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Abstract

In this work, we study the credit as-

signment problem in reward augmented

maximum likelihood (RAML) learning,

and establish a theoretical equivalence

between the token-level counterpart of

RAML and the entropy regularized rein-

forcement learning. Inspired by the con-

nection, we propose two sequence pre-

diction algorithms, one extending RAML

with fine-grained credit assignment and

the other improving Actor-Critic with a

systematic entropy regularization. On two

benchmark datasets, we show the pro-

posed algorithms outperform RAML and

Actor-Critic respectively, providing new

alternatives to sequence prediction.

1 Introduction

Modeling and predicting discrete sequences is the

central problem to many natural language process-

ing tasks. In the last few years, the adaption of re-

current neural networks (RNNs) and the sequence-

to-sequence model (seq2seq) (Sutskever et al.,

2014; Bahdanau et al., 2014) has led to a wide

range of successes in conditional sequence pre-

diction, including machine translation (Sutskever

et al., 2014; Bahdanau et al., 2014), automatic

summarization (Rush et al., 2015), image cap-

tioning (Karpathy and Fei-Fei, 2015; Vinyals

et al., 2015; Xu et al., 2015) and speech recogni-

tion (Chan et al., 2016).

Despite the distinct evaluation metrics for the

aforementioned tasks, the standard training algo-

rithm has been the same for all of them. Specif-

ically, the algorithm is based on maximum likeli-

hood estimation (MLE), which maximizes the log-

∗ Equal contribution.

likelihood of the “ground-truth” sequences empir-

ically observed.1

While largely effective, the MLE algorithm has

two obvious weaknesses. Firstly, the MLE train-

ing ignores the information of the task specific

metric. As a result, the potentially large discrep-

ancy between the log-likelihood during training

and the task evaluation metric at test time can lead

to a suboptimal solution. Secondly, MLE can suf-

fer from the exposure bias, which refers to the

phenomenon that the model is never exposed to

its own failures during training, and thus cannot

recover from an error at test time. Fundamen-

tally, this issue roots from the difficulty in statisti-

cally modeling the exponentially large space of se-

quences, where most combinations cannot be cov-

ered by the observed data.

To tackle these two weaknesses, there have been

various efforts recently, which we summarize into

two broad categories:

• A widely explored idea is to directly opti-

mize the task metric for sequences produced by

the model, with the specific approaches rang-

ing from minimum risk training (MRT) (Shen

et al., 2015) and learning as search optimization

(LaSO) (Daumé III and Marcu, 2005; Wise-

man and Rush, 2016) to reinforcement learn-

ing (RL) (Ranzato et al., 2015; Bahdanau et al.,

2016). In spite of the technical differences,

the key component to make these training al-

gorithms practically efficient is often a delicate

credit assignment scheme, which transforms

the sequence-level signal into dedicated smaller

units (e.g., token-level or chunk-level), and al-

locates them to specific decisions, allowing for

efficient optimization with a much lower vari-

ance. For instance, the beam search optimiza-

1In this work, we use the terms “ground-truth” and “refer-
ence” to refer to the empirical observations interchangeably.
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tion (BSO) (Wiseman and Rush, 2016) utilizes

the position of margin violations to produce sig-

nals to the specific chunks, while the actor-critic

(AC) algorithm (Bahdanau et al., 2016) trains a

critic to enable token-level signals.

• Another alternative idea is to construct a task

metric dependent target distribution, and train

the model to match this task-specific target in-

stead of the empirical data distribution. As a

typical example, the reward augmented maxi-

mum likelihood (RAML) (Norouzi et al., 2016)

defines the target distribution as the exponen-

tiated pay-off (sequence-level reward) distribu-

tion. This way, RAML not only can incorporate

the task metric information into training, but it

can also alleviate the exposure bias by expos-

ing imperfect outputs to the model. However,

RAML only works on the sequence-level train-

ing signal.

In this work, we are intrigued by the question

whether it is possible to incorporate the idea of

fine-grained credit assignment into RAML. More

specifically, inspired by the token-level signal used

in AC, we aim to find the token-level counter-

part of the sequence-level RAML, i.e., defining

a token-level target distribution for each auto-

regressive conditional factor to match. Motived by

the question, we first formally define the desider-

ata the token-level counterpart needs to satisfy and

derive the corresponding solution (§2). Then, we

establish a theoretical connection between the de-

rived token-level RAML and entropy regularized

RL (§3). Motivated by this connection, we pro-

pose two algorithms for neural sequence predic-

tion, where one is the token-level extension to

RAML, and the other a RAML-inspired improve-

ment to the AC (§4). We empirically evaluate the

two proposed algorithms, and show different lev-

els of improvement over the corresponding base-

line. We further study the importance of vari-

ous techniques used in our experiments, providing

practical suggestions to readers (§6).

