, of course, is to determine the subtraction constants

as well as LI(s) and φI(s) above the KK̄ threshold.

The precise f0(500) pole prediction in [113] renewed the interest in this process and thus M.

Pennington in 2006 [426] fitted the Crystal Ball data using the formalism we have just described.

In particular, he fixed the Adler zero as in ππ scattering to LO in ChPT, used the ππ phase from a

reevaluation of Roy equations and decay data, and assumed that the left cut was only relevant up

to s ≃ −0.5 GeV 2, which in turn was dominated by the Born term for pion exchange. With the

dispersive representation it was possible to extract the pole and the residue and therefore, using

Eq.134, a value of Γ(σ → γγ) ≃ (4.09 ± 0.29) keV was found. A very similar approach was

followed in 2008 [438], which formally amounts to adding one more subtraction which results

in a 10% decrease of the ratio of residua. In addition, a more elaborated estimation of the left

cut contribution was also provided, showing the relevance of axial-vector resonance exchange,

which leads to an additional 10% decrease in the radiative decay width. Moreover, when the

value of |gσππ| from the rigorous Roy Eq. analysis was used, an additional reduction of the order

of 40% occurred with respect to [426], finally leading to Γ ≃ 1.68 ± 0.15 keV. Actually, M. Pen-

nington and collaborators, when analyzing the Belle results in that same year, but using updated

values for the σ pole parameters and including axial-vector exchanges, obtained two possible

values: Solution A yields Γ ≃ 3.1 ± 0.5 keV, whereas Solution B yields Γ ≃ 2.4 ± 0.4 keV. Both

significantly lower than the older estimate in [426] by M. Pennington alone. In 2008 a different

approach was presented in which, instead of fitting the γγ → ππ data to determine the subtraction

constants and the left cut, these were constrained from a sum rule involving nucleon electromag-

netic polarizabilities, finding Γ ≃ 1.2 ± 0.4 keV. Thus, this independent check also favored a
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Figure 40: Recent determinations of Γ(σ→ γγ). Only the latest updates of each group of authors are given: Pennington

et al Sols. A and B [439], Oller and Roca [438], Bernabeu and Prades [444], Mao et al. [440], Mennessier et al. [443],

Hoferichter et al. [445] and Moussallam [119]. All them use γγ → ππ data, except Bernabeu and Prades, which only

use the nucleon electromagnetic polarizabilities.

relatively low value of the radiative width. Later analyses of the Belle data using variations of

the Mushkelishvili-Omnès method yielded values around Γ ≃ 2.1 keV [440, 119]. This radia-

tive width was also studied within a simple analytic K-matrix model [443], yielding a somewhat

larger value with a large uncertainty Γ ≃ 3.08 ± 0.82 keV. Nevertheless, it is worth remarking

that the most advanced dispersive analysis to date finds Γ ≃ 1.7± 0.4 keV [445]. It makes use of

the Roy-Steiner equations and therefore implements model-independent dispersive constraints

not only on the physical cut as in the Mushkelishvili-Omnès method, but also on the left cut,

which makes it particularly reliable. This result should be taken as the reference value if we

consistently follow the same criterion we applied to the determination of the σ pole parameters

and gσππ coupling. To summarize, in Fig.40 we list the latest determinations of Γ(σ→ γγ) from

different groups. Note that all values in that plot overlap within 1.5 standard deviations with that

obtained using Roy-Steiner equations [445], which may be taken as a relatively conservative ref-

erence value. The only exception is Sol. A of Pennington et al. which overlaps at two, although

this value is at odds with the nucleon polarizability sum rule result from [444].

However, despite having determined reliably Γ(σ→ γγ), a strong debate lingers on concern-

ing the interpretation of these results in terms of the σ composition.

