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ARTICLE

The genomic and epigenomic evolutionary history
of papillary renal cell carcinomas
Bin Zhu1,15, Maria Luana Poeta 2,15, Manuela Costantini2,3,15, Tongwu Zhang 1,15, Jianxin Shi1,

Steno Sentinelli4, Wei Zhao 1, Vincenzo Pompeo3, Maurizio Cardelli 5, Boian S. Alexandrov 6,

Burcak Otlu 7, Xing Hua1, Kristine Jones8, Seth Brodie 8, Malgorzata Ewa Dabrowska4,9, Jorge R. Toro10,

Meredith Yeager8, Mingyi Wang 8, Belynda Hicks 8, Ludmil B. Alexandrov 7, Kevin M. Brown 1,

David C. Wedge11,12,13✉, Stephen Chanock 1,16, Vito Michele Fazio9,14,16, Michele Gallucci3,16 &

Maria Teresa Landi 1,16✉

Intratumor heterogeneity (ITH) and tumor evolution have been well described for clear cell

renal cell carcinomas (ccRCC), but they are less studied for other kidney cancer subtypes.

Here we investigate ITH and clonal evolution of papillary renal cell carcinoma (pRCC) and

rarer kidney cancer subtypes, integrating whole-genome sequencing and DNA methylation

data. In 29 tumors, up to 10 samples from the center to the periphery of each tumor, and

metastatic samples in 2 cases, enable phylogenetic analysis of spatial features of clonal

expansion, which shows congruent patterns of genomic and epigenomic evolution. In con-

trast to previous studies of ccRCC, in pRCC, driver gene mutations and most arm-level

somatic copy number alterations (SCNAs) are clonal. These findings suggest that a single

biopsy would be sufficient to identify the important genetic drivers and that targeting large-

scale SCNAs may improve pRCC treatment, which is currently poor. While type 1 pRCC

displays near absence of structural variants (SVs), the more aggressive type 2 pRCC and the

rarer subtypes have numerous SVs, which should be pursued for prognostic significance.
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K
idney cancer includes distinct subtypes1 based on the pre-
sence of cytoplasmic (e.g., clear cell renal cell carcinoma,
ccRCC), architectural (e.g., papillary renal cell carcinoma,

pRCC), or mesenchymal (e.g., renal fibrosarcomas, rSRC) features.
Rarer subtypes have also been defined by anatomic location (e.g.,
collecting duct renal cell carcinoma, cdRCC). Each of these sub-
types has distinct implications for clinical prognosis. Within sub-
types, there can be further differences in both tumor characteristics
and prognoses. For example, papillary RCC are traditionally dis-
tinct into 2 types: (a) Type 1 with papillae covered by smaller cells
with scant amphophilic cytoplasm and single cell layer, and (b)
Type 2 with large tumor cells, often with high nuclear grade,
eosinophilic cytoplasm and nuclear pseudostratification2–4. pRCC
type 1 is more benign compared to the aggressive pRCC type 2.
Recent cancer genomic characterization studies have revealed that
the genomic landscape of major kidney cancer subtypes (e.g.,
ccRCC, pRCC, and chromophobe RCC) can be complex and differ
substantially by subtype5–7. Patterns of intratumor heterogeneity
(ITH) and tumor evolution have become the focus of intense
investigation, primarily through multi-region whole-exome or
whole-genome sequencing studies in ccRCC8–10. However, our
understanding of the importance of ITH in other kidney cancer
subtypes is either limited, such as for pRCC, the second most
common kidney cancer subtype, where only four tumors have been
characterized by whole-exome sequencing11 or completely lacking,
such as for cdRCC and rSRC. Moreover, previous ITH studies
predominately focused on single nucleotide variants (SNVs); little
is known of the stepwise process in which additional genomic and
epigenomic alterations (e.g., structural variants (SVs) or methyla-
tion changes) are acquired.

Herein, we fully characterize the whole genome and DNA
methylation of pRCC and rarer kidney cancer subtypes, specifically
examining both the core and periphery of selected tumors and,
when available, metastatic lesions in order to investigate ITH and
clonal evolution. We observe major differences from the previously
studied clear cell renal cell carcinoma subtype. Specifically, pRCCs
are characterized by clonal driver SNVs and arm-level somatic
copy number alterations (SCNAs); modest intratumor hetero-
geneity of non-driver SNVs and methylation; and highly subclonal
small SCNAs and SVs. Between pRCC subtypes, pRCC type 1
displays near absence of SVs, while pRCC type 2 and rare subtypes,
which are more aggressive, have many SVs. Finally, integrated
analysis of epigenomic and genomic data shows congruent patterns
of evolution.

Results
Study design. We conducted an integrative genomic and epige-
nomic ITH analysis of pRCC and rarer kidney cancer subtypes,
each of which is distinct from the more commonly occurring
ccRCC12, and provide new insights into the clonal evolution of
these subtypes. We examined multiple adjacent samples from the
center of the tumor to the tumor’s periphery as well as a normal
sample ~5 cm distant from each tumor, and, when feasible,
metastatic regions in the adrenal gland (Fig. 1a, “Methods” sec-
tion). We performed 60X multi-region whole-genome sequencing
(WGS, Supplementary Data 1) on 124 primary tumor and
metastatic samples from 29 treatment-naive kidney cancers
(Supplementary Table 1), as well as genome-wide methylation
and SNP array profiling and deep targeted sequencing (average
500X coverage) (Supplementary Data 2) of 254 known cancer
driver genes13 (Supplementary Data 3). Tumors sequenced
included 13 pRCC type 1 (pRCC1) tumors, 12 pRCC type 2
(pRCC2) tumors, and rarer subtypes (one each of cdRCC, rSRC,
mixed pRCC1/pRCC2 and pRCC2/cdRCC) (Fig. 1b, “Methods”
section). A section of each sampled region was histologically

examined: tumor samples included in the analyses had to exceed
70% tumor nuclei by pathologic assessment by a senior pathol-
ogist and the normal samples had no evidence of tumor nuclei.
We also estimated the sample purity based on SCNAs or, in copy
neutral samples, based on variant allele fraction (VAF) of single
nucleotide variants (SNVs, Supplementary Fig. 1). The estimated
purity based on WGS data were used to calculate precise cancer
cell fractions (CCF) and hence to construct phylogenetic trees.
Data on genome-wide methylation levels provided further
information on epigenomic ITH.

