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From Crowd Simulation to Robot Navigation in Crowds

Thierry Fraichard†, and Valentin Levesy†

Abstract—This letter presents the result of a study aiming at
investigating to what extent the results obtained in the Crowd
Simulation domain could be used to control a mobile robot
navigating among people. It turns out that Crowd Simulation
relies on two assumptions that would not hold for a real mobile
robot, a test protocol has therefore been designed in order to
thoroughly evaluate how three representative Crowd Simulation
techniques would perform when said assumptions are relaxed.
The study shows that all those techniques entail safety problems,
i.e. they would cause collisions in the real world. The study also
highlights the most promising candidate for a transposition on a
real mobile robot.

Index Terms—Crowd Simulation; Autonomous Navigation;
Human-Robot Motion;

I. INTRODUCTION

A. Background and Motivation

THE late 90s saw the deployment of the first autonomous

mobile robots in environments featuring people. In 1997,

the RHINO robot spent six days guiding visitors at the

Deutsches Museum in Bonn [1]. A year later, the Minerva

robot moved through crowds during two weeks at the Smithso-

nian’s National Museum of American History in Washington,

USA [2] and the MAid wheelchair robot was tested in the

central station of Ulm during rush hour and in the Hannover

Messe’98 in Germany for 36 hours total [3]. In 2002, eleven

Robox mobile robots operated daily for six months at the

Swiss national exhibition Expo.02 [4].

Despite these early achievements and the growing number

of research efforts on robot navigation in crowds, e.g. [5],

[6], [7], [8], [9], it must be acknowledged that mobile robots

casually navigating in crowds are not a reality yet. This may

seem surprising given that self-driving cars can routinely be

seen driving on highways and roads among heavy traffic

sometimes. In both cases, i.e. road networks and crowds, the

robot has to deal with highly uncertain dynamic environments.

The most likely explanation is that human-populated envi-

ronments are not as structured as the road network and that

people’s behavior is not governed by explicit traffic rules. As a

consequence, robots navigating in crowds suffer from the well-

known Freezing Robot Problem [10], i.e. when the density of

the crowd increases, the robot freezes on the spot because it

cannot find a forward motion deemed safe enough with respect

to people’s highly uncertain behavior. It is therefore unable to

jostle its way through the crowd.
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In contrast, the scientific domain of Crowd Simulation,

which was born in the late 80s [11], has by now produced

a lot of techniques that allow a virtual agent to easily navigate

among high-density virtual crowds featuring hundreds of peo-

ple (cf. §II). A “crowd simulation” search on Internet produces

a long list of impressive videos. The result of this search begs

the following question: how come what is seemingly achieved

so easily by a virtual agent cannot be achieved by a real robot?

The main of the research presented in this paper is to try to

answer this question by investigating to what extent the results

obtained in Crowd Simulation could be transposed to the realm

of robot navigation in crowds.

B. Contributions

The first step was to review the main Crowd Simulation

(CS) techniques from the literature and to examine them

carefully from a Robotics perspective. This examination has

revealed three issues that are problematic.

The first issue has to do with the nature of the crowd. To

the best of the authors’ knowledge, all CS techniques assume

that the virtual agents composing the crowd have the same

behavior. In other words, they are all controlled by the same

algorithm. It is obvious that this assumption, henceforth called

the Homogeneity assumption, does not hold in the real world.

The behavior of a person in a crowd is determined by several

factors, e.g. goal, mood, etc., and those factors are unique to

each person.

The second issue has to do with the information that is

provided to the virtual agent about its environment. A large

number of CS techniques assume that each virtual agent

has a perfect knowledge of its surroundings including the

shape, position, and velocity of all the static and moving

obstacles around. Again, this assumption, henceforth called

the Omniscience assumption, does not hold for a real robot

which has to rely on a set of limited on-board sensors to gather

information about its surroundings.

The third and last issue has to do with Safety. The pri-

mary objective of CS is to compute visually realistic crowd

simulation. Should collisions and minor intersections between

virtual agents happen, it would not bo a problem as long as it

remained unnoticeable to the observer. Such collisions are of

course unacceptable for a real robot.

The second step was to put a selection of representative

CS techniques to the test and see how they performed when

both the Homogeneity and the Omniscient assumptions were

relaxed. To that end, an experimental protocol was devised

and three performance criteria were chosen to evaluate the

CS techniques considered. The first two performance criteria

are standards from a Robotics perspective, i.e. safety and

efficiency. The third one has to do with the human-like nature
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of the motions generated by the CS techniques. Indeed, a

number of studies has shown that people prefer when robots

behave in a human-like fashion, e.g. [12], [13], [14], [15].

