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Abstract

The present paper deals with computational micromechanical analyses of porous shape memory

alloy (SMA). Porous SMAs are considered composite materials made of a dense SMA matrix

including voids. A three-dimensional constitutive law is presented for the dense SMA able to

reproduce the pseudo-elastic as well as the shape memory effects and, moreover, to account for

the different elastic properties of the austenite and martensite phases. Furthermore, a numerical

procedure is developed and the overall behavior of the porous SMA is recovered studying a

representative volume element. Comparisons between the numerical results, recovered using the

proposed modeling, and experimental data available in the literature are presented. The case of

closed and open porosity is investigated. Parametric studies have been conducted in order to

investigate the influence of the porosity, the shape and orientation of the pores on the overall

mechanical response and, mainly, on the energy absorption dissipation capability.

Keywords: porous material, shape memory alloys, micromechanics, energy dissipation

(Some figures may appear in colour only in the online journal)

1. Introduction

Porous shape memory alloys (SMAs) are materials obtained

by sintering nickel and titanium powders. They can be con-

sidered active composites characterized by the presence of

pores of different shape, size and orientation in a SMA

matrix. Manufacturing and testing of these materials have

been performed initially by Martynova et al [1] and Li et al

[2], while fabrication techniques have been investigated by

Vandygriff et al [3]. Many efforts have been expended in the

last few years to develop manufacturing processes able to

achieve microstructures characterized by high porosity, reg-

ular pore shape and distribution in relation with the resulting

mechanical and transformation behavior.

Porous SMAs combine the benefit of the smart response,

such as pseudo-elastic and shape memory effects, with the

properties of porous or foamed metals, such as low density,

high surface area and high permeability. In fact, they present

good mechanical properties, good corrosion resistance, high

biocompatibility and high dissipation capacity, that make

them attractive for the development of several innovative

applications, like human body implants, light-weight actua-

tors and energy absorption devices.

In particular, porous NiTi are very promising materials

for biomedical applications mainly for the development of

orthopedic implants, as they allow ingrowth of osteoblasts

and tissues, promoting long-term fixation of bone implants;

moreover, they are characterized by low Young’s modulus

and by a pseudo-elastic behavior similar to bone and tendons

[4–6]. A quite current review concerning the manufacturing

and the use of porous SMAs for biomedical applications is

presented in [7].

On the other hand, porous NiTi is characterized by

density lower than NiTi with high energy absorption cap-

ability per volume unit. This makes porous NiTi a good

candidate as energy absorbing material in various fields of

applications [8].

Different approaches have been used for modeling the

response of porous SMA. Among the others Ashrafi et al [9]

and Ashrafi et al [10] proposed a thermodynamically con-

sistent model for dense and porous SMA able to account for

the porosity density in the pseudoelastic and shape memory

response.

One of the most active research approaches involves the

micromechanical analysis and the homogenization technique.

In fact, overall constitutive laws of porous SMAs have been
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deduced studying the response of unit cells (UCs) presenting

open or closed pores characterized by a circular cross section;

micromechanical analyses have been developed using the

finite element approach or the incremental Mori–Tanaka

averaging scheme [11]. Mori–Tanaka and self-consistent

methods have been used as averaging schemes for the pre-

diction of the macroscopic response of porous SMAs [12–15].

In particular, Nemat-Nasser et al [16] developed an experi-

mental study with a micromechanical analysis based on the

Mori–Tanaka approach, modeling the porous SMA as a three

phase composite.

Qidwai and De Giorgi [17] implemented computational

mesomechanical techniques to estimate the response of por-

ous SMAs in the framework of a two-dimensional finite

element, considering randomly distributed pores. Then, they

developed finite element simulations of a split Hopkinson bar

test made of a hybrid SMA composite obtained by filling the

pores of a porous SMA matrix with a polymeric material [18].

Panico and Brinson [19] developed a micromechanical

finite element analysis of a porous SMA representative

volume element (RVE), characterized by a random void

distribution, in order to study the complex interaction

between porosity, local phase transformation and macroscale

response. Liu et al [20] investigated the effect of the hydro-

static stress on the overall behavior of porous SMA, con-

sidering the porous SMA as an assembly of composite

spheres of various sizes. Recently, a micromechanical study

of porous SMA using the finite element approach has been

presented in [21].

As the porous SMA can be successfully adopted in

several appealing and advanced applications, the need of

further studies on the modeling of this smart material is

growing in order to capture the specific features of the

mechanical behavior with a particular attention on the energy

dissipation capability.

On the basis of the recent enhancement in the manu-

facturing process aimed at producing porous SMAs with

regular pore shape, orientation and distribution, the need of

better understanding how these factors influence the

mechanical response arises. In fact, the improvement in the

manufacturing process could allow for designing the material

addressed to a specific application.

To fulfill this need, the aim of the present paper is the

development of a micromechanical analysis of porous SMA,

considering the presence of voids of different size, shape and

orientation inside a NiTi dense matrix, in order to understand

the influence of these factors on the overall behavior of the

material. In other words, the problem of the derivation of a

constitutive model for the porous SMA material using the

methods of the micromechanics and homogenization is

approached. The constitutive law of porous SMAs is estab-

lished considering a suitable RVE, where the mechanical

properties of the dense SMA and information about pore

geometry are given. A constitutive model able to reproduce

the pseudo-elastic as well as the shape memory effects is

considered for the dense SMA, based on the model proposed

in [22–24]. The SMA model is enhanced considering differ-

ent elastic properties for the austenite and martensite phases

[25] and it is formulated in the framework of small strain.

A numerical procedure is developed and implemented in

the finite element code FEAP [26]. Numerical applications are

carried out to assess the ability of the proposed model to

successfully reproduce the mechanical response and to

investigate the energy absorption capability of porous SMAs.

Moreover, comparisons with experimental results, available

in the literature, are performed. The case of closed or open

pore is investigated, studying the effect of the shape of the

pore on the response of the material. In particular, numerical

analyses are performed prescribing the average strain

components.

The main novelty of the present study, with respect to the

available literature, is the evaluation of the energy absorption

capability of the porous SMAs as function of the geometrical

characteristics of the pores, taking into account:

• the use of a SMA constitutive model which considers

different elastic moduli of the austenite and the

martensite phases;

• the development of systematic parametric analyses in the

response of porous SMAs considering different size,

shape and orientation of open or closed pores.

In the following the model is described adopting the

Voigt notation, i.e. second order tensors are represented as

vectors and fourth order tensors as matrices. In particular, the

strains and the stresses are reported as vectors with six

components, while a symmetric 6 × 6 matrix defines the

elastic constitutive matrix.

The paper is organized as follows. In section 2, the

micromechanical formulation for the porous SMA RVE is

illustrated; in section 3, the constitutive model of the dense

SMA material is presented; numerical applications are given

in section 4. Finally, in section 5 concluding remarks are

reported.

Figure 1. Porous NiTi SMA periodic unit cell.
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2. Micromechanical analysis of porous SMA

The constitutive behavior of porous SMA can be derived

considering the material as heterogeneous made of a dense

SMA matrix and assuming pores as inclusions. The overall

response of this very special porous material can be derived

using the micromechanical approach and the homogenization

technique [11].

In the following, a micromechanical analysis is per-

formed considering a periodic microstructure for the porous

SMA made of a dense SMA matrix with the inclusion of

voids. Thus, a repetitive UC, denoted as Ω, with a pore H, is

illustrated in figure 1 and analyzed prescribing suitable

boundary conditions in order to obtain the overall behavior of

the whole heterogeneous material. The porosity of the UC is

defined as:

f
V

V
, (1)

p
=

where Vp and V are the volumes of the pore and the whole

UC, respectively.

