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Abstract. This paper investigates a technique for using automated program ver-
ifiers to check conformance with information flow policy, in particular for pro-
grams acting on shared, dynamically allocated mutable heap objects. The tech-
nique encompasses rich policies with forms of declassification and supports mod-
ular, invariant-based verification of object-oriented programs. The technique is
based on the known idea of self-composition, whereby noninterference for a com-
mand is reduced to an ordinary partial correctness property of the command se-
quentially composed with a renamed copy of itself. The first contribution is to
extend this technique to encompass heap objects, which is difficult because tex-
tual renaming is inapplicable. The second contribution is a systematic means to
validate transformations on self-composed programs. Certain transformations are
needed for effective use of existing automated program verifiers and they exploit
conservative flow inference, e.g., from security type inference. Experiments with
the technique using ESC/Java2 and Spec# verifiers are reported.

1 Introduction

Consider an imperative command S acting on variables with declaration Γ . For exam-
ple, Γ could be x : int,y : int,z :bool and S could be z := (y > 0);x := x + 1;y := x. A
standard notion of confidentiality policy is to label variables with levels from a partially
ordered set, e.g., {low,high} with low ≤ high. This is interpreted to mean that infor-
mation is only allowed to flow from one variable to another, say x to y, if the level of
x is at most the level of y. Such a policy is of interest only under the mandatory ac-
cess control assumption that a principal at level λ can directly read only variables with
confidentiality label at or below λ . (Our results apply as well to the dual, integrity.)

This paper investigates a technique for using ordinary program verifiers to check
conformance with policy, in particular for programs acting on shared, mutable heap
objects and policies that specify flows with finer granularity than individual program
variables. The intended application is to programs in Java and similar languages but
the technique pertains to any program using pointer structure. The technique is known
as self-composition [25,7,30,15]; it reduces security to an ordinary partial correctness
property of the program composed with itself. The first contribution is a novel extension
of this technique to encompass the heap. The second contribution is a systematic means
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to validate certain transformations on self-composed programs that are needed to make
effective use of automated program verifiers to check security; this draws on work by
Benton [9], Terauchi and Aiken [30]. The third contribution is to report on promising
experiments with the ESC/Java2 [18] and Spec# [6] tools and to pose challenges for
improvement of these tools.

To explain the main ideas we begin by considering the scenario above, with impera-
tive commands acting on variables of primitive type. For the specific lattice {low,high}
we write x ∈ vis to express that x is low. The formal notion that visible outputs reveal
no information about secret inputs (high variables) is called noninterference [27] and
is expressed in terms of two runs of the program:1 If two initial states s and s′ agree
on variables in vis and t, t ′ are the final states from running the program on s and s′

respectively, then t and t ′ also agree on variables in vis.
In program verification, a dashed identifier like s′ is often used to refer to the final

state corresponding to s; we do not use dashes that way, but rather to indicate a coupling
relation.

Because the noninterference property involves two runs, it cannot simply be mon-
itored at runtime or expressed directly as a pre/post specification. For static analysis,
a popular approach is by means of a type system in which types include security la-
bels [31,21,27,24,4,8]. The rules prevent, e.g., assignment to a low variable of an ex-
pression containing a high variable. Static analysis is useful to detect bugs and trojans;
it does not prevent attacks that violate the abstractions embodied by the language se-
mantics on which the analysis and definition of noninterference are based.

Self-composition. Besides type checking, another approach that has been explored is
based on Hoare logic [14,10,11]. The condition “s and s′ agree on visible variables”
can be expressed by an assertion x = x′ ∧ y = y′ ∧ . . . with an equation x = x′ for each
x ∈ vis, where x′ is fresh variable. Such an assertion can be interpreted in a pair of states
s,s′, where x′ is the value of x in s′, or better still in a single state that assigns values
to both x and x′. Now the property that S is noninterferent can be expressed using a
renamed copy S′ acting on the dashed variables. Add to the language a combinator |
so that S|S′ means parallel, independent execution of S and S′. Then S is noninterferent
just if S|S′ takes initial states satisfying x = x′ ∧ y = y′ ∧ . . . to final states satisfying the
same. For example, S at the beginning of the paper is noninterferent for vis = {x} and
for vis = {x,y} but not for vis = {x,z}.

Two features of this formulation are interesting in terms of policy. Most importantly,
the pre-post specification can be extended to allow partial releases at finer granularity
than variables. For example, the equation encrypt(k,secret) = encrypt(k′,secret ′) in

1 This paper focuses on termination-insensitive noninterference. Covert channels such as timing
and power consumption are also ignored. The rationale is that such flows are harder to exploit
as well as to prevent —our aim is a practical means to reduce the risk of trojans and bugs
in production software. For further simplification in this paper, programs are deterministic,
only initial and final states are observable, and the heap is unbounded. Pointer arithmetic is
disallowed, just as it is in Java and its cousins (ignoring hashcode), since otherwise it is very
hard to constrain information flow. On the other hand, the results make no assumption about
the memory allocator, which may depend on the entire state; this entails some complications
concerning but is a price worth paying for applicability to real systems.
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a precondition would allow release of the encryption but not the secret plaintext. The
policy with postcondition z = z′ and precondition (y > 0) = (y′ > 0) is satisfied by the
S at the beginning of the paper. Preconditions can also condition secrecy of a variable
on event history or permissions, or allow one but not both of two secrets to be released
(e.g., [10,29,1,5]).

The second feature relevant to policy is that the formulation does not directly handle
label lattices bigger than {low,high}. But it is well known that the noninterference
property for a general lattice L can be reduced to a conjunction of properties, using
just {low,high} with low representing all the levels below a fixed level in L and high
representing the rest. Henceforth we consider policy in the form of a set vis of low
variable and field names.

This paper focuses on checking programs for conformance with given policy. Be-
cause only terminating computations are considered, and because S and S′ act on dis-
joint variables, computations of S|S′ are the same as computations of the sequence S;S′

(and also S′;S). We have arrived at the self-composition technique [7,30]: noninterfer-
ence of S is reduced to an ordinary partial correctness property of S;S′ with respect to
specifications over dashed and undashed copies of program variables.