Finally, the results of the test campaign are presented,

analyzed, and discussed. The tests reveal that a CS technique

that works well in simulation will not perform that well if

implemented on a real mobile robot, safety being the most

important issue. Of the two CS assumptions, the tests also

shows that the Homogeneity assumption is the most critical.

Although the study does not provide a clear-cut answer as to

which CS technique should be selected in order to be adapted

on a real mobile robot, it helps decide which one is the best

candidate among the representative CS techniques considered

in the study.

C. Outline of the paper

The paper is organized as follows: the CS literature is

reviewed in §II . The CS techniques selected for evaluation

purposes are presented in §III. The evaluation protocol is

detailed in §IV. The experimental results are presented and

analyzed in V.

II. CROWD SIMULATION OVERVIEW

The Encyclopedia of Computer Graphics and Games defines

Crowd Simulation (CS) as the process of simulating the

movement and/or the behavior of a large number of entities

or characters [16]. The simulated characters are expected to

move to their goals, interact with their environment, and

respond to each other. CS has many applications such as

urban planning [17], evacuation simulation [18], and of course

animating characters in video games and movies.

There are two fundamentally distinct philosophies to simu-

lating crowds: the macroscopic approach and the microscopic

approach. Macroscopic approaches, e.g. [19], [20], [21], treat

the crowd as a continuum medium characterized by averaged

quantities such as density and mean velocity; the whereas

microscopic approaches distinguish the individuals composing

the crowd: each individual is an autonomous virtual agent

whose behavior is controlled by its own navigation strategy. It

remains to be seen if macroscopic approaches could be adapted

to control actual mobile robots. Microscopic approaches are

more relevant in the sense that the navigation strategy of

each virtual agent could in principle be transferred to an

actual mobile robot. CS has been an active domain since the

pioneering work of [11] and a lot of microscopic approaches

have been proposed over the years. Even though they are very

different, the review of the literature shows that three important

categories have emerged: force-based, velocity-based, and

vision-based.

A. Force-Based Approaches

These approaches consider each agent as a particle subject

to various interaction forces. These forces can be exerted by

the environment, e.g. repulsion from obstacles, or by internal

motivations of the agent, e.g. joining a group. The net force

determines the final motion of the agent. The Social Force

Model proposed in [22] is one of the most influential models

in this category. It has inspired several extensions, e.g. [23],

[24], [25], [26].

B. Velocity-Based Approaches

These approaches operates on the velocity space of the agent

and seek to compute collision-free motion over a short time

horizon, e.g. [27], [28], [29], [30]. To that end, short term

prediction of the other agents’ future motions are used.

C. Vision-Based Approaches

Acknowledging the importance of human visual information

on the regulation of human locomotion [31], vision-based

approaches seek to reproduce the role of vision on human

locomotion. To that end, visual cues, e.g. optical flow, time to

collision, and focus of expansion, are computed and used to

control the agent, e.g. [32], [33], [34], [35]

However different these CS techniques may appear, they

all assume that the virtual agents composing the crowd are

controlled by the same algorithm. Interestingly enough, this

Homogeneity assumption is never questioned. As far as force-

based and velocity-based approaches are concerned, they as-

sume that each virtual agent has a perfect knowledge of its

surroundings including the shape, position, and velocity of all

the static and moving obstacles around. This is an Omniscience

assumption of sorts. Vision-based approaches are, by design,

not concerned by this assumption. It is also important to note

that the main objective of CS is to produce simulations that are

visually pleasant and realistic. To the extent that if collisions

happen between the agents, it only becomes a problem if they

cause “visually unpleasant artifacts” to quote from [20]. As

mentioned earlier, these two assumptions and collisions are

problematic from a Robotics standpoint.

III. SELECTED CROWD SIMULATION TECHNIQUES

Given the plethora of microscopic CS techniques, it is of

course impossible to put them all to the test in order to

check what happens when the Homogeneity and Omniscience

assumptions are relaxed. It was decided to chose one repre-

sentative technique for each category identified in §II. They

are briefly presented below, and the reader is referred to the

articles cited for a full presentation.