Introducing a Cartesian reference system x x x(O, , , )1 2 3

in the UC, the displacement vector field u u uu { }1 2 3
T=

at the typical point x x xx { }1 2 3
T= of Ω is written in the

form:

ũ

x x x

x x x
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where { }¯ ¯ ¯ ¯ ¯ ¯ ¯11 22 33 12 23 13
T

ε ε ε ε γ γ γ= is the average total

strain and ũ x( ) is the periodic displacement.

The local strain ε at a typical point x of Ω is obtained as:

¯ ˜x x( ) ( ), (3)ε ε ε= +

with ˜ x( )ε the periodic part of the total strain, characterized by

null average in Ω and associated to ũ x( ). For parallelepiped

3D UC with the total dimensions along the coordinate axes x ,1
x2 and x3 denoted by a2 ,1 a2 2 and a2 ,3 the classical

periodicity conditions have to be prescribed to the displace-

ment field [27, 28]:

ũ ũ

ũ ũ
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The SMA matrix stress–strain law, discussed in the next

section, allows us to evaluate the local stress σ as a function

of the strain ε.

The average strain vector ε̄ and the average stress vector

σ̄ are defined in Ω, respectively, as:
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n ,1 n2 and n3 being the components of unit vector n x( )

representing the normal to the boundary of the UC .Ω∂ In

equation (5), H∂ is the boundary of the void H present in the

UC; the traction vector t x( ) is defined as t N .T
σ=

It can be pointed out that the last term in equation (5) is

zero since pores are regions with null tractions and it results in

t x 0( ) = at the boundary H∂ .

3. SMA constitutive model

A vast amount of SMA constitutive models are available in

the literature. Phenomenological or micromechanical

approaches are developed for the definition of satisfactory

constitutive laws able to predict the very special response of

SMA; the first type of modeling approach has the clear

advantage of computational efficiency. Limiting a review to

the last five years, among others, Arghavani et al [29] pro-

posed a phenomenological constitutive model based on a

scalar internal variable, the amount of stress-induced mar-

tensite, and on a tensorial internal variable, the preferred

direction of variants. The model decouples the pure reor-

ientation mechanism from the pure transformation mechan-

ism. Saleeb et al [30] presented a review of the SMA

modeling and proposed a thermodynamically consistent

model considering the exchange between the stored and dis-

sipated energy. Gu et al [31] presented a SMA model based

on the use of the martensite volume fraction and the mar-

tensite orientation strain tensor; moreover they implemented a

numerical procedure into a finite element code. A review of

the state-of-the-art in the SMA modeling and application is

presented in the recent book [32].

Next, a thermodynamically consistent model, based on

the one initially proposed by Souza et al [22] and modified

first by Auricchio and Petrini [23] and then by Evangelista

et al [24], is presented in order to describe the mechanical

response of the dense SMA material. The model is slightly

modified with respect to the one illustrated in [24]: an

3
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improvement to the model is introduced by accounting for

different elastic properties of the austenite and single variant

martensite phases, which can play a significant role in the

overall response of dense and porous SMAs, e.g. [17] and

[18]. In fact, experimental evidences demonstrate that the

elastic modulus of the martensite phase is lower than the one

of the austenite phase (even five times lower). The effect of

the variation of the elastic moduli becomes more and more

important when approaching the complete phase transforma-

tion. In porous SMAs, this occurs also for reduced values of

the strain because of the stress concentration around the pores.

Hence, it could be very important to take into account the

different moduli of the austenite and single variant martensite

phases in the evaluation of the mechanical response and in the

dissipation of porous SMAs.

The total strain, ,ε and the absolute temperature, T , are

assumed as control variables while the transformation strain

d, describing the inelastic strain associated to the austenite–

martensite phase transformation, is considered as the internal

variable of the model.

The phenomenological model does not distinguish

between the SMA phases, austenite and multivariant mar-

tensite, as they both correspond to zero transformation strain,

i.e. d = 0. Thus, the only phase transformation from austenite

or multivariant martensite to single-variant martensite is taken

into account.

During the conversion from austenite to single-variant

martensite the transformation strain evolves from zero till its

norm, d ,θ = reaches a limit value ,Lε that represents a

material parameter, so that the inequality 0 Lθ ε⩽ ⩽ has to

be satisfied during the phase transformations. The value of Lε

can be determined by a standard uniaxial test.

The free specific energy function is introduced through a

convex potential as:

T T T Td d d( , , ) ( , , ) ( , ) ( ). (7)e p idε εΨ Ψ Ψ Ψ= + +

The elastic strain energy eΨ is a function of the total strain

,ε of the inelastic strain d and of the absolute temperature T

and it results:

Td d C d( , , )
1

2
( ) ( )( ), (8)e

T
ε ε εΨ ξ= − −

where C( )ξ is the elasticity constitutive matrix and Lξ θ ε=
represents the volume fraction of the single-variant martensite

in a SMA RVE; in particular, when 0ξ = it results

C C(0) A= with CA the austenite elastic tensor and when

1ξ = it results C C(1) S= with CS the single-variant

martensite elastic tensor.

The inelastic energy ,pΨ accounting for all the inelastic

phenomena, is related to the internal variable d and to the

absolute temperature T as:

T T M hd( , )
1

2
( ), (9)p f

2
L

Ψ β θ θ ℐ θ= − + + ε

with:

• β a material parameter related to the dependence of the

transformation stress threshold on the temperature;

• M f representing the finishing temperature of the

austenite–martensite phase transformation evaluated at a

stress free state; the symbol • indicates the positive part

of the argument;

• d d M dVTθ = ∣∣ ∣∣ = with

M

I 0

0 I
1

2

, (10)V

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

=

I and 0 being the 3 3× identity and zero matrices,

respectively;

• h a material parameter associated with the slope of the

linear stress-transformation strain relation in the uniax-

ial case;

• ( )
L

ℐ θε the indicator function introduced in order to

satisfy the fulfillment of the constraint on the transforma-

tion strain norm:

( )
0 if

if
. (11)

L

L
L

⎧
⎨
⎩

ℐ θ
θ ε

θ ε
=

⩽
+∞ >ε

Equation (11) ensures that the norm of d has to be

bounded between zero, for the case of a material without

oriented martensite, and the maximum value ,Lε for the case

of the material fully transformed in single-variant oriented

martensite.

The free energy idΨ is due to the change in temperature

with respect to the reference state for an incompressible ideal

solid [22–24].

The state laws are derived as:

, (12)σ

Ψ

ε
=

∂
∂

X
d
, (13)

Ψ
= −

∂
∂

which define the stress σ and the transformation stress X as

the quantities thermodynamically conjugated to the deforma-

tion-like variables ε and d, respectively.