2 Token-level Equivalence of RAML

We first introduce the notations used throughout

the paper. Firstly, capital letters will denote ran-

dom variables and lower-case letters are the val-

ues to take. As we mainly focus on conditional

sequence prediction, we use x for the conditional

input, and y for the target sequence. With y denot-

ing a sequence, y
j
i then denotes the subsequence

from position i to j inclusively, while yt denotes

the single value at position t. Also, we use |y| to

indicate the length of the sequence. To emphasize

the ground-truth data used for training, we add su-

perscript ∗ to the input and target, i.e., x∗ and y∗.

In addition, we use Y to denote the set of all pos-

sible sequences with one and only one eos symbol

at the end, andW to denote the set of all possible

symbols in a position. Finally, we assume length

of sequences in Y is bounded by T .

2.1 Background: RAML

As discussed in §1, given a ground-truth pair

(x∗,y∗), RAML defines the target distribution us-

ing the exponentiated pay-off of sequences, i.e.,

PR(y | x∗,y∗) =
exp (R(y;y∗)/τ)

∑

y′∈Y exp (R(y′;y∗)/τ)
, (1)

where R(y;y∗) is the sequence-level reward, such

as BLEU score, and τ is the temperature hyper-

parameter controlling the sharpness. With the defi-

nition, the RAML algorithm simply minimizes the

cross entropy (CE) between the target distribution

and the model distribution Pθ(Y | x
∗), i.e.,

min
θ

CE
(

PR(Y | x∗,y∗)‖Pθ(Y | x∗)
)

. (2)

Note that, this is quite similar to the MLE training,

except that the target distribution is different. With

the particular choice of target distribution, RAML

not only makes sure the ground-truth reference re-

mains the mode, but also allows the model to ex-

plore sequences that are not exactly the same as

the reference but have relatively high rewards.

Compared to algorithms trying to directly opti-

mize task metric, RAML avoids the difficulty of

tracking and sampling from the model distribution

that is consistently changing. Hence, RAML en-

joys a much more stable optimization without the

need of pretraining. However, in order to opti-

mize the RAML objective (Eqn. (2)), one needs

to sample from the exponentiated pay-off distribu-

tion, which is quite challenging in practice. Thus,

importance sampling is often used (Norouzi et al.,

2016; Ma et al., 2017). We leave the details of the

practical implementation to Appendix B.1.

2.2 Token-level Target Distribution

Despite the appealing properties, RAML only op-

erates on the sequence-level reward. As a result,

the reward gap between any two sequences cannot

be attributed to the responsible decisions precisely,
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which often leads to a low sample efficiency. Ide-

ally, since we rely on the auto-regressive factor-

ization Pθ(y | x
∗) =

∏|y|
t=1

Pθ(yt | y
t−1

1
,x∗),

the optimization would be much more efficient if

we have the target distribution for each token-level

factor Pθ(Yt | y
t−1

1
,x∗) to match. Conceptually,

this is exactly how the AC algorithm improves

upon the vanilla sequence-level REINFORCE al-

gorithm (Ranzato et al., 2015).

With this idea in mind, we set out to find such

a token-level target. Firstly, we assume the token-

level target shares the form of a Boltzmann distri-

bution but parameterized by some unknown nega-

tive energy function QR, i.e.,2

PQR
(yt | y

t−1
1 ,y∗) =

exp
(

QR(yt−1
1 , yt;y

∗)/τ
)

∑

w∈W exp
(

QR(yt−1
1 , w;y∗)/τ

) .

(3)

Intuitively, QR(y
t−1

1
, w;y∗) measures how much

future pay-off one can expect if w is generated,

given the current status yt−1

1
and the reference y∗.

This quantity highly resembles the action-value

function (Q-function) in reinforcement learning.

As we will show later, it is indeed the case.

Before we state the desiderata for QR, we need

to extend the definition of R in order to evaluate

the goodness of an unfinished partial prediction,

i.e., sequences without an eos suffix. Let Y− be

the set of unfinished sequences, following Bah-

danau et al. (2016), we define the pay-off function

R for a partial sequence ŷ ∈ Y−, |ŷ| < T as

R(ŷ;y∗) = R(ŷ + eos;y∗), (4)

where the + indicates string concatenation.

