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Abstract

In this work, we evaluate OpenCL as a programming tool for developing performance-portable applications for GPGPU. While the

Khronos group developed OpenCL with programming portability in mind, performance is not necessarily portable. OpenCL has

required performance-impacting initializations that do not exist in other languages such as CUDA. Understanding these implications

allows us to provide a single library with decent performance on a variety of platforms. We choose triangular solver (TRSM) and

matrix multiplication (GEMM) as representative level 3 BLAS routines to implement in OpenCL. We profile TRSM to get the time

distribution of the OpenCL runtime system. We then provide tuned GEMM kernels for both the NVIDIA Tesla C2050 and ATI

Radeon 5870, the latest GPUs offered by both companies. We explore the benefits of using the texture cache, the performance

ramifications of copying data into images, discrepancies in the OpenCL and CUDA compilers’ optimizations, and other issues that

affect the performance. Experimental results show that nearly 50% of peak performance can be obtained in GEMM on both GPUs

in OpenCL. We also show that the performance of these kernels is not highly portable. Finally, we propose the use of auto-tuning

to better explore these kernels’ parameter space using search harness.
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1. Introduction

People associated Graphics Processing Units (GPUs) with

fast image rendering until the turn of the century. This is when

the science community turned their attention to the hardware

predominantly discussed in the computer gaming circles. One

of the first attempts of non-graphical computations on a GPU

was a matrix-matrix multiply [1]. In 2001, low-end graphics

cards had no floating-point support; floating-point color buffers

did not arrive until 2003 [2]. For the gaming industry, sup-

port for floating-point meant more realistic game-play; rich ad-

vanced lighting effects no longer suffered from banding effects

common in older generations of hardware that only allowed a

single byte per color channel. For the scientific community,

the addition of floating point meant that overflow associated

with fixed-point arithmetic was no longer a problem. Many re-

search publications thoroughly analyzed the new breed of GPU

hardware using languages borrowed from the graphics com-

munity [3, 4, 5]. It goes without saying that these computa-

tional advances would not be possible if it weren’t for the pro-

grammable shaders that broke the rigidity of the fixed graphics

pipeline. LU factorization with partial pivoting on a GPU was

one of the first common computational kernels that ran faster

than an optimized CPU implementation [6]. The introduction
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of NVIDIA’s CUDA [7, 8] (Compute Unified Device Archi-

tecture), ushered a new era of improved performance for many

applications as programming GPUs became simpler: archaic

terms such as texels, fragments, and pixels were superseded

with threads, vector processing, data caches and shared mem-

ory.

Further changes occuring in ATI’s and NVIDIA’s offerings

made GPU acceleration even more pertinent to the scientific

community. ATI’s FireStream and NVIDIA’s Fermi architec-

ture added support for Fused Multiply-Add (FMA): a more ac-

curate version of the former MAD (Multiply-Add) instruction.

With only a single rounding step, this new instruction brings

GPUs even closer to compliance with the IEEE 754 standard for

floating-point arithmetic. Additionally, reworking of the cache

hierarchy helped with some of the performance issues of the

past. Finally, Error Correction Codes (ECC) are now used to

protect the GPU device’s memory as its capacity grows to the

point of being vulnerable to errors induced by nature, such as

cosmic radiation.

In our project called Matrix Algebra on GPU and Multicore

Architectures [9] (MAGMA), we mainly focus on dense matrix

routines for numerical linear algebra, similar to those available

in LAPACK [10]. While CUDA is only available for NVIDIA

GPUs, there are other existing frameworks that allow platform-

independent programming for GPUs:

1. DirectCompute from Microsoft and

2. OpenCL.

DirectCompute allows access to graphics cards from mul-
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tiple vendors. However, it is specific to Microsoft Windows

and therefore it is not portable between host Operating Sys-

tems (OS).

OpenCL [11] has been designed for general purpose com-

puting on GPUs (GPGPU). It is an open standard maintained

by the Khronos group with the backing of major graphics hard-

ware vendors as well as large computer industry vendors inter-

ested in off-loading computations to GPUs. As such, there ex-

ist working OpenCL implementations for graphics cards and,

multi-core processors; OpenCL offers portability across GPU

hardware, OS software, and multicore processors. In this work,

BLAS routines are used to evaluate OpenCL’s usefulness in cre-

ating a portable high performance GPU numerical linear alge-

bra library.

The rest of the paper is organized as follows: Section 2 dis-

cusses related work. Section 3 details OpenCL’s programming

considerations. This involves a comparison between CUDA

and OpenCL as programming languages forthe GPU, and the

profiling analysis of the run-time of each component in an OpenCL

program. Sections 4 and 5 give an evaluation of both NVIDIA

and ATI GPU platforms by implementing fast GEMM and an-

alyzing performance. Section 6 discusses cross-platform issues

and section 7 lays out the basic structure of an auto-tuning sys-

tem for cross-platform GPU math library design. Section 8

shows the performance result and section 9 concludes the pa-

per. In the text we use the terms ”ATI card” and Radeon 5870;

”Fermi card” and Tesla C2050 interchangeably.

2. Related Work

Synthetic benchmarks of GPUs have been used extensively

to understand graphics accelerators when technical details of

the hardware remain an industrial secret [12]. In the context of

scientific applications, such benchmarking efforts lead to algo-

rithms that provide significant performance improvements [13].

The Ocelot [14] project did a performance-oriented study of

NVIDIA’s PTX (Parallel Thread eXecution) architecture [15].