Partial correctness is undecidable whereas the type-based approach is fast. But effi-
ciency is gained at the cost of conservative abstraction; typical type systems are flow
insensitive and may be very conservative in other ways, e.g., lack of arithmetic sim-
plification. With a complete proof system, and at the cost of interactive proving, any
noninterferent program can be proved so using self-composition. What is really inter-
esting is the potential to use existing automated verification tools to check security of
programs that are beyond the reach of a conventional type-based analysis. There are two
significant obstacles to achieving this potential; overcoming them is the contribution of
the paper.

Obstacles. To see the first obstacle, note first that there is reason to be optimistic about
automation: pre-post specification of policy involves only simple equalities, not full
functional correctness. But Terauchi and Aiken [30] point out that to verify a simple
correctness judgement {x = x′}S;S′{y = y′} requires —in some way or another de-
pending on the verification method— to find an intermediate condition that holds at the
semicolon. Suppose S involves a loop computing a value for y. The intermediate condi-
tion needs to describe the final state of y with sufficient accuracy that after S′ it can be
determined that y = y′. In the worst case this is nothing less than computing strongest
postconditions. The weakest precondition for S′ would do as well but is no easier to
compute without a loop invariant being given. (And similarly for method calls.) This
obstacle will reappear when we consider the second obstacle.

The second obstacle is due to dynamically allocated mutable objects. Note first that
there is little practical motivation, or means, to assign labels to references themselves
since upward flows can create useful low-high aliases and reference (pointer) literals
are not available in most languages. Rather, field names and variables are labeled, as in
Jif [21] and [4,8]. But noninterference needs to be based on a notion of indistinguisha-
bility taking into account that some but not all references are low visible. References to
objects allocated in “high computations” (i.e., influenced by high branching conditions)
must not flow to low variables and fields. References that are low-visible may differ be-
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tween two runs, since the memory allocator may be forced to choose different addresses
due to differing high allocations (unless we make unrealistic assumptions about the al-
locator as in some works). Suppose a state s takes the form s = (h,r) where r is an
assignment to variables as before and h is a partial function from references to objects
(that map field names to values). Indistinguishability of (h,r) and (h′,r′) can be for-
malized in terms of a partial bijective relation on references, interpreted as a renaming
between the visible references in domh and those in domh′ (as in [4,8,22]).

The second obstacle is that self-composition requires a “renamed copy” of the heap
—but objects are anonymous. To join (h,r) and (h′,r′) into a single state, r and r′ are
combined as a disjoint union r�r′ as before. But how can h and h′ be combined into
a single heap? And how can S be transformed to an S′ such that computations of S;S′

correspond to pairs of computations of S? —all in a way that can be expressed using
assertions in a specification language like JML [19]. Our solution adds ghost fields to
every object; these are used in assertions that express the partition of the heap into
dashed and undashed parts as well as a partial bijection between them. Theorem 1
says that our solution is sound and complete (relative to the verification system). The
theorem applies to relational properties in general, not just noninterference. The full
significance of this pertains to data abstraction and is beyond the scope of this paper,
but the importance of relations between arbitrary pairs S and S′ should become apparent
in the following paragraphs.

Theorem 1 says that S is noninterferent just if the corresponding “partial correctness
judgement” (Hoare triple) is valid for S;S′ where S′ is the dashed copy. The point is
to use an off-the-shelf verifier to prove it. But our relations involve the ghost fields
that encode a partial bijection; as usual with auxiliary variables, a proof will only be
possible if the program is judiciously augmented with assignments to these variables.
The assignments are only needed at points where visible objects are allocated: for x :=
new C in the original program S (where C is the name of the object’s class), we need
in S′ to add assignments to fields of the object referenced by x′ to link the two —after
both have been allocated: x := new C;x′ := new C;Mate(x,x′) where Mate abbreviates
the ghost assignments. But consider the following toy example where allocation occurs
in a loop. The policy is that secret does not influence the result, which is an array of
objects each with val field set to x.

Node[] m(int x, int secret) {
Node[] m_result; m_result= new Node[10]; int i= 0;
while (i<10) { m_result[i]= new Node(); m_result[i].val= x; i++; }
return m_result; }

If two copies of the method body are sequentially composed, all the undashed objects
have been allocated before any of the dashed ones are, so they cannot be paired up as
required, at least not without additional reasoning about the postcondition of the first
loop —the first obstacle reappears!

To overcome the first obstacle, Terauchi and Aiken [30] exploit that the sequence
S;S′ has special structure. They give a transformation whereby S′ is interleaved and
partially merged with S so that equalities between undashed variables and their dashed
counterparts are more easily tracked by an automated verifier. In particular, for a loop
while E do S od with guard condition E known to be low, the two copies can be merged
as while E do S;S′ od rather than while E do S od;while E ′ do S′ od. (Example method
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m is shown self-composed in Fig. 3 and transformed in Fig. 2.) There are other opti-
mizations, e.g., commuting independent commands and replacing x := E;x′ := E ′ by
x := E;x′ := x in case E is an integer expression known to be low (and a mating version
for reference types). The transformations depend on prior information and of course
they must be proved sound. The prior information is itself a noninterference property
(e.g., E = E ′ modulo renaming of references, for the loop transformation), but it can
be weaker than the ultimate policy to be checked. The idea is that a type based analy-
sis is used first; if it fails to validate conformance with the desired policy, it may still
determine that some expressions are low and this can be exploited to facilitate the self-
composition technique.

Similar considerations apply to modular reasoning about method calls, for which
thorough investigation is left to future work.

This paper formulates the transformations using relational Hoare logic as advocated
by Benton [9]. The observation is that the contextual information on which many trans-
formations depend (e.g., compiler optimizations) can be expressed as relational proper-
ties, typically partial equivalence relations, that are checked by various static analyses
(including information flow typing). To adapt and extend Benton’s logic from simple
imperative programs to objects requires that renamings be incorporated and additional
rules are needed. Type inference would be performed on the originaal program S, but
the program to be transformed is the self-composed version S;S′, so an intricate embed-
ding is needed to justify use of the transformed program to check security of S. This is
Theorem 2, which is formulated semantically. Development of the requisite proof rules
is left to future work.

Overview. Sect. 2 sketches the language for which our results are formalized, focus-
ing on the model of state. Sect. 3 formalizes relational correctness judgements (“Hoare
quadruples”) and defines some important relations like indistinguishability. Noninter-
ference for command S in context Γ is expressed as the relational correctness judge-
ment Γ |Γ |= S ∼ S :R −−� S where R and S are the precondition and postcondition
expressing the security policy. (Notation adapted from [28,9].)