With the extension, we are ready to state two

requirements for QR:

1. Marginal match: For PQR
to be the token-level

equivalence of PR, the sequence-level marginal

distribution induced by PQR
must match PR,

i.e., for any y ∈ Y ,

|y|
∏

t=1

PQR
(yt | y

t−1
1 ) = PR(y). (5)

Note that there are infinitely many QR’s satisfy-

ing Eqn. (5), because adding any constant value

to QR does not change the Boltzmann distribu-

tion, known as shift-invariance w.r.t. the energy.

2To avoid clutter, the conditioning on x∗ will be omitted
in the sequel, assuming it’s clear from the context.

2. Terminal condition: Secondly, let’s consider

the value of QR when emitting an eos symbol to

immediately terminate the generation. As men-

tioned earlier, QR measures the expected future

pay-off. Since the emission of eos ends the gen-

eration, the future pay-off can only come from

the immediate increase of the pay-off. Thus, we

require QR to be the incremental pay-off when

producing eos, i.e.

QR(ŷ,eos;y∗) = R(ŷ + eos;y∗)−R(ŷ;y∗), (6)

for any ŷ ∈ Y−. Since Eqn. (6) enforces the

absolute of QR at a point, it also solves the am-

biguity caused by the shift-invariance property.

Based on the two requirements, we can derive the

form QR, which is summarized by Proposition 1.

Proposition 1. PQR
and QR satisfy requirements

(5) and (6) if and only if for any ground-truth pair

(x∗,y∗) and any sequence prediction y ∈ Y ,

QR(yt−1
1 , yt;y

∗) = R(yt
1;y

∗)−R(yt−1
1 ;y∗)

+ τ log
∑

w∈W

exp
(

QR(yt
1, w;y∗)/τ

)

, (7)

when t < |y|, and otherwise, i.e., when t = |y|

QR(yt−1
1 , yt;y

∗) = R(yt
1;y

∗)−R(yt−1
1 ;y∗). (8)

Proof. See Appendix A.1.

Note that, instead of giving an explicit form for

the token-level target distribution, Proposition 1

only provides an equivalent condition in the form

of an implicit recursion. Thus, we haven’t ob-

tained a practical algorithm yet. However, as we

will discuss next, the recursion has a deep connec-

tion to entropy regularized RL, which ultimately

inspires our proposed algorithms.

3 Connection to Entropy-regularized RL

Before we dive into the connection, we first give

a brief review of the entropy-regularized RL. For

an in-depth treatment, we refer readers to (Ziebart,

2010; Schulman et al., 2017).

3.1 Background: Entropy-regularized RL

Following the standard convention of RL, we de-

note a Markov decision process (MDP) by a tu-

pleM = (S,A, ps, r, γ), where S,A, ps, r, γ are

the state space, action space, transition probabil-

ity, reward function and discounting factor respec-

tively.3

3In sequence prediction, we are only interested in the pe-
riodic (finite horizon) case.
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Based on the notation, the goal of entropy-

regularized RL augments is to learn a policy π(at |
st) which maximizes the discounted expected fu-

ture return and causal entropy (Ziebart, 2010), i.e.,

max
π

∑

t

E
st∼ρs,at∼π(·|st)

γt−1[r(st, at) + αH(π(· | st))],

where H denotes the entropy and α is a hyper-

parameter controlling the relative importance be-

tween the reward and the entropy. Intuitively,

compared to standard RL, the extra entropy term

encourages exploration and promotes multi-modal

behaviors. Such properties are highly favorable in

a complex environment.

Given an entropy-regularized MDP, for any

fixed policy π, the state-value function V π(s) and

the action-value function Qπ can be defined as

V π(s) = E
a∼π(·|s)

[Qπ(s, a)] + αH(π(· | s)),

Qπ(s, a) = r(s, a) + E
s′∼ρs

[γV π(s′)].
(9)

With the definitions above, it can further be

proved (Ziebart, 2010; Schulman et al., 2017) that

the optimal state-value function V ∗, the action-

value function Q∗ and the corresponding optimal

policy π∗ satisfy the following equations

V ∗(s) = α log
∑

a∈A

exp
(

Q∗(s, a)/α
)

, (10)

Q∗(s, a) = r(s, a) + γ E
s′∼ρs

[V ∗(s′)], (11)

π∗(a | s) =
exp (Q∗(s, a)/α)

∑

a′∈A exp (Q∗(s, a′)/α)
. (12)

Here, Eqn. (10) and (11) are essentially the

entropy-regularized counterparts of the optimal

Bellman equations in standard RL. Following pre-

vious literature, we will refer to Eqn. (10) and (11)

as the optimal soft Bellman equations, and the V ∗

and Q∗ as optimal soft value functions.