Therefore, computing the derivatives in equations (12)

and (13), the state laws are:

C d( )( ), (14)σ εξ= −

T M hX

d
C

d
d

1
( )

( )
( ) , (15)

f

L

⎡
⎣

⎤

⎦
⎥T

σ −

ε ε

β θ γ

ε

ξ

ξ
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− −
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∂
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with γ an element of the subdifferential of the indicator

function ( )
L

ℐ θε which results as:

( )

0 if

if

if

. (16)

L

L

L

L

⎧

⎨
⎪

⎩
⎪

γ ℐ θ

θ ε

ℛ θ ε

θ ε

∈ ∂ =

<

=
∅ >

ε
+

The quantity α playing a role similar to the back stress in

the classical plasticity theory with kinematic hardening, is

defined as:

T M h d

C
d

d

1
( )

( )
( ) , (17)

f
L

⎡

⎣
⎢

⎤

⎦
⎥

T
α ε

ε

β θ γ
ε

ξ

ξ

θ

= − + + − −

×
∂

∂
−

∂
∂

resulting in a linear function of the temperature when T M ,f>
thus equation (15) is rewritten in the following form:

X . (18)σ α= −

Different expressions can be introduced for the elastic

matrix C( );ξ in particular, the alloy can be considered as a

composite characterized by the volume fraction ξ of the single-

variant martensite in an austenite matrix within a representa-

tive volume. The overall elastic response of the composite can

be deduced performing a simple homogenization procedure

[25]. In particular, the Voigt and Reuss homogenization

techniques, leading to well-known overall bounds, are herein

considered. Note that the Voigt scheme corresponds to con-

sider the material composed of strips of single variant mar-

tensite and austenite parallel to the stress direction. Thus,

according to a Voigt homogenization, it results:

C C C

C
C C

( ) (1 ) ,

. (19)

A S

S A

ξ ξ ξ

ξ

= − +
∂
∂

= −

According to a Reuss scheme the material is composed of

strips of single variant martensite and austenite orthogonal to

the stress direction; thus, it results:

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

C C C

C
C C C

C C C
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(1 )
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A S

A S S

A A S

1 1
1

1 1
1

1

1 1 1

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ξ ξ ξ

ξ
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∂
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= − +

− − +
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− − −

In figure 2, the variation of the Young’s modulus of the

SMA as a function of the single-variant martensite volume

fraction is reported for the Voigt and Reuss homogenization

schemes in comparison with the average constant value,

assuming E 75 000 MPaA = and E 31 000 MPa.S = It can

be pointed out that the variation of the effective modulus with

ξ according to the Voigt scheme is constant. On the contrary,

according to the Reuss homogenization the variation, initially,

is very fast and, then, becomes slower when ξ tends to 1. This

different trend influences the mechanical response of the

material.

Among the two homogenization schemes, generally

Reuss can be considered more reliable that Voigt, as illu-

strated in a one-dimensional problem in [25].

The yield function is chosen to depend on the deviatoric

part of the thermodynamic force and it is introduced as:

( ) ( )F J RX X2 , (21)d d
2= −

where:

• R represents the radius of the elastic domain in the

deviatoric space, given by the relation:

R
2

3
, (22)yσ=

with yσ the uniaxial critical stress evaluated at T M f⩽ ;

• Xd is the deviatoric part of the associated variable X and

it is computed as:

X I X, (23)d dev=

Figure 2. Variation of the effective Young’s elastic modulus for the
SMA as function of single-variant martensite volume fraction.
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with:

I
D 0

0 I

Dwith
2 3 1 3 1 3

1 3 2 3 1 3

1 3 1 3 2 3

; (24)

v

v

dev
⎡
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⎣

⎢
⎢

⎤

⎦

⎥
⎥

=

=
− −

− −
− −

• J2 is the second invariant of Xd determined through the

following formula:

( )J X M X

M
I 0

0 I

1

2

with
2

. (25)

d S d

S

2

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

T

=

=

The equation describing the associative normality rule for

the internal variable is:

( )F
d

X

X
, (26)

d

ζ̇ = ̇
∂

∂

with ζ ̇ the plastic multiplier.

From the analysis of the flow rule form it can be noted

that the transformation strain d represents a deviatoric strain,

hence the condition of incompressibility during the inelastic

flow is recovered. The model is completed introducing the

classical Kuhn–Tucker conditions:

F F0, 0, 0, (27)ζ ζ̇ ⩾ ⩽ ̇ =

that reduce the problem to a constrained optimization

problem. The normality properties are sufficient to guarantee

the satisfaction of the second principle of thermodynamics in

the form of the Clausius–Duhem inequality [33]. Thus, the

proposed model results are consistent with the thermody-

namic formulation.

The mechanical dissipation density rate, consistent with

the thermodynamically proposed formulation, is:

D X d (28)T ̇̇ =

which represents the ability of the energy absorption of the

material.

When a two-dimensional plane strain state is considered,

with x1–x2 the plane of the strain, it is implicitly assumed

0.33ε = Note that in the plane strain formulation the full

three-dimensional state of stress is considered, i.e. the value

of 33σ and X33 is computed and taken into account in the

evolutive problem, leading to an out-of-plane transformation

strain component d33 different from zero; thus, also in the

plane strain case, the deviatoric nature of the transformation

strain is preserved.

4. Numerical results

In the present section the micromechanical approach pro-

posed above is adopted to study the overall constitutive

behavior of different porous SMAs. The nonlinear

micromechanical analyses are carried out implementing in the

code FEAP [26] three-dimensional tetrahedral and two-

dimensional plane strain quadrilateral finite elements, char-

acterized by the SMA constitutive model described in

section 3.

Three classes of problems are developed in the following

in order to assess the ability of the presented model in

reproducing the overall constitutive behavior of porous SMAs

and in capturing their key features:

• comparison with experimental results [34] for a three-

dimensional UC with a spherical pore subjected to

compressive uniaxial loading–unloading history;

• influence of the porosity, considering UCs with circular

section closed and open pores, characterized by different

radius values;

• influence of the pore shape, considering UCs with elliptic

section closed and open pores, characterized by different

values of the radii ratio.

Three different types of nonlinear micromechanical

analyses are performed considering three different forms of

the elastic constitutive matrix:

• C( )ξ evaluated through a Voigt homogenization scheme,

according to equation (19); these analyses are denoted in

the following as FE-V;

• C( )ξ evaluated through a Reuss homogenization scheme,

according to equation (20); the corresponding FE

analyses are labeled as FE-R;

• C constant, i.e. not depending on the volume fraction of

single-variant martensite, evaluated as the average of the

CA and C ;S these analyses are identified as FE-C

throughout the work.

It is worth noting that, for the latter case, a simplified

form of the SMA constitutive model [24] is recovered. In fact,

because of the specific form of the yield function (22), the

tension-compression asymmetry is not accounted for in the

present model, different to the one illustrated in [24]; this

modification with respect to the original model has been

introduced in order to simplify the numerical analyses. The

introduced simplification will not affect significantly the

results illustrated in the next sections, as only tensile or

compressive loading–unloading histories will be performed,

without reverse loading conditions. Indeed, except for the no

porosity case, the presence of the void can lead to non-pro-

portional loading conditions in a very small zone around

the void.

In the last two classes of problems, parametric studies are

conducted in order to investigate the influence of the volume

fraction of voids and of their distribution and shape on the

global mechanical response and on the energy absorption

capability of the porous media. Since the interest is devoted to

the case of periodic heterogeneous materials, repetitive UCs

are considered and suitable periodic displacement boundary

conditions are prescribed.

In particular, the case of closed pores is studied con-

sidering three-dimensional UCs analyzed adopting three-
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dimensional tetrahedral elements and adopting the boundary

conditions reported in equation (4). The case of open pores is

investigated considering a plane strain state, which simulates

the response of a thin slice of material orthogonal to the axis

of the cylindrical open pore and characterized by unit thick-

ness. In this case the boundary conditions (4) assume the

explicit simplified form:

ũ ũ

ũ ũ

a x a x x a a

x a x a x a a

( , ) ( , ) [ , ]

( , ) ( , ) [ , ], (29)

1 2 1 2 2 2 2

1 2 1 2 1 1 1

= − ∀ ∈ −
= − ∀ ∈ −

On the basis of equation (28) the energy capability of the

UC, evaluated at the time t, is obtained as:

D t VX d( ) d d . (30)
t

0

T∫ ∫ τ̇=Ω

Ω

4.1. Comparison with experimental results

The aim of this section is the assessment of the ability of the

proposed model to successfully reproduce the response of

porous SMAs; to this end, a comparison between the

numerical results and the experimental data by Zhao et al [34]

is performed. In [34], the dense NiTi specimens and the

porous one obtained with the same SMA material, char-

acterized by a porosity of 13%, are tested under uniaxial

compression at a constant temperature T 58 C,= ° higher than

their austenite finishing temperature. In particular, the speci-

mens are loaded up to 5% compressive strain and then

unloaded, allowing the dense and the porous NiTi to exhibit

the pseudo-elastic behavior.

