
From CVaR to Uncertainty Set: Implications in Joint Chance

Constrained Optimization ∗

Wenqing Chen† Melvyn Sim‡ Jie Sun§ Chung-Piaw Teo. ¶

Dec 2007, Revised July 2008 and Jan 2009

Abstract

We review and develop different tractable approximations to individual chance con-
strained problems in robust optimization on a varieties of uncertainty sets and show their
interesting connections with bounds on the conditional-value-at-risk (CVaR) measure. We
extend the idea to joint chance constrained problems and provide a new formulation that
improves upon the standard approach. Our approach builds on a classical worst case bound
for order statistics problems and is applicable even if the constraints are correlated. We
provide an application of the model on a network resource allocation problem with uncertain
demand.

∗The research is supported by Singapore-MIT Alliance, NUS Risk Management Institute, and NUS academic

research grant R-314-000-068-122.
†NUS Business School, National University of Singapore. Email: chenwenqing@gmail.com
‡NUS Business School and NUS Risk Management Institute, National University of Singapore. Email: dsc-

simm@nus.edu.sg
§NUS Business School and NUS Risk Management Institute, National University of Singapore. Email:

jsun@nus.edu.sg
¶NUS Business School, National University of Singapore. Email: bizteocp@nus.edu.sg.



1 Introduction

Data uncertainties prevail in many real world linear optimization models. If ignored, the so called
“optimal solution” obtained by solving a model using the “nominal data” or point estimates can
become infeasible in the model when the true data differs from the nominal one. To overcome
such infeasibility, Soyster [31] introduced a worst case model that ensures feasibility of its solution
for all possible realization of the uncertain data. Let A(z̃)x ≥ b(z̃) be an m×n linear constraint
system, which depends on a random vector z̃. Soyster proposed the following model [31],

min c′x
s.t. A(z̃)x ≥ b(z̃) ∀z̃ ∈ W,

(1)

where
W = {z : −z ≤ z ≤ z̄} for some z, z̄ > 0

is the support of the primitive uncertainty vector z̃. Soyster [31] showed that the model can
be represented as a polynomially sized linear optimization model. However, this model can be
extremely conservative in addressing models where the violation of constraints may be tolerated
as a tradeoff for better attainment in objective.

Perhaps the most natural way of safeguarding a constraint is to restrict its violation proba-
bility. Such a constraint is known as a probabilistic or a chance constraint, which was introduced
by Charnes, Cooper, and Symonds [14]. A chance constrained model is defined as follows

Zε = min c′x
s.t. P(A(z̃)x ≥ b(z̃)) ≥ 1− ε

x ∈ X,

(2)

where x ∈ X represents a set of additional deterministic constraints. Problem (2) requires all
the m linear constraints A(z̃)x ≥ b(z̃) to be jointly feasible with probability at least 1 − ε,
where ε ∈ (0, 1) is a desired safety factor.

Chance constrained problems can be classified as individual chance constrained problem
when m = 1, and joint chance constrained problem when m > 1. One fundamental issue on the
chance constrained problem is to determine the distributional condition under which the problem
is convex. It is well known that under multivariate normal distribution, an individual chance
constrained problem is second-order cone representable. In other words, the optimization model
becomes a second-order-cone optimization problem (SOCP), which is computationally tractable,
both in theory and practice (see for instance Alizadeh and Goldfarb [1]). In addition, Lagoa [21]
proved that the individual chance constrained problem is convex under the condition that the
distribution of the random parameters are uniform over a convex symmetric set. More generally,
Calafiore and El Ghaoui [13] showed that the individual chance constraint can be converted
to second-order-cone constraints when the random parameters are under radial distributions.
However, for general distributions, chance constrained problems are computationally intractable.
For instance, Nemirovski and Shapiro [25] noted that evaluating the distribution of a weighted
sum of uniformly distributed independent random variables is already NP-hard.

Needless to say, joint chance constrained problems are clearly harder than individual chance
constraint problems. For instance, with only right hand side disturbances, we can transform
an individual chance constrained problem to an equivalent linearly constrained problem. In
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contrast, with only right hand side disturbances, a joint chance constrained problem is known
to be convex only when the distributions are log-concave (cf. Prékopa [27]).

It is possible to incorporate joint probabilistic constraints using a discrete representation
obtained by Monte Carlo sampling (for example, in Ruszczynski [30]). Indeed, sampling ap-
proximation of the chance constrained problem has been studied theoretically in Calafiore and
Campi [11, 12], Ergodan and Iyengar [17] and Luedtke and Ahmed [22]. These methods require
roughly about O(n

ε ) constraint duplications to yield a highly reliable solution with respect to its
feasibility (see Calafiore and Campi [12]) as well as optimality (see Luedtke and Ahmed [22]).
However, it may be computationally prohibitive to solve large problems or to solve problems
under high feasibility requirement. The effectiveness of sampling approximation has also been
challenged in the computation studies of Nemirovski and Shapiro [25] and Chen, Sim and Sun
[16].

The intractability of chance constrained problem using exact probability distributions has
spurred recent interests in robust optimization in which data uncertainties are described us-
ing uncertainty sets. Moreover, robust optimization often requires only a mild assumption on
probability distributions such as known supports, covariances, and/or other forms of deviation
measures, notably the directional deviations derived from moment generating functions pro-
posed by Chen, Sim and Sun [16]. For some practitioners, this could be viewed as an advantage
over having to obtain the entire joint probability distributions of the uncertain data. One of
the goals of robust optimization is to provide a tractable approach for obtaining a solution that
remains feasible in the chance constrained model (2) for all distributions that conform to the
mild distributional assumption. Hence, such solutions are viewed as “safe” approximations to
the chance constrained problem.

Robust optimization has been fairly successful in constructing safe approximation of indi-
vidual chance constrained problems. Given an uncertainty set U , the robust counterpart of an
individual linear constraint with affinely dependent primitive uncertainty vector z̃ is defined as

a(z̃)′x ≥ b(z̃) ∀z̃ ∈ U .

Clearly, Soyster’s model (1) is a special case of the robust counterpart in which the uncertainty
set U is chosen to be the support set W. For computational tractability, the chosen uncertainty
set U is usually in the form of tractable convex representable sets such as these with second-
order cone and linear constraints. Various symmetric uncertainty sets have been proposed by
Ben-Tal and Nemirovski [3, 4], El-Ghaoui et al. [18], and Bertsimas and Sim [9]. Calafiore and
El Ghaoui [13] also provided explicit results for enforcement of the individual chance constraint
based on moments, bounds, or symmetry information. More recently, Chen, Sim and Sun
[16] proposed an asymmetrical uncertainty set that generalizes the symmetric ones. All these
models are computationally attractive in the form of SOCPs or even in the form of linear
programs (LPs). In the recent work of Nemirovski and Shapiro [25], the moment generating
functions are incorporated for providing safe and tractable approximations of an individual
chance constrained problem. Despite the improved approximation, the approximation is not
readily second-order cone representable, and hence computationally more expensive. Other
forms of deterministic approximation of an individual chance constrained problem includes using
Chebyshev’s inequality, Bernstein’s inequality, or Hoeffding’s inequality to bound the probability
of violating individual constraints. See, for example, Pintér [26].

While robust optimization has been pretty successful in approximating individual chance
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constrained problems, it is rather unsatisfactory in approximating joint chance constrained prob-
lems. The “standard method” for approximating a joint constrained problem is to decompose a
joint chance constrained problem into a problem with m individual chance constraints. Clearly,
by Bonferroni’s inequality, a sufficient condition for ensuring feasibility in the joint chance con-
strained problem is to ensure that the total sum of violation probabilities of the individual chance
constraints is less than ε. The natural choice proposed in [16, 25] is to divide the violation prob-
ability equally among the m individual chance constraints. To the best of our knowledge, prior
to this work, we do not know of any systematic approach for selecting better allocation of the
safety factors among the individual chance constraints. Unfortunately, even when the individual
chance constraints are independent, the Bonferroni inequality is only an approximation at best1.
In the events when the individual chance constraints are correlated, the approximation obtained
using Bonferroni’s inequality could be even more conservative.