Another project, MCUDA [16], applied code transformations

to CUDA kernels, enabling them to run efficiently on multi-

core CPUs. Unforunately for legacy code maintainers, the re-

verse operation – porting multicore code to GPUs – proved dif-

ficult [14].

Work on optimizing CUDA implementations of basic lin-

ear algebra kernels has demonstrated that the performance of

a GPU is sensitive to the formulation of your kernel [17] and

that an enormous amount of well-thought experimentation and

benchmarking [13, 17] is needed in order to optimize the per-

formance. Tuning OpenCL applications for a particular archi-

tecture faces the same challenges. Optimizing a fixed OpenCL

code for several architectures is very difficult, perhaps impos-

sible, and naturally, many authors claim that OpenCL does not

provide performance portability. This, along with the fact that

GPUs are quickly evolving in complexity, has made tuning nu-

merical libraries for them challenging. One approach (that we

explore) to systematically resolve these issues is the use of auto-

tuning, a technique that in the context of OpenCL would in-

volve collecting and generating multiple kernel versions, im-

plementing the same algorithm optimized for different architec-

tures, and heuristically selecting the best performing one. Auto-

tuning has been used intensively on CPUs in the past to address

these challenges to automatically generate near optimal numer-

ical libraries, e.g., ATLAS [18, 19] and PHiPAC [20] used it to

generate highly optimized BLAS. Work on auto-tuning CUDA

kernels for NVIDIA GPUs [21, 22] has shown that the tech-

nique is a very practical solution to easily port existing algo-

rithmic solutions on quickly evolving GPU architectures and

to substantially speed up even highly tuned hand-written ker-

nels. The challenge of providing performance portability is by

no means limited to linear algebra.

In our previous work [23], the authors1 examined perfor-

mance portability in OpenCL. In their study, they compared

CUDA and OpenCL implementations of a Monte Carlo Chem-

istry application running on an NVIDIA GTX285. They also

compared the same application written in ATI’s now defunct

Brook+ to an OpenCL version on a Firestream 9170 and Radeon

4870 respectively. Finally they compared OpenCL to a C++

implementation running on multi-core Intel processors. The pa-

per showed that while OpenCL does provide code portability, it

does not necessarily provide performance portability. Further-

more, they showed that platform-specific languages often, but

not always, outperformed OpenCL.

3. OpenCL as A Programming Tool

To evaluate OpenCL as a programming tool for implement-

ing high performance linear algebra routines, we pick the tri-

angular solver (TRSM) routine from BLAS and profile each

component of the program: environment setup, program com-

pilation, kernel extraction, and execution. The reasoning behind

this choice is that the routine has a mix of matrix-matrix mul-

tiplies and matrix inversions. The former allows for many par-

allelization and vectorization strategies while the former limits

performance optimization options. Equally detailed treatment

of the rest of the BLAS routines would by far exceed the size

limitations of this publications and we refer the reader to our

previous work in the area [23].

TRSM solves the linear equation Ax = b where A is an up-

per or lower triangular matrix and b is a known vector called

right-hand side vector. Its implementation involves a blocking

algorithm in which the diagonal triangular blocks are inverted

(TRTRI) in parallel followed by a series of matrix multiplica-

tions (GEMM). Porting these routines from CUDA to OpenCL

requires some translation.

CUDA and OpenCL have many conceptual similarities but

they diverge on terminology. Table 1 shows the corresponding

terms in both frameworks while Figure 1 highlights differences

in the CUDA and OpenCL software stacks. Similarly, ATI and

NVIDIA GPUs have analogous platform definitions as shown

in Table 2. Table 3 shows the platform details of two different

NVIDIA GPUs and one GPU from ATI/AMD. We show what

these differences mean to application developers.

1Rick Weber and Gregory Peterson are also authors of this paper
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tus:

__global__ void

diag_dtrtri_kernel_lower (char diag,

        double *A, double *d_dinvA, int lda)

{

    int i,j;    double Ystx=0;

    double *Bw=NULL, *x=NULL, *y=NULL, *Aoff=NULL;

    double *my_d_dinvA;

    int switcher=0;

    // Thread index

    int tx = threadIdx.x;

    int txw;

    // Block index

    int bx = blockIdx.x;

    Aoff = A+bx*lda*BLOCK_SIZE+bx*BLOCK_SIZE;

    my_d_dinvA = d_dinvA+bx*BLOCK_SIZE*BLOCK_SIZE;

    __shared__ double Bs[BLOCK_SIZE*BLOCK_SIZE];

    __shared__ double workspace[BLOCK_SIZE];

    #pragma unroll

    for (i=0; i<BLOCK_SIZE; i++)

        Bs[i*BLOCK_SIZE+tx] = ((double)(tx>=i))*(*(Aoff+i*lda+tx));

    __syncthreads();

    switcher = (diag=='u' || diag=='U');

    // 19 lines omitted

        y[tx] = (double)switcher*Ystx*(-Bs[i*BLOCK_SIZE])+(double)(!switcher;

        __syncthreads();

    }

    // 3 lines omitted

}

1

2

3

4

5

6

7

8

__kernel void

diag_dtrtri_kernel_lower (char diag,

        const __global double *A, __global double *d_dinvA, uint lda)

{

    int i,j;    double Ystx=0;

    __local double *Bw=NULL, *x=NULL, *y=NULL; const __global double *Aoff=NULL;

    __global double *my_d_dinvA;

    int switcher=0;