3.2 An RL Equivalence of the Token-level

RAML

To reveal the connection, it is convenient to define

the incremental pay-off

r(yt−1
1 , yt;y

∗) = R(yt
1;y

∗)−R(yt−1
1 ;y∗), (13)

and the last term of Eqn. (7) as

VR(yt
1;y

∗) = τ log
∑

w∈W

exp
(

QR(yt
1, w;y∗)/τ

)

(14)

Substituting the two definitions into Eqn. (7), the

recursion simplifies as

QR(yt−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗)+VR(yt
1;y

∗). (15)

Now, it is easy to see that the Eqn. (14) and (15),

which are derived from the token-level RAML,

highly resemble the optimal soft Bellman equa-

tions (10) and (11) in entropy-regularized RL. The

following Corollary formalizes the connection.

Corollary 1. For any ground-truth pair (x∗,y∗),
the recursion specified by Eqn. (13), (14) and (15)

is equivalent to the optimal soft Bellman equation

of a “deterministic” MDP in entropy-regularized

reinforcement learning, denoted asMR, where

• the state space S corresponds to Y−,

• the action space A corresponds toW ,

• the transition probability ρs is a deterministic

process defined by string concatenation

• the reward function r corresponds to the in-

cremental pay-off defined in Eqn. (13),

• the discounting factor γ = 1,

• the entropy hyper-parameter α = τ ,

• and a period terminates either when eos is

emitted or when its length reaches T and we

enforce the generation of eos.

Moreover, the optimal soft value functions V ∗ and

Q∗ of the MDP exactly match the VR and QR de-

fined by Eqn. (14) and (15) respectively. The op-

timal policy π∗ is hence equivalent to the token-

level target distribution PQR
.

Proof. See Appendix A.1.

The connection established by Corollary 1 is

quite inspiring:

• Firstly, it provides a rigorous and generalized

view of the connection between RAML and

entropy-regularized RL. In the original work,

Norouzi et al. (2016) point out RAML can be

seen as reversing the direction of KL (Pθ‖PR),
which is a sequence-level view of the connec-

tion. Now, with the equivalence between the

token-level target PQR
and the optimal Q∗, it

generalizes to matching the future action values

consisting of both the reward and the entropy.

• Secondly, due to the equivalence, if we solve

the optimal soft Q-function of the correspond-

ing MDP, we directly obtain the token-level tar-

get distribution. This hints at a practical algo-

rithm with token-level credit assignment.
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• Moreover, since RAML is able to improve

upon MLE by injecting entropy, the entropy-

regularized RL counterpart of the standard AC

algorithm should also lead to an improvement

in a similar manner.

4 Proposed Algorithms

In this section, we explore the insights gained from

Corollary 1 and present two new algorithms for

sequence prediction.

4.1 Value Augmented Maximum Likelihood

The first algorithm we consider is the token-level

extension of RAML, which we have been dis-

cussing since §2. As mentioned at the end of

§2.2, Proposition 1 only gives an implicit form of

QR, and so is the token-level target distribution

PQR
(Eqn. (3)). However, thanks to Corollary

1, we now know that QR is the same as the op-

timal soft action-value function Q∗ of the entropy-

regularized MDPMR. Hence, by finding the Q∗,

we will have access to PQR
.

At the first sight, it seems recovering Q∗ is as

difficult as solving the original sequence predic-

tion problem, because solving Q∗ from the MDP is

essentially the same as learning the optimal policy

for sequence prediction. However, it is not true be-

cause QR (i.e., PQR
) can condition on the correct

reference y∗. In contrast, the model distribution

Pθ can only depend on x∗. Therefore, the func-

tion approximator trained to recover Q∗ can take

y∗ as input, making the estimation task much eas-

ier. Intuitively, when recovering Q∗, we are trying

to train an ideal “oracle”, which has access to the

ground-truth reference output, to decide the best

behavior (policy) given any arbitrary (good or not)

state.