The above motivates our research to achieve better approximations of joint chance con-
strained problems. We build instead on a classical result on order statistics (cf. Meilijson and
Nadas [23]) to bound the probability of violation for the joint chance constraint. We show that
by choosing the right multipliers in conjunction with this classical inequality, we can derive an
improved approximation to the above method for the joint chance constraint problem.

Our specific contributions in this paper include the following.

1. We review the different tractable approximations to individual chance constraint problems
used in robust optimization and, by using the bounds of E((·)+) developed in Chen and
Sim (2008), show their interesting connections with bounds on the conditional-value-at-risk
(CVaR) measure.

2. We propose a new formulation for approximating joint chance constrained problems that
improves upon the standard approach using Bonferroni’s inequality.

3. We provide an application of the model on a network resource allocation problem with
uncertain demand and study the performance of the new chance constrained formulation
over the standard approach.

The rest of the paper is organized as follows. In Section 2, we focus on robust optimization
approximation of individual chance constrained problems. Our work is closely related to Chen
and Sim [15], which is discussed in Section 2.1. In particular, we adopt the same model of data
uncertainty (in Assumption U) and the bounding functions of E((·)+). In Section 3, we propose
a new approximation of joint chance constrained problem. In Section 4, We analyze the efficacy
of this approximation through a computational study of emergency supply allocation network.
Finally, we conclude this paper in Section 5.

Notations. We denote random variables with tilde sign, such as x̃. Bold face lower case letters
represent vectors, such as x and bold face upper case letters represent matrices, such as A. In
addition, we denote x+ = max{x, 0} and use E(·) to stand for the expectation.

1Take for instance the joint chance constraint P(ãx ≥ 1, b̃y ≥ 1) ≥ 1− ε, when X = {(x, y) : x ≥ 1, y ≥ 1} and

ã and b̃ are independent uniform distribution over [0, 1]. The approach using Bonferroni’s inequality, with the

decomposition ε1 + ε2 = ε, reduces the feasible region to P(ãx ≥ 1) ≥ 1− ε1 and P(b̃y ≥ 1) ≥ 1− ε2. The above

holds only when 1/x ≤ ε1, 1/y ≤ ε2. Hence the approach using Bonferroni’s inequality reduces the set of feasible

solutions to the region {(x, y) : 1/x + 1/y ≤ ε}. Note that the exact solution is {(x, y) : 1/x + 1/y − 1/(xy) ≤ ε}.
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2 Individual Chance Constrained Problems

In this section, we will establish the relation between bounds on the CVaR measure popularized
by Rockafellar and Uryasev [29] and the different tractable approximations of individual chance
constrained problems used in robust optimization. For simplicity, we consider a linear individual
chance constraint as follows

P
(
y(z̃) ≤ 0)

)
≥ 1− ε, (3)

where y(z̃) are affinely dependent of z̃,

y(z̃) = y0 +
N∑

k=1

ykz̃k,

and (y0, y1, . . . , yN ) are the decision variables. To illustrate the generality, we can represent the
following chance constraint

P
(
a(z̃)′x ≥ b(z̃))

)
≥ 1− ε,

where

a(z̃) = a0 +
N∑

k=1

akz̃k

b(z̃) = b0 +
N∑

k=1

bkz̃k,

by enforcing the following affine relations

yk = −(ak)′x + bk ∀k = 0, . . . , N.

The chance constraint (3) is not necessarily convex in its decision variables, (y0, y1, . . . , yN ). A
step towards tractability is by convexifying the individual chance constraint (3) using the CVaR
measure, ρ1−ε(ṽ), which is a functional on a random variable ṽ defined as follows

ρ1−ε(ṽ) ∆= min
β

{
β +

1
ε
E

(
(ṽ − β)+

)}
. (4)

The CVaR measure is a special class of optimized certainty equivalent (OCE) risk measure
introduced by Ben-Tal and Teboulle [7] and is popularized by Rockafellar and Uryasev [29] as a
tractable alternative for solving value-at-risk problems in financial applications. Recent works of
Bertsimas and Brown [8] and Natarajan et al. [24] have uncovered the relation between financial
risk measures and uncertainty sets in robust optimization. The CVaR constraint,

ρ1−ε(y(z̃)) ≤ 0 (5)

is a convex approximation of an individual chance constraint. Indeed, if the random variable
y(z̃) satisfies inequality (5), then there exists β ≤ 0 such that

β +
1
ε
E

(
(y(z̃)− β)+

) ≤ 0.

Note that if β = 0, then the inequality necessarily implies E ((y(z̃))+) ≤ 0 and hence,

P (y(z̃) ≤ 0) = 1 ≥ 1− ε.
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On the other hand, if β < 0, then by Markov inequality, we have

P(y(z̃) > 0) = P(y(z̃)− β > −β)

≤ P((y(z̃)− β)+ > −β)

≤ E((y(z̃)− β)+)/(−β)

≤ ε.

Therefore, the random variable y(z̃) will satisfy (5). It is also well-known (e.g., Föllmer, H.,
Schied [20] and Nemirovski and Shapiro [25]) that CVaR is the tightest convex approximation
to the individual chance constraint (3).

Despite its convexity, however, it is generally difficult to evaluate the CVaR measure since the
expectation E((·)+) involves multidimensional integration. Such evaluation is computationally
prohibitive above the fourth dimension. Although it is possible to approximate CVaR using
sampling average approximation, the solution obtained may not be a safe approximation of the
chance constrained problem (3). Furthermore, sampling average approximation of the CVaR
measure relies on full knowledge of the underlying distributions, z̃, which may become a practical
concern due to the limited availability of independent stationary historical data.

2.1 Bounding E((·)+)

Providing bounds on E((·)+) is pivotal in developing tractable approximations to individual and
joint chance constrained problems. We show next that different ways of bounding E((·)+) using
mild distributional information of z̃, such as supports, covariances and deviation measures. The
results in bounding E((·)+) have also been presented in Chen and Sim [15]. For ease of reference,
we list some of the known bounds on E((·)+).

The primitive uncertainties z̃ may be partially characterized using the forward and backward
deviations (together, they are called directional deviations), which are recently introduced by
Chen, Sim and Sun [16].

Definition 2.1 Given a random variable z̃ with zero mean, the forward deviation is defined as

σf (z̃) ∆= sup
θ>0

{√
2 ln(E(exp(θz̃)))/θ2

}
(6)

and backward deviation is defined as

σb(z̃) ∆= sup
θ>0

{√
2 ln(E(exp(−θz̃)))/θ2

}
. (7)

The directional deviations are derived from the moment generating functions of z̃ and may not
be finite. Nevertheless, for a random variable with finite support, the respective deviations can
be bounded as follows:

Theorem 2.2 ( Chen, Sim and Sun [16]) If z̃ has zero mean and distributed in [−z, z̄], z, z̄ > 0,
then

σf (z̃) ≤ σ̄f (z̃) =
z + z̄

2

√
g

(
z − z̄

z + z̄

)
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and

σb(z̃) ≤ σ̄b(z̃) =
z + z̄

2

√
g

(
z̄ − z

z + z̄

)
,

where
g(µ) = 2 max

s>0

{
φµ(s)− µs

s2

}
,

and

φµ(s) = ln

(
es + e−s

2
+

es − e−s

2
µ

)
.

Moreover the bounds are tight in the sense that there exists a probability distribution on z̃ such
that σf (z̃) = σ̄f (z̃) and σb(z̃) = σ̄b(z̃).

Assumption U. We assume that the uncertainties {z̃j}j=1:N are zero mean random variables,
with a positive definite covariance matrix Σ. Let W be the smallest closed convex set containing
the support of z̃. We denote a subset, I ⊆ {1, . . . , N}, which can be an empty set, such that
z̃j , j ∈ I are stochastically independent. Moreover, the corresponding forward and backward
deviations (or their bounds used in Theorem 2.2) are given by pj = σf (z̃j) and qj = σb(z̃j)
respectively for j ∈ I and that pj = qj = ∞ for j /∈ I.

The choice of the set W (with a little abuse of terminology, we call it the “support set”) can
influence the computational tractability of the problem. Henceforth, we assume that the support
set is a second order conic representable set (a.k.a. conic quadratic representable set) proposed in
Ben-Tal and Nemirovski [3], which includes polyhedral and ellipsoidal sets. A common support
set is the interval set, given by W = [−z, z̄], in which z, z̄ > 0.