    // Thread index

    uint tx = get_local_id(0);

    int txw;

    // Block index

    uint bx = get_group_id(0);

    Aoff = A+bx*lda*BLOCK_SIZE+bx*BLOCK_SIZE;

    my_d_dinvA = d_dinvA+bx*BLOCK_SIZE*BLOCK_SIZE;

    __local double workspace[BLOCK_SIZE*BLOCK_SIZE];

    __local double Bs[BLOCK_SIZE];

    #pragma unroll

    for (i=0; i<BLOCK_SIZE; i++)

        Bs[i*BLOCK_SIZE+tx] = ((double)(tx>=i))*(*(Aoff+i*lda+tx));

    barrier(CLK_LOCAL_MEM_FENCE);

    switcher = (diag=='u' || diag=='U');

    // 19 lines omitted

        y[tx] = (double)switcher*Ystx*(-Bs[i*BLOCK_SIZE+i])+(double)(!switcher);

        barrier(CLK_LOCAL_MEM_FENCE);

    }

    // 3 lines omitted

}

Figure 2: Comparison of code syntax between CUDA and OpenCL for a sample device kernel.

CUDA term OpenCL term

host CPU host

streaming multiprocessor (SM) compute unit (CU)

scalar core processing element (PE)

host thread host program

thread work-item

thread block work-group

grid NDRange

shared memory local memory

constant memory constant memory

texture cache image

Table 1: Comparison of terms used by CUDA and OpenCL to describe very

similar concepts.

3.1. Relation to CUDA

Figure 2 shows side-by-side differences of the kernel codes

for triangular inversion routine (TRTRI) for OpenCL and CUDA.

The changes are in the lines annotated in red. They belong to

the following categories:

• Obtaining the ID for the thread/work-item and block/work-

group.

• The definition of shared memory in CUDA is replaced

in OpenCL by local memory: shared is replaced with

local

• Syntax for synchronization primitives such as syncthreads()
in CUDA and barrier() in OpenCL.

• OpenCL makes explicit differentiation in syntax between

global memory addresses (device memory address space)

and local memory addresses (register variable or pointer

to shared memory) whereas CUDA makes no such dis-

tinction. This is less of a concern in practice, as the

my_k3rn0l.cu

CUDA

PTX

binary

my_k3rn0l.cl

OpenCL

STREAM SDK Apple LLVM

NVIDIA Fermi ATI Multicore

IR

binary

CUDA Toolkit

IL

binary

Figure 1: Comparison of software stacks used with CUDA and OpenCL on

various hardware platforms.

spills to global memory have a dramatic effect for both

programming frameworks and the unification of address

spaces did not happen until the arrival of the Fermi hard-

ware.

Differences in the CUDA and OpenCL front-ends yield differ-

ent timing profiles.

3.2. Profiling

Unlike CUDA, OpenCL requires environmental setup on

the host (CPU) before launching kernels to run on GPU. This

process also includes compiling kernels. The process for set-

ting up kernels to execute is similar for all GPU kernels and

an analysis of TRSM gives a typical breakdown of initializa-

tion. Figure 3 shows the breakdown of initialization time. We

run oclDtrsm (OpenCL double precision triangular solver) with

M=10240 and NRHS=128 on an Intel Q9300 running at 2.5

GHz and a Tesla C2050. Setting up the kernel takes longer than

the kernel execution itself.
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NVIDIA term ATI term

Scalar Core Stream Core

Streaming Multiprocessor (SM) Compute Unit (CU)

Shared memory Local Data Store (LDS)

Warp Wavefront

PTX IL

Table 2: Comparison of terms used by ATI and NVIDIA to describe very simi-

lar concepts.

Compiling OpenCL source code into an intermediate rep-

resentation takes the most time in initialization. We observed

similar results on older NVIDIA cards (e.g. GTX 280) and

ATI cards (e.g. Radeon 5870) using ATI STREAM SDK ver-

sion 2.2 [24]. On Tesla C2050, the compilation of 300+ lines

of OpenCL C code into 7000+ lines of PTX takes just over 2

seconds, while the computation on fairly large problem takes

less than 0.2 second. This overhead can lead to a severe per-

formance impact if not accounted for when dealing with many

OpenCL routines calling each other in a software library. One

solution to reduce this overhead is to separate compilation and

execution.

Since OpenCL includes separate compilation and build func-

tions in its API, source code compilation can be performed once

during the deployment/installation stage of the math library. As

of writing, there is no off-line kernel compiler in NVIDIA’s

OpenCL platform. Documentation suggests [25] for this to

be implemented by the developers. We can do this by fetch-

ing Intermediate Representation (IR) resulting from compila-

tion using clGetProgramInfo and saving it to disk. During the

initialization phase, IR can be read from disk and processed

with a call to clBuildProgram. This method reduced the time

of getting the binary code ready to run from 2+ seconds to 0.2

seconds. While the time to create a kernel from a pre-built

program still takes more time than TRSM, initialization is 10x

faster when the raw source code isn’t compiled every time the

user runs the application. Having sped up initialization, the time

profile for the TRSM kernel itself is the next item to optimize.

The performance of TRSM is dominated by GEMM [26].

Since GEMM is one of the most important kernels in linear

algebra, we will focus on implementing and analyzing a fast

OpenCL GEMM in the coming sections.