Frequency of somatic mutations and germline variants. The
average SNV and indel rates across tumors were 1.21/Mb and
0.18/Mb, respectively: on average, 1.00/Mb and 0.18/Mb for
pRCC1; 1.46/Mb and 0.21/Mb for pRCC2. The SNV but not
indel rates in pRCC2 were significantly higher than in pRCC1
(Wilcoxon test P-value= 0.03 for SNVs and P value= 0.65 for
indels). For one tumor each of cdRCC, rSRC, mixed pRCC1/
pRCC2 and pRCC2/cdRCC types, the SNV rates were, 1.46/Mb,
0.54/Mb, 0.95/Mb and 1.43/Mb, respectively; and the indel rates
were 0.20/Mb, 0.05/Mb, 0.18/Mb and 0.13/Mb, respectively
(Fig. 1c). Among the published kidney cancer driver genes, we
observed that almost all driver SNVs (definition of driver muta-
tions in “Methods” section) were clonal, in contrast to ccRCC14.
Although we had only a single sample from 10 pRCC1 tumors,
we conducted targeted sequencing to improve our knowledge of
cancer driver mutations in this rare cancer type. In pRCC1
tumors, we found two ATM, two MET (both in the tyrosine
kinase domain), and one in each IDH1, EP300, KMT2A, KMA2C
and NFE2L2 driver mutations. In pRCC2 tumors, we observed a
SMARCB1 driver mutation in one pRCC2; TERT promoter in two
pRCC2; SETD2, PBRM1 and NF2 in one pRCC2 tumor each. We
also found clonal indels in NF2 in two tumors (cdRCC and
mixRCC), and MET (mixRCC), SMARCB1 (pRCC1) and ROS1
(pRCC2) indels in one tumor each. We found no mutations in
TP53, mutated in a high proportion of cases across cancer
types15, and no mutations in the 5’UTR region of TERT, which
has been reported as mutated in a sizeable fraction of ccRCC10

(Fig. 1c and Supplementary Fig. 2 and Supplementary Data 4
and 5). It has been previously reported that ~22.6% of pRCC do
not harbor detectable pathogenic changes in any driver genes11.
In a TCGA analysis of pRCC6, overall ~23% of pRCC had no
driver events. Here, we found four pRCC1 (31%) and three
pRCC2 (25%) tumors, that had no detected SNVs or indels
in previously reported driver genes, even after deep targeted
sequencing. In these tumors, SNVs in other genes or other
genomic alterations yet to be defined are the likely driver events.

An analysis of the germline sequencing data provided evidence
of rare, potentially deleterious, germline variants in known cancer
susceptibility genes (“Methods” section). These include two
different variants in POLE in two different tumors; two different
variants in CHEK2 in two different tumors; one variant in
BRIP1 and PTCH1 both in a single tumor; and additional rare
variants, one per tumor (e.g., TP53, MET, EGFR, among others,
Supplementary Data 6). This is consistent with a report on the
relatively high frequency of germline mutations in cancer
susceptibility genes in non-clear cell renal cell carcinomas16.

Phylogenetic trees show limited intratumor heterogeneity. To
explore ITH and to understand the sequence of genomic changes,
we first constructed phylogenetic trees based on subclone lineages
for 14 tumors with at least three regional samples per tumor
(Fig. 2, phylogenetic trees of other samples in Supplementary
Fig. 3), which included three pRCC1, eight pRCC2, and single
tumors from three rarer subtypes. We used a previously reported
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Bayesian Dirichlet process, DPClust17, to define subclones based
on clusters of SNVs sharing similar CCF, adjusting for SCNAs
and purity estimated by the copy number caller Battenberg18. On
average, we identified 5.3, 6.5 and 5.7 subclone lineages in
pRCC1, pRCC2 and the rarer subtypes, respectively (Supple-
mentary Data 7). We cannot exclude that, with deeper coverage
across a larger number of SNVs and with more regions sampled
from some of the tumors, DPClust could identify more subclones.
Since ITH can be influenced by the number of samples sequenced
per tumor, we used a recently proposed ITH metric, average
pairwise ITH or APITH19, to compare pRCC1 and pRCC2 ITH.
APITH is defined as the average genomic distance across all
pairs of samples per tumor and does not depend on the overall
number of samples per tumor. We found that APITH of pRCC2

(mean= 26.66) is higher than APITH of pRCC1(mean= 16.20,
unpaired student’s t test P value= 0.03). We also investigated
whether APITH was associated with tumor size, but found no
association (P value= 0.38, all tumors; P value= 0.81, pRCC1;
P value= 0.46, pRCC2).

Based on the identification of subclones, the SCHISM
program20 was applied to construct phylogenetic trees, which
are consistent with the pigeonhole principle18 and the ‘crossing
rule’21. The root of the phylogenetic tree represents germline
cells without somatic SNVs; the knot between the trunk and
branches is the most-recent common ancestor (MRCA), whose
mutations are also shared by cells within all lineages. Phyloge-
netic trees with trunks that are long relative to the branches
have lower levels of ITH. Each leaf represents a subclone; if a

a

c

b

:

:

:

Fig. 1 Study design and genomic landscape. a A schematic illustration of the dissection of multiple tumor samples from the center of the tumor towards

the tumor’s periphery, plus metastatic samples in the adrenal gland as well as normal samples. For the analysis, the normal sample more distant from the

tumor and with absence of tumor nuclei was chosen as reference. b Summary of subjects and samples that underwent different analyses based on DNA

availability: whole-genome sequencing (124 samples from 29 subjects), deep targeted sequencing of cancer driver genes (139 samples from 38 subjects),

genome-wide methylation (139 samples from 28 subjects) or SNP array profiling (only tumor samples, 101 samples from 38 subjects). c Tumor genomic

alterations across histological subtypes. Shown are genome level changes, such as mutational burden, numbers of structural variants (SV) and

retrotransposition events (TE), as well as other genomic alterations (denoted by different colors).
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subclone exists in one region only, the leaf is annotated by the ID
of this region. On average 70.0% of pRCC SNVs were in the
trunk, with low ITH observed in both pRCC type 1 and 2
(Supplementary Fig. 4). This contrasts with previous findings in
ccRCC8,9,22 where approximately one-third of somatic mutations
were truncal.

Segregating SNVs according to the genomic region in which
they are located, we found a few pRCC tumors with higher ITH in
promoters, 5’UTR and first exon regions (Supplementary Fig. 5).
The metastatic samples in pRCC2_1824_13 (Figs. 1c and 2), which
most likely originated in the primary tumor region T02 or T10,
share the same driver mutations in PBRM1 and SMARCB1.
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We found that subclones were not always confined to spatially
distinct regions in pRCC tumors. For example, the purple clone
cluster in pRCC1_1689_06 (Fig. 2) is present in neighboring regions
T01, T02 and T03 and in distant region T06. Similarly, the red clone
cluster in RCC2_1824_13 (Fig. 2) is observed only in two regions of
the primary tumor, T02 and T10, which are approximately 12 cm
apart. This suggests that pRCC tumor cells within the primary
tumor may be motile, with the ability to skip nearby regions and
spread directly to physically distant regions. This phenomenon has
been previously observed in breast23 and prostate cancers24 but not,
to our knowledge, in RCC. Alternatively, tumors may have grown
predominantly as a single expansion producing numerous inter-
mixed sub-clones that are not subject to stringent selection, as it has
been proposed in the “Big Bang” model25.