Thus, following the reasoning above, we first

train a parametric function approximator Qφ to

search the optimal soft action value. In this

work, for simplicity, we employ the Soft Q-

learning algorithm (Schulman et al., 2017) to per-

form the policy optimization. In a nutshell, Soft

Q-Learning is the entropy-regularized version of

Q-Learning, an off-policy algorithm which mini-

mizes the mean squared soft Bellman residual ac-

cording to Eqn. (11). Specifically, given ground-

truth pair (x∗,y∗), for any trajectory y ∈ Y , the

training objective is

min
φ

|y|
∑

t=1

[

Qφ(y
t−1
1 , yt;y

∗)− Q̂φ(y
t−1
1 , yt;y

∗)
]2

, (16)

where Q̂φ(y
t−1
1 , yt;y

∗) = r(yt−1
1 , yt;y

∗) + Vφ(y
t
1;y

∗)

is the one-step look-ahead target Q-value, and

Vφ(y
t
1;y

∗) = τ log
∑

w∈W exp
(

Qφ(y
t
1, w;y∗)/τ

)

as

defined in Eqn. (10). In the recent instantia-

tion of Q-Learning (Mnih et al., 2015), to sta-

bilize training, the target Q-value is often esti-

mated by a separate slowly updated target net-

work. In our case, as we have access to a signif-

icant amount of reference sequences, we find the

target network not necessary. Thus, we directly

optimize Eqn. (16) using gradient descent, and let

the gradient flow through both Qφ(y
t−1

1
, yt;y

∗)
and Vφ(y

t
1
;y∗) (Baird, 1995).

After the training of Qφ converges, we fix the

parameters of Qφ, and optimize the cross en-

tropy CE
(

PQφ
‖Pθ

)

w.r.t. the model parameters

θ, which is equivalent to4

min
θ

E
y∼PQφ





|y|
∑

t=1

CE
(

PQφ
(Yt | y

t−1

1
)‖Pθ(Yt | y

t−1

1
)
)



 .

(17)

Compared to the of objective of RAML in Eqn.

(2), having access to PQφ
(Yt | y

t−1

1
) allows us

to provide a distinct token-level target for each

conditional factor Pθ(Yt | yt−1

1
) of the model.

While directly sampling from PR is practically in-

feasible (§2.1), having a parametric target distri-

bution PQφ
makes it theoretically possible to sam-

ple from PQφ
and perform the optimization. How-

ever, empirically, we find the samples from PQφ

are not diverse enough (§6). Hence, we fall back to

the same importance sampling approach (see Ap-

pendix B.2) as used in RAML.

Finally, since the algorithm utilizes the optimal

soft action-value function to construct the token-

level target, we will refer to it as value augmented

maximum likelihood (VAML) in the sequel.

4.2 Entropy-regularized Actor Critic

The second algorithm follows the discussion at the

end of §3.2, which is essentially an actor-critic al-

gorithm based on the entropy-regularized MDP in

Corollary 1. For this reason, we name the algo-

rithm entropy-regularized actor critic (ERAC). As

with standard AC algorithm, the training process

interleaves the evaluation of current policy using

the parametric critic Qφ and the optimization of

the actor policy πθ given the current critic.

Critic Training. The critic is trained to perform

policy evaluation using the temporal difference

4See Appendix A.2 for a detailed derivation.
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learning (TD), which minimizes the TD error

min
φ

E
y∼πθ

|y|
∑

t=1

[

Qφ(y
t−1
1 , yt;y

∗)− Q̂φ̄(y
t−1
1 , yt;y

∗)
]2

(18)

where the TD target Q̂φ̄ is constructed based on

fixed policy iteration in Eqn. (9), i.e.,

Q̂φ̄(y
t−1
1 , yt;y

∗) = r(yt−1
1 , yt) + τ H(πθ(· | y

t
1))

+
∑

w∈W

πθ(w | yt
1)Qφ̄(y

t
1, w;y∗). (19)

It is worthwhile to emphasize that the objective

(18) trains the critic Qφ to evaluate the current pol-

icy. Hence, it is entirely different from the objec-

tive (16), which is performing policy optimization

by Soft Q-Learning. Also, the trajectories y used

in (18) are sequences drawn from the actor policy

πθ, while objective (16) theoretically accepts any

trajectory since Soft Q-Learning can be fully off-

policy.5 Finally, following Bahdanau et al. (2016),

the TD target Q̂φ̄ in Eqn. (9) is evaluated us-

ing a target network, which is indicated by the

bar sign above the parameters, i.e., φ̄. The target

network is slowly updated by linearly interpolat-

ing with the up-to-date network, i.e., the update is

φ̄← βφ+(1−β)φ̄ for β in (0, 1) (Lillicrap et al.,

2015).

We also adapt another technique proposed by

Bahdanau et al. (2016), which smooths the critic

by minimizing the “variance” of Q-values, i.e.,

min
φ

λvar E
y∼πθ

|y|
∑

t=1

∑

w∈W

[

Qφ(y
t
1
, w;y∗)− Q̄φ(y

t
1
;y∗)

]2

where Q̄φ(y
t
1;y

∗) = 1
|W|

∑

w′∈W Qφ(y
t
1, w

′;y∗) is

the mean Q-value, and λvar is a hyper-parameter

controlling the relative weight between the TD

loss and the smooth loss.