In comparison, the compilation of the kernels’ source code

GPU NVIDIA NVIDIA ATI

Device GTX 280 C2050 (Fermi) Radeon 5870

Compute

Units 30 32 20

Processing

elements 8 16 16

Table 3: Comparison of computational resources available on NVIDIA’s GTX

280

2,021

335

185
189

Build Program

Copy Data

Create Kernel

oclDtrsm

Value: Time
Unit: ms

Figure 3: Runtime break down

is far less burdensome in CUDA due to two main reasons:

1. it occurs implicitly upon the first invocation of the kernel

(no need for explicit caching), and

2. the code being compiled is in PTX form rather than the

C source (much less parsing overhead)

4. NVIDIA Platform

4.1. Fermi Architecture

Fermi is NVIDIA’s latest GPU product line that includes

the GTX4xx series and the Tesla C2050. It introduces several

changes over the previous GPU offerings including more plen-

tiful and capable compute units and a revamped memory hier-

archy. Multiple kernels can run simultaneously on Fermi hard-

ware as opposed to previous generations which only support a

single kernel executing at any given time [7]. This feature in-

creases device utilization for matrix operations with small prob-

lem sizes by increasing the number of thread blocks beyond

that which a single kernel allows. On the Tesla C2050 GPU,

the number of double precision ALUs as compared to single

precision ALUs has increased to 1:2; for every double preci-

sion ALU, there are 2 single precision ALUs [27]. In previous

generations, this ratio was 1:8. This implies the double preci-

sion peak performance (515 Gflops/s [28]) is half that of single

precision (1.015 Tflops/s [28]). In addition to extra compute

units, the memory architecture of Fermi has been revamped in

comparison with the GPUs of the previous generation.

Fermi’s retooled memory system mainly features changes

in caching. Global memory loads and stores are now fetched

through the L1 cache, which shares hardware with shared mem-

ory. Shared memory and L1 can be configured as 48 kB/16 kB

or 16 kB/48 kB respectively. The former configuration can

increase occupancy in applications that use a large amount of

shared memory while the latter configuration can decrease global

memory access latencies within a compute unit. Fermi cards

feature more registers (the other limiting factor in occupancy)
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Figure 4: NVIDIA C2050 (Fermi) architecture.

available to applications to 128 kB per compute unit [27]. The

Tesla C2050 has 144 GB/s of memory bandwidth.

4.2. Fast GEMM

We have previously published a fast GEMM algorithm for

the Fermi architecture [29]. This work expanded on the work

of Volkov and Demmel [13], who provided a high performance

matrix multiply for NVIDIA’s previous generation GPUs. The

new algorithm is available in the MAGMA library. Both MAGMA

and Volkov’s GEMM algorithms are written in CUDA. We ex-

tend this work to the cross platform OpenCL API.

In this work, we rewrite the MAGMA algorithm in OpenCL,

tune the implementation for the Fermi architecture, and com-

pare this new implementation’s performance to that of our ex-

isting CUDA version. Additionally, we run the MAGMA algo-

rithm on both NVIDIA and ATI GPUs, illustrating OpenCL’s

cross platform design and examining the portability of algo-

rithm performance. We then run reverse the experiment by run-

ning an optimized ATI kernel on the Testla C2050.

We created the OpenCL GEMM kernels by translating the

original CUDA source by hand. This mainly consists of two

parts: keyword substitution and loop unrolling. As previously

described, CUDA and OpenCL are conceptually similar and

many kernels require only keyword changes to run in OpenCL.

Unfortunately, the original MAGMA GEMM kernels rely on

the compiler to make sophisticated unrolling and register opti-

mizations. When we directly ported these kernels to OpenCL

under CUDA 4.0b with just keyword substitution, performnace

dropped by an order of magnitude. To overcome this, we manu-

ally unrolled the inner-most compute loop and used a #pragma

unroll to unroll the second loop 15 times. With manual un-

rolling, our OpenCL implementation yields nearly the same

performance as the original CUDA in SGEMM and acceptable

performance in DGEMM (see Figure 5 and Figure 6).

One point of debate in the CUDA version of MAGMA is the

efficacy of streaming A and B through the texture cache before

moving to shared memory. In previous work [29], we found this

gives marginal performance increases. However, CUDA allows

developers to directly map a 1-D texture onto an existing buffer,

where OpenCL does not. This means that using texture mem-

ory in OpenCL requires copying A and B if they don’t already

reside in textures; in general putting A and B into textures in-

curs additional overheads not found in CUDA. While this does

provide auxiliary benefits (namely we can use a single GEMM

kernel for all transpose combinations) we decided to re-evaluate

whether or not to use them for both SGEMM and DGEMM.

In SGEMM, we found that OpenCL’s performance nearly

matches CUDA’s without using the texture cache. Since we

saw only a 5% performance increase in CUDA, which has little

overhead using textures, we expect that OpenCL will benefit

even less (if at all) because of additional memory copies. In

the end, our OpenCL SGEMM kernel is nearly as fast as either

CUDA implementation. Our DGEMM implementation doesn’t

perform quite as well, especially without the use of textures.

Figure 5: MAGMA SGEMM performance with CUDA and OpenCL

Figure 6: DGEMM performance on Tesla C2050 under OpenCL and CUDA

In our CUDA DGEMM implementation, we found that us-

ing textures yielded large performance improvement. As such,

our OpenCL DGEMM implementation uses them, despite the

copy overhead. Figure 6 shows the effects of using textures in

both OpenCL and CUDA. The copy overhead puts our OpenCL

kernel at a disadvantage compared to our CUDA version, which

just maps images onto the buffers containing A and B; our

OpenCL kernel performs copies of A and B while CUDA does

not. However, streaming data from images yields significant

performance increases over reading the matrices from global

memory.