Many tumors displayed extensive intermixing of subclones,
evidenced by the occurrence of a clone cluster at subclonal
proportions across multiple samples. An example, pRCC2_1568_04,
harbored four different clone clusters, each present across multiple
samples. In total, nine of the 14 cases with three or more samples
(Fig. 2) displayed intermixing of subclones spread across 2 or more
regions. Since each of our tumors was sampled at ~1.5 cm intervals,
it is apparent that intermixing extends across large geographical
regions. In both of our metastatic cases (stage 4 at diagnosis),
pRCC2_1824_13 and rSRC_1697_10, intermixing of subclones has
extended to metastatic sites, pointing to the occurrence of polyclonal
seeding as previously observed in metastatic prostate cancer26.

Clonality of copy number alterations varies by size. We ana-
lyzed SCNAs from WGS data by considering both total and
minor copy numbers (Supplementary Data 8 and Supplementary
Table 2). If the SCNAs were shared across regions of the same
tumor they were considered clonal; otherwise subclonal. The
clonal proportion of SCNAs for each tumor was calculated as the
proportion of the genome with identical SCNAs across all
regions. pRCC1 and, to a lesser extent, pRCC2 showed recurrent
amplification of chromosomes 7 (which includes the MET gene),
17, 12, and 16 (Supplementary Fig. 6). Notably, chr.3p loss, which
is highly recurrent (~90%) in ccRCC14,27, was present in 3 (25%)
pRCC2 and 1 (7.7%) pRCC1 (Fisher’s exact test P value= 7.49 ×
10−8 and P value= 1.04 × 10−12, respectively). Among the sam-
ples with chr.3p loss, only one had a translocation with chr. 5q
gain, while in ccRCC this translocation was shown in 43% of the
samples with chr.3p loss28. We observed no genome doubling. On
average, 3.3 and 22.6% of the genome had subclonal SCNAs
(Supplementary Data 9) in pRCC1 and pRCC2, respectively
(Figs. 1c and 3a, and Supplementary Fig. 7), with very few region-
specific SCNAs (e.g., 13q in pRCC2_1782_08, Fig. 3a). Copy
number type information is shown in Supplementary Fig. 7. We
have labelled the recurrent SCNAs on the phylogenetic trees. In
addition, we estimated the CCF of SCNAs at each region and
calculated the average CCF of SCNAs across the primary and
(if available) metastatic regions. We validated arm-level
SCNA findings using our SNP array data and confirmed the

concordance across platforms, including estimation of purity and
ploidy, and the largely clonal nature of these alterations (Sup-
plementary Fig. 8). Most arm-level SCNAs were clonal (Fig. 3a) as
previously suggested10. In contrast, we observed numerous small
scale SCNAs shared by a subset of regions or existing in one
region only, indicating SCNAs may be generated through chan-
ging mutational processes, with small scale SCNAs occurring
in the later evolutionary phase (Fig. 3a). Further, the size of intra-
chromosomal SCNAs was larger for clonal than subclonal events
across all tumors (P-value= 1.3 × 10−2, Wilcoxon rank test).
Notably, all six pRCC2 tumors for which a comparison was
possible (pRCC2_1429_03, pRCC2_1479_03, pRCC2_1552_03,
pRCC2_1568_04, pRCC2_1782_08, pRCC2_1799_02) displayed
this trend, while the two tumors belonging to rarer subtypes
(cdRCC_1972_03, rSRC_1697_10) did not (Fig. 3b).

Hierarchical clustering showed that samples from the same
tumors tended to cluster together (Supplementary Fig. 9),
suggesting a higher inter-tumor heterogeneity than ITH. Meta-
static lesions shared most SCNAs with their primary tumors, but
also displayed metastasis-specific SCNAs (e.g., hemizygous
deletion loss of heterozygosity in 4q of pRCC2_1824_13, Fig. 3c),
indicating ongoing SCNA clonal evolution during metastasis.
Among the rarer subtypes, both rSRC and cdRCC had clonal
focal homozygous deletions of CDKN2A at 9p21.3 (Fig. 1c and
Supplementary Figs. 10 and 11, Supplementary Data 10).

We further ordered the occurrence of driver mutations
relative to somatic copy number gains or loss of heterozygosity
(LOH)18,29 and were able to infer the timing of some
driver mutations (Supplementary Data 11). For example, the
SMARCB1 p.R373T mutation occurred earlier than the 22q
LOH in pRCC2_1824_13_T08, and the truncated mutation
KMT2C p.S789* occurred later than the chr7 amplification in
pRCC2_1494.

Frequency of SVs differs between pRCC1 and pRCC2. Somatic
SVs were called by the Meerkat algorithm30, which distinguishes
a range of SVs and plausible underlying mechanisms, including
retrotransposition events. pRCC2 had significantly more SV
events per tumor, averaging 23.6, as compared to 1.2 events per
tumor in pRCC1 (P value= 1.07 × 10−3, Wilcoxon rank test,
Supplementary Data 12). Tandem duplications, chromosomal
translocations, and deletions were the most prevalent types of
variant (36.4, 34.0, and 29.4%, respectively, Fig. 4a). Some SVs
involved known cancer driver genes (Fig. 1c), including a deletion
within MET in one pRCC2, and several fusions involving genes
previously reported in renal cancer or other tumors. These
included ALK/STRN31 and MALAT1/TFEB32 in two different
pRCC2 and EWSR1/PATZ133 in the rSRC. We had high quality
RNA material to validate the latter two SVs (Supplementary
Fig. 12). We note that one tumor (pRCC2-1410), which had the
morphological features of pRCC2, showed the classic MALAT1-
TFEB gene fusion. Thus, it should be considered a MiT family
translocation renal cell carcinoma (TRCC)32,34. As expected for

Fig. 2 Phylogenetic trees and oval plots for tumors with three or more samples. Phylogenetic trees: the trees show the evolutionary relationships

between subclones (annotated by different colors). Trunk and branch lengths are proportional to the number of substitutions in each clone cluster. Driver

SNV and recurrent somatic copy number alterations are annotated on the trees. Tumor regions containing sample-specific subclones are indicated on the

tree leaves. Oval plots: In the top rows the ovals are ordered based on the physical sampling of the tumor regions. Ovals are nested if required by the

pigeonhole principle. The first row of the plot with nested ovals is linked by lines to the ovals ordered by the phylogenetic analysis, indicating intermixing of

subclones spread across 2 or more tumor regions. In the matrix, each main clone (without solid border) and subclone (with solid border) is represented as

a color-coded oval. The size of the ovals is proportional to the CCF of the corresponding subclones. Each column represents a sample. Oval plots are

separated into three parts: trunk (top, CCF= 1 in all samples), branch (middle present in >1 sample but not with CCF= 1 in all samples), and leaf (bottom,

specific to a single sample). GL germline, amp amplification, DLOH hemizygous deletion loss of heterozygosity, HET diploid heterozygous, NLOH copy

neutral loss of heterozygosity, HOMD homozygous deletion, ASCNA allele-specific copy number amplification, BCNA balanced copy number amplification.
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this subtype, this patient had a good prognosis (long survival and
no metastasis).