In order to correctly describe the mechanical behavior of

the porous SMA reproducing the experimental compressive

stress–strain curve, a RVE, able to retain the information of

the porous medium, is examined. As the simplifying

hypothesis of a regular distribution of voids is introduced (all

the voids are characterized by the same dimension and shape)

a three-dimensional UC made of a spherical pore (13%

volume fraction) centered in a cuboidal NiTi matrix is ana-

lyzed. The nonlinear micromechanical analyses have been

carried out implementing three-dimensional four-node

tetrahedral elements with one Gauss quadrature point. The FE

discretization of the porous UC is made of 28 856

elements and it is illustrated in figure 3, together with the UC

geometry.

Since the formulation is strain driven, the average strain

1̄1ε is prescribed on the UC, under suitable boundary condi-

tions able to reproduce an uniaxial compressive test in x1-

direction. In particular, taking into account the representation

form (2) for the displacement field, the following constraints

are applied:

u a x x u a x x

x x a a a a

u x a x u y a y

x x y y a a a a

u x a x u y a y

x x y y a a a a

u x x a u y y a

x x y y a a a a

u x x a u y y a

x x y y a a a a

˜ ( , , ) ˜ ( , , ) 0

( , ) [ , ] [ , ],

( , , ) ( , , )

( , ), ( , ) [ , ] [ , ],

( , , ) ( , , )

( , ), ( , ) [ , ] [ , ],

( , , ) ( , , )

( , ), ( , ) [ , ] [ , ],

( , , ) ( , , )

( , ), ( , ) [ , ] [ , ], (31)

1 1 2 3 1 1 2 3

2 3 2 2 3 3

2 1 2 3 2 1 2 3

1 3 1 3 1 1 3 3

2 1 2 3 2 1 2 3

1 3 1 3 1 1 3 3

3 1 2 3 3 1 2 3

1 2 1 2 1 1 2 2

3 1 2 3 3 1 2 3

1 2 1 2 1 1 2 2

= − =
∀ ∈ − × −

=

∀ ∈ − × −

− = −

∀ ∈ − × −

=

∀ ∈ − × −

− = −

∀ ∈ − × −

i.e. in words:

Figure 3. Porous NiTi 3D UC with spherical void f( 0.13)= and FE discretization.
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• in all the nodes belonging to the external faces normal to

x1 the periodic part of the displacement is constrained

along the x1-direction;

• all the nodes belonging to the external faces normal to the

x2-direction are constrained to have the same displace-

ment component u2;

• all the nodes belonging to the external faces normal to the

x3-direction are constrained to have the same displace-

ment component u3.

Notably, three types of analyses are developed herein-

after adopting the SMA constitutive model with a constant

elastic tensor C and with C( ),ξ evaluated through the Reuss

and Voigt homogenization schemes and able to account for

the phase transformation from austenite or multi-variant

martensite to single-variant martensite.

The material parameters are calibrated starting from the

mechanical properties of dense NiTi reported in [34]. The

Young moduli of austenite and single-variant martensite

phases are estimated from figure 4, where the experimental

stress–strain curve of the dense SMA specimen is illustrated.

The assumption that dense NiTi is fully transformed into

single-variant martensite at the end of the loading step

is made.

The mechanical properties are listed in table 1. Specifi-

cally, the symbols E A and Aν indicate the Young modulus and

the Poisson ratio, respectively, when the volume fraction of

the single-variant martensite in the SMA is zero ( 0)ξ = and

only the austenitic phase is present; the Young modulus and

the Poisson ratio when the SMA is fully transformed in sin-

gle-variant martensite ( 1)ξ = are denoted with the symbols

ES and Sν .

In particular, the martensite finishing temperature is set

according to the transformation temperatures provided by

[34] for the dense NiTi. The other input material parameters

of the model, i.e. h, ,β Lε and ,yσ are calibrated in order to fit

the experimental compressive stress–strain curve of the dense

NiTi specimen. It can be noted that, according to the model

described in section 3, the same threshold value yσ is assumed

for the uniaxial critical stresses in tension and in compression

evaluated at T M f⩽ .

For the nonlinear micromechanical analysis FE-C, a

unique Young modulus E 70 500 MPa= and a unique

Poisson ratio 0.33ν = are evaluated as the average means of

the correspondent moduli of the austenitic and single-variant

martensite phases reported in table 1.

The response of the UC made of dense NiTi, i.e. f 0,=
and subjected to the compressive average strain history

( )¯ 0.04511ε− = is illustrated in figure 5, where the comparison

with the experimental curve of Zhao et al [34] is reported in

terms of the average compressive stress ¯11σ versus the average

compressive strain 1̄1ε for the FE-C, FE-V and FE-R analyses.

From figure 5 it can be observed that the FE-C approach

provides a good approximation of the experimental data for

the dense SMA, reproducing the pseudo-elastic effect, as the

austenite and martensite elastic moduli are very close.

In this case two different Young moduli and Poisson

ratios are considered for the austenitic and single-variant

martensite phases, i.e. performing the FE-V and FE-R ana-

lyses, the pseudo-elastic effect is recovered and the initial

stiffness is captured together with the starting point of the

forward martensitic transformation. The maximum value of

the average stress achieved at the end of the loading step is

slightly overestimated by the FE-C analysis and under-

estimated by the FE-V and FE-R analyses.

Once the material parameters are set for the dense NiTi,

the mechanical behavior of the porous SMA with a porosity

level of 13% is investigated, performing a micromechanical

analysis in which the porous UC is considered. In particular, a

monotonic increasing value of the average strain is prescribed

on the porous NiTi UC until the value ¯ 0.04511ε− = is

reached.

The mechanical responses of the porous UC subjected to

uniaxial compression, obtained carrying out the FE analyses,

are plotted in terms of the average stress ¯11σ− versus the

Figure 4. Evaluation of the elastic properties of the SMA phase from
the experimental results.

Figure 5. Comparison of modeling results assessed by the FE-C, FE-
R, FE-V analyses and experimental stress–strain curve for
dense NiTi.
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average strain 1̄1ε− in figure 6, where they are compared with

the stress–strain curve given by the experimental compres-

sive test.

The average stress corresponding to the starting of the

austenite–martensite transformation is overestimated by the

FE-C, FE-V and FE-R results, the maximum average stress

achieved at the end of the loading phase is overestimated by

the FE-C analysis, while it is almost accurately evaluated by

the FE-V and FE-R.

However, the performed analyses FE-C, FE-V and FE-R

provide a good approximation of the experimental data and all

the results confirm the capability of the proposed procedure of

accurately predicting the stress–strain of porous SMA, only

on the basis of the constitutive model parameters of the dense

counterpart, which are in reduced number and which can be

easily identified by few and simple experimental tests in a

reliable way.