For notational convenience, we define the following sets

I1
∆= {i : pj < ∞}, Ī1

∆= {i : pj = ∞},
I2

∆= {i : qj < ∞}, Ī2
∆= {i : qj = ∞}.

We also denote P = diag(p1, . . . , pN ) and Q = diag(q1, . . . , qN ). If pj = ∞ (respectively
qj = ∞), then we stipulate p−1

j = 0 (respectively q−1
j = 0). Moreover, the product of any pj

with zero remains zero, i.e., pj × 0 = 0 (respectively, qj × 0 = 0).

Theorem 2.3 (Chen and Sim [15]) Suppose the primitive uncertainty z̃ satisfies Assumption
U. The following functions are upper bounds of E ((y0 + y′z̃)+), where y = (y1, ..., yN )′.
(a)

E
(
(y0 + y′z̃)+

) ≤ π1(y0, y) ∆=
(

y0 + max
z∈W

z′y
)+

The bound is tight whenever y0 + y′z ≤ 0 for all z ∈ W.

(b)
E ((y0 + y′z̃)+) = y0 + E ((−y0 − y′z̃)+)

≤ π2(y0, y) ∆= y0 +
(
−y0 + max

z∈W
(−y)′z

)+

The bound is tight whenever y0 + y′z ≥ 0 for all z ∈ W.

(c)
E ((y0 + y′z̃)+) = 1

2 (y0 + E|y0 + y′z̃)|) ≤ π3(y0, y) ∆= 1
2y0 + 1

2

√
y0

2 + y′Σy.
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(d)

E ((y0 + y′z̃)+) ≤ inf
µ>0

µ

e
E

(
exp(

y0 + y′z̃
µ

)
)

≤ π4(y0,y) ∆= inf
µ>0

{µ

e
exp

(y0

µ
+
‖u‖2

2

2µ2

)}

where uj = max{pjyj ,−qjyj}, j = 1, . . . , N . The bound is finite if and only if yj ≤ 0 ∀j ∈ Ī1

and yj ≥ 0 ∀j ∈ Ī2.
(e)

E ((y0 + y′z̃)+) ≤ y0 + inf
µ>0

µ

e
E

(
exp(

−y0 − y′z̃
µ

)
)

≤ π5(y0, y) ∆= y0 + inf
µ>0

{µ

e
exp

(
− y0

µ
+
‖v‖2

2

2µ2

)}

where vj = max{−pjyj , qjyj}, j = 1, . . . , N . The bound is finite if and only if yj ≥ 0 ∀j ∈ Ī1

and yj ≤ 0 ∀j ∈ Ī2.

Remark : Observe that πi(y0, y), i = 1, . . . , 5 are convex, proper (i.e., the function is nowhere
−∞ and is not everywhere +∞), and closed (i.e., lower semi-continuous). A closed convex
function is necessarily continuous on its domain dom f

∆= {x : f(x) < +∞}(cf. Rockafellar [28]).
In addition, πi(y0, y), i = 1, . . . , 5 are positively homogeneous functions, that is,

πi(ky0, ky) = kπi(y0, y) ∀k ≥ 0. (8)

Furthermore,
πi(y0,0) = y+

0 . (9)

Chen and Sim [15] showed that the epigraph of πi(y0, y) is second order cone representable and
that the bound can be strengthened further by suitably decomposing (y0, y) into (yi

0, y
i) and

by using a linear combination of the bounds πi(yi
0, y

i).

Theorem 2.4 (Chen and Sim [15]) Suppose πi(y0, y), for all i ∈ L, is an upper bound to
E ((y0 + y′z)+), πi(y0,y) is convex and positively homogeneous. Define

πL(y0,y) ∆= min
yl0,yl

∑

l∈L
πl(yl0, yl)

s.t.
∑

l∈L
yl0 = y0

∑

l∈L
yl = y.

Then
0 ≤ E

(
(y0 + y′z̃)+

) ≤ πL(y0, y) ≤ min
l∈L

πl(y0, y). (10)

Moreover, πL(y0,y) inherits the second-order cone representability and positively homogeneous
properties of the individual functions πi(y0, y), i ∈ L.

For details, the interested reader may refer to Chen and Sim [15].

Proposition 2.5 Under Assumption U and suppose π(y0, y) is an upper bound to E ((y0 + y′z)+)
for all (y0,y) ∈ <N+1, then

π(y0, y) = 0 (11)
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only if
y0 + max

z∈W
y′z ≤ 0. (12)

Proof : Note that
0 = π(y0,y) ≥ E

(
(y0 + y′z̃)+

) ≥ 0.

Suppose
y0 + y′z∗ = y0 + max

z∈W
y′z > 0

for some z∗ ∈ W. Since the objective function is linear, we can assume WLOG that z∗ is an
extreme point in W.

Let Bε(z∗) denote an open ball with radius ε around z∗, with

y0 + y′z > 0 for all z ∈ Bε(z∗).

Since E ((y0 + y′z̃)+) = 0, we must have

P ({z̃ ∈ Bε(z∗)}) = 0.

Thus the support for z̃ lies in the convex hull W ′ of the (closed) set W \Bε(z∗). Since z∗ is an
extreme point in W, we have z∗ /∈ W ′. This contradicts our earlier assumption that W denote
the smallest convex set containing the support for z̃.

2.2 Bounds on CVaR and Robust Optimization

There are several attractive proposals for approximating individual chance constrained problems,
in which the solution (y0, y) to the following problem

y0 + max
z∈U

y′z ≤ 0

guarantees that
P(y0 + y′z̃ ≤ 0) ≥ 1− ε. (13)

Clearly, the choice of uncertainty set U depends on the underlying assumption on primitive
uncertainty.

Another approach of approximating the chance constraint is to provide an upper bound of
the CVaR function ρ1−ε(y0 + y′z̃), so that if the bound is nonnegative, the chance constraint
(13) will also be satisfied. For a given upper bound π(y0, y) to E ((·)+), we define

η1−ε(y0, y) ∆= min
β

{
β +

1
ε
π(y0 − β, y)

}
.

Clearly,

ρ1−ε(y0 + y′z̃) = min
β

{
β +

1
ε
E

(
(y0 + y′z̃ − β)+

)} ≤ η1−ε(y0, y)

and a sufficient condition for satisfying (13) is

η1−ε(y0, y) ≤ 0. (14)

Note that if the epigraph of π(·, ·) can be approximated by a second-order cone, the constraint
(14) is also approximately second-order cone representable.

We show next that the two approaches are essentially equivalent.
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Theorem 2.6 Suppose that π(y0, y) is convex, closed, and positively homogeneous, and is an
upper bound to E ((y0 + y′z)+) with π(y0,0) = y+

0 . Then under Assumption U and given ε ∈
(0, 1), it holds that for all (y0,y) such that π(y0,y) < ∞, we have

η1−ε(y0, y) = y0 + max
z∈U(ε)

y′z

for some convex uncertainty set U(ε).

The proof of Theorem 2.6 is based on the following strong duality theorem, which can be
found, e.g., in [6].

Theorem 2.7 [Theorem 2.4.1 in [6]] Let K be a nonempty closed convex cone. Consider the
primal problem

p∗ = min
x

{
c′x : Ax− b ∈ K}

and its dual

d∗ = max
λ

{
b′λ : A′λ = c, λ ∈ K∗} .

If the primal problem is bounded below and is strictly feasible (i.e. Ax− b ∈ ri(K), for some x,
where ri(K) denotes the relative interior of the cone K), then the dual problem is solvable and
−∞ < d∗ = p∗ < +∞. 2

We now prove Theorem 2.6.

Proof : The set K ∆= {(u, y0, y) : u ≥ π(y0, y)} is a nonempty closed convex cone as it is the
epigraph of a convex, closed, and positively homogeneous function with π(y0,0) = y+

0 . Let
(y0, y) ∈ domπ. Define

c = (ε−1,−1)′, b = (0,−y0,−y′)′,

x = (u,−β)′, λ = (γ,−z0,−z′)′,

and

A =




1 0
0 1
0 0


 .