Substantial variation in both the number and type of SVs was
observed between tumors (Fig. 4a), again suggesting strong inter-
tumor heterogeneity. Some tumors, particularly amongst the
pRCC1s, had almost no SVs (e.g., pRCC1_1671_08 in Fig. 4b);
some had SVs clustered in a hotspot (Supplementary Fig. 13),
while still others had many SVs, like pRCC2_1824_13 (Fig. 4c)
and pRCC2_1782_08 (Fig. 4d), the latter showing high genomic
instability. Interestingly, pRCC2_1782_08 had a high number of
LINE-1 clonal retrotransposition events detected by TraFiC35

(Fig. 4a and Supplementary Fig. 14), while somatic retro-
transposition events were rarely detected in the remaining
samples (Supplementary Data 13), as was observed in ccRCC
and chromophobe RCC36. At least three transposon insertions
could have potentially affected the expression of proteins involved
in chromatin regulation and chromosome structural maintenance
and, in turn, the maintenance of genome integrity in this tumor
(Supplementary Method).

In contrast to arm-level SCNAs (Fig. 3a), most SVs were
subclonal or late events within the tumors (Supplementary
Fig. 15), appearing on the branches of the phylogenetic trees.

a

b c

Fig. 3 Somatic copy number alterations (SCNAs). a Genome-wide sample cancer cell fraction (CCF) profiles across tumors. Samples are labeled by

histology subgroup and cellularity (or called purity). (b) Size of SCNAs identified in each tumor, separated into clonal alterations (purple), which have a

shared breakpoint across all samples from a tumor and subclonal alterations (yellow), which have breakpoints that are found only in a subset of samples

from a tumor. Where clonal and subclonal SCNAs are both identified in a tumor, they are shown side by side. The numbers of clonal and subclonal SCNAs

are included in the parentheses following the tumor ID, such as pRCC1_1472_01(n= 7,0). Vertical lines separate pRCC1 (left), pRCC2 (middle) and rare

subtypes (right). In each box-and-whisker plot, the line dividing the box represents the median; the ends of the box are the lower (Q1) and upper (Q3)

quartiles; the whiskers are extended to Q1-1.5xIQR and Q3+ 1.5IQR with IQR=Q3–Q1. Each circle represents a data point of SCNA size. (c) SCNAs of

tumor pRCC2_1824_13. Top panel: genome-wide SCNAs on ten primary tumors (T01-T10) and three metastatic samples (M01, M02 and M03); T10 has

low purity and has no SCNAs. Bottom panels: metastatic sample-specific SCNAs on chromosome 4 for total copy number log-ratio (red line: estimated

total copy number log-ratio; green line: median; purple line: diploid state). DLOH: hemizygous deletion loss of heterozygosity; HET: diploid heterozygous;

NLOH: copy neutral loss of heterozygosity; ALOH: amplified loss of heterozygosity; ASCNA: allele-specific copy number amplification; BCNA: balanced

copy number amplification.
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Specifically, on average 40% of SVs were shared among all regions
of a tumor. This is consistent with the average CCF of SVs across
regions; in most of the tumors with more than three sampled
regions, the average CCF was less than 0.75/tumor (Fig. 4e). We
validated 88% of the WGS-Meerkat detected SV events and using
a PCR-based sequencing methodology (Ampliseq; Supplementary
Fig. 16 and Supplementary Method). It is notable that PCR
sequencing also validated the clonal/subclonal status, defined
by presence in all or just a subset of samples, of 83% of the SVs,
and confirmed that SVs in pRCC have high ITH. Moreover, we
compared the breakpoints between all SCNAs (estimated by
Battenberg) and SVs (estimated by Meerkat). These results
suggest that Battenberg (and probably copy number callers in
general) has poor sensitivity for calling certain types of SVs and
shows the value of combined analysis of SVs and SCNAs
(Supplementary Fig. 17, details in Supplementary Method).

Mutational signatures and telomere length. De novo extraction
of SNV mutational signatures identified the patterns of four
distinct mutational signatures, termed signatures A through D
(Supplementary Fig. 18). Comparison of these four de novo

deciphered signatures to the global consensus set of mutational
signatures37 revealed that signatures A through D are linear
combinations of six previously known SNV mutational signatures
(Supplementary Table 3): single base signatures (SBS) 1, 2, 5, 8,
13, and 40. Signatures 5 and 40 (cosine similarity: 0.83) are both
of unknown etiology and were found across all examined RCC
subtypes (mean contributions 32.6% and 59.9%, respectively,
Supplementary Data 14). We also observed a small proportion of
mutations attributed to the clock-like38 mutational signature 1
(3.5% of total SNVs) and signature 8 (1.4%), which has unknown
etiology. Moreover, we found that the numbers of clonal muta-
tions assigned to signature 1, 5 or 40 were significantly associated
with age at diagnosis (Supplementary Fig. 19a, SBS1 vs age:
Pearson’s correlation coefficient (R)= 0.46, P-value= 0.013; SBS5
vs age: R= 0.40; P= 0.033; SBS40 vs age: R= 0.48, P= 0.009),
while the number of subclonal mutations assigned to signature 1,
5 or 40 was not (Supplementary Fig. 19b). Further, low muta-
tional activity was detected for signature 2 (0.6%) and signature
13 (0.7%), both attributed to the activity of the APOBEC family of
deaminases (Supplementary Fig. 20). All signatures were found
in both clonal and subclonal SNVs (Supplementary Fig. 21) and

a

e

b

c

d

Fig. 4 Structural variants (SV) and retrotransposition events (TE). a Frequency of SV events and TE insertions for each sample. b–d Circos plots for SV

events for three tumors; involved driver genes are noted. e The distribution of mean cancer cell fraction (CCF) of SVs across tumors. Alu elements

originally characterized by the action of the Arthrobacter luteus (Alu) restriction endonuclease, ERVK mouse endogenous retrovirus K, L1 Long

interspersed element-1.
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varied only slightly between primary and metastatic samples
(Supplementary Fig. 22). Additional characteristics of SNV and
Indel mutational signatures are included in the Supplementary
Method.