Let us start with the expected value of Γ(σ → γγ) for ordinary quarkonia. Within vector

meson dominance constrained with single quark selection rules this decay was studied many

years ago in [446] to find a “nearly complete suppression of γγ couplings of 0++ qq̄ states”, with

their very crude estimate being ≃ 40 eV. An actual calculation of a 0+q̄q meson decaying to γγ

was described in [448]. That work was not dedicated to the σ, but to the f0(980), for which the
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q̄q composition yielded Γ( f0(980)→ γγ ≃ 4.5 keV. However, in that work it was found that:

Γ(q̄q(0++)→ γγ)

Γ(q̄q(2++)→ γγ)
=

15

4

(

M0++

M2++

)n

, (137)

where the 15/4 factor comes from the different polarization sums for each angular momentum

resonance [450], with n = 3 due to the short distance Coulombic component. This relation

allows us to perform a modern re-evaluation for the f0(500), by considering the present and

very conservative value of Mσ ≃ 400 − 550 MeV in the RPP 2012 (see Eq.1), so that the non-

relativistic quark model of [448] would yield today Γ(σ → γγ) ≃ 0.3 − 0.8 keV . However, in

[447] and also within the naive non-relativistic quark model, it was argued that the confining

linear potential would give n = −1/3. It was then suggested that the phenomenological exponent

should lie somewhere in between. Thus, based on the good agreement of the phenomenological

choice n = 0 for the ρ, ω and φ, it was then estimated that Γ( f0(980) → γγ) ∼ 10 keV for the

(uū + dd̄)/
√

2 ( and 0.4 keV for ss̄-like isoscalars) respectively. But if n = 0 then we obtain the

same prediction for the σ meson: Γ(σ → γγ) ∼ 10 keV . However, in [455] it was shown that

the 15/4 factor in Eq.137 could be reduced by a factor of two due to relativistic quark-model

corrections. Therefore the above numbers from the quark model should be roughly divided by

2. Still this leaves a prediction, within such a model, of Γ(σ → γγ) ≃ 0.15 − 0.4 keV if n = 3

or Γ(σ → γγ) ≃ 5 keV if n = 0. Moreover, the analysis of scalar-quarkonia decays into two

photons was also carried out within the quark-level LσM [451], which was applied to the σ

meson in [452]. The NJL value Mσ = 2mq yields a sigma mass of 675 MeV (beyond the chiral

limit), with a constituent quark mass of 337.5 MeV given by the Goldberger-Treiman relation

mq = g fπ, where g = 2π/
√

Nc ≈ 3.6. Still one has to keep in mind that this is a manifestly

real mass and does not correspond exactly to the real mass of the pole position that has been

given in previous sections, since, as we have repeatedly emphasized, the σ does not exhibit a

Breit-Wigner shape. Moreover, the very authors have remarked the sensitivity of the decay to the

mass of the σ and in a more recent evaluation [453] they find that Γ(σ → γγ) ≃ 0.7 keV when

using Mσ = 440 MeV . One of the relevant observations within this framework is that two-pion

loops play a very significant role increasing Γ(σ → γγ). This is in line with the findings by

the same group and collaborators (see Sec.4.6.3), that the σ pole position in the real world is

largely due to the strong rescattering or unitarization effects, with the “bare” pole being at a mass

around 1 GeV. Another interesting observation about the two-photon quarkonium decay [454] is

that a term in the triangle quark-loop diagram, which is often omitted in the literature, results in

destructive interference and as a consequence the two photon decay of the σ as pure quarkonium

has to be Γ(σ→ γγ) < 1 keV , for Mσ = 0.40−0.6 MeV 20. In summary, all modern calculations

within the pure quarkonium interpretation and the present sigma mass, yield a too low value of

Γ(σ→ γγ) < 1 keV , although it could be made larger considering pion loops.