Actor Training. Given the critic Qφ, the actor

gradient (to maximize the expected return) is given

by the policy gradient theorem of the entropy-

regularized RL (Schulman et al., 2017), which has

the form

E
y∼πθ

|y|
∑

t=1

∑

w∈W

∇θπθ(w | yt−1

1
)Qφ(y

t−1

1
, w;y∗)

+ τ∇θH(πθ(· | y
t−1

1
)). (20)

Here, for each step t, we follow Bahdanau et al.

(2016) to sum over the entire symbol set W , in-

stead of using the single sample estimation often

5Different from Bahdanau et al. (2016), we don’t use a de-
layed actor network to collect trajectories for critic training.

seen in RL. Hence, no baseline is employed. It

is worth mentioning that Eqn. (20) is not simply

adding an entropy term to the standard policy gra-

dient as in A3C (Mnih et al., 2016). The difference

lies in that the critic Qφ trained by Eqn. (18) ad-

ditionally captures the entropy from future steps,

while the ∇θH term only captures the entropy of

the current step.

Finally, similar to (Bahdanau et al., 2016), we

find it necessary to first pretrain the actor using

MLE and then pretrain the critic before the actor-

critic training. Also, to prevent divergence dur-

ing actor-critic training, it is helpful to continue

performing MLE training along with Eqn. (20),

though using a smaller weight λmle.

5 Related Work

Task Loss Optimization and Exposure Bias

Apart from the previously introduced RAML,

BSO, Actor-Critic (§1), MIXER (Ranzato et al.,

2015) also utilizes chunk-level signals where the

length of chunk grows as training proceeds. In

contrast, minimum risk training (Shen et al., 2015)

directly optimizes sentence-level BLEU. As a re-

sult, it requires a large number (100) of samples

per data to work well. To solve the exposure bias,

scheduled sampling (Bengio et al., 2015) adopts a

curriculum learning strategy to bridge the training

and the inference. Professor forcing (Lamb et al.,

2016) introduces an adversarial training mecha-

nism to encourage the dynamics of the model to

be the same at training time and inference time.

For image caption, self-critic sequence training

(SCST) (Rennie et al., 2016) extends the MIXER

algorithm with an improved baseline based on the

current model performance.

Entropy-regularized RL Entropy regulariza-

tion been explored by early work in RL and in-

verse RL (Williams and Peng, 1991; Ziebart et al.,

2008). Lately, Schulman et al. (2017) establish

the equivalence between policy gradients and Soft

Q-Learning under entropy-regularized RL. Mo-

tivated by the multi-modal behavior induced by

entropy-regularized RL, Haarnoja et al. (2017) ap-

ply energy-based policy and Soft Q-Learning to

continuous domain. Later, Nachum et al. (2017)

proposes path consistency learning, which can be

seen as a multi-step extension to Soft Q-Learning.

More recently, in the domain of simulated con-

trol, Haarnoja et al. (2018) also consider the ac-

tor critic algorithm under the framework of en-
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tropy regularized reinforcement learning. Despite

the conceptual similarity to ERAC presented here,

Haarnoja et al. (2018) focuses on continuous con-

trol and employs the advantage actor critic variant

as in (Mnih et al., 2016), while ERAC follows the

Q actor critic as in (Bahdanau et al., 2016).

6 Experiments

6.1 Experiment Settings

In this work, we focus on two sequence prediction

tasks: machine translation and image captioning.

Due to the space limit, we only present the infor-

mation necessary to compare the empirical results

at this moment. For a more detailed description,

we refer readers to Appendix B and the code6.

Machine Translation Following Ranzato et al.

(2015), we evaluate on IWSLT 2014 German-to-

English dataset (Mauro et al., 2012). The cor-

pus contains approximately 153K sentence pairs

in the training set. We follow the pre-processing

procedure used in (Ranzato et al., 2015).

Architecture wise, we employ a seq2seq model

with dot-product attention (Bahdanau et al., 2014;

Luong et al., 2015), where the encoder is a bidirec-

tional LSTM (Hochreiter and Schmidhuber, 1997)

with each direction being size 128, and the de-

coder is another LSTM of size 256. Moreover, we

consider two variants of the decoder, one using the

input feeding technique (Luong et al., 2015) and

the other not.