Sect. 4 gives the main definitions, which use ghost fields and local conditions to
encode a pair of states as a single state, and thereby encode relations as predicates.
Sect. 5 gives the first theorem: a program satisfies a relational correctness judgement
just if the self-composed version satisfies the partial correctness judgement obtained by
combining pairs of initial and final states. That is, Γ |Γ |= S ∼ S :R −−� S is equivalent
to validity of a partial correctness judgement Δ |= {R1} S;S′ {S 1} where context Δ
is the combined state space, also written Γ �Γ ′, that declares both dashed and undashed
copies of the variables. Here R1 and S 1 are predicates on this state space that encode
relations R and S , and S′ is the dashed copy of S.

Sect. 6 illustrates how the encoding of state pairs from Sect. 4 can be expressed
as a formula in a specification language like JML [19] and it reports on encouraging
experiments. Sect. 7 describes rules by which S;S′ can be transformed to a merged form
S∗ under the assumption of some weaker security property Γ |Γ |= S ∼ S :T −−� T that
would be obtained by type inference. The transformation itself is expressed in a form
like Δ |Δ |= S;S′ ∼ S∗ :T −−� T that says the two are equivalent under the assumption.
The second theorem confirms that Δ |= {R1} S∗ {S 1} implies Δ |= {R1} S;S′ {S 1},
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thereby reducing the original security problem, Γ |Γ |= S ∼ S :R −−� S , to verification
of Δ |= {R1} S∗ {S 1}.

Sect. 8 discusses related work and issues in modular specification of the “mating
invariant” in JML and similar specification languages. An online version gives omitted
definitions and proofs.

2 Programs, Semantics, and Partial Correctness Judgements

Our results pertain to languages like Java where objects are instances of named classes
and the class of a reference can be tested (and cast). No arithmetic operations are appli-
cable to references, except for equality test. One key lemma (Lemma 1), is proved by
induction on syntax and thus requires a semantics for commands. The full version of
the paper uses a language similar to that in [3]: a complete program is a class table, i.e.,
closed set of class declarations in which fields and methods can be mutually recursive.
Commands include field update, assignment, control structures and local blocks dy-
namically bound method calls —essentially sequential Java. The main ideas and results
only involve the semantic entities, in particular states and state transformers.

Programs are assumed to be type-correct. A command in context, written Γ 	 S,
denotes a state transformer of type Γ �Γ , i.e., a total function from initial states for
Γ to ⊥-lifted states for Γ . The improper state ⊥ represents divergence and error. This
denotational style of semantics is used primarily in order to support modular reasoning
about method invocations. (The full version of the paper addresses modular, per-method
verification as it is done in tools like ESC/Java2.)

A single syntactic category, “variable names”, is used for field, parameter, and local
variable names, with typical element x. The data types are given by T := int | bool | C
where C ranges over names of declared classes. A value of a class type C is either null
or a reference to an allocated object of type C. Subtyping is the reflexive, transitive
relation ≤ determined by the immediate superclass given in each class declaration.

States have no dangling pointers and every object’s field and every local variable
holds a value compatible with its type. To formalize these conditions and others, it is
convenient to separate the type of an object from the state of its fields. A ref context
is a finite partial function ρ that maps references to class names. The idea is that if
o ∈ domρ then o is allocated and moreover o points to an object of type ρ o. We write
[[T ]]ρ for the set of values of type T in a state where ρ is the ref context. In case T is a
primitive type, [[T ]]ρ is a set of values, independent from ρ . But if T is a class C then
[[C]]ρ is the set containing nil and all the allocated references o ∈ domρ with ρ o ≤ C.

Given context Γ and ref context ρ , a store for Γ in ρ is an assignment r of values to
variables, such if x :T is in Γ then r x is in [[T ]]ρ . Let [[StoΓ ]]ρ be the set of stores for
Γ in ρ . For instance, we write fieldsC for the variable context of declared and inherited
fields of objects of exactly type C. Thus a store in [[Sto(fieldsC)]]ρ represents the state
of a C-object. A heap for ρ is a function that maps each reference o ∈ domρ to an
object of class ρ o, i.e., to an element of [[Sto(fields(ρ o))]]ρ . Thus for h ∈ Heapρ and
o ∈ domρ , the application hox (sometimes written ho.x for clarity) denotes the value
of field x of object o in h. A pre-heap is like a heap but with dangling pointers allowed.
A program state for given context Γ is a triple (ρ ,h,r) containing a ref context, a heap,
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and a store for Γ . The set of states for Γ is written [[Γ ]] —note the absence of parameter
ρ , since the ref context is part of the state. Finally, the meaning [[Γ 	 S]] of a command
S is a (total) function from [[Γ ]] to [[Γ ]]∪{⊥}.

Partial correctness judgements. It is usual for postconditions to be two-state predicates,
i.e., to have some means to refer to the initial state and thereby relate initial and final
values, e.g., “old” expressions in JML or auxiliary variables. We formalize auxiliaries
in terms of indexed families of predicates. Suppose that P and Q are indexed families
of predicates Pτ ⊆ [[Γ ]], Qτ ⊆ [[Γ ]] for some Γ and with τ ranging over some set. Then
define Γ |= {P} S {Q} to mean ∀τ . Γ |= {Pτ} S {Qτ}. Here Γ |= {Pτ} S {Qτ}
means ∀t ∈ [[Γ ]] . Pτ t ∧ [[Γ 	 S]]t �= ⊥ ⇒ Qτ ([[Γ 	 S]]t). In fact our only use of auxil-
iaries is to manipulate pointer renamings encoded in the state.

3 Coupling Relations and Relational Correctness Judgements

In this section we specify noninterference in terms of relational correctness judgements,
where couplings involve bijective renaming of visible objects. Throughout the paper, we
let τ and σ range over finite bijective relations on the (infinite) set of references. For
such a relation we write τ :ρ ↔ ρ ′, and say τ is a typed bijection from ρ to ρ ′, if and
only if domτ ⊆ domρ , rngτ ⊆ domρ ′, and ρ o = ρ ′ o′ for all (o,o′) ∈ τ . Finally, τ is
total, and called a renaming, if domτ = domρ and rngτ = domρ ′. For states we write
τ :s ↔ s′ to abbreviate τ :ρ ↔ ρ ′ where s = (ρ ,h,r) and s′ = (ρ ′,h′,r′). Also (o,o′) ∈ τ
is often written as a curried application τ oo′, that is, we confuse sets with characteristic
functions.