A. Universal Power Law (UPL)

UPL1 [24] is a force-based approach. The crowd is mod-

eled as an interacting particle systems. UPL is an extension

of the well-known Social-Force Model (SFM) [22]. Among

SFM-based techniques, UPL has been selected because the

interaction forces between the agents are not defined in an

ad-hoc and somewhat arbitrary manner; they are derived from

the analysis of a large collection of human motion data.

1http://motion.cs.umn.edu/PowerLaw

http://motion.cs.umn.edu/PowerLaw
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B. Reciprocal Velocity Obstacles (RVO)

RVO2 [36] is a velocity-based approach. It was originally

developed to address multi-robot collision avoidance prob-

lems. It builds upon the well-known concept of Velocity

Obstacles [37]. Besides its popularity, RVO has been selected

because it provides a sufficient condition for each agent to

avoid collision over a given time horizon assuming that the

other agents also use RVO.

C. Vision-Based Navigation (VBN)

VBN [34] is a vision-based approach. Each agent is

equipped with a synthetic vision component that computes two

visual cues, i.e. the distance and time of closest approaches

with an other agent, that have been shown in [38] to be relevant

in the regulation of human locomotion. These cues are used

to estimate a collision risk which is then minimized by the

control strategy. VBN has been selected because it has been

designed so as to decrease the collision risk.

All three approaches feature a nominal (or preferred) walk-

ing speed for the agents that will be selected by the approach

if it belongs to the set of admissible speeds.

IV. EXPERIMENTAL PROTOCOL AND PERFORMANCE

CRITERIA

The homogeneity and omniscience assumptions having been

identified as being problematic from a Robotics perspective,

it was decided to test the candidate CS techniques in situ-

ations where these assumptions were relaxed. The need for

controllable and reproducible test conditions led to the use

of a simulated environment (§IV-A). Five test scenarios have

been defined (§IV-B), and three performance criteria have been

chosen for evaluation purposes (§IV-C).

A. Simulation Software

Figure 1: Webots and ROS-based virtual world simulator.

The Webots3 simulation software and the ROS4 (Robot

Operating System) framework have been used to define virtual

environments within which virtual agents, pedestrian or mobile

2http://gamma.cs.unc.edu/RVO2
3https://www.cyberbotics.com
4http://www.ros.org

robots, can be individually defined with their own geometry,

kinematics, dynamics and sensing characteristics. Each virtual

agent is controlled by its own navigation strategy. Fig. 1 shows

the user interface of the system, it displays the arena where

the agents moves and the output of a virtual RGB-D sensor

mounted on one of the agent that can be used to simulate the

visual perception of the agent. The three CS techniques UPL,

RVO and VBN have been implemented from scratch in C++.

B. Test Scenarios

Figure 2: Circle and Crossing scenarios.

Figure 3: Opposite and Overtake scenarios.

The first three scenarios are standard benchmarks of CS

(Figs. 2 and 3). They are respectively called Circle (8 agents

placed on a circle have to reach their antipodal positions),

Crossing (two groups of 16 agents moving forward with a

90◦ crossing angle) and Opposite (two groups of 16 agents

moving in opposite directions). Two variants of these scenarios

are considered: with and without fixed obstacles (red pillars).

A fourth scenario called Overtake has been added (Fig. 3), it

features two groups of 9 agents moving in the same direction

in a corridor formed by pillars, the group behind moving faster

than the other. In those four scenarios, each agent is assigned

a goal and the simulation stops after 40s or when every agent

has reached its goal (whichever comes first). A final scenario

called Random was added to simulate unorganized crowds

(Fig. 1). It features 22 agents who are assigned a sequence

of random goal positions within a circular arena. In this case,

the simulation runs for 1min.

In all scenarios (except Overtake), the agents are assigned a

nominal speed that obeys the normal distribution N (1.5, 0.1)

http://gamma.cs.unc.edu/RVO2
https://www.cyberbotics.com
http://www.ros.org
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in order to simulate the variations that can be found in a crowd

(1.5m/s being close to the average human walking speed [39]).

In the Overtake scenario, the slow (resp. fast) group has a

nominal speed obeying N (0.5, 0.1) (resp. N (2.0, 0.1)).

C. Performance Criteria

As pointed out by [40], the objective evaluation of a CS

technique is not a simple task, a single and commonly accepted

performance measure does not exist. Three performance crite-

ria have been chosen, the first two are standard from a Robotics

perspective, i.e. safety and efficiency. The third one has to do

with the human-like nature of the motions generated.