We estimated telomere length (TL) based on the numbers
of telomere sequence (TTAGGG/CCCTAA)4 using TelSeq39.
The normal and metastatic tissue samples on average had longer
(8.51 kb, one side Mann–Whitney U test P value= 1.16 × 10−6)
and shorter (4.4 kb, P value= 1.96 × 10−3) TL, respectively than
the primary tumor tissue samples (6.12 kb) (Supplementary
Fig. 23 and Supplementary Data 15).

DNA Methylation ITH. To analyze methylation ITH, we chose
the 1% of methylation probes in CpG sites with the greatest
intratumoral methylation range and calculated the methylation
ITH based on the Euclidean distances between regions. In gen-
eral, methylation ITH was not high and similar across histological
subtypes (Kruskal–Wallis Test: P value= 0.675) (Supplementary
Fig. 24). For most cases with four or more samples, we calculated
the Euclidean distance separately for SNVs and methylation levels
(using the top 5000 most variable CpG probes) for each pair of
tumor samples within a tumor. We found that the difference in

methylation patterns between pairs of samples correlated strongly
with pairwise differences in subclonal SNVs (P < 0.0001, R= 0.5)
(Fig. 5a), implying congruence between genomic and epigenomic
evolutionary histories. Although methylation ITH was generally
low, the analysis showed greater ITH in enhancer regions, and no
ITH in promoter/5’UTR/1st exons or CpG island regions
(Fig. 5b), suggesting a possible role of methylation ITH in shaping
regulatory function, but tight control of the genome regions
directly affecting gene expression.

Unsupervised clustering analysis based on the 1% most variable
methylation probes clearly separated tumor samples from normal
samples, and pRCC tumors from renal sarcoma (Fig. 5c). Moreover,
samples with purity <30% clustered together but separately from
the normal or the tumor tissue samples, likely because they were
enriched with stromal, immune or other non-epithelial cells.
Similarly, although metastasis samples in pRCC2_1824_13 appear
to arise from the T02 and T10 regions based on the phylogenetic
analysis (Fig. 2), they cluster separately from any tumor region
likely because methylation reflects the different tissue type (adrenal
gland). This finding is comparable to what has been reported in the
TCGA pan-can analyses, where methylation profiles have been used
to infer cell-of-origin patterns across cancer types40. Future studies

a b

c

Fig. 5 Intratumor heterogeneity (ITH) of methylation profiles. a Scatter plots of pairwise distance between methylation and single nucleotide variant

clusters. LOESS (Locally Weighted Scatterplot Smoothing) fitted curve is shown in red line with 95% confident interval in gray shaded area. Spearman’s

rank correlation rho is shown on the bottom right. For the two-sided test of rho= 0, the test statistic S is 719790 based on the algorithm AS 89. The exact

P value is 8.66 × 10−15. b Methylation ITH on genomic regions for each sample and tumor subtype. c Unsupervised hierarchical clustering of methylation

profiles measured by the methylation level as beta value for the top 1% most variable methylation probes. Sample IDs are followed by the purity estimated

by SCNAs or SNV VAF in parentheses. The background colors of the sample IDs represent different histological subtypes and tumor or normal tissue

samples.
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should evaluate other epigenetic modifications to provide more
comprehensive details of epigenomic evolutionary history of pRCC.

Discussion
Multi-region whole-genome sequencing demonstrates that papillary
renal cell carcinomas and rarer renal cancer subtypes generally have
much less driver gene mutation and copy number alteration intra-
tumor heterogeneity than clear cell renal cell carcinomas. In pRCCs,
evolution of the epigenome occurs in step with genomic evolution,
although DNA methylation ITH in promoter regions was lower
suggesting a tighter regulation of the somatic epigenome.

Large-scale copy number aberrations, often associated with inter-
chromosomal translocations, were frequently clonal across all
samples from a tumor. The observed clonal status of SCNAs may be
the result of an early burst of large-scale genomic alterations, pro-
viding growth advantage to an initiating clone that then expands
stably. At the time of diagnosis, the descendants of these cells, which
have accumulated additional genetic aberrations, appear to be
characterized by a single or small number of large SCNA events. In
support of this hypothesis, bulk- and single-cell based copy number
and sequencing studies of breast and prostate cancers41–43 have
suggested that complex aneuploid copy number changes may occur
in only a few cell divisions at the earliest stages of tumor progres-
sion, leading to punctuated evolution.

The ITH of SNVs was greater than that of large SCNAs, and
ITH of small SVs was even greater. The few SNVs, indels and
fusions we identified in known cancer driver genes were clonal in
all samples, from both pRCC subtypes. Thus, our data indicate
that papillary renal cell carcinomas initiate through a combina-
tion of large clonal SCNAs and mutations in different driver
genes, while tumor progression is further promoted by additional
SNVs, small scale SCNAs and SVs.

The mechanisms of SVs formation are largely unknown.
A landscape description of breast cancer44 and a recent structural
variant analysis in PCAWG45 identified different signatures of
structural variants, separated by size. Taken all together, these
findings suggest that there are different mutational and repair
processes operating at different scales and future research should
be directed towards further elucidating the causal mechanisms.

Although ITH is generally correlated with the number of sam-
ples per tumor, the increase in ITH in the order (large SCNAs –
SNVs - small SVs) was consistent across both pRCC subtypes and
irrespective of the number of tumor samples. Moreover, we used
an estimate of ITH that is not affected by the number of samples
sequenced per tumor (APITH)19 and found that APITH in
pRCC2 was significantly higher than ITH in pRCC1. ITH has
been found to impact prognosis or response to treatment across
cancer types46,47, highlighting the importance of further explor-
ing pRCC ITH in light of a possible treatment strategy.

Signatures SBS5 and SBS40 accounted for 92.5% of all
somatic mutations observed in pRCC. High frequency of sig-
nature SBS40 has been found in kidney cancer in previous
studies, possibly due to the organ’s cells constant contact with
mutagens during the blood filtration process37. Both signatures
have unknown etiology, but they have been associated with
age at diagnosis across most human cancers37. These “flat”
signatures are correlated to each other and likely harbour
common mutation components. In our study, clonal mutations
attributed to signatures 1, 5, and 40 were all significantly cor-
related with age of diagnosis, suggesting that they may be the
result of a lifetime accumulation of mutations. Future experi-
mental studies are necessary to investigate the molecular and
mutational underpinning of signatures 5 and 40. Notably,
among the 29 subjects with WGS data, 13 were never smokers,
4 current smokers, 6 former smokers and 6 had unknown

smoking status. However, we found no tobacco smoking sig-
nature SBS4, as previously observed in kidney and bladder
cancers48.