For any Γ and Γ ′, an indexed relation from Γ to Γ ′ is a family, R, indexed on typed
bijections, such that Rτ ⊆ [[Γ ]] × [[Γ ′]] for all τ and moreover if Rτ(ρ ,h,r)(ρ ′,h′,r′)
then τ :ρ ↔ ρ ′. Note that we do not write Rτ ⊆ [[Γ ]]ρ × [[Γ ′]]ρ ′ —we have not defined
[[Γ ]]ρ . The first example is a kind of identity relation that takes into account that pro-
grams are insensitive to renaming, owing to the absence of address arithmetic. Indexed
relations (on states) are usually defined in terms of a hierarchy of relations on simpler
semantic objects —stores and values— and we reflect this in the notation.

Idτ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′, is total) ∧ Idτ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Idτ (Sto(fields(ρ o)))(ho)(h′ o′)
Idτ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . Idτ T (r x)(r′ x)
Idτ T vv′ ⇐⇒ v = v′ for primitive type T
Idτ C vv′ ⇐⇒ (v = nil = v′)∨ τ vv′ for class C

Strictly speaking, it is the function mapping τ to Idτ Γ that is an indexed relation (in this
case, from Γ to Γ ); but we indulge in harmless rearrangement of parameters for clarity.

To understand the third conjunct in the definition of Idτ Γ , recall that fieldsC is the
typing context for the fields declared and inherited in class C, and ρ o is the class
of reference o. So this conjunct uses the instantiation Γ := fields(ρ o) of the relation
Idτ (StoΓ ) for stores. Note that Idτ T ⊆ [[T ]]ρ × [[T ]]ρ ′ and Idτ (StoΓ ) ⊆ [[StoΓ ]]ρ ×
[[StoΓ ]]ρ ′.
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Although Idτ Γ requires τ to be total on the relevant ref contexts, the definitions of
Idτ (StoΓ ) and Idτ T make no such restriction on τ . This is exploited in the definition
of relation Ind and others below which require τ to be from ρ to ρ ′ but not total.

The next relation is the simple form of indistinguishability with respect to a set vis
of low fields and variables, used, e.g., in [4].

Indvis
τ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′) ∧ Indvis

τ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Indvis
τ (Sto(fields(ρ o)))(ho)(h′ o′)

Indvis
τ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . x ∈ vis ⇒ Idτ T (r x)(r′ x)

Note that Indvis
τ Γ differs from Idτ Γ in that Indvis

τ does not require τ to be total. Ref-
erences in domτ or in rngτ are forced to include all those that are visible to the low
observer; this is because the definition of Indvis

τ (StoΓ ) requires the Idτ relation to hold
for all visible variables (and fields), which in turn requires that references in these vari-
ables are related by τ .

Whereas Id and Ind are from Γ to itself, we need similar relations from Γ to the
dashed copy Γ ′. (Recall that fields do not get renamed, only locals.)

Iddτ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′ is total) ∧ Iddτ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Idτ (Sto(fields(ρ o)))(ho)(h′ o′)
Iddτ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . Idτ T (r x)(r′ x′)

Note that relation Id suffices for the heap objects and for values; the only real difference
is that for stores we need to compare r x with r′ x′, i.e., to impose x = x′. Similarly:

Inddvis
τ Γ (ρ ,h,r)(ρ ′,h′,r′) ⇐⇒ (τ :ρ ↔ ρ ′) ∧ Inddvis

τ (StoΓ )r r′

∧ ∀(o,o′) ∈ τ . Indvis
τ (Sto(fields(ρ o)))(ho)(h′ o′)

Inddvis
τ (StoΓ )r r′ ⇐⇒ ∀(x :T ) ∈ Γ . x ∈ vis ⇒ Idτ T (r x)(r′ x′)

For heap objects, the fields are not renamed, so Indvis
τ (Sto(fields(ρ o))) is used here.

Suppose S and S′ are commands over Γ and Γ ′ respectively, and R, S are indexed
relations from Γ to Γ ′. Here Γ ′ can be any variable context, not necessarily the dashed
copy of Γ ; even Γ ′ = Γ is allowed. We define the relational correctness judgement
Γ |Γ ′ |= S ∼ S′ :R −−� S to mean ∀τ . Γ |Γ ′ |= [[Γ 	 S]] ∼ [[Γ ′ 	 S′]] :Rτ −−� Sτ . This
in turn is defined in the following.

Definition 1 (relational correctness judgement). Suppose f is in Γ �Γ , f ′ is in Γ ′ �
Γ ′, both R and S are indexed relations from Γ to Γ ′, and τ is a typed bijection. Define
Γ |Γ ′ |= f ∼ f ′ :Rτ −−� Sτ iff ∀s,s′ . Rτ ss′ ∧ f s �= ⊥ ∧ f ′ s′ �= ⊥ ⇒ Sτ( f s)( f ′ s′).

For the languages of [3,4], one can prove that programs are insensitive to renaming in
the following sense: For all Γ 	 S we have Γ |Γ |= S ∼ S : IdΓ −−� IdΓ .

One might expect to express noninterference for S and policy vis as the judgement
Γ |Γ |= S ∼ S : Indvis −−� Indvis but this does not take into account that newly allocated
objects can exist in the final state. In fact a sensible formulation of policy is Γ |Γ |=
S ∼ S :(∃τ . Indvis

τ ) −−� (∃τ . Indvis
τ ) which is attractive in that it eliminates the need for

top level quantification over τ . But for modular checking of method calls, in particular
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Fig. 1. On the left are two related heaps, encoded as one five-object heap on the right

to reason about the caller’s store after a method call, it is important for the bijection
supporting the final state to be an extension of the initial one. The property shown to
be enforced by a type system in [4] is indeed this slightly stronger but more intricate
property: Γ |Γ |= S ∼ S : Indvis

τ −−� ∃σ ⊇ τ . Indvis
σ for all τ . (Here we write a logical

quantifier but the meaning is a union ∪σ⊇τ Indvis
σ .) That is, our main use of relational

correctness judgements will instantiate Sτ in Def. 1 by Sτ := ∃σ . σ ⊇ τ ∧Rσ . In the
self-composed version to be used by a verifier, the bijection is encoded in auxiliary state
and the condition σ ⊇ τ comes for free because the ghost fields need never be updated
after initialization.