1) Safety: the safety of a CS technique is measured by

simply counting the number of collisions it yields. When an

agent collides with a fixed obstacle, it takes full responsibility

for the collision, i.e. collision count+1. When two agents

collide, the responsibility is equally shared between them, i.e.

collision count+0.5.

2) Efficiency: suppose an agent has to move from point A

to point B at a given nominal speed vnom and that it reaches

B at time tf using a given CS technique. The efficiency of

the CS technique is defined as follows:

d(A,B)

tfvnom
(1)

where d(A,B) denotes the Euclidean distance between A and

B. Eq.(1) is the ratio of the “straight line speed” to the nominal

speed, it is best when close to 1.

3) Human-Like Behavior: as mentioned earlier, people pre-

fer when robots behave in a human-like fashion, it is therefore

desirable that a CS technique yields motions that appear to

be human-like. Because this criterion is nearly impossible to

define in a quantitative manner, it is resorted to the subjective

examination of the shape of the motions5 and the speed

distribution during the motions in order to identify aberrant

results.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Relaxing the Homogeneity Assumption

The objective of the first series of experiments carried out

is to evaluate the impact on the performances of the three

candidate CS techniques when the Homogeneity assumption

is relaxed. To that end, the 8 scenarios considered are run

10 times for RVO, UPL and VBN under the Homogeneity

assumption, i.e. with all agents using the same CS technique.

Then the Homogeneity assumption is relaxed and each agent in

a given scenario is assigned a random CS technique uniformly

selected among RVO, UPL or VBN. Again, the 8 scenarios

considered are run 10 times. Tables I and II respectively report

the results of this series of experiments for both the safety and

efficiency criteria6.

From a safety standpoint (table I), two surprising things

have been revealed by this series of experiments. First, RVO

5Note that this is what is usually done in CS works.
6For all tables, the standard deviation of the tests were small enough to

have no significant effects on the % difference reporting.

which is the only CS technique that provides a form of

collision avoidance guarantee under the Homogeneity assump-

tion turns out to be the one whose safety performance drops

dramatically when this assumption is relaxed: over 400% more

collisions on average. Second, both VBN and UPL performs

better when the Homogeneity assumption is relaxed: over 30%

less collisions. Now, although this observation seems bad news

for RVO, it is important to also observe that RVO is the

technique that has by far the best safety record: consider the

last line of table I, the average number of collisions per agent

for RVO is much better than those of VBN and UPL, even in

the heterogeneous case. VBN is the worst in this respect.

From an efficiency standpoint (table. II), the differences

between the homogeneous and the heterogeneous cases are not

that significant: from 9% increase to 7% decrease of efficiency.

Besides, as shown in the last line of table II, all techniques

have a similar efficiency record whatever the situation.

Figure 4: Circle scenario, homogeneous RVO case (top) vs.

heterogeneous case (bottom).

As far as evaluating whether the CS techniques yield

human-like motions, it is a trickier issue. The behaviors ob-

served between the homogeneous and the heterogeneous cases

were not significantly different except for RVO where aberrant

behaviors could sometimes be observed in the heterogeneous

case: see for instance the situation depicted in Fig. 4. In

the heterogeneous case, the aberrant behavior of the RVO-

controlled agent starting from the left and moving to the right

can easily be observed.

Besides, the analysis of the speed distributions for the three

CS techniques in both the homogeneous and heterogeneous

cases also revealed an unexpected feature of RVO compared

to UPL and VBN: an agent driven by RVO will spend

significantly more time at a speed slower than the nominal

speed. This is illustrated in Fig. 5 that depicts the speed

distributions for the CS techniques in the Crossing scenario.

In each plot, the vertical axis is the amount of time spent by

all agents at the corresponding speed. Note how both UPL

and VPN distributions are unimodal with one peak around

the nominal speed whereas the RVO distribution is clearly

bimodal with a second peak at a much slower speed. In the

heterogeneous case (Fig. 5d), it can be observed that this effect

is increased, the RVO distribution flattens (as well as UPL but

to a lesser extent).

B. Relaxing the Omniscience Assumption

The objective of the second series of experiments carried

out is to evaluate the impact on the performances of RVO
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Scenario
RVO VBN UPL

Homo. Hetero. % Diff. Homo. Hetero. % Diff. Homo. Hetero. % Diff.