4.2. Closed pore

The case of closed pores (see, e.g. [35]) is investigated,

considering a three-dimensional UC with a void centered in a

NiTi matrix; the influence of the porosity and of the void

shape on the overall mechanical response of the porous

material is evaluated. In particular, the dissipation capacity of

the material is computed for loading-unloading histories.

Computations are performed adopting four-node tetrahedral

elements with almost regular meshes characterized by the

ratio size of the element over the UC edge of about 0.03.

Initially, a UC with a spherical void is studied considering

different porosities; then, the transition from the spherical

(closed) to the cylindrical (open) shape of the pore is

numerically analyzed.

The material properties of the dense SMA are the ones

adopted in [24] and are reported in table 2. According to the

formulation of the proposed constitutive model for the dense

SMA, which accounts for the volume fraction of the single-

variant martensite, different elastic moduli are considered for

the SMA phases of austenite and single-variant martensite.

The pseudo-elastic loading-unloading history, reported in

table 3, is prescribed, applying an increasing value of the

tensile average strain 1̄1ε in the UCs until the value 0.02η = is

reached at a constant temperature T 270 K,= greater than the

temperature A f at which the more-ordered austenitic phase is

stable. Then, the NiTi pseudo-elasticity is exploited unloading

the UC and, thus, allowing the complete recovery of the

transformation strain in the porous SMA. During the whole

loading history the other average strain components are kept

equal to zero. Thus, the loading history is uniaxial in terms of

the average strain.

The above loading history is prescribed on the UCs

characterized by the different volume of voids and shapes,

developing nonlinear micromechanical finite element ana-

lyses considering the Reuss scheme for the evaluation of the

elasticity matrix (FE-R).

4.2.1. Influence of the porosity. A cubic three-dimensional

UC with a centered spherical void is studied; five different

porosities are investigated, considering the following values

of void volume fraction f : 0, 0.10, 0.154, 0.20 and 0.35,

obtained considering different values of the radius R and

keeping constant the side a a a1 2 3= = of the UC.

In figure 7 the mechanical response of the porous SMA is

reported in terms of average stress ¯11σ versus the average

strain 1̄1ε for all the studied porosities, when it is set 0.02.η =
It can be pointed out that, as expected, the value of the

maximum average normal stress along the x1-direction

( ),11
maxσ reached at the end of the loading step, decreases

for increasing values of the porosity.

Note that the mechanical responses of the dense and

porous SMA correspond to the uniaxial strain loading history,

above described, and result in a significant difference from the

case of uniaxial stress. In fact, the stress components 22σ and

,33σ not herein reported, have the same order of magnitude of

11σ at the end of the loading phase, i.e. when the maximum

value of the stress 11σ is very high. The presence of 22σ and 33σ

together with 11σ induces a low value of the second invariant

of the deviatoric stress, J ,2 often considered responsible for

plastic flow. Thus, in this case, neglecting the plastic effect

could be considered a reasonable assumption.

The influence of the porosity on the energy absorption

capability of the porous SMA, when the pseudo-elastic effect

occurs in the material, is studied. In figure 8(a) the energy

dissipated in the UC per unit volume of the solid fraction is

plotted in function of the porosity with red triangles. The

energy dissipated in the dense SMA is also represented with a

blue square.

It can be pointed out that for all the studied porosities the

dissipated energy per solid volume is higher than the energy

dissipated by the dense SMA and the maximum value of the

dissipated energy per solid volume, obtained for f 0.10,= is

more than twice the value for the dense SMA. As the volume

of voids continues to increase, the dissipated energy per

volume tends to decrease, with a value for f 0.35= which

Figure 6. Comparison of modeling results assessed by the FE-C, FE-
R, FE-V analyses and experimental stress–strain curve for porous
NiTi f( 0.13)= .
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remains significantly higher than the one obtained for the case
of dense SMA f( 0).= In figure 8(b), the average value ξ̄ of

the single-variant martensite volume fraction ξ per solid

volume is plotted versus porosity with red triangles. The
value of ξ̄ for solid volume for the dense SMA is represented

with a blue square. It can be pointed out that f¯/ (1 )ξ − has

the same trend respect to porosities obtained for the

dissipation for solid volume, represented in figure 8(a). In
fact, the maximum value of f¯/ (1 )ξ − is obtained for

f 0.10,= while it tends to decrease with the increasing of

porosity.

4.2.2. Transition from closed to open pores. The transition

from closed to open (interconnected) pores is investigated

studying UCs with an ellipsoidal void, keeping constant the

side a a a .1 2 3= = In particular, different shapes of void are

considered in the analyses, from spherical to cylindrical with

axis x3 orthogonal to the prescribed uniaxial average strain

¯ ,11ε as schematically illustrated in figure 9. For the ellipsoidal

void it is set: a the radius along x1-direction, b the radius

along x2-direction and c the radius along x3-direction. Thus,

starting from a UC characterized by f 0.154= and by a

spherical void, i.e. a b c,= = keeping a b= and changing

only c, the following UCs are obtained:

• UC with spherical closed void with c a= and f 0.154= ;

• UC with ellipsoidal closed void with c a1.25= and

f 0.179= ;

• UC with ellipsoidal closed void with c a1.5= and

f 0.216= ;

• UC with ellipsoidal open void with c a1.75= and

f 0.246= ;

• UC with cylindrical open void with c → ∞ and

f 0.35= .

The loading history, reported in table 3, is prescribed to

all the UCs.

In figure 10 the average stress ¯11σ versus the average

strain 1̄1ε for all the studied UCs is reported. It can be pointed

out that the transition from a closed to an open pore induces a

reduction of the phase transformation activation stress, of the

achieved maximum stress and of the stress–strain slope

during the austenite–martensite transformation. This reduc-

tion is due to two causes: the geometrical change of the pore

shape from closed to open and the increasing of porosity.

To better understand the effect of these two causes on the

mechanical response, the stress–strain curves in the x1-

direction of the two cells, with f 0.35= and characterized by

the closed spherical or open cylindrical void, are compared in

figure 11. It can be noted that the maximum stress ( ),11
maxσ

achieved at the end of the loading phase, is almost the same

for the two cells. On the other hand, in the case of the open

void, the activation stress results are lower while the slope of

the stress–strain curve during the phase transformation results

are higher with respect to the closed pore.

The effect of the transition shape from closed to open

pore on the energy absorption capability is also investigated.

In figure 8(a) the dissipated energy for solid volume is plotted

with green circles for all the studied cells. It can be pointed

out that the dissipated energy for solid volume is maximum

for the UC with a spherical void and tends to decrease, from

closed to open pores, keeping a value always higher than the

dissipated energy per solid volume evaluated for the dense

SMA (blue square). This reduction is due again to the

increasing of porosity and to the pore shape change. It can be

noted that for the porosity f 0.35= the dissipated energy is

higher for the cell with a closed spherical pore than for the

cell with an open cylindrical pore.

It could be remarked that these considerations are related

to the specific prescribed boundary and loading conditions.

Qidwai et al [11] presented a comparison of the overall

stress–strain response for closed and open porosity, consider-

ing boundary and loading histories, different from the ones

herein prescribed. For this reason their results are not always

in agreement with the one presented in this section.

4.3. Open pore

The case of interconnecting open porous SMA is considered,

i.e. it is assumed that the pores have a cylindrical shape. This

study is of particular interest as the case of interconnecting

pores is very common, mainly for greater values of the por-

osity [36, 37]. Moreover, it appears very interesting to eval-

uate the response of the porous alloy in the direction

orthogonal to the cylindrical pore, as in this case the stress

distribution and, as a consequence, the transformation strain

distribution is strongly influenced by the presence of the pore.