We apply Theorem 2.7 with the above c,x, b,λ, A and K. The primal problem is strictly feasible
since there exists u such that u > π(y0,y) and that π(y0, y) < ∞; i.e., ∃x such that Ax− b ∈
ri(K). If β ≥ 0, then, since u ≥ π(y0−β, y) ≥ E

(
(y0 − β + z̃′y)+

) ≥ 0, one has c′x = ε−1u+β ≥
0; whereas if β < 0, then c′x = ε−1u + β ≥ ε−1π(y0 − β, y) + β ≥ ε−1E(y0 − β + y′z̃) + β =
ε−1y0 − (ε−1 − 1)β > ε−1y0, which shows that the primal problem is bounded below. Thus by
Theorem 2.7,

η1−ε(y0, y) = min
β,u

{β + u/ε : (u, y0 − β,y) ∈ K}

2Although it is not explicitly stated in the theorem, it is assumed that K is a full dimensional pointed cone in

[6]. However, a classical theorem of Rockafellar [28, Theorem 28.2] indicates that this assumption can be removed

if K is defined by a finite number of convex inequalities, which is obviously the case considered in this paper.
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= min
x

{
c′x : Ax− b ∈ K}

= max
λ

{
b′λ : A′λ = c, λ ∈ K∗}

= max
γ,z0,z

{
y0z0 + y′z : (γ,−z0,−z′)′ = (1/ε,−1,−z′)′ ∈ K∗} .

Hence
η1−ε(y0,y) = y0 + max

z∈U(ε)
y′z,

with
U(ε) ∆=

{
z : (1/ε,−1,−z′) ∈ K∗} .

For the functions πi(y0,y), i = 1, . . . , 5, the corresponding uncertainty sets can be computed
explicitly. Consider the following uncertainty sets:

U1(ε)
∆= W,

U2(ε)
∆= {z : z = (1− 1/ε)ζ, for some ζ ∈ W} ,

U3(ε)
∆=

{
z : ‖Σ−1/2z‖2 ≤

√
1− ε

ε

}
,

U4(ε)
∆=

{
z : ∃s, t ∈ <N ,z = s− t, ‖P−1s + Q−1t‖2 ≤

√
−2 ln ε

}
,

U5(ε)
∆=

{
z : ∃s, t ∈ <N ,z = s− t, ‖Q−1s + P−1t‖2 ≤ 1− ε

ε

√
−2 ln(1− ε)

}
.

Note that in general, the matrixes P−1 and Q−1 may not be positive definite. Hence, except
for U3, the rest of the uncertainty sets may be unbounded.

Corollary 2.8

ηi
1−ε(y0, y) ∆= min

β

{
β +

1
ε
πi(y0 − β,y)

}
= y0 + max

z∈Ui(ε)
y′z.

Proof :

Uncertainty Set U1(ε):

η1
1−ε(y0, y) = min

β

(
β +

π1(y0 − β, y)
ε

)

= min
β

(
β +

1
ε
(y0 − β + max

z∈W
y′z)+

)

= y0 + max
z∈U1(ε)

y′z.
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Uncertainty Set U2(ε):

η2
1−ε(y0, y) = min

β

(
β +

π2(y0 − β, y)
ε

)

= y0 + min
β

(
β +

π2(−β,y)
ε

)

= y0 + min
β

{
β +

1
ε

((
max
z∈W

(−y)′z + β

)+

− β

)}

= y0 + min
β

{
β(1− 1/ε) +

1
ε

(
(max
z∈W

(−y)′z + β)+
)}

= y0 + (1/ε− 1)min
β

{
−β +

1
1− ε

(
(max
z∈W

(−y)′z + β)+
)}

= y0 + (1/ε− 1)max
z∈W

y′(−z) + (1/ε− 1)min
β

(
−β +

1
1− ε

(β)+
)

= y0 + max
z∈U2(ε)

y′z.

Uncertainty Set U3(ε):

η3
1−ε(y0,y) = min

β

(
β +

π3(y0 − β, y)
ε

)

= min
β

(
β +

y0 − β +
√

(y0 − β)2 + y′Σy

2ε

)

= y0 +
√

1− ε

ε

√
y′Σy

= y0 + max
z∈U3(ε)

y′z,

where the second equality follows from choosing the optimum β,

β∗ = y0 +
√

y′Σy(1− 2ε)
2
√

ε(1− ε)
.

Uncertainty Set U4(ε):
Observe that uj ≥ max{pjyj ,−qjyj} if and only if p−1

j uj ≥ yj and q−1
j uj ≥ −yj .

η4
1−ε(y0, y) = min

β

(
β +

π4(y0 − β, y)
ε

)

= min
β,µ,u

(
β +

µ
e exp(y0−β

µ + ‖u‖22
2µ2 )

ε
| P−1u ≥ y, Q−1u ≥ −y

)

= min
µ,u

(
y0 +

‖u‖2
2

2µ
− µ ln ε | P−1u ≥ y, Q−1u ≥ −y

)

= min
u

(
y0 +

√
−2 ln εu0 | P−1u ≥ y,Q−1u ≥ −y, ‖u‖2 ≤ u0

)

= y0 + max
z∈U4(ε)

y′z,

where the second and third equalities follow from choosing the tightest β∗ and µ∗, that is

β∗ = y0 +
‖u‖2

2

2µ
− µ ln ε− µ,

µ∗ =
‖u‖2√−2 ln ε

.

The last equality is the result of conic duality. See for instance Chen, Sim and Sun [16].
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Uncertainty Set U5(ε):
Following from the above exposition,

η5
1−ε(y0, y) = min

β

(
β +

π5(y0 − β, y)
ε

)

= min
β,µ,v

(
β +

y0 − β + µ
e exp(−y0−β

µ + ‖v‖22
2µ2 )

ε
| P−1v ≥ −y, Q−1v ≥ y

)

= min
µ,v

(
y0 + (

1
ε
− 1)(

‖v‖2
2

2µ
− µ ln(1− ε)) | P−1v ≥ −y,Q−1v ≥ y

)

= min
v

(
y0 +

1− ε

ε

√
−2 ln(1− ε)‖v‖2 | | P−1v ≥ −y, Q−1v ≥ y

)

= y0 + max
z∈U5(ε)

y′z.

We show next that the uncertainty set corresponding to the stronger bound πL(y0, y) can
also be obtained in a similar way.

Theorem 2.9 Suppose z̃ satisfies Assumption U. Let

UL(ε) ∆=
⋂

l∈L
Ul(ε).

and suppose UL(ε) is compact and has an non-empty interior. Then

ηL1−ε(y0, y) = y0 + max
z∈UL(ε)

y′z.

Proof :

ηL(y0, y) = min
β

(
β +

πL(y0 − β, y)
ε

)

= min
β,yl0,yl,l∈L


β +

∑

l∈L

(πl(yl0 − βl,yl)
ε

)
|

∑

l∈L
yl = y,

∑

l∈L
yl0 = y0,

∑

l∈L
βl = β




= min
yl0,yl,l∈L


∑

l∈L
min
βl

(
βl +

πl(yl0 − βl, yl)
ε

)
|

∑

l∈L
yl = y,

∑

l∈L
yl0 = y0




= min
yl0,yl,l∈L


∑

l∈L

(
yl0 + max

z∈Ul(ε)
y′lz

)
|

∑

l∈L
yl = y,

∑

l∈L
yl0 = y0




= y0 + min
yl,l∈L


∑

l∈L

(
max

z∈Ul(ε)
y′lz

)
|

∑

l∈L
yl = y




= y0 + max
z∈UL(ε)

y′z,

where the last inequality is due to infimum convolution of support functions. See Corollary
16.4.1 of [28].

Hence, the different approximations to individual chance constrained problems used in robust
optimization are the consequences of applying different bounds on E((·)+). Notably, when the
primitive uncertainties are characterized only by their means and covariance, the corresponding
uncertainty set is an ellipsoid of the form U3(ε). See, for instance, Bertsimas et al. [10] and
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El-Ghaoui et al. [19]. When I = N , that is, all the primitive uncertainties are independently
distributed, Chen, Sim and Sun [16] proposed the asymmetrical uncertainty set

UA(ε) = W︸︷︷︸
=U1(ε)

⋂
U4(ε),

which generalizes the uncertainty set proposed by Ben-Tal and Nemirovski [5]. With the inde-
pendence assumption, it suffices to consider the interval set given by W = [−z, z̄].