For all algorithms, the sequence-level BLEU

score is employed as the pay-off function R, while

the corpus-level BLEU score (Papineni et al.,

2002) is used for the final evaluation. The

sequence-level BLEU score is scaled up by the

sentence length so that the scale of the immediate

reward at each step is invariant to the length.

Image Captioning For image captioning, we

consider the MSCOCO dataset (Lin et al., 2014).

We adapt the same preprocessing procedure and

the train/dev/test split used by Karpathy and Fei-

Fei (2015).

The NIC (Vinyals et al., 2015) is employed as

the baseline model, where a feature vector of the

image is extracted by a pre-trained CNN and then

used to initialize the LSTM decoder. Different

from the original NIC model, we employ a pre-

trained 101-layer ResNet (He et al., 2016) rather

than a GoogLeNet as the CNN encoder.

6
https://github.com/zihangdai/ERAC-VAML

For training, each image-caption pair is treated

as an i.i.d. sample, and sequence-level BLEU

score is used as the pay-off. For testing, the stan-

dard multi-reference BLEU4 is used.

6.2 Comparison with the Direct Baseline

Firstly, we compare ERAC and VAML with their

corresponding direct baselines, namely AC (Bah-

danau et al., 2016) and RAML (Norouzi et al.,

2016) respectively. As a reference, the perfor-

mance of MLE is also provided.

Due to non-neglected performance variance ob-

served across different runs, we run each algo-

rithm for 9 times with different random seeds,7

and report the average performance, the standard

deviation and the performance range (min, max).

Machine Translation The results on MT are

summarized in the left half of Tab. 1. Firstly,

all four advanced algorithms significantly outper-

form the MLE baseline. More importantly, both

VAML and ERAC improve upon their direct base-

lines, RAML and AC, by a clear margin on aver-

age. The result suggests the two proposed algo-

rithms both well combine the benefits of a delicate

credit assignment scheme and the entropy regular-

ization, achieving improved performance.

Image Captioning The results on image cap-

tioning are shown in the right half of Tab. 1. De-

spite the similar overall trend, the improvement of

VAML over RAML is smaller compared to that

in MT. Meanwhile, the improvement from AC to

ERAC becomes larger in comparison. We sus-

pect this is due to the multi-reference nature of

the MSCOCO dataset, where a larger entropy is

preferred. As a result, the explicit entropy regu-

larization in ERAC becomes immediately fruitful.

On the other hand, with multiple references, it can

be more difficult to learn a good oracle Q∗ (Eqn.

(15)). Hence, the token-level target can be less ac-

curate, resulting in smaller improvement.

6.3 Comparison with Existing Work

To further evaluate the proposed algorithms, we

compare ERAC and VAML with the large body

of existing algorithms evaluated on IWSTL 2014.

As a note of caution, previous works don’t employ

the exactly same architectures (e.g. number of lay-

ers, hidden size, attention type, etc.). Despite that,

7For AC, ERAC and VAML, 3 different critics are trained
first, and each critic is then used to train 3 actors.

https://github.com/zihangdai/ERAC-VAML
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MT (w/o input feeding) MT (w/ input feeding) Image Captioning

Algorithm Mean Min Max Mean Min Max Mean Min Max

MLE 27.01 ± 0.20 26.72 27.27 28.06 ± 0.15 27.84 28.22 29.54 ± 0.21 29.27 29.89

RAML 27.74 ± 0.15 27.47 27.93 28.56 ± 0.15 28.35 28.80 29.84 ± 0.21 29.50 30.17

VAML 28.16 ± 0.11 28.00 28.26 28.84 ± 0.10 28.62 28.94 29.93 ± 0.22 29.51 30.24

AC 28.04 ± 0.05 27.97 28.10 29.05 ± 0.06 28.95 29.16 30.90 ± 0.20 30.49 31.16

ERAC 28.30 ± 0.06 28.25 28.42 29.31 ± 0.04 29.26 29.36 31.44 ± 0.22 31.07 31.82

Table 1: Test results on two benchmark tasks. Bold faces highlight the best in the corresponding category.

for VAML and ERAC, we use an architecture that

is most similar to the majority of previous works,

which is the one described in §6.1 with input feed-

ing.

Based on the setting, the comparison is summa-

rized in Table 2.8 As we can see, both VAML and

ERAC outperform previous methods, with ERAC

leading the comparison with a significant margin.

This further verifies the effectiveness of the two

proposed algorithms.