Let us then turn to the tetraquark and molecule configurations. Also in [448], the f0(980) case

was studied within a K̄K-molecule model where Γ( f0(980) → γγ) ≃ 0.6 keV, which is favored

by the existing bound from Crystal Ball Γ( f0(980) → γγ) ≃ 0.8 keV. However, it is unclear how

this molecular description could be translated to the sigma case if made of pions, since the σ pole

is above threshold, or to a K̄K molecule with such a big binding energy and such a large decay

to the two-pion state. The f0(980) radiative width could also be explained within the tetraquark

20Note that in the quark-level LσM of [452, 453] this term vanishes due to the choice Mσ = 2mq, so that their result

is not affected by this correction.
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model of [449], where it was estimated Γ( f0(980) → γγ) ≃ 0.27 keV . Concerning the σ, this

latter group, in a more recent analysis [320] within the S U(2) LσM, which agrees “qualitatively”

with the poles obtained in advanced dispersive analyses, showed that when separating within that

model the dominant meson-meson loop contribution to Γ(σ → γγ) from the “direct coupling”

to the σ, the direct coupling would yield Γ(σ → γγ) ≃ 0.0034 keV in agreement with the

prediction in [449]. Therefore, within that model, a possible inner tetraquark structure could be

hidden in a meson-meson component, consistently with the existing data.

Within the analytic K-matrix model of [120] and particularly in its recently improved version

[443] an “important contribution from meson loops” is found in the determination of Γ(σ→ γγ).

Within this model the authors separate a “direct” width Γ(σ → γγ)dir ≃ 0.16 ± 0.03 keV and a

“rescattering” width Γ(σ→ γγ)dir ≃ 1.89±0.81 keV. 21 From this the authors conclude that since

such a large direct width is hard to obtain from quarkonia or tetraquark components, then the σ

may have a large glueball component. Although some glueball component cannot be discarded,

we have already discussed that a dominant glueball component in the σ seems hard to reconcile

with its large width, lattice results, or the existence of the kappa. Moreover, one should recall that

the “direct versus rescattering” separation is model dependent. Furthermore, when extracting the

total width from data with this model these authors obtain one of the largest values presently

available in the literature: Γ(σ→ γγ) ≃ 3.08±0.82 keV , whereas model-independent dispersive

approaches favor a much lower value (see Fig.40).

Finally, within the chiral unitary approach update in [438] it is also possible to describe the

γγ → ππ data and obtain a theoretical value of Γ(σ → γγ) ≃ 0.168 ± 0.15 keV . Within this ap-

proach the σ is basically a dynamically generated state from the meson-loops and it explains the

bulk of the width obtained by the same group from a Mushkelishvili-Omnés dispersive treatment

of the existing data. No trace of further components beyond meson loops is seen.

To summarize this section, in principle the two-photon radiative width of the f0(500) could

provide a test on its composition. After some initial determinations that got higher values, the

most recent dispersive determinations of Γ(σ → γγ) seem to prefer lower values between 1

and 2.5 keV. Concerning the σ composition, all analyses seem to indicate a very important,

frequently dominant, contribution of meson-loops to this value. This confirms the important role

of such mesons in the σ properties. Depending on what value of Γ(σ → γγ) is chosen and

how much of it is left when the meson-loop contribution is removed in each model, different

groups advocate different additional or “direct” substructure, which always comes out smaller

than the meson-loop contribution. This ranges from no observed substructure to compatibility

with tetraquarks or gluonia. In general quarkonia appears somewhat disfavored. Therefore, at

this stage no conclusive statements can be made apart from the large contribution from meson

loops.

5. SUMMARY

Before stating the conclusions in the next section, let us first summarize this review. The σ

meson, nowadays called f0(500), plays a relevant role in our understanding of nucleon-nucleon

attraction and the spontaneous symmetry breaking of QCD. In addition, it is a firm candidate for

a non-ordinary meson, in the sense that it is not intuitively made of a quark and an antiquark. The

progress on our understanding of this meson is a tale of cumulative theoretical and experimental

21Both mechanisms interfere and the total width is not the sum of each partial width.
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efforts that started almost 60 years ago. In Sect. 1 we have provided a historical perspective

on the longstanding controversy about the existence, parameters, classification and nature of the

σ. This frequently confusing story as been partially illustrated by following the developments

in the Review of Particle Physics (RPP). With this criterion, the existence of a relatively light

and broad scalar meson was finally settled in the mid 90’s, although a very large uncertainty

in its parameters was kept, i.e. the RPP estimated range for its mass was 400 to 1200 MeV.