Computations are performed considering the same material

properties introduced for the case of closed pores.

In order to perform the FE-C analyses a Young modulus

E 53 000 MPa= and a Poisson ratio 0.36ν = are con-

sidered, evaluated as the average of the correspondent moduli

of the austenite and single-variant martensite phases.

4.3.1. Influence of the porosity. In the following applications

the influence of the porosity on the macroscopic mechanical

Table 1. Material properties of the NiTi specimen subjected to uniaxial compression.

NiTi matrix mechanical properties

E 75 000 MPaA = 0.33Aν = E 66 000 MPaS = 0.33Sν = h 13 500 MPa=

6 MPa K 1β = − 0.034Lε = M 296.24 Kf = 200 MPayσ =
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Smart Mater. Struct. 24 (2015) 085035 V Sepe et al



response and on the energy dissipation capability of porous

NiTi is investigated. The simplifying hypothesis of a regular

distribution of circular voids in the material is introduced,

considering a square periodic UC with a circular centered

void, as shown in figure 12. The study is conducted in two-

dimension using plane strain conditions, which simulate the

response of a slice of unit thickness of a solid characterized by

a cylindrical pore orthogonal to the plane of interest.

The nonlinear micromechanical analyses are carried out

using four-node quadrilateral finite elements. In order to

examine several levels of porosity f , different values of the

radius R of the pore are set, keeping constant the side of the

UC, i.e. a a .1 2= Specifically, seven UCs are considered,

characterized by the following values of void volume

fraction: 0, 0.05, 0.10, 0.20, 0.35, 0.45 and 0.55. Of course,

the UC with f 0= degenerates to the case of dense SMA.

The FE discretization of the porous UC is made using a

structured mesh characterized by the ratio size of the element

over the UC edge of about 0.02.

Two different loading histories (table 3) are prescribed on

the examined UCs in order to activate the pseudo-elastic

effect in the porous SMA. For the first loading history it is set

0.02,η = while for the second one it is 0.04η = .

The above loading histories are prescribed on the seven

UCs characterized by the different volume of voids and for

each UC the three forms of the constitutive matrix are

considered adopting the model discussed in section 3 and,

thus, developing nonlinear micromechanical finite element

analyses indicated as FE-V, FE-R and FE-C.

Figure 13 shows the behavior of all the UCs in terms of

the average normal stress ¯11σ versus the average strain 1̄1ε for

both the loading cases characterized by different values of the

maximum average strain prescribed at the end of the loading

phase, i.e. 2% (figure 13(a)) and 4% (figure 13(b)). Results

are plotted for porosity values equal to 0, 0.10, 0.35, and 0.55;

computations for porosities equal to 0.05, 0.20 and 0.45 are

also performed but their results are omitted in order to make

the figures clearer.

The same observations, presented in the previous

subsection for the closed pore UCs, can be drawn for the

case of an open pore. In fact, it can be pointed out that for

both the loading histories the value of the maximum average

normal stress along the x1-direction ( ),11
maxσ reached at the

end of the loading step, decreases for increasing values of the

volume of voids. Furthermore, figure 13 highlights that for

increasing porosity levels the stress–strain slope during the

austenite–martensite phase transformation and the activation

stress significantly reduce.

From figure 13, it can be also noticed that the use of the

three different forms of the elastic constitutive matrix leads to

the same qualitative behavior of the porous SMA. For dense

SMA, the difference between the results obtained for a

constant or variable elastic matrix can be significant. In fact,

for low values of the prescribed strain, FE-C leads to a less

stiffer response than FE-R and FE-V; on the contrary,

increasing the prescribed strain (figure 13(b)), the FE-C leads

to stiffer results, due to the phase transformation evolution.

Table 2. Material properties for dense NiTi.

NiTi mechanical properties

E 75 000 MPaA = 0.36Aν = E 31 000 MPaS = 0.36Sν =

h 1000 MPa= 2.1 MPa K 1β = − 0.06Lε = M 223 Kf =

61.23 MPayσ =

Table 3. Loading–unloading history for the porous NiTi.

t (s) 0 1 2

1̄1ε 0 η 0

T (K) 270 270 270

Figure 7. Response of the porous UCs with a spherical void along
x1-direction for 0.02η = .
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This effect is due to the fact that the constant elastic modulus

for the FE-C results are lower than the austenite modulus at

the beginning of the loading history, while the results are

greater than the martensite modulus when the phase

transformation evolves. For low values of the porosity, this

effect is evident for both 0.02η = and 0.04,η = as the phase

transformation occurs also for lower average strain values

Figure 8. Dissipated energy per solid volume (a) and average of single-variant martensite volume fraction for solid volume (b) versus
porosity for UCs with a spherical and ellipsoidal void.

Figure 9. Transition from closed to open pore.

Figure 10. Response of the porous UCs with an ellipsoidal void for
shapes from spherical to cylindrical.

Figure 11. Response of two UCs with f 0.35= characterized by a

closed spherical pore and an open cylindrical pore.
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with respect to the dense SMA. With the increasing of the

porosity, the effect becomes less important because the

presence of the void significantly reduces the overall stiffness

of the UC.

The analysis of the trend of the maximum value of the

average normal stress along the x1-direction, achieved for the

different values of f , is illustrated in figure 14 for all the FE-

V, FE-R and FE-C analyses and for both the two levels of the

prescribed average strain. In details, the results given by the

first loading history are reported with solid lines, while the

curves of the second loading case are represented by dashed

lines. Furthermore, the values of the maximum average stress

( )11
maxσ obtained by the FE-V analyses are shown with the

square green symbols, by the FE-R analyses with round blue

markers and the FE-C simulations with red triangles.

Summarizing, taking into account the observations made for

figure 13, figure 14 highlights that:

• for the same porosity f , the value of the maximum

average tensile stress is obviously higher for the analyses

in which the average strain reaches the value of 0.04,η =
for all the FE-V, FE-R and FE-C analyses;

• for all the FE-V, FE-R and FE-C simulations, the

difference between the values of ( )11
maxσ for the two

loading histories tends to decrease with the increasing of

porosity, so that for a high level of void fraction the

increase of the average strain leads to a low increase of

the maximum tensile average stress;

• for 0.02η = and for 0.04η = with f 0.30,> FE-V, FE-

R and FE-C lead to very closed results; while for low

value of the porosity FE-C provides higher values of the

maximum stress.

As noted for the three-dimensional analyses, also for the

two-dimensional ones the stress components 22σ and ,33σ not

herein reported, have the same order of magnitude of 11σ at

the end of the loading phase; thus, also in this case, the plastic

effect could be neglected.

Figure 12. Porous NiTi periodic 2D-UC with a cylindrical void with
circular directrix.

Figure 13. Responses of the porous UCs along x1-direction for a
prescribed maximum average strain equal to 2% (a) and 4% (b).

Figure 14.Maximum average normal stress obtained for a prescribed
maximum average strain equal to 2% and 4%.
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The incidence of the volume fraction of voids on the

energy absorption capability of the porous SMA, exploiting

the pseudo-elastic effect, is also investigated for the

considered loading histories and for all the performed FE

analyses. The energy dissipated in the UC per unit volume of

the solid fraction is evaluated and plotted in figure 15 in

function of the porosity for the two considered values of η.