Noting that UA(ε) ⊇ U{1,2,4,5}(ε), we can therefore improve upon the approximation using
the uncertainty set U{1,2,4,5}(ε). However, in most application of chance constrained problems,
the safety factor ε is relatively small. In which case, the uncertainty sets of U2(ε) and U5(ε)
are usually exploded to engulf the uncertainty sets of W and U4(ε), respectively . For instance,
under symmetric distributions, that is P = Q and z̄ = z, it is easy to establish that for ε < 0.5,
we have

U{1,2,4,5}(ε) = U1(ε)︸ ︷︷ ︸
=W

⋂
U2(ε)︸ ︷︷ ︸
⊇W

⋂
U4(ε)

⋂
U5(ε)︸ ︷︷ ︸
⊇U4

= UA(ε).

3 Joint Chance Constrained Problems

Unfortunately, the notion of uncertainty set in classical robust optimization does not carry
forward as well in addressing joint chance constrained problems. We consider a linear joint
chance constraint as follows,

P
(
yj(z̃) ≤ 0, j ∈M

)
≥ 1− ε, (15)

where M = {1, . . . , m}, yj(z̃) are affinely dependent of z̃,

yj(z̃) = yj
0 +

N∑

k=1

yj
kz̃k j ∈M.

(y1
0, . . . , y

1
N , . . . , ym

0 , . . . , ym
N ) being the decision variables. For notational convenience, we repre-

sent
yj = (yj

1, . . . , y
j
N ),

so that yi(z̃) = yi
0 + y′iz̃ and denote

Y = (y1
0, . . . , y

1
N , . . . , ym

0 , . . . , ym
N ),

as the collection of decision variables in the joint chance constraint. By suitable affine constraints
imposed on the decision variables Y and x, we can represent the joint chance constraint in Model
(2) in the form of constraint (15).

It is not surprising that a joint chance constraint is more difficult to solve than an individual
one. For computational tractability, the common approach is to decompose the joint constraint
into a problem with m individual constraints of the form

P
(
yi(z̃) ≤ 0

)
≥ 1− εi, i ∈M. (16)

By enforcing Bonferroni’s inequality on their safety factors,
∑

i∈M
εi ≤ ε. (17)
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any feasible solution that satisfies (16) and (17) will also satisfy (15). See for instance, Chen, Sim
and Sun [16] and Nemirovski and Shapiro [25]. Consequently, using the techniques discussed in
the previous section, we can then build tractable safe approximations as follows

η1−εi(y
i
0,yi) ≤ 0, i ∈M. (18)

The main issue with using Bonferroni’s inequality is the choice of εi. Unfortunately, the
problem becomes non-convex and possibly intractable if εi, i ∈ M, are made decision variables
and (17) enforced as a constraint in the optimization model. As such, it is natural to choose,
εi = ε/m as proposed in [16, 25].

In some instances, this approach may be rather conservative even for an optimal choice of
εi. For instance, suppose yi(z̃) are completely correlated, such as

yi(z̃) = δi(a0 + a′z̃), i ∈M (19)

for some δi > 0, the least conservative choice of εi is εi = ε for all i ∈M, which would violate the
condition (17) imposed by Bonferroni’s inequality. As a matter of fact, it is easy to see in this
case that the least conservative choice of εi, while satisfying Bonferroni’s inequality, is εi = ε/m

for all i = 1, . . . ,m. Hence, if yi(z̃) are correlated, the efficacy of Bonferroni’s inequality will
possibly diminish.

We propose a new tractable way for approximating the joint chance constraint. Given a
vector of positive constants, α ∈ <N , α > 0, an index set J ⊆M, an upper bound π(y0,y) for
E ((y0 + y′z̃)+), we define the following function,

γ1−ε(Y ,α,J ) ∆= min
w0,w





min
β

[
β +

1
ε
π(w0 − β, w)

]

︸ ︷︷ ︸
=η1−ε(w0,w)

+
1
ε


∑

i∈J
π(αiy

i
0 − w0, αiyi −w)








.

The next result shows we can use the above function to approximate a joint chance constraint.

Theorem 3.1 (a) Suppose z̃ satisfies Assumption U. If

γ1−ε(Y ,α,J ) ≤ 0 (20)

and
yi
0 + max

z∈W
y′iz ≤ 0 ∀i ∈M\J , (21)

then
ρ1−ε

(
max
i∈J

{αiyi(z̃)}
)
≤ γ1−ε(Y , α,J ).

Consequently, the joint chance constraint (15) is satisfied.

(b) For fixed (α,J ), the epigraph of the function γ1−ε(Y , α,J ) with respect to Y is second-
order cone representable and positively homogeneous. Similarly, for fixed (Y ,J ), the epigraph
of the function γ1−ε(Y ,α,J ) with respect to α is second-order cone representable and positively
homogeneous.
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Proof : (a) Under Assumption U, the set W contains the support of the primitive uncertainty,
z̃, hence, the robust counterpart (21) implies

P(yi
0 + y′iz̃ > 0) = 0, ∀i ∈M\J .

Hence, with α > 0, we have

P
(
yi
0 + y′iz̃ ≤ 0, i ∈M

)
= P

(
yi
0 + y′iz̃ ≤ 0, i ∈ J

)
= P

(
max
i∈J

{αiy
i
0 + αiy

′
iz̃} ≤ 0

)
.

Therefore, it suffices to show that if Y is feasible in the constraint (20), then the CVaR measure,

ρ1−ε

(
max
i∈J

{αiyi(z̃)}
)
≤ 0.

Using the classical inequality (cf. Meilijson and Nadas [23]) that

E
(

max
i=1,...,n

Xi − β

)+

≤ E (Y − β)+ +
n∑

i=1

E (Xi − Y )+ , for any r.v. Y, (22)

we have

ρ1−ε

(
max
i∈J

{αi(yi
0 + y′iz̃)}

)

= min
β

{
β +

1
ε
E

[(
max
i∈J

{αi(yi
0 + y′iz̃)} − β

)+
]}

≤ min
β,w0,w



β +

1
ε


E

(
(w0 − β + w′z̃)+

)
+

∑

i∈J
E

(
(αiy

i
0 − w0 + (αiyi −w)′z̃)+

)







≤ min
β,w0,w



β +

1
ε


π(w0 − β, w) +

∑

i∈J
π(αiy

i
0 − w0, αiyi −w)








= γ1−ε(Y , α,J ) ≤ 0.

(b) For a fixed α, the corresponding epigraph can be expressed as

Y1 = {(Y , t) : γ1−ε(Y ,α,J ) ≤ t} =





(Y , t) :

∃w0, r0, . . . , rm ∈ <,w ∈ <N

r0 + 1
ε

∑
i∈J ri ≤ t

η1−ε(w0, w) ≤ r0

π(αiy
i
0 − w0, αiyi −w) ≤ ri ∀i ∈ J





.

Since the epigraphs of η1−ε(·, ·) and π(·, ·) are second-order cone representable, the set Y1 is
also second-order cone representable. For positive homogeneity, we observe that since π(·, ·) is
positively homogeneous, we have that for all k ≥ 0,

γ1−ε(kY , α,J )

= min
β,w0,w



β +

1
ε


π(w0 − β, w) +

∑

i∈J
π(kαiy

i
0 − w0, kαiyi −w)








= k min
β,w0,w





1
k
β +

1
ε


π

(
1
k
w0 − 1

k
β,

1
k
w

)
+

∑

i∈J
π

(
αiy

i
0 −

1
k
w0, αiyi −

1
k
w

)






= k min
β,w0,w



β +

1
ε


π(w0 − β, w) +

∑

i∈J
π(αiy

i
0 − w0, αiyi −w)








= kγ1−ε(Y , α,J ).
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Similarly, the same exposition applies when Y is fixed and α being the decision variable.