It is convenient to express noninterference in terms of the renamed program. Let
Γ ′ be the dashed copy of Γ and S′ be the dashed copy of S. Then clearly we have
Γ |Γ |= S ∼ S : Indvis −−� Indvis if and only if Γ |Γ ′ |= S ∼ S′ : Inddvis −−� Inddvis.

4 Ghost Mating: Encoding Relations as State Predicates

This section defines the encoding of two states as one. Class Object is assumed to
declare ghost fields dash :bool and mate :Object, so that they are present in all objects.
None of the considered relations or programs should depend on these fields except
through explicit use in the encoding.

Suppose ρ and ρ ′ are disjoint ref contexts, written ρ#ρ ′ (meaning domρ#domρ ′).
Suppose we have typed bijection τ :ρ ↔ ρ ′, not necessarily total, and heaps h ∈ Heapρ ,
h′ ∈ Heapρ ′. We aim to encode a pair h,h′ as a single heap k for ρ�ρ ′. The idea is that,
in k, an object o ∈ domρ will have k o.dash = false whereas an o ∈ domρ ′ will have
k o.dash = true. Moreover, if τ oo′ then we will have k o.mate = o′ and k o′.mate = o.
This arrangement is formalized by conditions on k which can be expressed in formulas
as o.mate �= nil ⇒ o.dash= ¬o.mate.dash∧o.mate.mate = o and o.x �= nil ⇒ o.dash=
o.x.dash for every class type field (x :C) ∈ fields(ρ o), with x �≡ mate. The right side of
Figure 1 depicts a well mated heap. Given disjoint contexts Γ and Γ ′, a well mated state
for Γ �Γ ′ is one where references in variables of Γ are to undashed objects (and Γ ′ to
dashed). This notion is only used in the case that Γ ′ is the dashed copy of Γ .

Definition 2 (well mated state). Given disjoint contexts Γ #Γ ′, state (ρ ,h,r)∈[[Γ �Γ ′)]]
is well mated for Γ and Γ ′ iff (a) h is well mated; (b) r x = nil∨h(r x).dash = false, for
every x in domΓ with Γ x a class type; and (c) r x′ = nil∨h(r x′).dash = true, for every
x′ in domΓ ′ with Γ ′ x′ a class type.
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Note that there is no restriction on primitive values. We have x �≡ mate here because we
assume field names are never reused as variable names.

Suppose that Γ is disjoint from Γ ′. Given a typed bijection τ from ρ to ρ ′, we aim
to combine states, say (ρ ,h,r) ∈ [[Γ ]] and (ρ ′,h′,r′) ∈ [[Γ ′]], into a single state that is
well mated and reflects τ . We cannot assume ρ#ρ ′ —from initial states with disjoint
heaps, running a pair of programs could lead to non-disjoint heaps (since we make no
assumptions about the allocator). Instead, our construction includes a suitable renaming
to make the heaps disjoint.

As a first step, function match is defined as follows. The idea is that for any h ∈
Heapρ , any τ :ρ ↔ ρ ′, and any boolean b, match(h,τ,b) is a pre-heap where o.dash =
b for every o and moreover if o is in the domain of τ then o.mate is a —dangling!—
reference in accord with τ .

Now we define the combined state, joinτ(ρ ,h,r)(ρ ′,h′,r′), by the following steps.
First, choose ρ̂ and τ̂ such that ρ̂#ρ and τ̂ is a renaming from ρ ′ to ρ̂ . Let ĥ be the
renaming of h′ by τ̂ and mutatis mutandis for r̂′ and r′. Let h0 = match(h,(τ; τ̂), false)
and also ĥ0 = match(ĥ,(τ̂−1;τ−1),true), writing “;” for relational composition. Finally,
define joinτ(ρ ,h,r)(ρ ′,h′,r′) = ((ρ�ρ̂), h0�ĥ0, r�r̂)

Note that (ρ ,h0,r) is not quite an element of [[Γ ]], because h0 is only a pre-heap due
to the dangling mate fields. For the same reason, (ρ̂ , ĥ, r̂) is almost but not quite an
element of [[Γ ′]]. What matters is that if τ is a typed bijection from ρ to ρ ′ and Γ #Γ ′

then joinτ(ρ ,h,r)(ρ ′,h′,r′) is in [[Γ �Γ ′]] and is well mated.
To partition a well mated heap into two, we first define dsh h = {o ∈ domh |

ho.dash = true} and undsh h = {o ∈ domh | ho.dash = false}. Roughly speaking,
h�(dshh), i.e., h with its domain restricted to include only dashed objects, is in
Heap(ρ�(dshh)). But in fact h�(dshh) may have dangling references in mate fields,
so we define a function dematch that sets all mate fields to nil.

For splitting to invert joining we cannot just discard mates. If k in Heapρ is well
mated then we obtain typed bijection τ :(ρ�(undshh)) ↔ (ρ�(dshh)) by

τ oo′ ⇐⇒ k o.dash = false∧ k o.mate = o′ (1)

Splitting and joining are mutually inverse, modulo renaming. The intricate details
are omitted in this extended abstract. One consequence is that every well mated state
in [[Γ �Γ ′]] is equal, up to renaming, to one in the range of join. Even more, a well
mated state that encodes via (1) a particular bijection τ is in the range of joinτ . Thus,
for a relation that is insensitive to renaming, we can give a pointwise definition of a
corresponding predicate.

Definition 3 (coupling relation to mated predicate). Given an indexed relation R
from Γ to Γ ′ with Γ #Γ ′, define a predicate R1

τ ⊆ [[Γ �Γ ′]] by

R1
τ t ⇐⇒ ∃s,s′ . t = joinτ ss′ ∧ Rτ ss′

That is, t is in R1
τ iff t is well mated for τ and splits as some s,s′ with Rτ ss′.

As an example, if a state with heap h satisfies (Indvis
τ )1 then for any o with ho.mate �=

nil the visible primitive fields of ho are equal to those of ho.mate and the visible class
fields of ho are mated. There is no constraints for field names not in vis.
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5 Hoare Quadruples Reduced to Triples

This section shows that a relational correctness judgement for some coupling relation
is equivalent to a partial correctness judgement for the corresponding predicate and the
self-composed program. To begin, it is convenient to define f � f ′ which applies state
transformer f and then f ′. Suppose Γ #Γ ′, f is in Γ �Γ , and f ′ is in Γ ′ �Γ ′. Define
f � f ′ to be an element of Γ �Γ ′ �Γ �Γ ′ as follows, where we partition the store as r,r′

in accord with Γ ,Γ ′.