In our analysis of a series of samples from the tumor center to
the tumor periphery at precise distance intervals, we found that
tumors are not necessarily composed of separate subclones in
distinct regions of a tumor. Instead, we observed widespread
intermixing of subclonal populations. In our 2 metastatic cases,
the subclones remained mixed when spread to distant sites,
possibly indicating polyclonal seeding of metastases26. Evidence
for tumor cells transiting large distances across the primary tissue
was also seen in four cases (Fig. 2).

In addition to provide insight into the natural history of these
tumors, understanding the clonal expansion dynamics of these
cancers has potentially important implications for diagnosis and
treatment. Although based on a limited number of tumors, the
observed clonal patterns of both large scale SCNAs and SNVs/
indels in driver genes suggest a single tumor biopsy would be
sufficient to characterize these changes. However, although tar-
geted therapies against the few driver gene mutations or rare
germline variants we identified (e.g., MET, VHL, PBMR1,
ARID1B, SMARCA4, ALK, TFEB) are either available or presently
being evaluated in clinical trials, therapies against SCNAs are
critically needed. Compounds that inhibit the proliferation of
aneuploid cell lines49 or impact the more global stresses asso-
ciated with aneuploidy in cancer or target the bystander genes
that are deleted together with tumor suppressor genes (collateral
lethality)50–52 are encouraging and should be further explored.
Further therapeutic challenges for the renal cell tumors we stu-
died are provided by the subclonal nature of SVs as well as the
low mutation burden and the notable lack of TP53 mutations,
both of which may hinder response to immune checkpoint
inhibitors53–55. Notably, while the numbers of SCNAs were
similar between pRCC1 and pRCC2, the number of SV events,
and – to a lesser extent – the SNV events were higher in pRCC2
in parallel with the more aggressive tumor behavior of this sub-
type. These findings emphasize the importance of further inves-
tigating these changes for prognostic significance in future larger
studies.

Methods
Patients and specimens. This study was based on archived samples collected at
the Regina Elena Cancer Institute, Rome, Italy. Written informed consent to allow
banking of biospecimens for future scientific research was obtained from each
subject. This work was excluded from the NCI IRB Review per 45 CFR 46 and NIH
policy for the use of specimens/data by the Office of Human Subjects Research
Protections (OHSRP) of the National Institutes of Health. The data were
anonymized.

The study population comprise 39 patients with kidney cancers, including 23
with papillary type 1 (pRCC1); 12 with papillary type 2 (pRCC2); and one each
with collecting duct tumor (cdRCC); renal fibrosarcoma rSRC (with negative stain
for AE1/AE3, PAX8, CD99, FLI-1, WT1, actine ml, desmine, Myod-1, and HMB45;
and positive staining for vimentine and S-100 (focal)); mixed pRCC1/pRCC2 and
an unclassified renal cancer with mixed features of pRCC2 and cdRCC (mixRCC).
The histological diagnosis was reviewed by an expert uropathologist (S.S.) based on
the 2016 World Health Organization (WHO) classification of renal tumors1.
Although our pathologist reviewed all available tissue blocks from each tumor, we
cannot exclude the possibility that some of these tumors have mixed histologies
(e.g., papillary types 1 and 2) in sections that were not available for histological
review. Moreover, the distinction between pRCC1 and pRCC2 can be sometimes
murky because of overlapping features and no immunohistochemistry or molecular
marker can conclusively distinguish the two subtypes. For example, trisomies 7 and
17 are frequent in pRCC1 but can be also found, less frequently, in pRCC24. There
could also be tumors with one dominant histology and a small component of a
different histology. For example, pRCC2_1552_03 was a pRCC2 with small areas
with clear cells, which may explain the VHL mutation we identified in this tumor.
Histological images of all tumors can be found in the Supplementary Histological
Images file (Supplementary Fig. 25).

Based on DNA sample availability, we conducted whole-genome sequencing
(WGS) on 124 samples from 29 subjects, deep targeted sequencing on 139 samples
from 38 subjects, SNP array genotyping on 101 samples from 38 subjects, and
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genome-wide methylation profiling on 139 samples from 28 subjects (Fig. 1b, more
details in Supplementary Fig. 26). All assays were performed on tumor, metastasis
and normal tissue samples, with the exception of the SNP array genotyping, which
was conducted only on tumor samples.

Study Design. All tumors were treatment-naive. We used a study design with
multiple tumor samples taken at a distance of ~1.5 cm from each other starting
from the center of the tumor towards the periphery, plus multiple samples from the
most proximal to most distant area outside the tumor. When present, we also
collected multiple samples from metastatic regions outside the kidney (adrenal
gland) (Fig. 1a). For the analyses presented here, we analyzed all multiple tumor
and metastatic samples/tumor with at least 70% tumor nuclei at histological
examination. As a reference, we used the furthest “normal” sample from each
tumor, with histologically-confirmed absence of tumor nuclei.

Whole-genome sequencing. Genomic DNA was extracted from fresh frozen
tissue using the QIAmp DNA mini kit (Qiagen) according to the manufacturer’s
instructions. Libraries were constructed and sequenced on the Illumina HiSeqX at
the Broad Institute, Cambridge, MA with the use of 151-bp paired-end reads for
whole-genome sequencing (mean depth= 65.7× and 40.1×, for tumor and normal
tissue, respectively). Output from Illumina software was processed by the Picard
data-processing pipeline to yield BAM files containing well-calibrated, aligned
reads to genome-build hg19. All sample information tracking was performed by
automated LIMS messaging. More details are included in the Supplementary
Method.

Genome-wide SNP genotyping. Genome-wide SNP genotyping, using Infinium
HumanOmniExpress-24-v1-1-a BeadChip technology (Illumina Inc. San Diego,
CA), was performed at the Cancer Genomics Research Laboratory (CGR). Geno-
typing was performed according to manufacturer’s guidelines using the Infinium
HD Assay automated protocol. More details are included in the Supplementary
Method.

Targeted Sequencing. A targeted driver gene panel was designed for 254 candi-
date cancer driver genes13. For each sample, 50 ng genomic DNA was purified
using AgencourtAMPure XP Reagent (Beckman Coulter Inc, Brea, CA, USA)
according to manufacturer’s protocol, prior to the preparation of an adapter-ligated
library using the KAPA JyperPlus Kit (KAPA Biosystems, Wilmington, MA)
according to KAPA-provided protocol. Libraries were pooled, and sequence cap-
ture was performed with NimbleGen’sSeqCap EZ Choice (custom design; Roche
NimbleGen, Inc., Madison, WI, USA), according to the manufacturer’s protocol.
The resulting post-capture enriched multiplexed sequencing libraries were used in
cluster formation on an Illumina cBOT (Illumina, San Diego, CA, USA) and
paired-end sequencing was performed using an Illumina HiSeq 4000 following
Illumina-provided protocols for 2 × 150 bp paired-end sequencing at The National
Cancer Institute Cancer Genomics Research Laboratory (CGR). More details are
included in the Supplementary Method.