All reported results are run on a Tesla C2050. Timings for

our OpenCL SGEMM and all CUDA kernels include the ker-

nels’ run times. Our OpenCL DGEMM additionally includes

the cost of memory copies into textures. Timings for PCIe

data transfers aren’t included in any results; for smaller problem

sizes this can be a performance issue if data cannot be reused.
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Figure 7: Radeon 5870 architecture

5. ATI Platform

5.1. Radeon 5870 Architecture

ATI’s Evergreen architecture has many analogues with NVIDIA

GPUs. Like Fermi-based cards, the Radeon 5xxx GPUs have

copious memory bandwidth and many parallel computation units

to exploit data parallelism. Our work focuses on the Radeon

5870.

The Radeon 5870 GPU has 1600 ALUs organized in groups

as shown in Figure 7. This graphics processor has 20 compute

units, each of which contains 16 stream cores. Each stream core

within a compute unit executes an instance of a kernel in lock-

step. This SIMD hierarchy is analogous to NVIDIA’s SIMT

engines. However, unlike NVIDIA’s Fermi architecture, each

stream core is a 5 ALU Very Long Instruction Word (VLIW)

processor. Threads are grouped and interleaved on compute

units.

Threads are interleaved to hide memory access latency. They

are grouped into sets of 64 called a wavefront. A wavefront is

analogous to a warp on NVIDIA hardware. Of these 64 threads,

16 execute on a given clock cycle on the 16 stream cores within

a compute unit. Over the course of 4 clock cycles, all threads

are interleaved, executing an instruction. This hides memory

latency; while one thread is loading data another thread can be

performing computation [30].

Each ALU in a stream core can independently perform ba-

sic floating point operations. In single precision, each ALU can

issue one basic floating point instruction such as subtract, multi-

ply, Multiply-Add (MAD), etc. instruction per clock cycle with

a pipeline latency of 8 cycles. In addition to basic floating point

instructions (such as multiply, add, subtract, divide, and MAD),

the fifth ALU can perform transcendental functions including

log, square root, etc. To perform double precision floating point

operations, some number of the ALUs are fused together. In the

case of Fused Multiply Add (FMA), four of the five ALUs are

used per operation [30]. The fifth unit is free to do integer or

single precision calculations during this time. Since four ALUs

are fused per operation and the fifth does not perform double

precision operations, the peak double precision throughput is

1/5 that of single precision. The Radeon 5870’s 1600 ALUs

run at 850MHz, yielding a peak throughput of 2.72 Tflops/s in

single precision and 544 Gflops/s in double. Like NVIDIA’s of-

ferings, the Radeon 5870 has high off-chip memory bandwidth

and even higher on-chip bandwidth.

To balance the performance of floating point units, the Radeon

5870 features high bandwidth to global memory augmented

with a texture cache. Global memory has a peak data through-

put of 154 GB/s divided over 8 memory controllers. Unlike

the Fermi architecture, reads and writes to global memory are

generally not cached. However, reads and writes to textures are

cached. Each compute unit has its own 8KB L1 cache yielding

an aggregate bandwidth of 1TB/s and can produce 4 bytes of

data (1 float or half a double) per cycle per stream core. Mul-

tiple compute units share a 512 kB L2 cache with 435 GB/s

of bandwidth between L1 and L2. In addition to automatically

controlled texture caches, data reuse can also be facilitated us-

ing shared memory [30].

The Radeon 5870 features 32KB of shared memory per

compute unit. This shared memory provides 2TB/s of aggre-

gate bandwidth. As with the Fermi architecture, local mem-

ory usage dictates how many concurrent wavefronts can run on

a compute unit. Each compute unit can produce 2 4-byte (2

floats or 1 double) shared memory requests per cycle. As with

NVIDIA cards, bank conflicts can hurt shared memory perfor-

mance and need to be minimized. Since each stream core can

perform 5 MADs per cycle in single precision, more bandwidth

is needed for operands than shared memory can provide. This

is also true for double precision. As such, register blocking be-

comes crucial in obtaining a high performance GEMM kernel.

[30]

Registers provide the highest memory bandwidth on-chip.

The Radeon 5870 has 256KB of register space per compute unit

(5.1MB for the whole GPU) and can produce 48 bytes/cycle of

data per stream core. Results generated on the previous cycle

used as operands don’t count towards this limit, as they can be

forwarded using the Previous Vector or Previous Scalar regis-

ter [30]. Each of the 5 MADs per cycle takes 4 operands yield-

ing 20 total operands of 4 bytes a piece. 4 of these operands

can be mitigated using the previous vector register and one of

these operands can be shared among the 5 ALUs. This equates

to exactly 48 bytes/cycle needed to fully utilize all 5 ALUs in

a perfectly scheduled SGEMM. If the scheduling is not per-

fect, registers can actually serve as a bottleneck in the com-

putation. For DGEMM, registers provide sufficient bandwidth

for the single FMA instruction per stream core regardless of

operand reuse. Like shared memory, register usage dictates the

number of concurrent wavefronts executing on a compute unit.

Unlike NVIDIA GPUs, registers are 128-bit and support swiz-

zling at no performance cost.