From figure 15 it can be emphasized that for all the FE-

V, FE-R and FE-C simulations, the energy dissipated per

volume of the slice of unit thickness of the solid during the

pseudo-elastic loading cycle increases for higher values of the

prescribed maximum overall strain, as expected. For all the

studied porosities the dissipated energy per solid volume is

higher than the energy dissipated by the dense SMA, except

for the UC with f 0.55.= In particular, the FE-V, FE-R and

FE-C analyses provide very closed results for 0.02,η = while

for 0.04η = and f 0.20,> the FE-C analyses tend to provide

higher values of the dissipated energy, even if the trend for

the three types of analyses is the same. This effect is due to

the increasing of the material in the UC involved in the phase

transformation for high average strain and high porosity.

The maximum value of the dissipated energy per solid

volume, that is almost one and a half the value obtained for

the dense SMA, is reached for f 0.10= when 0.02η = and

f 0.20= when 0.04η = .

As the value of the volume of voids increases, the

dissipated energy per volume of the slice of unit thickness of

the solid tends to decrease, with a value for f 0.55= slightly

smaller than the one obtained for the case of dense SMA,

except for the FE-C analysis with 0.04.η = The FE-C results

appear less reliable with respect to FE-R and FE-V as they are

obtained assuming equal moduli for the austenite and

martensite. This effect is due to the increasing of the material

involved in an advanced phase transformation for increasing

values of the average prescribed strain and of porosity; in

these cases FE-C analyses lead to a stiffer response during the

loading phase with respect to FE-R and FE-V, as has already

been discussed.

In figure 16 the distribution maps of the volume fraction

of the single-variant martensite ξ in a SMA RVE is plotted for

the FE-R analyses at the end of the two loading cases for three

different values of porosities: f 0.05,= f 0.20= and

f 0.55.= The results of the dissipation for the different

values of the porosity, reported in figure 15, can be

interpreted looking at the distribution of the martensite

volume fraction illustrated in figure 16. In particular, with

reference to the case 2%,η = it can be observed that the area

where the transformation is almost completed is quite the

same for f 0.05= and f 0.20,= while it is significantly

smaller for f 0.55;= in fact, the dissipation reduces for

higher value of the porosity with respect to the cases f 0.05=
and f 0.20.= Moreover, similar considerations can be drawn

for 4%,η = except for f 0.20= where figure 16(b) shows

that the area interested by a complete transformation is wider

with respect to the other porosities, leading to a significantly

higher dissipation.

It can be pointed out that for this overall uniaxial strain

history, at the increasing of porosity, the size of the UC part

where the phase transformation occurs decreases leaving a

greater part of the UC with almost a linear elastic behavior.

As a consequence, the dissipated energy over the SMA

volume tends to decrease and the material is not well

exploited for energy absorption.

Then, the third loading history reported in table 4 is

considered for the UC, characterized by the same value of the

strain 1̄1ε and ¯22ε with the other average strain components

equal to zero.

In figure 17 the distribution map of ξ is plotted for the

FE-R analyses at the end of the loading case for three

different values of porosities: f 0.05,= f 0.20= and

f 0.55.= It can be pointed out that for this loading condition

also for high values of porosity the greater part of the UC is

undergoing transformation strains, thus the material is able to

dissipate a greater amount of energy with respect to the

uniaxial strain case.

In figure 18 the dissipated energy per volume of the slice

of unit thickness of the solid is plotted versus the porosity for

the FE-C, FE-R and FE-V analyses for the third loading

history, providing very close results. It can be pointed out that

the energy dissipated by the dense SMA is almost the same as

in the previous loading path with 0.04,η = while the

dissipated energy per solid volume for all the studied

porosities is significantly higher than for the previous two

loadings. This is due to the wider UC part involved in the

phase transformation. The maximum value of the dissipated

energy per solid volume is almost two times higher than the

one obtained for the dense SMA and it is reached for f 0.35=
while with increasing porosity it decreases very slightly.

In the same figure the dissipated energy per UC volume

is plotted for FE-C, FE-V, FE-R analyses. It can be noted that

also in this case the density of dissipated energy is higher than

the case of dense SMA. Increasing the porosity over than 0.10

the dissipated energy per UC volume starts to decrease

reaching a value lower than the dense SMA for about f 0.5= .

Figure 15. Dissipated energy per solid volume obtained for a
prescribed maximum average strain equal to 2% and 4%.
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4.3.2. Influence of the pore shape. The aim of the second

numerical simulation is to investigate the effect of the shape

and orientation of the voids on the mechanical response of

porous SMAs and on their ability to dissipate energy. For this

purpose a parametric study on a porous SMA is conducted. In

particular, a two-dimensional square UC made of a NiTi

matrix characterized by the same material properties of the

previous application (table 2) is considered. An elliptical void

Figure 16. Volume fraction of single variant martensite evaluated in the analyses FE-R at the end of the loading step t( 1 s)= in a quarter of

the UC with f 0.05= (a), f 0.20= (b), f 0.55= (c) for the first and the second loading histories.
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is centered in the periodic UC, being a the radius along the x1-

direction and b the radius along the x2-direction. In figure 19

the geometry of the considered UC is illustrated.

Three values of porosity are chosen setting f equal to

0.10, 0.20 and 0.35 and for each porosity level seven different

values of the ratio a/b are considered. In particular, varying

the size of the radii of the elliptical void the following values

for the ratio a/b are analyzed: 0.50, 0.57, 0.67, 1, 1.50, 1.75,

2. It is worth noting that the UCs characterized by the ratios

1.50, 1.75, 2 can be obtained rotating the elliptic pore by /2π

of UCs with a/b equal to 0.50, 0.57 and 0.67, respectively.

Obviously the elliptical pore with the ratio a/b= 1 degenerates

in the case of the circular hole in a NiTi matrix, discussed in

the previous application.

The UC is discretized using a structured mesh character-

ized by the ratio size of the element over the UC edge of

about 0.02 for all the porosities and the all values a/b.

The mechanical response of the heterogeneous media,

when the pseudo-elastic effect is activated, is investigated.

Thus, the same loading history defined in table 3 with

Table 4. Third loading history for the porous NiTi with circular void.

t (s) 0 1 2

1̄1ε 0 0.04 0

¯22ε 0 0.04 0

T (K) 270 270 270

Figure 17. Volume fraction of single variant martensite evaluated in
the analyses FE-R at the end of the loading step t( 1 s)= in a quarter

of the UC with f 0.05= (a), f 0.20= (b), f 0.55= (c) for the third

loading history.

Figure 18. Dissipated energy obtained for the third loading history.

Figure 19. Porous NiTi periodic 2D-UC with a cylindrical void with
elliptic directrix.
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0.02η = is prescribed on all the UCs characterized by

different porosities and different geometries. FE-C and FE-R

analyses are performed for all the porosities and the ratios a/b.

The overall constitutive behaviors are plotted in terms of

average normal stress versus the average normal strain along

the x1-direction for f 0.10,= f 0.20= and f 0.35= in

figure 20, figure 21 and figure 22, respectively. In details, in

all the graphs the responses for the three UCs are plotted with

square black dots for the ratio a b/ 1= (i.e. UCs with circular

voids), dashed lines for pores with a b< and solid line for

pores a b> .

It can be noted that, according to the loading history, the

applied average strain is prescribed along the x1-direction.

Thus, for the UCs with a b> the load is assigned along the

direction of the major radius of the void, while for the cases

a b< the average strain is applied along the direction of the

minor radius of the ellipse.

From figure 20, figure 21, and figure 22 it can be

observed that for all the analyzed porosity levels the curves

representing the mechanical responses of the UCs with a b<
are characterized by a value of the activation stress, i.e. the

average stress corresponding to the activation of the

martensite phase transformation, that is lower with respect

to the one obtained for the case of a circular pore. Further, the

value of the activation stress tends to decrease for decreasing

values of the ratio a/b, i.e. for elliptical voids with increasing

value of the radius lying on the direction orthogonal to the

load application. On the contrary, for the UCs with a b> the

activation stress is greater than the one assessed for the UC

with a circular pore and the difference tends to increase for

increasing values of the ratio a/b. Both these remarks become

more evident for higher levels of porosity. Clearly, the value

of the overall activation stress depends on the stress intensity

factor that occurs around the void.