Methylation analysis. A concentration of 400 ng of sample DNA, according to
Quant-iTPicoGreen dsDNA quantitation (Life Technologies, Grand Island, NY),
was treated with sodium bisulfite using the EZ-96 DNA Methylation MagPrep Kit
(Zymo Research, Irvine, CA) according to manufacturer-provided protocol.
Bisulfite conversion modifies non-methylated cytosines into uracil, leaving
5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) unchanged. High-
throughput epigenome-wide methylation analysis, using Infinium MethylationE-
PICBeadChip (Illumina Inc., San Diego, CA) which uses both Infinium I and II
assay chemistry technologies was performed according to manufacturer-provided
protocol at CGR. More details are included in the Supplementary Method.

Whole-Genome data processing and alignment. The WGS FASTQ files were
processed and aligned through an in-house computational analysis pipeline,
according to GATK best practice for somatic short variant discovery (https://
software.broadinstitute.org/gatk/best-practices/). First, quality of short insert paired-
end reads was assessed by FASTQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Next, paired-end reads were aligned to the reference human
genome (build hg19) using BWA-MEM aligner in the default mode56. The initial
BAM files were post-processed to obtain analysis-ready BAM files. In particular,
sequencing library insert size and sequencing coverage metrics were assessed, and
duplicates were marked using Picard tools (https://broadinstitute.github.io/picard/);
indels were realigned and base quality scores were re-calibrated according to GATK
best practice; In addition, BAM-matcher was used to determine whether two BAM
files represent samples from the same tumor57; VerifyBamID was used to check
whether the reads were contaminated as a mixture of two samples58.

Somatic mutation calling from whole-genome sequencing data. The analysis-
ready BAM files from tumor, metastasis, and matched normal samples were used
to call somatic variants by MuTect2 (GATK 3.6, https://software.broadinstitute.
org/gatk/documentation/tooldocs/current/org_broadinstitute_gatk_tools_walkers_

cancer_m2_MuTect2.php) with the default parameters. In the generated VCF files,
somatic variants notated as “Somatic” and “PASS” were kept. A revised method
described by Hao, et al.59 was used to further filter the somatic variants. More
details are included in the Supplementary Method. For indels, we reported those
that overlapped across three different software, mutect260, strelka261, and
tnscope62. Indels were left-aligned and normalized using bcftools. The intersection
of “PASS” indels from all three calling tools were combined by GATK “Combi-
neVariants”. Additional filters were applied to the final set before downstream
analysis: tumor alternative allele fraction >0.04; normal alternative allele fraction
<0.02; tumor total read depth >= 8; normal total read depth >= 6; and tumor
alternative allele read depth >3.

Identification of putative driver mutations and driver genes. To create putative
cancer driver gene and mutation lists, we first listed the putative cancer driver
genes on the basis of recent large-scale TCGA Pan-kidney cohort (KICH+KIRC
+ KIRP) sequencing data (http://firebrowse.org), i.e., the significantly mutated
genes identified by MutSig2CV algorithm with q value less than 0.1. In addition,
we included the genes from the COSMIC cancer gene census list (May 2017,
http://cancer.sanger.ac.uk/census) in the putative kidney driver gene set. Putative
driver mutations were defined if they met one of the following requirements: (i) if
the variant was predicted to be deleterious, including stop-gain, frameshift and
splicing mutation, and had a SIFT63 score < 0.05 or a PolyPhen64 score >0.995 or a
CCAD65 score >0.99; or (ii) If the variant was identified as a recurrent hotspot
(statistically significant, http://cancerhotspots.org) or a 3D clustered hotspot
(http://3dhotspots.org) in a population-scale cohort of tumor samples of various
cancer types using a previously described methodology66,67.

Germline variants in cancer susceptibility genes. A germline variant was
included if its minor allele frequency was <0.1% in an Italian whole-exome
sequencing data from 1,368 subjects with no cancer68 and the GnomAD European-
Non Finnish-specific data from 12,897 subjects69.

Mutational signature analysis from whole-genome sequencing data. Muta-
tional signatures were extracted using our previously developed computational
framework SigProfiler70. A detailed description of the workflow of the framework
can be found in Refs. 37,71, while the code can be downloaded freely from: https://
www.mathworks.com/matlabcentral/fileexchange/38724-sigprofiler. Detailed
description of the methodology can be found in Supplementary Method.

Mutation clustering and phylogenetic tree construction and annotation.
Clustering of subclonal somatic substitutions in whole-genome data were analyzed
using a Bayesian Dirichlet process (DP) in multiple dimensions across related
samples as previously described26.Copy number changes called by the Battenberg
algorithm and read count information of each mutation across all regions in the
same tumor were used to calculate cancer cell fraction (CCF) and prepared as input
for DPClust. Clone clusters were identified as local peaks in the posterior mutation
density obtained from the DP. For each cluster, a region representing a ‘basin of
attraction’ was defined by a set of planes running through the point of minimum
density between each pair of cluster positions. Mutation were assigned to the
cluster in whose basin of attraction they were most likely to fall, using posterior
probabilities from the DP. This process was extended into multiple dimensions for
the patients with multiple related samples. The following criteria were applied to
remove the clusters: 1) cluster included less than 1% total mutations; 2) most
mutations in cluster were localized to a small number of chromosomes; 3) con-
flicting cluster due to two principles as previously described72: pigeonhole principle
and crossing rule.

The tumor subsclonality phylogenetic reconstruction algorithm SCHISM20

(SubClonal Hierarchy Inference from Somatic Mutations) was used to infer
phylogenetic trees based on the CCF of final clone clusters. The phylogenetic tree
and clone cluster relationship were manually created and organized according to
previous publication26. The mutations and/or copy number alterations in potential
driver genes as well as the recurrent copy number alterations were marked on the
trees. Palimpsest29 was used to time the chromosomal duplications. The ratio of
duplicated/non-duplicated clone mutations were used to time these events, with
early events having a low amount of duplicated mutations as compared to late
events18,73. The relative order of these duplication events was then mapped on the
trunk of the trees.

Somatic copy-number alteration (SCNA) analysis. Identification of clonal and
subclonalcopy number alterations for each sample was performed with the Bat-
tenberg algorithm as previously described18. Briefly, the algorithm phases hetero-
zygous SNPs with use of the 1000 genomes genotypes as a reference panel followed
by correcting occasional errors in phasing in regions with low linkage dis-
equilibrium. Segmentation is derived from b-allele frequency (BAF) values. T-tests
are performed on the BAFs of each copy number segment to identify whether they
correspond to the value resulting from a fully clonal copy number change. If not,
the copy number segment is represented as a mixture of 2 different copy number
states, with the fraction of cells bearing each copy number state estimated from the
average BAF of the heterozygous SNPs in that segment. The segmentation for the
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chromosome X in male subjects is processed differently as previously described26,
where copy number segments are called only for the dominant cancer clone. In
addition, we applied a non-parametric joint segmentation approach in FACETs74

to validate the large-scale SCNA callings (Supplementary Method).