Remark : Note that the constraints (21) do not depend on the values of αj for all j ∈ M\J .
Speaking intuitively, we can perceive αj = ∞ for all j ∈M\J . However, to avoid dealing with
infinite entities, we define the set J as part of the input to the function γ1−ε(·, ·, ·). Throughout
this paper, we will restrict the focus of α to only elements corresponding to the indices in
the set J . Unfortunately, the function γ1−ε(Y , α,J ) is not jointly convex in both Y and α.
Nevertheless, for a given Y , it is a tractable convex function with respect to α and is in the
attractive form of SOCP. We will later exploit this property for improving the choice of α.

If the sets
Si

∆= {z̃ : yi(z̃) ≥ β} , i = 1, . . . , n

are mutually disjoint, then

E
(

max
i

yi(z̃)− β

)+

=
n∑

i=1

E (yi(z̃)− β)+ ,

and hence the inequality (22) cannot be tightened further substantially. Interestingly, by intro-
ducing the parameters α and random variable w0 +w′z, our approach is also able to handle the
situation when the variables are positively correlated. In the example (19) where yi(z̃), i ∈ M
are completely positively correlated, the following condition

η1−ε(a0, a) ≤ 0

is also sufficient to guarantee feasibility in the joint chance constraint. Choosing αi = 1/δi > 0,
we see that

γ1−ε(Y , α,M)

= min
w0,w

{
η1−ε(w0, w) +

1
ε

[ ∑

i∈M
π(αiy

i
0 − w0, αiyi −w)

]}

= min
w0,w

{
η1−ε(w0, w) +

1
ε

[ ∑

i∈M
π(αiδia

0 − w0, αiδia−w)

]}

≤ η1−ε(a0, a) +
1
ε

{ ∑

i∈M
π(a0 − a0,a− a)

}

= η1−ε(a0, a) ≤ 0.

Therefore, we see that the new bound is potentially better than the application of Bonferroni’s
inequality on individual chance constraints. By choosing the right combination of (α,J ), we
can prove a stronger result as follows.

Theorem 3.2 Let εi ∈ (0, 1), i ∈ M and
∑

i∈M εi ≤ ε. Under Assumption U, suppose Y

satisfies
η1−εi(y

i
0, yi) ≤ 0 ∀i ∈M,

then there exists α > 0, and a set J ⊆ M such that (Y , α,J ) are feasible in the constraints
(20) and (21).

Proof : Let βi be the optimal solution to

min
β

(
β +

1
εi

(
π(yi

0 − β, yi)
))

︸ ︷︷ ︸
=η1−εi

(yi
0,yi)

.
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Since η1−εi(y
i
0, yi) ≤ 0 and that

π(yi
0 − βi, yi) ≥ E

(
(yi

0 − βi + y′iz̃)+
)
≥ 0,

we must have βi ≤ 0. Let J = {i|βi < 0},

αj = − 1
βj

∀j ∈ J .

Since βj = 0 for all j ∈M\J , we have

0 ≤ π(yi
0, yi) ≤ 0 ∀i ∈M\J

From Proposition 2.5, it follows that

yi
0 + y′iz ≤ 0 ∀z ∈ W, ∀i ∈M\J

which satisfies the set of inequalities in (21).

For i ∈ J , the constraint η1−εi(y
i
0,yi) ≤ 0 is equivalent to

1
−βi

π(yi
0 − βi, yi) ≤ εi

Since the function π(·, ·) is positive homogeneous, we have

1
−βi

π(yi
0 − βi,yi) = π

(
1
−βi

yi
0 + 1,

1
−βi

yi

)

= π
(
αiy

i
0 + 1, αiyi

)

≤ εi ∀i ∈ J .

Finally,
γ1−ε(Y , α,J )

= min
β,w0,w



β +

1
ε


π(w0 − β, w) +

∑

i∈J
π(αiy

i
0 − w0, αiyi −w)








≤ −1 +
1
ε



π(−1 + 1,0) +

∑

i∈J
π(αiy0 + 1, αiy − 0)





= −1 +
1
ε

∑

i∈J
π(αiy0 + 1, αiy)

≤ −1 +
1
ε

∑

i∈J
εi ≤ 0,

where the first inequality is due to the choice of β = −1, w0 = −1, w = 0 and the last inequality
follows from

∑
i∈M εi ≤ ε.

3.1 Optimizing over α

Consider a joint chance constrained model as follows

Zε = min c′x
s.t. P(yi(z̃) ≤ 0, i ∈M) ≥ 1− ε

(x, Y ) ∈ X,

(23)
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in which X is efficiently computable convex set, such as a polyhedron or a second-order cone
representable set. Given a set of constant, α > 0 and a set J , we consider the following
optimization model.

Z1
ε (α,J ) = min c′x

s.t. γ1−ε(Y , α,J ) ≤ 0
yi
0 + max

z∈W
y′iz ≤ 0 ∀i ∈M\J

(x,Y ) ∈ X.

(24)

In view of Theorem 3.1, suppose Model (24) is feasible, the solution (x, Y ) is also feasible in
Model (23), albeit more conservatively.

The main concern here is how to choose α and J . A likely choice is, say αj = 1/m, for all
j ∈ M and J = M. Alternatively, we may use the classical approach by decomposing into m

individual chance constraints with εi = ε/m. In virtue of Theorem 3.2, we can find a feasible
α > 0 and set J such that Model (24) is also feasible.

Our aim is to improve upon the objective by minimizing γ1−ε(Y ,α,J ) over α and J ,
resulting in greater slack in the model (24). Hence, this approach will lead to improvement in
the objective, or at least will not increase the value.

Given a feasible solution Y in Model (24), our aim is to improve upon the objective by
readjusting the set J and the weights αj , j ∈ J , that will result in greater slack in the model
(24) over the solution, Y . We define the following set

H(Y ) ∆=
{

i : yi
0 + max

z∈W
y′iz > 0

}
.

Note that we can obtain the set H(Y ) by solving the following linear optimization problem

min
m∑

i=1

si

s.t. yi
0 + max

z∈W
y′iz ≤ si,

(25)

so that H(Y ) = {i : s∗i > 0}, s∗ being its optimal solution.

Since Y is feasible in Model (24), we must have H(Y ) ⊆ J . If the set H(Y ) is nonempty,
we consider the following optimization problem over αj , j ∈ H(Y ),

Z1
α(Y ) = min γ1−ε(Y , α,H(Y ))

s.t.
∑

j∈H(Y )

αj = 1

αj ≥ 0 ∀j ∈ H(Y ).

(26)

By choosing π(y0, y) ≤ π1(y0, y), we can ensure that the objective function of Problem (26) is
finite. Moreover, since the feasible region of Problem (26) is compact, the optimal solution for
αj , j ∈ H(Y ) is therefore attained.

Proposition 3.3 Assume there exists (Y , α,J ), α > 0, such that γ1−ε(Y ,α,J ) ≤ 0. Let α∗

be the optimum solution of Problem (26).
(a)

Z1
α(Y ) ≤ 0.
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(b) Moreover, the solution α∗ satisfies,

α∗i > 0 ∀i ∈ H(Y ).

Proof : (a) Since H(Y ) ⊆ J , and under the assumption that there exists (Y , α,J ), α > 0,
such that γ1−ε(Y , α,J ) ≤ 0, by using the same α, we observe that

γ1−ε(Y , α,H) ≤ γ1−ε(Y , α,J ) ≤ 0.

Due to the positively homogeneous property of Theorem 3.1(b), we scale α by a positive constant
so that it is feasible in Problem (26). Hence, the result follows.
(b) Note that under the constraints of Problem (26), there exists, α∗j > 0 for some j ∈ H(Y ).
Suppose there exists a nonempty set G ⊂ H(Y ) (strict inclusion) such that α∗i = 0,∀i ∈ G, we
will show that the following holds,

yi
0 + max

z∈W
y′iz ≤ 0 ∀i ∈ H(Y )\G,

which is a contradiction. We have argued that Z1
α(Y ) ≤ 0. Let k ∈ G, that is, α∗k = 0. Observe

that for some suitably chosen (β,w0, w),

0 ≥ γ1−ε(Y , α∗,H(Y ))

= β +
1
ε



π(w0 − β, w) +

∑

i∈H(Y )

π(α∗i y
i
0 − w0, α

∗
i yi −w)





= β +
1
ε
{π(w0 − β, w) + π(−w0,−w)}+

1
ε

∑

i∈H(Y )\{k}
π(α∗i y

i
0 − w0, α

∗
i yi −w)

≥ β +
1
ε

{
E

(
w0 + w′z − β

)+ + E
(−w0 −w′z

)+
}

≥ β + 1
ε (−β)+,

where the second equality is due to α∗k = 0. Since, ε ∈ (0, 1), the inequality β + 1
ε (−β)+ ≤ 0 is

satisfied if and only if β = 0. We now argue that

π(yi
0, yi) = 0 ∀i ∈ H(Y )\G (27)

which, from Proposition 2.5, implies

yi
0 + max

z∈W
y′iz ≤ 0 ∀i ∈ H(Y )\G.