Circle 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 -100.00
Circle + obstacles 0.00 0.00 0.00 0.01 0.07 432.80 0.01 0.03 100.00
Opposite 0.00 0.01 267.65 0.03 0.03 32.00 0.06 0.00 -100.00
Opposite + obstacles 0.01 0.05 455.56 0.05 0.16 201.89 0.15 0.07 -51.72
Crossing 0.01 0.23 1740.00 1.65 0.93 -43.64 0.56 0.38 -32.14
Crossing + obstacles 0.02 0.28 1397.33 1.35 0.83 -38.52 0.58 0.40 -30.80
Overtake 0.01 0.04 260.36 0.22 0.11 -51.85 0.40 0.08 -80.85
Random 0.20 0.70 250.00 2.75 1.88 -31.64 1.19 0.85 -28.57

Total 0.03 0.16 424.00 0.76 0.50 -33.83 0.37 0.23 -39.67

Table I: Relaxing the Homogeneity assumption from a safety standpoint. For each scenario and each CS technique is

reported the average number of collisions caused per agent and per run in the homogeneous and heterogeneous cases. % Diff.

is the evolution in percentage. The last line presents the consolidated results. Possible discrepancies are due to truncation.

Scenario
RVO VBN UPL

Homo. Hetero. % Diff. Homo. Hetero. % Diff. Homo. Hetero. % Diff.

Circle 0.99 0.99 0.68 0.96 0.86 -10.42 0.70 0.87 23.81
Circle + obstacles 0.72 0.87 20.19 0.79 0.77 -3.36 0.68 0.71 4.90
Opposite 0.77 0. 77 -0.17 0.78 0.74 -5.31 0.59 0.73 23.73
Opposite + obstacles 0.70 0.65 -7.11 0.79 0.67 -15.97 0.60 0.67 12.22
Crossing 0.56 0.61 8.46 0.57 0.53 -6.98 0.62 0.66 5.66
Crossing + obstacles 0.47 0.52 11.43 0.61 0.59 -4.35 0.60 0.68 12.58
Overtake 0.47 0.60 27.71 0.59 0.57 -4.06 0.61 0.55 -9.98
Random 0.32 0.47 43.97 0.61 0.56 -9.11 0.63 0.63 -0.74

Total 0.63 0.68 9.60 0.71 0.66 -7.19 0.63 0.69 9.34

Table II: Relaxing the Homogeneity assumption from an efficiency standpoint. For each scenario and each CS technique

is reported the average efficiency per agent and per run in the homogeneous and heterogeneous cases. % Diff. is the evolution

in percentage. The last line presents the consolidated results. Possible discrepancies are due to truncation.

(a) RVO (b) UPL

(c) VBN (d) Heterogeneous case

Figure 5: Speed distributions during a run of the Crossing

scenario (nominal speed=1.5m/s, vertical gray line). Homoge-

neous (a, b, c) vs. heterogeneous cases (d).

Figure 6: 150◦ horizontal field-of-view.

and UPL when the Omniscience assumption is relaxed (VPN

is not concerned here since it assumes that each agent has

a sensor-based perception of the environment). To that end,

the 9 scenarios considered are run 10 times for RVO and

UPL under the Omniscience assumption, i.e. with all agents

having perfect knowledge of their surroundings. Then the

Omniscience assumption is relaxed and each agent now has a

limited sensor-based perception of its environment, i.e. each

agent has a 150◦ horizontal field-of-view similar to the one

used in VBN (Fig. 6). Again, the 9 scenarios considered are

run 10 times. Tables III and IV report the results of this series

of experiments for both the safety and efficiency criteria.

From a safety standpoint, the performance of UPL slightly
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Scenario
UPL RVO

Omni. Unomni. % Diff. Omni. Unomni. % Diff.

Circle 0.050 0.075 50.00 0.000 0.000 0.00
Circle + obstacles 0.013 0.013 0.00 0.000 0.000 0.00
Opposite 0.058 0.040 -31.03 0.003 0.000 -100.00
Opposite + obstacles 0.145 0.120 -17.24 0.009 0.006 -33.33
Crossing 0.560 0.570 1.78 0.013 0.018 44.00
Crossing + obstacles 0.578 0.640 10.72 0.019 0.025 33.69
Overtake 0.400 0.550 37.50 0.011 0.011 0.00
Random 0.518 0.570 10.04 0.233 0.130 -44.21

Total 0.290 0.322 11.03 0.036 0.024 -33.33

Table III: Relaxing the Omniscience assumption from a safety standpoint. For each scenario and each CS technique is

reported the average number of collisions caused per agent and per run in the omniscient and unomniscient cases. % Diff. is

the evolution in percentage. The last line presents the consolidated results. Possible discrepancies are due to truncation.