Algorithm BLEU

MIXER (Ranzato et al., 2015) 20.73

BSO (Wiseman and Rush, 2016) 27.9

Q(BLEU) (Li et al., 2017) 28.3

AC (Bahdanau et al., 2016) 28.53

RAML (Ma et al., 2017) 28.77

VAML 28.94

ERAC 29.36

Table 2: Comparison with existing algorithms on

IWSTL 2014 dataset for MT. All numbers of pre-

vious algorithms are from the original work.

6.4 Ablation Study

Due to the overall excellence of ERAC, we study

the importance of various components of it, hope-

fully offering a practical guide for readers. As

the input feeding technique largely slows down

the training, we conduct the ablation based on the

model variant without input feeding.

Firstly, we study the importance of two tech-

niques aimed for training stability, namely the tar-

get network and the smoothing technique (§4.2).

Based on the MT task, we vary the update speed β

of the target critic, and the λvar, which controls the

8For a more detailed comparison of performance together
with the model architectures, see Table 7 in Appendix C.

❍
❍
❍
❍

❍❍
λvar

β
0.001 0.01 0.1 1

0 27.91 26.27† 28.88 27.38†

0.001 29.41 29.26 29.32 27.44

Table 3: Average validation BLEU of ERAC. As

a reference, the average BLEU is 28.1 for MLE.

λvar = 0 means not using the smoothing technique.

β = 1 means not using a target network. † indi-

cates excluding extreme values due to divergence.

strength of the smoothness regularization. The av-

erage validation performances of different hyper-

parameter values are summarized in Tab. 3.

• Comparing the two rows of Tab. 3, the smooth-

ing technique consistently leads to performance

improvement across all values of τ . In fact, re-

moving the smoothing objective often causes

the training to diverge, especially when β =
0.01 and 1. But interestingly, we find the di-

vergence does not happen if we update the tar-

get network a little bit faster (β = 0.1) or quite

slowly (β = 0.001).

• In addition, even with the smoothing technique,

the target network is still necessary. When the

target network is not used (β = 1), the perfor-

mance drops below the MLE baseline. How-

ever, as long as a target network is employed to

ensure the training stability, the specific choice

of target network update rate does not matter

as much. Empirically, it seems using a slower

(β = 0.001) update rate yields the best result.

Next, we investigate the effect of enforcing dif-

ferent levels of entropy by varying the entropy

hyper-parameter τ . As shown in Fig. 1, it seems

there is always a sweet spot for the level of en-

tropy. On the one hand, posing an over strong en-
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Figure 1: ERAC’s average performance over multiple runs on two tasks when varying τ .

tropy regularization can easily cause the actor to

diverge. Specifically, the model diverges when τ

reaches 0.03 on the image captioning task or 0.06
on the machine translation task. On the other hand,

as we decrease τ from the best value to 0, the per-

formance monotonically decreases as well. This

observation further verifies the effectiveness of en-

tropy regularization in ERAC, which well matches

our theoretical analysis.

Finally, as discussed in §4.2, ERAC takes the ef-

fect of future entropy into consideration, and thus

is different from simply adding an entropy term

to the standard policy gradient as in A3C (Mnih

et al., 2016). To verify the importance of explicitly

modeling the entropy from future steps, we com-

pared ERAC with the variant that only applies the

entropy regularization to the actor but not to the

critic. In other words, the τ is set to 0 when per-

forming policy evaluating according to Eqn. (4.2),

while the τ for the entropy gradient in Eqn. (20)

remains. The comparison result based on 9 runs

on test set of IWSTL 2014 is shown in Table 4. As

we can see, simply adding a local entropy gradient

does not even improve upon the AC. This further

verifies the difference between ERAC and A3C,

and shows the importance of taking future entropy

into consideration.

Algorithm Mean Max

ERAC 28.30 ± 0.06 28.42

ERAC w/o Future Ent. 28.06 ± 0.05 28.11

AC 28.04 ± 0.05 28.10

Table 4: Comparing ERAC with the variant with-

out considering future entropy.

7 Discussion

In this work, motivated by the intriguing con-

nection between the token-level RAML and the

entropy-regularized RL, we propose two algo-

rithms for neural sequence prediction. Despite the

distinct training procedures, both algorithms com-

bine the idea of fine-grained credit assignment and

the entropy regularization, leading to positive em-

pirical results.

However, many problems remain widely open.

In particular, the oracle Q-function Qφ we obtain

is far from perfect. We believe the ground-truth

reference contains sufficient information for such

an oracle, and the current bottleneck lies in the RL

algorithm. Given the numerous potential applica-

tions of such an oracle, we believe improving its

accuracy will be a promising future direction.
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