Indeed, for any l ∈ H(Y )\G, we observe that

0 ≥ β +
1
ε



π(w0 − β, w) +

∑

i∈H(Y )

π(α∗i y
i
0 − w0, α

∗
i yi −w)





=
1
ε



π(w0, w) +

∑

i∈H(Y )

π(α∗i y
i
0 − w0, α

∗
i yi −w)



 Substituting β = 0,

≥ 1
ε

{
π(w0, w) + π(α∗l y

l
0 − w0, α

∗
l yl −w)

}

≥ 1
ε

{
π(α∗l y

l
0, α

∗
l yl)

}

=
α∗l
ε

π(yl
0, yl) ≥ 0.
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Hence, the equality (27) is achieved by noting that α∗l > 0.

We propose an algorithm for improving the choice of α and the set J . Again, we assume
that we can find an initial feasible solution of Model (24).

Algorithm 3.4 .
Input: Y

1. Solve Problem (25) with Input Y . Obtain optimal solution s∗.

2. Set H(Y ) := {i|s∗j > 0, j ∈M}.
3. Solve Problem (26) with Input Y . Obtain optimal solution α∗. Set J := H(Y ).

4. Solve Model (24) with Input (α,J ). Obtain optimal solution (x∗, Y ∗). Set Y := Y ∗.

5. Repeat Steps 1-4 until a termination criterion is met.

Theorem 3.5 In Algorithm 3.4, the sequence of objectives obtained by solving Model (24) is
non-increasing. The algorithm will either have J = ∅ or consecutively have J k = J ∗ 6= ∅ for
certain index set J ∗ in a finite number of iterations. If in addition, the set X is bounded, then
the algorithm will produce a bounded infinite sequence {(xk, Y k)} with c′xk ↓ τ , a certain limit.

Proof : Starting with a feasible solution of Model (24), we are assured that there exists
(Y ,α,J ), α > 0, such that γ1−ε(Y , α,J ) ≤ 0. With Proposition 3.3(b), the condition in
Step 3 ensures that α∗j > 0 for all j ∈ J . Moreover, Proposition 3.3(a) ensures that the updates
on α and J do not affect the feasibility of its previous solution (x, Y ) in the Model (24). Hence,
its objective value will not increase.

Note that the set sequence {J k} is non-expanding, i.e. one has J k+1 ⊆ J k because J k+1 =
H(Y k+1) ⊆ J k. Therefore, either J k = ∅ in a finite number of iterations, or there is a k0 such
that J k = H(Y k) ≡ J ∗ for all k ≥ k0. In either case the infinite sequence {(xk, Y k)} is bounded
since X is bounded. This, together with the monotonicity of the sequence {c′xk} implies the
last part of the theorem.

The implementation of Algorithm 3.4 may involve perpetual updates of the set J and result
in reformulating Problem (24). A practical solution is to ignore the set J and solve the following
model,

Z2
ε (α) = min c′x

s.t. γ1−ε(Y , α,M) ≤ 0
(x,Y ) ∈ X,

(28)

for a given α ≥ 1 such that 1′α = M , where M is a large number. The updates of α is done
by solving

Z2
α(Y ) = min γ1−ε(Y , α,M)

s.t.
∑

j∈J αj = M

α ≥ 1.

(29)

The algorithm is also simplified as follows,

Algorithm 3.6 .
Input: Y
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1. Solve Problem (29) with Input Y . Obtain optimal solution α∗. Set α = α∗

2. Solve Model (28) with Input α. Obtain optimal solution (x∗, Y ∗). Set Y = Y ∗.

3. Repeat Steps 1-2 until a termination criterion is met.

4. Output solution (x∗, Y ∗).

The following result is straightforward.

Theorem 3.7 Assume Y is feasible in Model (28) for some α ≥ 1 and 1′α = M . Then,
the sequence of objectives obtained by solving Model (24) in Algorithm 3.6 is non-increasing. If
in addition, the set X is bounded, then the algorithm will generate a bounded infinite sequence
{(xk,Y k)} with c′xk ↓ τ , a certain limit.

Like most “Big M approaches”, the quality of the solution improves with larger values of M .
However, M cannot be too large that it results in numerical instability of optimization problem.
Although the Big M approach does not provide the theoretical guaranteed improvement over
the classical approach using Bonferroni’s inequality, it seems to perform very well from our
numerical studies, as demonstrated in the next section.

4 Computational studies

We analyze a resource allocation problem on a network with uncertain node demands and
allowing transshipment of resources to neighboring nodes when necessary. We consider a directed
graph with node set V, |V| = n and arc set E , |E| = r. At each node, i, i ∈ V, we decide on the
quantity of resource xi to stock up, which will incur a cost of ci per unit resource. When the
demands d̃i, i ∈ V are realized, resources at the nodes or from neighboring nodes are used to
meet the demands. The goal is to minimize the total allocation cost subjected to a service level
constraint of meeting all demands with probability at least 1− ε. We assume that the resource
at each node i can only be transshipped across to its outgoing neighboring nodes defined as

N−(i) ∆= {j : (i, j) ∈ E},

and received from its incoming neighboring nodes defined as

N+(i) ∆= {j : (j, i) ∈ E}.

Transshipment of resources received from other nodes is prohibited.

In our model, we ignore operating costs such as the transshipment costs. One of such
applications is with regards to allocation of equipment such as ambulances or time critical
medical supplies for emergency response to local or neighboring demands. The costs associated
with their procurement is more significant than the operating cost of transshipment, which may
occur rather infrequently. We list the notations of the model as follows

ci : Unit cost of having one resourse at node i, i ∈ V ;
di(z̃) : Demand at node i, i ∈ V as a function of the primitive uncertainties z̃;
xi : Quantity at resource at node i, i ∈ V;
wij(z̃) : Transshipment quantity from node i to node j, (i, j) ∈ E in respond to realization of z̃.
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The problem can be formulated as a joint chance constrained problem as follows,

min c′x

s.t. P




xi +
∑

j∈N+(i)

wji(z̃)−
∑

j∈N−(i)

wij(z̃) ≥ di(z̃) i = 1, . . . , n

xi ≥
∑

j∈N−(i)

wij(z̃) i = 1, . . . , n

w(z̃) ≥ 0



≥ 1− ε

x ≥ 0, w(z̃)

(30)

We assume that the demand at each node are independently distributed and represented as

dj(z̃) = d0
j + z̃j ,

where z̃j are independent zero mean random variables with unknown distribution.

By introducing new variables, we can transform the model (30) to the “standard form” model
as follows

min c′x
s.t. xi +

∑

j∈N+(i)

wji(z̃)−
∑

j∈N−(i)

wij(z̃) + r(z̃) = di(z̃) i = 1, . . . , n

xi + si(z̃) =
∑

j∈N−(i)

wij(z̃) i = 1, . . . , n

w(z̃) + t(z̃) = 0

y(z̃) =




r(z̃)
s(z̃)
t(z̃)




P(y(z̃) ≤ 0) ≥ 1− ε

x ≥ 0, r(z̃), s(z̃), t(z̃), y(z̃),w(z̃).

(31)

Note that the dimension of y(z̃) is m = 2n + r.

The transshipment variables w(z̃) is an arbitrary function of z̃. In order to obtain a bound on
Problem (30), we apply the linear decision rule on the transshipment variables w(z̃) advocated
in Ben-Tal et al. [2] and Chen, Sim and Sun [16] as follows,

w(z̃) = w0 +
n∑

j=1

wj z̃j .