Nevertheless, by that time the scalar meson physics community was already working with a light

sigma in the 400-600 MeV range. It was only the experimental confirmation from heavy meson

decays that triggered the change of name to f0(600) in 2002. However, the use of too simple and

model-dependent parameterizations (Breit-Wigner shapes, isobar models, etc) in these analyses

seemed not convincing enough to change the very large uncertainty attached to its parameters.

Finally, a major revision has taken place in the 2012 RPP edition. The present RPP values of

the σ mass and width, obtained from its pole position, are
√

sσ ≃ Mσ − iΓσ/2 = (400 − 550) −
i(200 − 350) MeV. Accordingly, the name of the resonance has been changed to f0(500). This is

a very welcome improvement which has motivated the writing of this report.

Thus, we have devoted Sec.2 to explain the experimental and theoretical developments that

have triggered this dramatic change in the RPP. On the experimental side, the 2010 results on

K → ππeν from NA48/2 at CERN have provided very precise low energy data on scalar-isoscalar

ππ scattering, where the σ resonance appears. Models incompatible with these data have been

discarded from the RPP σ parameter determination. On the theoretical side, in the RPP it is

also suggested that a more “radical point of view” can be taken by considering only the “most

advanced dispersive analysis”. The reason is that dispersion theory provides the only model-

independent and consistent extension to the complex plane in order to determine precisely the

σ pole present in the amplitudes describing the existing data. Most of Sec.2 has been dedicated

to introduce both the data and these rigorous dispersive techniques, including a detailed account

of their uncertainties. As a result, we have proposed the following “Conservative Dispersive

Estimate” of the f0(500) parameters

√
sσ ≃ Mσ − iΓσ/2 = 449+22

−16 − i(275 ± 12) MeV, (138)

which is a more conservative estimate than the “radical” one at the RPP 2012, since we have

taken into account the systematic origin of some of the uncertainties in different dispersive anal-

ysis. As explained in the main text, this estimate is based on precise data and dispersive tech-

niques, which guarantee a model-independent extraction of the pole, whose parameters are also

process-independent. The “most advanced” dispersive analyses, according to the RPP, are in-

cluded within these uncertainties. Realistic models of the σ meson should be consistent with this

conservative estimate, or at least with the precise scattering data from which it is extracted.

Sec.3 is dedicated to the relation between the σ meson and chiral symmetry. The classic Lin-

ear Sigma Model is presented first as a pedagogical introduction to chiral symmetry, although

explaining the reasons why we already know that it does not correspond to the low energy effec-

tive theory of QCD. Nevertheless such an effective theory exists and is known under the name of

Chiral Perturbation Theory (ChPT), which is introduced next. ChPT provides the most general

low energy expansion of amplitudes in terms of pions, kaons and the eta, which is consistent

with QCD symmetries. The structure and meaning of the ChPT low energy constants and scat-

tering amplitudes is then explained. Since a series expansion cannot generate resonance poles,

the largest fraction of Sec.3 has been dedicated to different unitarization techniques of the ChPT

series. These methods are able to generate the poles associated to lightest resonances, while
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satisfying unitarity and matching the ChPT expansion at low energies. We have shown that they

all basically yield the same results as far as the σ and other light scalars are concerned, whose

existence received a strong support with these techniques. Unitarized ChPT methods are not as

well suited for precision studies as the rigorous dispersive approaches of Sec.2, but provide a

connection with QCD through their matching with ChPT parameters. These techniques clearly

show that the dynamics responsible for the formation of light scalars is dominated by meson

loops, i.e., rescattering, in contrast with other conventional resonances, like vectors or heavier

scalars, which owe their existence to quark-level dynamics. Actually, unitarized ChPT in a cou-

pled channel formalism, strongly suggests that the light scalar nonet is formed by the f0(500),

f0(980), a0(980) and K∗
0
(800) resonances, in good agreement with very early claims about the

non-q̄q structure of these mesons. Moreover, within this formalism,the octet members have been

shown to become degenerate in the SU(3) limit. It also allows for a study of the mass dependence

of light resonances, which shows some encouraging agreement with recent lattice results. This

dependence seems to indicate that at very high pion masses the f0(500) would become a virtual

bound state first and then a ππ molecule.