5.2. Fast GEMM

We present a fast GEMM algorithms for single and dou-

ble precision optimized for ATI hardware. These kernels are

based on Nakasato’s matrix multiply written in ATI’s Interme-

diate Language (IL)[31]. This work focused on computing row

major matrix multiplication C = AT B. We expanded this work

to perform a column major C = αABT + βC. Our algorithm

makes extensive use of the texture cache, which requires copies

in OpenCL. We use custom copy kernels to move data into im-

ages configured with RGBA color mode and float values. We

pad the leading dimension of the image with zeros if needed.
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Figure 8: ATI Memory bandwidth utilization during image copies

C A B
T

B0.x
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B2.y

A0.xy

A2.xy

C0,0 C0,1 C0,2 C0,3

C2,0 C2,1 C2,2 C2,3

k k

Figure 9: ATI DGEMM algorithm

For single and double precision, we pad the leading dimension

of the image to a multiple of 4 float and 2 doubles respec-

tively. In double precision, the concatenation of the red and

green channels represents the first double, while the blue and

alpha channel represent the second double. A is copied without

transposition into its corresponding padded image while B is

transposed and copied into its image. The time to perform these

copies is O(N2), which is amortized by the O(N3) operations

in GEMM for large problems. As shown in Figure 8, copy-

ing A into an image efficiently uses the Radeon 5870’s memory

bandwidth, while copying B does not.

The kernels copying data from global memory into images

achieve a high fraction of the Radeon 5870’s available band-

width. For non transposed copies, our kernels used over 100 GB/s

of the 154 GB/s of available bandwidth with little variance. Our

transpose-and-copy kernels achieved half that amount and were

far more sensitive to problem size. Poor memory coalescing in

the transpose kernels is to blame for the low memory through-

put. These kernels and the ones needed for texture use for the

NVIDIA texture-based kernel ran an order of magnitude more

quickly on the Radeon 5870 than on the Tesla C2050. Oddly

enough, our float and double copy kernels were significantly

faster than clEnqueueCopyBufferToImage on the Radeon 5870.

Once A and B have been copied, the matrix multiplication

kernel executes. Our DGEMM algorithm is shown in Figure 9.

Each thread computes a single 4x4 block of C as double2s.

Since B is transposed, the columns of B reside in its leading

Figure 10: ATI SGEMM performance

dimension. The rows of A reside in its leading dimension. We

scale the double2 row vectors of A by the corresponding dou-

ble of B using swizzling to extract and duplicate the required

element. This scaled vector is then accumulated into the corre-

sponding double2 of C. All of this is done with a single MAD

and swizzling.

To maximize outstanding loads from the texture cache, we

use 8 samplers. 2 samplers load 2 double2s from A into reg-

isters and 2 samplers fetch 2 double2s of B. We unroll the k

loop twice to use the other 4 samplers. A useful feature of im-

ages is that when its sampler is declared using CL CLAMP,

fetching outside the bounds of the 2D image yields 0.0, which

has no effect on the result when accumulated. This allows k

to be indivisible by 2 yet still function correctly; in this case,

our DGEMM kernel samples beyond the bounds of A and B

and accumulates 0.0 into the result. Handling cases when m

is not a multiple of 2 is non-trivial and our algorithm currently

doesn’t handle this case. In fact, our algorithm requires both m

and n be multiples of 4. Padding C can overcome this limita-

tion. SGEMM is analogous to our DGEMM kernel, where each

thread computes an 8x8 block of C in float4 registers and has

analogous limitations.

We compare our OpenCL results to Nakasato’s IL perfor-

mance in 10 and 11. Nakasato’s timings do not include copy

times, which exaggerates performance for small problems. Our

timings do include this copy. Furthermore, Nakasato’s algo-

rithm performs only the matrix multiplication while we per-

form the alpha and beta scaling (a negligible amount of time

for large N). Neither timings include PCIe data transfer times,

which would be amortized in large multiplications or when data

can be heavily reused on the GPU.

Our SGEMM kernel exceeds 1.3 Tflops/s for N=3840, 4352,

and 4864. Nakasato’s IL implementation just exceeds 2 Tflops/s

for these same N, implying our OpenCL MAGMA implemen-

tation achieves 65% of a fast matrix multiply algorithm written

in high-level assembly code. Nakasato achieves 74% of the

Radeon 5870’s peak performance while we achieve 49%.

Our OpenCL ATI DGEMM algorithm achieves 308 Gflops/s

on the Radeon 5870. In comparison, Nakasato’s matrix mul-
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Figure 11: ATI DGEMM performance

tiply algorithm achieves 472 Gflops/s. This means that our

OpenCL implementation is has 69% of the performance of Nakasato’s

IL matrix multiply. The ATI OpenCL kernel computes at 57%

of the hardware’s peak performance while Nakasato’s kernel

operates at 87% of maximum throughput. From this perfor-

mance comparison, we illustrate that OpenCL provides fair per-

formance with a high degree of programmability on ATI hard-

ware. Furthermore, we found that the relevant data copy and

pack kernels effectively used the Radeon 5870’s memory band-

width (refer to Figure 8 for more details).

6. Performance Portability

In this section, we run our device specific kernels on hard-

ware for which they aren’t tuned to evaluate performance porta-

bility. OpenCL is designed with program portability in mind.

Despite different vendors having added extra functionality in

their OpenCL implementations, our work only uses features in

the OpenCL standard [11]. This theoretically allows the front-

end and GPU kernels to run on any platform without changes.