Also the maximum average stress achieved at the end of

loading phase ( )11
maxσ sensibly varies according to the shape

of the pore, especially for high porosity. Notably, it is

observed that for a volume fraction of voids equal to 10% the

case of a circular pore allows for the maximum value of

( ).11
maxσ Considering elliptical pores the maximum average

stress decreases and, specifically, the cases with a b<
provide lower values of ( )11

maxσ compared to the correspon-

dent cases with a b.> These outcomes still hold for a

Figure 20. Mechanical responses of the porous UCs with elliptical
voids for f 0.10= .

Figure 21. Mechanical responses of the porous UCs with elliptical
voids for f 0.20= .

17

Smart Mater. Struct. 24 (2015) 085035 V Sepe et al



porosity level of 20%. Specifically, for f 0.20= the

mechanical responses of the UCs with a b/ equal to 1.50,

1.75 and 2 are almost the same, with very close values of the

activation stress and of ( ),11
maxσ higher than the correspond-

ing values of the analyses with a b/ equal to 0.50, 0.57, 0.67.

For f 0.35= the discrepancies between the activation

stress and the maximum stress achieved for the different ratios

a b/ are more significant. In particular, it can be observed that

the curves corresponding to the UCs in which the elliptical

voids have the maximum radius lying on the direction of the

load application, are characterized by higher values of

( )11
maxσ with respect to the ones achieved for the case of

the circular pore and especially to the ones provided by the

UCs with a b< .

It can be remarked that the higher the porosity, the more

important is the role played by the shape of the void. In

particular, for f 0.35= decreasing the ratio a b/ the stress

concentration increases, thus the transformation occurs for

lower value of the average stress, leading to a lower

maximum stress.

All these statements result to be true for the all the

performed FE-C and FE-R analyses, since adopting the two

different expressions for the elastic constitutive tensor leads to

the same qualitative response of the porous SMA. The main

differences between the results provided by the two

approaches stem in the prediction of the maximum average

stresses achieved for 0.02η = which are slightly higher for

the FE-C analysis, in agreement with the results of the first

loading history of the previous numerical test.

It can be also noted that, for a given porosity, the initial

stiffness of the UC increases with the ratio a b/ , as it could be

expected. Moreover, a quite sudden change of slope can be

observed in many overall stress–strain curves due to the

fulfillment of the martensite transformation in a significant

part of the UC.

An interesting issue is also the analysis of the influence

of the shape and orientation of voids on the energy absorption

capability of the examined porous SMA. Thus, the energy

dissipated per volume of the slice of unit thickness of the

solid is evaluated in function of the ratio a b/ and it is plotted

for the FE-C and FE-R analyses in figures 23(a) and (b),

respectively. In these figures also the energy dissipated by the

dense SMA is reported with dashed lines.

Figure 22. Mechanical responses of the porous UCs with elliptical
voids for f 0.35= .

Figure 23. Dissipated energy per solid volume for porous NiTi UCs
with elliptical pores characterized by different ratios a b/ for the
analyses: FE-C (a), FE-R (b).
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From figure 23 it can be noticed that the porous SMA

capacity to dissipate energy is strongly influenced by the

shape of the pores and by their orientation with respect to the

applied loading. In details, for each value of the volume

fraction of voids, the dissipated energy increases with the

increasing values of the ratio a b/ for all the performed

analyses. The increase in the energy dissipation capability is

significantly more evident for a high porosity level f( 0.35)=
and for a b/ 1.75,< while it is rather limited for the case

f 0.10= and for a b/ 1.75> .

Furthermore, the energy per volume of the slice of unit

thickness of the solid dissipated by the porous SMA is always

higher than the one dissipated by the dense SMA except for

f 0.35= and a b/ 1.0< .

As established in the previous numerical simulation, also

the performed application puts in evidence that value of the

dissipated energy depends slightly on the assumption made

on the constitutive SMA tensor: the FE-C analyses lead to a

slightly higher value of the energy dissipation capability of

the porous SMA with respect to the results assessed by the

FE-R ones.

5. Conclusions

The micromechanical behavior and the homogenized

response of porous SMA is studied in the present work. In

particular, nonlinear micromechanical analyses are performed

introducing the hypothesis of a periodic distribution of voids,

all characterized by the same shape and size; thus, a typical

repetitive UC, representative of the heterogeneous porous

material and able to account for the properties of the com-

posite medium, is analyzed.

The numerical results show that, once the material

parameters are set on the basis of experimental evidences for

dense SMA, the proposed micromechanical model is able to

reproduce the experimental results of the porous SMA; in

particular, a comparison with a porous SMA subjected to

uniaxial compression is presented.

Then, numerical investigations are performed for open

and closed pore UCs, prescribing the average strain compo-

nents. This choice is motivated by the future aim to develop a

multiscale displacement-based finite element procedure where

these micromechanical analyses are implemented at the Gauss

point level to obtain the overall constitutive behavior of the

porous material. The following points can be remarked.

• The porosity, the shape and orientation of voids

significantly influence the mechanical response of porous

SMA and its dissipation capability.

• The geometrical change of the void shape from closed to

open influences the mechanical response of the porous

SMA and the dissipated energy capability: for the same

porosity the closed pore UC and the open pore UC tend

to have a qualitative similar overall mechanical response

with an almost equal ¯11
maxσ but the closed pore UC is able

to dissipate more energy.

• From a qualitative point of view, the results obtained for

closed pore UCs are very similar to the ones obtained for

open pore UCs both in terms of mechanical response and

dissipated energy.

• The porous SMA characterized by ellipsoidal/elliptical

voids is able to dissipate less energy with respect to the

porous SMA with spherical/circular voids when the

maximum radius is orthogonal to the load direction.

• Two-dimensional analyses reveal that the porous SMA

characterized by elliptical voids is able to dissipate more

energy with respect to the porous SMA with circular

voids when the maximum radius is oriented in the same

direction of the load.

• In almost all the studied cases, the porous SMA is able to

dissipate more energy per solid volume with respect to

the dense SMA. In particular, it can be pointed out that

for the studied cases the maximum dissipated energy is

obtained for porosity from 10 to 30% but also for the

other studied porosities the dissipated energy is higher

than for the dense SMA.

• The quantity of dissipated energy depends on the applied

loading histories; in particular, the larger the UC part

involved in the phase transformation, the higher the value

of the dissipated energy per solid volume. A close

dependence between the dissipated energy and the

average value of the single variant martensite has been

demonstrated: it is found that the dissipation per solid

volume and the average of single variant martensite

volume fraction per solid volume show the same trend

with respect to the change in porosity.

• The SMA model which considers the same elastic

properties for austenite and martensite leads to overall

mechanical responses very close to the ones considering

different moduli, and for high values of prescribed

average strain and porosity it can provide slightly higher

values of the dissipated energy.

• For the porous SMA the differences between the FE-C,

FE-R and FE-V analyses are less significant than for the

dense SMA.

Finally, the performed micromechanical analyses can be

very useful for the design of specific devices whose main task

is the energy dissipation. In particular, these types of micro-

mechanical analyses allows us to identify from the mechan-

ical properties of the dense SMA the most appropriate porous

SMA, in terms of porosity density, shape and orientation, in

manufacturing the device.
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