The rest of Sect.3 reviews other popular models. These are based on chiral Lagrangians

with a priori choices of fields and couplings. Despite being comparatively simpler than previ-

ously described approaches, and lacking a power counting full generality, some of them are able

to describe rather nicely the existing data on masses and decays, and sometimes meson-meson

scattering data in the scalar waves. They are particularly interesting to illustrate some of the

mechanisms, like mixing between different states, that could be at work in the scalar sector. The

most successful models suggest the existence of two scalar nonets. The lightest nonet would

appear below 1 GeV, once again formed by the f0(500), f0(980), a0(980) and K∗
0
(800), whose

predominant composition involves two quarks and two antiquarks at the microscopic level, al-

though their actual configurations as classic tetraquarks, diquark-antidiquarks or meson-meson

molecules cannot be discerned by chiral symmetry transformation properties alone. The heavier

nonet would have masses in the 1.3-1.7 GeV region and would be predominantly of a conven-

tional q̄q nature. Moreover, all these models involve some degree of mixing between these two

nonets and possibly a glueball state, also with a mass well above 1 GeV. We also reviewed recent

models dealing with the relation of the f0(500) with conformal symmetry.

In Sect.4, we have first studied the information on the σ nature that comes from the 1/Nc

expansion of QCD, both around the physical value of Nc = 3 and at larger values. This ex-

pansion strongly disfavors that the dominant component of the f0(500) and other scalars might

be a glueball or the most straightforward generalization of a tetraquark to arbitrary Nc. This is

done in a model-independent way. In addition, we discuss the very strong evidence, obtained

from ChPT combined with dispersion theory, that the f0(500) predominant component is not of

an ordinary nature. This is also confirmed by a recent calculation of the f0(500) Regge trajec-

tory, which comes out non-linear with scales more typical of meson physics than quark-level

dynamics. Finally, when larger values of Nc are considered, there is a hint of an ordinary-meson

subdominant component inside the f0(500), but with a mass around 1 GeV or higher. This is con-

sistent with most chiral and microscopic models and it also solves naturally a possible problem

with semi-local duality.

In the second part of Sect.4 we have addressed the composition of the σ in terms of quarks

and gluons. Unfortunately, lattice calculations are still of little help in scalar meson physics,

although there are promising results indicating that this may change in the future. Nevertheless,

they strongly disfavor a glueball interpretation for the f0(500). Moreover the recent dispersive

calculation that confirms the existence of a K∗
0
(800) state, very similar to the f0(500) also plays
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strongly against a dominant or even sizable glueball component. Thus, in the final part of Sect.4,

we have very briefly reviewed some of the most widely used models or those more representa-

tive of different approaches, that provide a description of light scalar mesons at the quark level.

These models usually contain a QCD-inspired confining potential and some phenomenological

coupling to take into account hadronization and rescattering in decays. The most popular and

successful models also agree with the chiral descriptions reviewed in the previous section in

the need for two scalar nonets: a lighter one, predominantly involving two quarks and two an-

tiquarks, and a heavier conventional q̄q nonet, which are nevertheless mixed. Many of these

models describe mixing patterns before the hadronization process, for bare states, and therefore

their conclusions, although illustrative, should be interpreted cautiously. Those quark models

that also describe rescattering via some unitarization technique, show that when the meson-loops

are removed, the lightest scalar and the σ poles move to much higher masses than the observed

ones. This suggests again that at least in the σ there is predominant molecular/tetraquark com-