Under the assumption of linear decision on w(z̃) and with suitable affine mapping, we have

r(z̃) = r0 +
∑n

j=1 rj z̃j

s(z̃) = s0 +
∑n

j=1 sj z̃j

t(z̃) = t0 +
∑n

j=1 tj z̃j

y(z̃) = y0 +
∑n

j=1 yj z̃j ,

which are affine functions with respect to the primitive uncertainty, z̃. Hence, we transform the
problem from one with infinite variables (optimizing over functional) to a restricted one with
polynomial number of variables. Therefore, we can apply our proposed framework to obtain an
approximate solutions to Problem (31).

The use of linear decision rule is subject to criticism. As Nemirovski and Shapiro [25] argued
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The only reason for restricting ourselves with affine decision rules 3 stems from the

desire to end up with a computationally tractable problem. We do not pretend that

affine decision rules approximate well the optimal ones - whether it is so or not,

it depends on the problem, and we usually have no possibility to understand how

good in this respect is a particular problem we should solve. The rationale behind

restricting to affine decision rules is the belief that in actual applications it is better

to pose a modest and achievable goal rather than an ambitious goal which we do not

know how to achieve.

Indeed, other than using linear decision rule, we do not know of any other methods of address-
ing the joint chance constrained problem with recourse and under incomplete distributional
assumption.

In our test problem, we generate 15 nodes randomly positioned on a square grid and restrict
to the r shortest arcs on the grid in terms of Euclidean distances. We assume ci = 1. For the
demand uncertainty, we assume that d0

j = 10 and the demand at each node, dj(z̃) takes value
from zero to 100. Therefore, we have z̃j ∈ [−10, 90]. Using Theorem 2.2, we can determine the
bounds on the forward and backward deviations, which are respectively pj = 42.67 and qj = 30.

For the evaluation of bounds, we use L = {1, 2, 4, 5}. We formulate the model using an in-
house developed software, PROF (Platform for Robust Optimization Formulation). The Matlab
based software is essentially an SOCP modeling environment that contains reusable functions for
modeling multiperiod robust optimization using decision rules. We have implemented bounds
for the CVaR measure and expected positivity of a weighted sum of random variables. The
software calls upon CPLEX 11.0 to solve the underlying SOCP.

In the computational experiment, we impose a service level of 99% or ε = 0.01. We first solve
the problem using the classical approach by decomposing the joint chance constrained problem
into m constraints of the form (18), with εi = ε/(2n + r). We denote the optimal solution as
xB and its objective as ZB. Subsequently, we use Algorithm 3.6, the big M approach, with
M = 106, to improve upon the solution. We report results at the end of 20 iterations. Here,
we denote the optimal solution as xN and its objective as ZN . We also benchmark against the
worst case solution, which corresponds to all the demands at its maximum value. Hence the
worse case solution is xW

i = 100 for all i ∈ V and ZW = 1500.

Figure 1 illustrates the solution. The size of the hexagon on each location, i corresponds
to the quantity xi. Each link refers to two directed arcs in opposite directions. We present
the solutions in Table 1. It is interesting to note that the solution obtained using the classical
approach has significant resources allocated at nodes 5, 10, 12 and 13, which are all linked to
node 15. After several iterations, the new solution centrally locates the resources at node 15,
diminishing the requirements at nodes 5, 10, 12 and 13.

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
xB 14 61 73 100 13 213 136 112 7 161 27 8 9 61 161
xN 18 41 77 100 1 257 82 59 15 2 11 0 0 41 337

Table 1: Resource allocation: 15 nodes, 50 arcs (rounded to nearest integer).
3An affine decision rule is equivalent to a linear decision rule in our context.
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Figure 1: Inventory allocation: 15 nodes, 50 arcs
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# of Nodes # of Arcs ZW ZB ZN (ZW − ZN )/ZW (ZB − ZN )/ZB

15 50 1500 1158.1 1043.3 30.45% 9.91%
15 60 1500 1059.7 968.1 35.46% 8.64%
15 70 1500 1027.3 929.5 38.03% 9.52%
15 80 1500 1009.3 890.1 40.66% 11.81%
15 90 1500 989.1 865.7 42.29% 12.48%

Table 2: Comparisons among Worst case solution ZW , Solution using Bonferroni’s inequality
ZB and Solution using the new approximation ZN .

In Table 2, we compare the relative improvement of ZN against ZB and ZN against ZW .
The new method has 8− 12% improvement compared with classical approach of applying Bon-
ferroni’s inequality and has 30− 42% improvement compared with the worst case solution. We
also note that the improvement generally increases over the classical approach when the num-
ber of connectivity increases. This is probably due to the increase in correlation among the
constraints as connectivity increases. Even though minimum distributional information are pro-
vided, this experiment shows that the new method solves the joint chance constrained problem
more efficiently.

We also evaluate the effectiveness of Algorithm 3.6, which may depend on the initial solution.
We study the convergence of the algorithm with random starting solution for a network with
15 nodes and 90 arcs (the last row in Table 2). We choose 100 sets of parameters εi at random
in the simplex and solve the corresponding chance-constrained problems based on Bonferroni
inequality. For each solution, we apply Algorithm 3.6 and track the changes in objective values
at every iteration. In Table 3, we present the distribution of the initial objective values as well
as their values after completing 1, 5, 9, 13 and 18 iterations of Algorithm 3.6. The first column
indicates the range in which the objective values fall within. For instance, at the end of Iteration
5, 19% of the solution has object values in [905, 910). It is interesting to note that even with one
iteration, Algorithm 3.6 is able to generate solutions that improve the best solution achieved by
the Bonferroni inequality approach. At the end of 18 iterations, more than 75% of the solutions
have objective values in [860, 870], which is at least 10% improvement over the best solution
obtained via Bonferroni inequality.

5 Conclusion

We propose a general technique to deal with joint chance constrained optimization problems.
The standard approach decomposes the joint chance constraint into a problem with m individual
chance constraints and then applies safe robust optimization approximation on each one of them.
Our approach builds on a classical worst case bound for order statistics problem, where the bound
is tight when the random variables are negatively correlated. By introducing new parameters
(α, w0, w,J ) into the worst case bound, we enlarge the search space so that our approach can
also deals with positively correlated variables, and improves upon the solution obtained by using
the standard approach via Bonferroni’s inequality.

The quality of solution obtained by using this approach depends largely on the availability
of good upper bound π(y0, y) for the function E ((y0 + y′z̃)+). As a by product of this study, we
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Initial Iter: 1 Iter: 5 Iter: 9 Iter: 13 Iter: 18
[995, 1000) 1 0 0 0 0 0
[990, 995) 10 0 0 0 0 0
[985, 990) 27 0 0 0 0 0
[980, 985) 44 0 0 0 0 0
[975, 980) 14 0 0 0 0 0
[970, 975) 4 0 0 0 0 0
[965, 970) 0 1 0 0 0 0
[960, 965) 0 19 0 0 0 0
[955, 960) 0 21 1 1 0 0
[950, 955) 0 10 2 0 0 0
[945, 950) 0 11 3 0 1 1
[940, 945) 0 14 2 2 0 0
[935, 940) 0 12 0 0 0 0
[930, 935) 0 3 0 0 0 0
[925, 930) 0 2 0 0 0 0
[920, 925) 0 3 1 0 0 0
[915, 920) 0 2 1 0 1 0
[910, 915) 0 2 8 2 0 0
[905, 910) 0 0 19 6 4 3
[900, 905) 0 0 12 7 2 1
[895, 900) 0 0 24 7 6 4
[890, 895) 0 0 11 11 4 0
[885, 890) 0 0 11 15 8 4
[880, 885) 0 0 1 15 5 3
[875, 880) 0 0 4 5 6 3
[870, 875) 0 0 0 11 8 5
[865, 870) 0 0 0 18 55 56
[860, 865) 0 0 0 0 0 20

Table 3: Distribution of objective values
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show that any such bound satisfying convexity, positively homogeneity, and with π(y0,0) = y+
0 ,

can be used to construct an uncertainty set to develop a robust optimization framework for
(single) chance constrained problems. This provides a unified perspective on the choice of un-
certainty set in the development of robust optimization methodology.
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