Somatic structural variant calling. We used the Meerkat algorithm30 to call
somatic SVs and estimate the corresponding genomic positions of breakpoints
from recalibrated BAM files. Meerkat has been found to perform better than other
previous software in a large analysis across different cancer types75. We used
parameters adapted to the sequencing depth for both tumor and normal tissue
samples and the library insert size. In summary, candidate breakpoints were first
found based on soft-clipped and split reads, which requires identifying at least two
discordant read pairs, with one read covering the actual breakpoint junction, and
then confirmed to be the precise breakpoints by local alignments (‘meerkat.pl’).
Mutational mechanisms were predicted based on homology and sequencing fea-
tures (‘mechanism.pl’). SVs from tumor genomes were filtered by those in normal
genomes. SVs found in simple or satellite repeats were also excluded from the
output (‘somatic_sv.pl’). The final somatic SVs were annotated as a uniformed
format for all breakpoints (“fusions.pl”). We compared the results obtained by
Meerkat with those obtained by Novobreak76 (v1.1.3rc) (Supplementary Method).
We opted to retain Meerkat-derived results because they were more conservative
and were largely confirmed by laboratory testing. The CCF of SVs in each region
was estimated by Svclone77; the copy-number subclone information generated by
the Battenberg algorithm18was used as input for the filter step. To substantially
increase the number of variants available for clustering, we applied the coclustering
mode to estimate CCF for both SVs and SNVs simultaneously and calculated the
average CCF of SVs across regions.

Validation of somatic structural variants. We selected four in-frame fusions
MALAT-TFEB, MET-MET deletion, STRN-ALK, and EWSR1-PATZ1, for valida-
tion by reverse transcription and PCR-based sequencing. The MALAT-TFEB and
EWSR1-PATZ1 fusions were validated and confirmed by Sanger sequencing. The
other two fusions were not validated because of poor RNA quality from FFPE
samples (RIN= 2.6). We selected 381 additional structural variants from pRCC
tumors for validation by Ion Torrent PGM Sequencing using a custom AmpliSeq
primer pool. We were able to successfully design compatible primers for 303 of
them. These included: 87 trunk SVs, 115 internal branch SVs, and 101 terminal
branch SVs. 5 SVs failed QC. Among the remaining 298 SVs, 263 (263/298=
88.3%) were validated at the tumor level and 217 (217/263= 83%) were validated
at clonal level as trunk, internal, or terminal branches. Further details are in
the Supplementary Method.

Somatic mutation calling from deep targeted sequencing data. We utilized the
WGS pipeline to process raw reads, align reads to the reference human genome
hg19, and to call somatic SNVs by GATK MuTect2. We then performed multiple
mutation filtering and mutation annotation. Given the deep sequencing coverage,
we used strict filtering criteria, retaining variants with read depth >= 30 in tumor
samples and the number of variant supporting reads ≥ 8. Among the 254 targeted
candidate cancer driver genes, we found 67 genes with non-synonymous single
nucleotide variant detected by targeted sequencing, 93.6% of which were SNVs
called based on WGS data. In contrast, 78.6% of SNVs detected by WGS data were
validated by targeted sequencing. High correlation was observed for the variant
allele fraction between target sequencing and whole-genome sequencing (Pearson’s
correlation coefficient= 0.87, P value= 8.54 × 10−88).

Copy-number analysis from genome-wide SNP genotyping data. Genome
Studio (Illumina, Inc.) was used to cluster and normalize raw genotyping data.
Both BAF and LogR data were generated and exported for downstream analysis.
ASCAT78 (https://www.crick.ac.uk/peter-van-loo/software/ASCAT) was used to
estimate the allele-specific copy numbers without matched normal data. Purity,
ploidy, and segmentation data generated by ASCAT were compared to those
generated by Battenberg and FACETS (Supplementary Fig. 8).

Analysis for DNA methylation profiling. Genome-wide DNA methylation was
profiled on Illumina Infinium methylation EPIC arrays (Illumina, San Diego,
USA). Methylation of tumor and normal samples was measured according to the
manufacturer’s instruction at CGR. Raw methylation densities were analyzed using
the RnBeads pipeline79 and the minfi package80. In total, we retained 814,408
probes for the downstream analysis. Duplicated samples were selected based on
probe intensity, SNP calling rate, and the percentage of failed probes. No batch
effects were identified and there were no plating issues. “Functional Normal-
ization”81, implemented in the minfi R package was used to perform normalization
to obtain the final methylation levels (beta value). Hyper- and hypo-methylation
were arbitrarily defined by at least 20% in-/decrease relative to the matched normal
samples, respectively (Further details in the Supplementary Method).

Unsupervised clustering of methylation profiles. We selected the top 1% of
probes with the greatest difference between maximum and minimum methylation

levels within each tumor. For hierarchical clustering, a Euclidean distance was
calculated and Ward’s linkage was performed. Normal samples were excluded for
the calculation of intratumoral DNA methylation range. Heatmaps were drawn
using the superheat (https://github.com/rlbarter/superheat) and ComplexHeatmap
R package.

Measuring intratumoral heterogeneity of SNVs and methylation in genomic

regions. We measured genomic region-specific intratumoral heterogeneity (ITH)
of each tumor with at least three samples for DNA methylation levels. DNA
methylation variability82 was calculated as median of the range of probes (max-
imum methylation level - minimal methylation level) within a genomic region/
context among normal samples or within samples in each tumor.

Interindividual variability was analyzed by comparing normal samples from all
subjects. The genomic region-specific methylation inter- and intra-tumor
heterogeneity was measured by the median methylation variability of involved CpG
sitesacross different genomic regions/contexts, including intergenic, 1to5kb,
promoters, 5′-UTRs, first exon, exon-intron boundaries, exons, introns, intron-
exon boundaries, 3′-UTRs, lncrna_gencode and enhancers_fantom defined in R
annotatr package (https://github.com/hhabra/annotatr). The higher the
methylation variability, the more ITH observed.

Statistical analysis. Statistical analyses were performed using R software (https://
www.r-project.org/). Categorical variables were compared using the Fisher’s Exact
test. Group variables were compared using Wilcoxon rank sum and signed rank
test. Comparison of subtypes were by Kruskal–Wallis Test. P values were derived
from two-sided tests and those less than 0.05 were considered as statistically
significant.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The whole-genome sequencing data, Methylation EPIC data, genotyping data and target-

sequencing data have been deposited in the database of Genotypes and Phenotypes

(dbGaP) under accession code phs001573.v1.p1; study website.
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