ponent mixed with an ordinary q̄q component with a mass higher than 1 GeV. In addition, in

this Section we have also reviewed the sum rule and Bethe-Salpeter or Schwinger-Dyson results,

which, once again seem to disfavor the quarkonia interpretation in terms of a non-ordinary be-

havior, typically of a tetraquark, or meson-meson nature. Finally, we have reviewed the radiative

decay of the sigma meson. Over the last decade a considerable improvement has been achieved

in the determination of the decay into two photons, in part due to new data, but also to the ap-

pearance of more sophisticated and detailed approaches, particularly those based on dispersion

theory, which are model independent and have basically settled its value. Unfortunately the in-

terpretation of this value in terms of the inner composition of the sigma in terms of quarks and

gluons is still under debate. Generically, pure quarkonia, gluonia or tetraquark estimates come

somewhat low and, once again, the role of pion-pion loops or component seems very relevant.

6. CONCLUSIONS

The σ has been a controversial state for almost six decades, due to the use of models and

the scarce and sometimes conflicting sets of data. There has been an intense debate over its ex-

istence, its parameters and its nature, to which many experimental and theoretical groups have

contributed. Here we have reviewed the present status of our knowledge, paying particular atten-

tion to the most recent developments, and the following conclusions can be reached:

1) The existence of the σ meson was already settled in the mid 90’s. This was achieved from

cumulative evidence from better models with chiral symmetry and unitarity as well as new

data on heavy meson decays.

2) Over the last decade, even better data from different sources, particularly the ππ scattering

low energy data coming from Ke4 decays, as well as model independent dispersive analyses

have allowed for precise and rigorous determinations of the σ parameters. This has led to

a major revision of the σ uncertainties in the Review of Particle Properties. Even its name

has changed to f0(500). In view of the existing model-independent dispersive analysis

we have left the previously existing confusion behind and entered a new era of precision.

For this reason in this review we have strongly encouraged the use of pole parameters,

for which we have provided a conservative dispersive estimate. This should be taken into

consideration in future model building or experimental analysis. In particular, too simple

parameterizations do not describe well our present knowledge and should be avoided.
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3) Concerning its spectroscopic classification, there is a well-established picture in which it

belongs to a scalar nonet together with the a0(980), f0(980), and K∗
0
(800). The latter res-

onance is strongly supported by recent experimental data, appears naturally in unitarized

Chiral Perturbation Theory and in a rigorous dispersive formalism, which implies that

models without a K∗
0
(800) are simply inconsistent with causality and unitarity. Together

with lattice results showing that the lightest glueball lies above 1GeV, this no longer leaves

room for a dominant glueball interpretation of the f0(500).

4) Concerning its nature, all approaches respecting unitarity as well as some basic require-

ments of analyticity and chiral symmetry, indicate that meson-meson dynamics is relevant

for the generation of the physical σ. Its Nc and Regge behaviors have been shown not

to correspond predominantly to ordinary q̄q mesons. The evidence in this respect is very

robust and compelling. Most chiral-meson and quark-level models indicate also that the

main component of the members of this lightest nonet involves some arrangement of two

quarks and two antiquarks.

5) In addition, unitarized ChPT in coupled channels, other chiral Lagrangian approaches as

well as most quark-level models suggest that the lightest scalar nonet may have some

mixing with a heavier scalar nonet above 1 GeV and possibly with a glueball state. There

are also hints of this scenario from the f0(500) large-Nc behavior, but not so compelling.

The details of this two-nonet mixing mechanism, the assignment of observed resonances

to the second nonet, as well as the additional mixing with a possible glueball candidate

still depend strongly on the model.

Future developments are expected from lattice QCD, further confirmation of the K∗
0
(800)

parameters, decays of light scalar mesons as well as the construction or update of models aiming

at a more realistic and precise description of the f0(500) and their multiplet partners.

“It was easier to know it than to explain why I know it.”

Sherlock Holmes Quote.

A Study in Scarlet, Sir Arthur Conan Doyle 1886.
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