( f � f ′)(ρ ,h,r�r′) = let (ρ0,h0,r0) = f (ρ ,h,r) in
let (ρ1,h1,r1) = f ′(ρ0,h0,r′) in (ρ1,h1,r0�r1)

Our meta-notation “let − in ” is ⊥-strict, so f � f ′ returns ⊥ if either f or f ′ does.
This notion is useful in case f acts only on the undashed part of the heap and f ′ on the

dashed part, but the definition is more general. Note also that the domain Γ �Γ ′ �Γ �Γ ′

includes state transformers that in no way respect the dash/mate structure. In particular,
well matedness of s does not imply the same for ( f � f ′)s. But we have the following.

Lemma 1. If Γ 	 S, Γ ′ 	 S′, and Γ #Γ ′ then ([[Γ 	 S]]� [[Γ ′ 	 S′]])s = [[Γ �Γ ′ 	 S;S′]]s
for any well mated s. (Recall that we assume dash and mate do not occur in S or S′.)

A state transformer f is independent from mate,dash provided it does not update these
fields on initially existing objects or newly allocated objects and moreover s�dm =
t�dm ⇒ ( f s)�dm = ( f t)�dm, where we abbreviate dm for dash,mate and � removes
elements from a function’s domain.

Lemma 2. Suppose Γ #Γ ′, f is in Γ �Γ , and f ′ is in Γ ′ �Γ ′. (a) For any τ,u,s,s′,
if u�dm = (( f � f ′)(joinτ ss′))�dm and u = joinσ t t ′ for some σ ,t, t ′ then t = f s and
t ′ = f ′ s′. (b) If f , f ′ are independent from mate,dash then (( f � f ′)(joinτ ss′))�dm is
equivalent to joinσ ( f s)( f ′ s′) for some σ , up to renaming (i.e., related by Id).

To state the precise correspondence, in terms of states that include the dash and mate
fields, we need to mask them as follows. Define R̂1

τ by

R̂1
τ t ⇐⇒ ∃u . u�dm = t�dm∧R1

τ u

Theorem 1. Suppose Γ #Γ ′ and consider commands in context Γ 	 S and Γ ′ 	 S′. Sup-
pose R and S are indexed relations from Γ to Γ ′ that are insensitive to renaming. Then
for any τ we have

Γ |Γ ′ |= S ∼ S′ :Rτ −−� ∃σ ⊇ τ . Sσ iff Γ �Γ ′ |= {R1
τ } S;S′ {∃σ . σ ⊇ τ ∧ Ŝ 1

σ }

In particular, noninterference for a command S and policy vis is, by definition, the prop-
erty that Γ |Γ |= Rτ ∼ S :S −−� ∃σ . σ ⊇ τ ∧ R̂σ (for all τ) where R is Indvis

τ Γ . This is
the same as the renamed version Γ |Γ ′ |= Rτ ∼ S :S′ −−� ∃σ . σ ⊇ τ ∧ R̂σ where R is
Inddvis

τ Γ . The Theorem reduces this to the triple Γ �Γ ′ |= {R1
τ } S;S′ {∃σ . σ ⊇ τ ∧R̂1

σ}.
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6 Experiments: Expressing Well Mating and Relations as
Assertions

Sections 4 and 5 formulate the technique in semantic terms. A key feature of our en-
coding is that it requires no special instrumentation of program semantics but rather is
expressed by first order conditions over auxiliary state. One can think of a number of
variations on encoding; we describe one convenient pattern.

To express the self composed program using JML, a fresh method with two copies
of the parameters is used. For non-static methods, the target object (this) needs to be
made an explicit parameter so there can be two copies. Two copies of the result are
needed; our encoding uses fields for this purpose. As a simple example, consider this
method where the policy is that secret does not influence the result.

static int p(int x, int y, int secret) {
x= secret; if (secret % 2 == 1) y=x * secret; else y= secret * secret;
return y - secret * x; }

For the self composed version, two fields and a new method Pair p are added to the
class, as follows (using $ for dash which is not legal in Java identifiers).

int p_result, p_result$; // new fields to hold the pair of results of p

/*@ requires x==x$ && y==y$;
@ modifies p_result, p_result$;
@ ensures p_result == p_result$;
@*/

void Pair_p(int x, int y, int secret, int x$, int y$, int secret$) {
x= secret; if (secret % 2 == 1) y=x * secret; else y= secret * secret;
p_result= y - secret * x;
x$= secret$; if(secret$ % 2==1) y$=x$*secret$;else y$=secret$*secret$;
p_result$= y$ - secret$ * x$; }

This is verified by ESC/Java2 (version 2.0a9) in 0.057sec; insecure versions are quickly
rejected. Similar results for this and the other experiments were found using the Spec#
tool. Note that ESC/Java2 is deliberately unsound in some ways, though not in ways
that appear relevant to the present experiments.

Another experiment is to adapt the preceding method p by using a wrapper object
for the result. For experiment we add the ghost fields explicitly where needed.

class Node {
public int val;

/*@ ghost public Node mate; */
/*@ ghost public boolean dash; */ }

The variation using such a wrapper object verifies without difficulty, since the requisite
ghost updates can be added following the second allocation.