Figure 12 shows our ATI SGEMM kernel running on a Tesla

C2050. While achieving 1+ Teraflop/s (50+% peak) on a Radeon

5870, it only manages to execute at 40 Gflop/s(4% peak) on the

Tesla C2050. We reverse this experiment and run the OpenCL

version of MAGMA’s Fermi GEMM on the Radeon 5870. The

result is shown in Figure 13. While achieving 400+ Gflop/s

(40+% peak) on the Tesla C2050, it has a very low perfor-

mance when run on a Radeon 5870. Through reading the IL

generated, we found that array variables reside in global mem-

ory, leading orders of magnitude more data fetch latency. We

suspect this is because the compiler fails to fully unroll loops

accessing these arrays and as such generates code that performs

runtime indexing (which can’t occur on registers). To resolve

this, we replaced the arrays with standalone variables and per-

formance shot to 600 Gflop/s (22% peak). This kernel, despite

being tuned for Fermi, ran faster on the Radeon 5870 than the

C2050.

From these two experiments we show that performance is

not portable through simple using OpenCL. Without paying at-

Figure 12: Fast ATI SGEMM running on Fermi card in OpenCL

Figure 13: Fast Fermi SGEMM running on ATI Radeon 5870 card in OpenCL

tention to the underlying architecture and designing algorithms

accordingly, an algorithm’s performance suffers.

7. Performance Portability with Auto-tuning

The goal behind the OpenCL standard is to provide func-

tional portability, enabling a single OpenCL application to run

across a variety of hardware platforms. Although necessary,

functional portability by itself, e.g., without performance porta-

bility, would be insufficient to establish OpenCL in the area of

high-performance scientific computing. In this section we ad-

dress this issue by discussing auto-tuning – the vehicle that we

recognize as the potential driver of OpenCL applications to-

wards performance portability.

Automatic performance tuning (optimization), or auto-tuning

in short, is a technique that has been used intensively on CPUs

to automatically generate near-optimal numerical libraries. For

example, ATLAS [18, 19] and PHiPAC [20] are used to gener-

ate highly optimized BLAS. The main approach for doing auto-

tuning is based on empirical optimization techniques. Namely,

these are techniques to generate a large number of parametrized

code variants for a given algorithm and run these variants on a
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given platform to discover the one that gives the best perfor-

mance. The effectiveness of empirical optimization depends

on the chosen parameters to optimize, and the search heuristic

used. A disadvantage of empirical optimization is the time cost

of searching for the best code variant, which is usually propor-

tional to the number of variants generated and evaluated. There-

fore, a natural idea is to combine it with some “model-driven”

approach in a first stage that would limit the search space for

the second stage of an empirical search.

Work on auto-tuning CUDA kernels for NVIDIA GPUs [21,

22] has already shown that the technique is a very practical so-

lution to easily port existing algorithmic solutions on quickly

evolving GPU architectures and to substantially speed up even

hand-tuned kernels. We expand this early work, as described

below, in the context of todays high-end GPGPU from NVIDIA

and ATI, using both CUDA and OpenCL.

7.1. Auto-tuning Infrastructure

The performance of CUDA GEMM implementations rely

on a number of very well selected parameters and optimiza-

tions [17]. Previous work in the area has managed to auto-tune

the selection of these parameters and optimizations used, to

quickly find the best performing implementations for particu-

lar cases of GEMM [21, 22]. However, with the introduction of

the Fermi architecture, these auto-tuning frameworks were not

able to find the new “optimal” implementations for Fermi, sim-

ply because their search space did not consider the newly intro-

duced features in the architecture [29]. Performance portabil-

ity problems are even further aggravated when porting kernels

across hardware vendors – kernels optimized for one vendor’s

architecture perform poorly on another vendor’s architecture,

e.g., as illustrated throughout the paper with the GEMM kernels

optimized correspondingly for NVIDIA and ATI GPUs. There-

fore, our work on providing performance portability has con-

centrated on building up an auto-tuning infrastructure with the

following two-components (characteristic for a complete auto-

tuning system):

Code generator The code generator produces code variants ac-

cording to a set of pre-defined, parametrized templates

and/or algorithms. Currently we have identified and col-

lected best GEMM candidates for both NVIDIA and ATI

GPUs. We have identified several key parameters that af-

fect performance. The code generator will automatically

create kernels using parameters and applying certain state

of the art optimization techniques.

Evaluation harness The harness runs the variants produced by

the code generator and discovers the best one. Option-

ally, a feedback loop may be employed, e.g., the perfor-

mance results of previously evaluated variants are used as

a guidance for the search on currently unevaluated vari-

ants.

7.2. Autotuning GPU Kernels

We have already parameterized MAGMA’s code generator

to create kernels that correspond to the fastest known tiling ap-

Parameter Description

VL Vector length (i.e. use float2, float4, etc.)

TC Columns per block

TR Rows per block

TBC Threads per work group (column dimension)

TBR Threads per work group (row dimension)

TCR Blocks each thread computes (row dimension)

TRR Blocks each thread computes (column dimension)

KB Number of elements to block in K dimension

TXC Use texture cache A and B

SM Block A and B into shared memory

Table 4: Description of the autotuning parameters.

proach for Fermi [29]. We now propose adding additional pa-

rameters to allow MAGMA to generate the blocking algorithm

developed by Nakasato. With these new parameters, MAGMA’s

code generator can also create hybridized blocking schemes.