Scenario
UPL RVO

Omni. Unomni. % Diff. Omni. Unomni. % Diff.

Circle 0.70 0.72 2.86 0.99 0.97 -1.35
Circle + obstacles 0.68 0.65 -4.31 0.72 0.76 5.74
Opposite 0.59 0.60 1.24 0.77 0.77 -0.17
Opposite + obstacles 0.60 0.63 4.44 0.70 0.74 5.78
Crossing 0.62 0.60 -3.31 0.56 0.54 -3.46
Crossing + obstacles 0.60 0.57 -5.08 0.47 0.47 1.43
Overtake 0.61 0.62 0.87 0.47 0.48 3.86
Random 0.63 0.72 12.63 0.32 0.33 2.91

Total 0.63 0.64 1.59 0.63 0.64 1.59

Table IV: Relaxing the Omniscience assumption from an efficiency standpoint. For each scenario and each CS technique

is reported the average efficiency per agent and per run in the omniscient and unomniscient cases. % Diff. is the evolution in

percentage. The last line presents the consolidated results. Possible discrepancies are due to truncation.

decreases, 11% more collisions, while that of RVO increases,

33% less collisions.

From an efficiency standpoint, the differences between the

omniscient and the unomniscient cases are not that significant:

around 1.5% increase of efficiency for both UPL and RVO.

From a human-like behavior standpoint, unnatural oscilla-

tory behaviors were observed for RVO in the unomniscient

case. They appear as soon as an obstacle is near the limit

of the field-of-view. In such a situation with, for example,

an obstacle on the right side limit of the field-of-view of the

agent, the agent would turn left to avoid collision with the

obstacle. Said obstacle would then disappear from the field-

of-view and the agent would turn right to resume moving

toward its goal. By doing so, the obstacle would reappear in

the field-of-view. The repetition of this process produces the

aforementioned oscillations. It is interesting to note that the

first RVO approach [29] was developed in order to address

this oscillation issue that affects several Robotics collision

avoidance techniques.

C. Analysis of the Results

The first lesson of the test campaign reported here is the

impact of relaxing the Homogeneity assumption from a safety

standpoint. What is maybe the most surprising result is the

fact that RVO, a very popular collision avoidance technique

in Robotics, is the one that is the most negatively impacted:

> 400% additional collisions observed. It is a bit ironic since

RVO is the only technique that provides a form of safety

guarantee when the Homogeneity assumption holds. It is also

surprising to observe that both VBN and UPL perform better.

This somewhat counter-intuitive result could be explained by

the fact that VPN and UPL were confronted to RVO which

does much better in terms of collision avoidance. From an

efficiency standpoint, relaxing the Homogeneity assumption

has no significant impact on all techniques although the

analysis revealed what could be considered a weak point of

RVO, namely the bimodal nature of its speed distribution.

Contrary to what might have been expected, relaxing the

Omniscience assumption improves the safety performance

of RVO while having no significant impact on the safety

performance of UPL. From an efficiency standpoint, the Om-

niscience assumption has no significant impact on UPL and

RVO.

VI. CONCLUSION AND FUTURE WORKS

The purpose of the study reported here was to investigate

to what extent a CS technique could be used to control a

mobile robot navigating among people. To that end, three

representative CS techniques, i.e. UPL, RVO and VBN, were

put to the test and their performance evaluated when the
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Homogeneity and Omniscience assumptions were relaxed (as

would be the case for a real mobile robot).

The study does not provide a clear cut answer as to which

CS technique should be selected in order to be adapted on a

real mobile robot. All techniques have a safety problem, they

would yield collisions in the real world. VBN is clearly the

worst candidate in this respect, RVO and UPL are close with

a slight advantage to RVO. However, RVO has been shown

to be prone to aberrant behaviors when the Homogeneity

assumption is relaxed. Besides it suffers from a questionable

speed distribution that adversely affects its efficiency. For these

two reasons, UPL appears to be the best choice. It will have

to be adapted in order to control a real mobile robot and

modified so as to deal with the safety issue. One possibility is

to turn it into a passively safe navigation strategy in the manner

of [41]. Of course, tests in the real world will be necessary to

demonstrate the ability of the strategy to navigate among real

people.
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