As discussed in Sect. 1 and justified in Sect. 7 to follow, loops are most easily
checked by applying an interleaving transformation for allocations that occur under low
guards. For method m in Sect. 1 the self-composed version appears in Figure 2, where
the transformation from while E do S od;while E ′ do S′ od to while E do S;S′ od
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Node[] m_result, m_result$; // new fields to hold the pair of results of m

/*@ requires x==x$; // policy
// ordinary preconditions
@ ensures m_result != null && m_result$ != null;
@ ensures m_result.length==10 && m_result$.length==10;
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result[j]!=null);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result$[j]!=null);
// mating and policy
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result[j].mate==m_result$[j]);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result$[j].mate==m_result[j]);
@ ensures (\forall int j; 0<=j&&j<10 ==> !m_result[j].dash);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result$[j].dash);
@ ensures (\forall int j; 0<=j&&j<10 ==> m_result[j].val==m_result$[j].val);
@ assignable m_result, m_result$, m_result[*], m_result$[*];

*/
void Pair_m(int x, int secret, int x$, int secret$) {

m_result= new Node[10]; m_result$= new Node[10];
// **mating assignments for the arrays would go here**
int i= 0;
//@ maintaining ...
while (i<10) {

m_result[i]= new Node(); m_result$[i]= new Node();
//@ set m_result[i].dash= false; set m_result$[i].dash= true;
//@ set m_result[i].mate= m_result$[i]; set m_result$[i].mate= m_result[i];
m_result[i].val= x; m_result$[i].val= m_result[i].val;
i++;

} }

Fig. 2. Self-composed and transformed method m from Sect. 1, with JML annotation

has been applied. The self-composed version needs to be annotated with assignments
to the ghost fields (written as JML comments with keyword set), at the point where
the dashed copy has been allocated and is low-visible. Here we do not mate the arrays
themselves, since JML doesn’t allow ghost fields to be added to arrays, but we do mate
their contents. This example verifies in 0.425sec (using the -loopSafe option for sound-
ness) with the elipses replaced by an obvious invariant derived from the postcondition
by a standard heuristic (replace constant 10 by variable i).

To illustrate that the transformation is not necessary in general, Fig. 3 shows the
running example self-composed but not transformed. The mating assignments are all
in the second loop body and this version verifies in 0.529sec. It works because the
objects created by the first loop are easily referenced since they are in an array. But
whereas the loop invariants needed for Fig. 2 are obtained from the postcondition by
simply replacing constant 10 by index variable i, the version in Fig. 3 requires additional
invariants (the only ones shown) expressing the absence of aliasing since the allocations
are separated in the code. If instead of an array one considers a linked list or other linked
structure, it is more difficult to state such invariants.

7 Transforming the Self-composed Command

Terauchi and Aiken propose an interleaving transformation like the one used in the
preceding experiment and described in Sect. 1. They show it sound, but in the setting
of a simpler language without objects. It depends on conservative analysis that could
be obtained by type inference. Their formulation does not suggest an obvious way to
extend the results to richer language features or policies. This section sketches how to
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// Specification same as in previous version...
void Pair_m(int x, int secret, int x$, int secret$) {

m_result= new Node[10]; m_result$= new Node[10];
int i= 0;
//@ maintaining ...(\forall int j,k; 0<=j&&j<k&&k<i ==> m_result[j]!=m_result[k]);
while (i<10) {

m_result[i]= new Node();
m_result[i].val= x;
i++;

}
i= 0;
//@ maintaining ...(\forall int j,k; 0<=j&&j<k&&k<10 ==> m_result[j]!=m_result[k]);
//@ maintaining (\forall int j,k; 0<=j&&j<10&&0<=k&&k<i ==> m_result[j]!=m_result$[k]);
while (i<10) {

m_result$[i]= new Node();
m_result$[i].val= x$;
//@ set m_result[i].dash= false; set m_result$[i].dash= true;
//@ set m_result[i].mate= m_result$[i]; set m_result$[i].mate= m_result[i];
i++;

} }

Fig. 3. Self-composed method m, not transformed

use relational correctness judgements to formulate the interface to the analysis as well
as the transformations themselves. Indexing is elided for clarity.

Suppose the goal is to check the simple noninterference property Γ |Γ |= S ∼
S : Indvis −−� Indvis. After renaming the second copy, Theorem 1 tells us an equivalent
partial correctness judgement Δ |= {(Inddvis)1} S;S′ {(Inddvis)1} where Δ is Γ �Γ ′. In-
stead of directly verifying this, we want S∗ such that Δ |= {(Inddvis)1} S∗ {(Inddvis)1}
implies Δ |= {(Inddvis)1} S;S′ {(Inddvis)1}. The requisite transformation can be ex-
pressed by relational correctness judgements: the relations express both the notion of
equivalence (e.g., modulo renaming) and the conditions under which the transformation
is valid (e.g., known initial values, or final values that aren’t used). Here is an example
judgement that transforms x := y by renaming and exploiting a precondition:

x,y : int |x′,y′ : int |= x := y ∼ x′ := 0 :(y = 0 ∧ y = y′) −−� (x = x′ ∧ y = y′)

The situation of interest is complicated by the fact that the program S;S′ to be trans-
formed already acts on two copies of Γ . The rule we need for loop transformation
includes an antecedent of the form Δ |Δ |= E ∼ E ′ :R −−� . . . where R expresses that
the dashed and undashed copies of E have the same value.

To establish the antecedents, the idea of Terauchi and Aiken is to use type inference
to find a less precise property of S, namely Γ |Γ |= S ∼ S : IndV −−� IndV for some
V ⊆ vis. Type inference would yields this property for all constituent parts including
the loop guard E (if it is low; otherwise no transformation is needed). This is now
lifted to Δ by a construction applicable to any context Γ : the cartesian square of a
predicate, intersected with the identity. For any P ⊆ [[Γ ]], define P ⊗P ⊆ [[Γ ]]× [[Γ ]]
by (P ⊗P)ss′ ⇐⇒ s = s′ ∧P s.

Taking R to be InddV ⊗ InddV , the analysis-based transformations yield Δ |Δ |=
S;S′ ∼ S∗ :R −−� R. Now the desired judgement Δ |= {(Inddvis)1} S;S′ {(Inddvis)1}
(which itself encodes a relation!) is lifted to the level of relations in the squared form
Δ |Δ |= S;S′ ∼ S;S′ :(Inddvis)1 ⊗ (Inddvis)1 −−� (Inddvis)1 ⊗ (Inddvis)1. This can now
be composed with the transformation Δ |Δ |= S;S′ ∼ S∗ :R −−� R by general transi-
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tivity (that is: Γ |Γ |= S0 ∼ S1:R0 −−� S 0 and Γ |Γ |= S1 ∼ S2:R1 −−� S 1 imply
Γ |Γ |= S0 ∼ S2:(R0;R1) −−� (S 0;S 1)). The outcome is a judgement involving
composed relations like (InddV ⊗ InddV );((Inddvis)1 ⊗ (Inddvis)1). For this process to
be useful, the composed relations must boil down to the original noninterference prop-
erty, which they do owing to a general result about the relational logic.