Table 4 lists these parameters and Figure 14 shows their effects

on blocking. VL defines the basic data type vector length (float,

float4, double2, etc.) and is useful for doing wide data loads,

SIMD operations, and provides trivial scheduling on VLIW

processors. TC and TR define the number of columns and rows

of C that each thread computes per block. TBC and TBR de-

fine the number of threads in a thread block. TCR and TRR

determine how many blocks each thread computes. KB defines

how many times to unroll the k loop and thus, how many el-

emnts of A and B to load on a given iteration. The remaining

two parameters, TXC and SM, determine how to load A and B

from memory. Setting TXC to true streams data from the tex-

ture cache rather than global memory, while SM blocks A and

B into shared memory. This parameter set is sufficient to create

the same kernels we’ve presented (Table 5).

Using these parameters, we can quickly generate many ker-

nel varients and test them on new architectures. Furthermore,

we can generate kernels that explore OpenCL’s performance on

x86 processors. This is interesting because it would provide

a unified platform for running GEMM on the CPU and GPU.

However, this remains as future work.

To illustrate the effect of auto-tuning we present numeri-

cal results in tuning SGEMM. In particular, we parametrize

the new Fermi GEMM kernels running in CUDA. Figure 15

gives the single precision performance of several versions de-

rived from the original and run on a Fermi C2050 GPU. We

manually vary TCR and TRR and plot the performance of these

varients, as the search engine itself remains as future work.

8. Performance comparisons with CPUs

So far we have presented performance results for GPU plat-

forms from ATI and NVIDIA using the CUDA and OpenCL

software stacks. To put these numbers in a proper perspective, it

is informative to compare them to the results obtained from op-

timized BLAS routines coming from ATLAS and Intel’s MKL

(Math Kernel Library) running on a multicore hardware – a well

researched experimental setting. We use ATLAS as a represen-

tative of performance levels achievable from C with extensive
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SGEMM Parameters Radeon 5870 C2050

VL 4 1

TC 8 1

TR 8 1

TBC 8 16

TBR 8 16

TCR 1 3

TRR 1 3

KB 8 6

TXC True True

SM False True

Table 5: Autotuning parameter values for Radeon 5870 and C2050
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Figure 14: Illustration of proposed kernel generation parameter effects.

use of auto-tuning (the tuning of ATLAS library may take many

hours). Intel’s MKL represents one of the best performing li-

braries for Intel processors. When such libraries are distributed

by the hardware vendor, most performance sensitive kernels

written in optimized assembly code. The results from Intel

Tigerton multicore system are shown in Figure 16. The tested

system had 4 processors, each one being a quad-core clocked at

2.4 GHz for a total peak performance of 307.2 Gflop/s in single

precision and half of that in double.

Table 6 compares efficiency metrics of the Tesla C2050

and Radeon 5870. We estimate Gflops/s per Watt by dividing

acheived performance by Peak TDP and Gflops/s per dollar by

dividing each cards’ realized perfromance by its MSRP. Since

GEMM taxes the memory and ALUs on the GPU, using peak

TDP likely an accurate estimate, but verifying this argument re-

mains as future work. Since the CPU numbers correspond to 4

E7340 processors, we multiply the MSRP and Peak TDP by 4

in our calculations.
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Figure 15: Performance of various automatedly generated SGEMM kernels for

Fermi C2050 GPU.

The Radeon 5870 outperforms the Tesla C2050 in all but

one catagory; ATI’s GPU acheives less of its theoretical SGEMM

performance in OpenCL than the NVIDIA card. Under OpenCL,

the Radeon 5870 provides 3x the power efficiency of the Tesla

card in single precision, and 1.4x in double. Comparing IL ver-

sus CUDA, the Radeon’s improvements grow to 4x and 2x in

single and double respectively. Tesla C2050 in single preci-

sion while providing some benefit for double as well. When

using OpenCL, The Radeon 5870 is 14x more cost effective

under single precision and nearly 7x more cost effective than

the C2050 in double. When using IL and CUDA, the difference

is even greater, at almost 20x and 10x respectively. Both GPUs

offer significant efficiency improvements over the four E7340

processors.

As with any benchmark, these numbers are caveat emptor.

Firstly, the C2050 is a $2500 card designed with HPC applica-

tions in mind. As such, it has many features not found in low

end graphics cards such as ECC and 3GB RAM. The Radeon

5870 has at most 1 or 2GB of RAM (depending on the vendor)

and no ECC since it’s a consumer grade card. Furthermore,

IL is an assembly-like language, whereas CUDA is a high-level

language. Finally, the accuracy of the cost efficiency estimate of

the Tigerton processor is unclear since we cite its MSRP from

2007 ($1980[32]), but don’t include the cost of a four socket

motherboard.

9. Conclusions

In this paper, we evaluated various aspects of using OpenCL

as a performance-portable method for GPGPU application de-

velopment. Profiling results showed that environment setup

overhead is large and should be minimized. OpenCL is fairly

competetive with CUDA on Nvidia hardware in terms of per-

formance, but is less so when compared to IL on ATI hardware.

In the end, performance results for both the Tesla C2050 and

Radeon 5870 show that OpenCL has good potential to be used
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Figure 16: Performance of xGEMM routines on a multicore processor with 16

cores

to implement high performance kernels so long as architectural

specifics are taken into account in the algorithm design.

If architecture specifics are unknown, autotuning is an ef-

fective way to generate tuned kernels that deliver acceptable

levels of performance with little programmer effort. We used

the characteristics of the MAGMA and Nakasato kernels to de-

rive kernel generator parameters for an autotuning framework,

and showed that these parameters are sufficient to automatically

generate both of these kernel blocking styles. Implementing the

autotuning framework remains as future work.
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