Theorem 2. Let Δ abbreviate Γ �Γ ′. Suppose Δ |Δ |= S ∼ S∗ :R −−� S for some S
and S∗, where R and S are symmetric. Let P and Q be predicates on Δ such that
R;(P ⊗P) = P ⊗P and P ⊗P = (P ⊗P);R (and mutatis mutandis for Q).
Then Δ |= {P} S∗ {Q} implies Δ |= {P} S {Q}.

This can be instantiated with S := (S;S′) with S′ being a renamed copy of S; moreover
P and Q encode the desired noninterference property based on Indvis and R,S en-
code the result of type based analysis, e.g., P is Inddvis ⊗ Inddvis, R is InddV ⊗ InddV

and Q,S correspond to P,R but with extended bijections as usual. In the situation
described above with V ⊆ vis we have Inddvis

τ ⊆ InddV
τ because larger vis is more re-

strictive. This yields the requisite absorption properties, e.g., R;(P ⊗P) = P ⊗P .
So the Theorem justifies the use of transformations that are sound for InddV to prove
noninterference with respect to vis.

8 Discussion

We defined a novel encoding to support self-composition in programs acting on the
heap. The encoding is expressed in terms of auxiliary state, specifically ghost fields
which are available in specification languages like JML. Theorem 1 says that a rela-
tional property is equivalent to a corresponding partial correctness property of a self-
composed program. The notion of relational property is general enough to encompass
rich declassification policies and also to be used to reason about program transfor-
mations. Theorem 2 justifies the use of transformations like those of Aiken and Ter-
auchi [30] which are needed to make the self-composed version amenable to off-the-
shelf program verifiers (automatic or interactive), in particular to bring allocations to-
gether by merging loops. Preliminary experiments indicate that the encoding and me-
chanical transformations work smoothly with extant tools.

For modular verification of commands with method calls, it is desirable to transform
the program so that a duplicated pair of calls can be brought together and even replaced
by a single invocation of a suitably transformed version of the method (like pair_m in
the example). The transformed version can be proved to satisfy its specification using
verification, if necessary, or by security type checking.

The fact that type checking can be used to justify transformations does not mean that
the verification technique achieves nothing beyond what can be type checked. Trans-
formation is not always necessary, as illustrated by Fig. 3; similarly, method calls need
not be transformed if adequate functional specifications are available. The properties
needed to justify transformations can themselves be proved by verification instead of
type checking.
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Related work. Self-composition is essentially an application of Reynolds’ method for
proving data refinements [25,13], but data refinement with general heaps has only re-
cently been studied [3] and not yet using this method. Barthe, D’Argenio, and Rezk [7]
develop a general theory of self-composition. They sketch a treatment of the heap using
separation logic semantics; indistinguishability of abstract lists is used to avoid the is-
sue of pointer renaming. Terauchi and Aiken [30] note that self-composition generalizes
to general relational properties (of a single program, in their case). They introduce the
transformations we studied in this paper and report good experimental results for de-
terministic simple imperative programs using the BLAST tool [17]. Correctness of the
transformations is proved under reasonable assumptions typical of type systems [30].
But their formulation seems rather specific and it is unclear how to extend it to richer
semantics, e.g., where equality may only be up to renaming.

Benton [9] develops relational Hoare logic for a deterministic imperative language
and applies it to analysis-based compiler optimizations. Yang [32] develops a relational
Separation Logic [26]. The secure flow logic of Amtoft and Banerjee [2] can be seen as
a relational Hoare logic for the special case of noninterference; it is extended to heaps
in [1] and applied to declassification in [5]. The focus of Amtoft et al. is automated
static analysis; an abstract interpretation for the heap is presented in “logical form”.

Darvas, Hähnle, and Sands [11] use the KeY tool for interactive verification of nonin-
terference. It uses a dynamic logic for Java, which is more expressive than ordinary par-
tial correctness assertions, allowing in particular existential quantification over weakest-
precondition statements. For nondeterministic S, the self-composed version S;S′ does
not capture relational properties, but they can be captured using the conjugate predi-
cate transformer ¬wlp¬ [16]. This suggests it would be interesting to explore the use of
dynamic logic for relational properties of nondeterministic programs.

Dufay, Felty, and Matwin [15] use the self-composition technique to check noninter-
ference for data mining algorithms implemented in Java. They use the Krakatoa tool,
based on the Coq theorem prover and using JML [19]. They extend JML with special
notations to refer to the two copies of program state and extend Krakatoa to gener-
ate special verification conditions. The paper does not give much detail about the heap
encoding. To prove that noninterference is enforced by their security type inference
system for an ML-like language, Pottier and Simonet [24] extend the language with a
pairing construct and semantics that encodes two runs of a program as one.

Future work. Although our small experiments worked without difficulty, there is an
impediment to scaling up the idea. The mating condition appears in preconditions and
postconditions of every method, so effectively it is an object invariant. But in general it
needs to be fully ramified to all fields of all reachable objects. This is tricky because in
languages like JML specifications must respect the visibility rules of the language and
therefore cannot refer to “all” fields. One possibility is to define the mate predicate as
a pure method, overridden in each class—it constrains the fields visible in that class,
by invoking mate on class type fields and invoking super.mate for inherited ones.
Care is needed, owing to cycles in the heap; moreover reasoning about pure methods
in specifications is not well supported in current verifiers [12]. Another approach is
to formulate mating in a decentralized way using explicit object invariants, which are a
topic of active research on modular reasoning [20]. The mating invariant is incompatible
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with ownership-based invariants (or model fields) but it is compatible with friendship-
based invariants [23]; friendship is slated to be added to Spec# and is available as an
undocumented feature in the tool of Cees Pierik (www.cs.uu.nl/groups/IS/vft/).

Theorem 2 characterizes the useful transformations and some examples have been
mentioned, but it remains to develop a full set of transformations. Benton’s proof system
could be extended to incorporate the heap and also method calls, and syntax added to
manipulate the embeddings. The idea is to derive specialized transformations like those
needed for self-composition from very powerful general rules that can be formulated in
a relational setting.

Self-composition generalizes to simulations for data abstraction. In particular, we
plan to investigate use of the encoding for establishing the antecedent in the represen-
tation independence property [3].

Acknowledgement. Thanks to Dustin Long for help with the ESC/Java experiments.
Thanks to Dustin and to Mike Barnett for adapting the Java experiments to Spec# and
trying them with the Boogie verifier. Insightful comments from reviewers significantly
improved the presentation.
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