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Abstract. Scientific computing has entered a new era of scale and sharing with the arrival of cyberinfrastructure facilities for

computational experimentation. A key emerging concept is scientific workflows, which provide a declarative representation of

complex scientific applications that can be automatically managed and executed in distributed shared resources. In the coming

decades, computational experimentation will push the boundaries of current cyberinfrastructure in terms of inter-disciplinary

scope and integrative models of scientific phenomena under study. This paper argues that knowledge-rich workflow environments

will provide necessary capabilities for that vision by assisting scientists to validate and vet complex analysis processes and by

automating important aspects of scientific exploration and discovery.
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1. Introduction

Computational experimentation is now a ubiquitous

technique across science domains. It encompasses all

aspects of the scientific experimentation process in-

cluding data analysis, simulation, hypothesis genera-

tion and hypothesis testing. This has driven a tremen-

dous investment in cyberinfrastructure [1] designed to

provide shared resources for large-scale computational

science. Results from computational experimentation

have an ever-increasing impact in scientific practice,

producing significant advancements in almost every

discipline [35,37,50].

This paper argues that despite the clear impact of

current cyberinfrastructure in science, there are severe

limitations in terms of the breadth and scope that can

be supported. It introduces computational workflows

as key artifacts to further computational science. It

presents current workflow systems and their capabili-

ties to isolate scientists from execution details in com-

plex distributed environments. Workflow systems have

significant benefits and are becoming common ele-

ments in cyberinfrastructure. Looking forward, the pa-

per discusses the need to assist scientists at a higher

level that requires capturing and exploiting scientific

knowledge about the software and data used in compu-

tational experimentation. It presents current research in

workflow systems that exploit this knowledge to auto-

mate complex validations and decision making on be-

half of the scientist. Finally, it presents five areas of fu-

ture research where knowledge-rich workflow systems

can provide significant added value to existing cyberin-

frastructure capabilities for computational experimen-

tation.

2. Cyberinfrastructure for scientific research

Cyberinfrastructure had its roots in the High Perfor-

mance Computing community and large-scale scien-

tific computing, where large data repositories and high-

end computing facilities needed to reside at specific

locations while being effectively accessible by remote

users. Cyberinfrastructure broadly construed includes

not only data and computing facilities but also instru-

ments, tools, and often the people involved in forming

and using all this combined infrastructure [1]. A va-

riety of middleware software enables access and ex-
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Fig. 1. Common components in current cyberinfrastructure environments.

ploitation of these facilities, including remote access

services, interface portals, and data and tool reposito-

ries. Figure 1 illustrates at a very high level some of

the common components in cyberinfrastructure.

There is no question that cyberinfrastructure is en-

abling ever-more integrative and transformative sci-

ence. Today, many scientific collaborations exploit cy-

berinfrastructure to create sophisticated simulations

for earthquakes (www.scec.org), to extract new re-

sults from astronomical or particle physics data (www.

ivoa.net, milkyway.cs.rpi.edu, www.ligo.caltech.edu),

to study ecological and environmental change (www.

neoninc.org, www.oceanleadership.org), and to con-

duct biomedical research (www.birn.org, cabig.nci.

nih.gov) among many others. Visionary roadmaps in

almost every scientific discipline build on existing cy-

berinfrastructure to include increasing levels of au-

tomation and support for scientific research [35,37,50].

Current cyberinfrastructure has proven effective to

tackle two major challenges: scale and distributed shar-

ing. In terms of scale, it enables computations that are

beyond terascale and into petascale arena, soon to be in

exascale levels. In terms of distributed sharing, the col-

laborations just mentioned attest to community-wide

sharing and access of varied resources including data,

instruments, computation and storage.

There are some important questions though that

have been recently brought up by the research commu-

nity in terms of effective exploitation and use of cyber-

infrastructure.

The National Science Foundation’s Cyberinfrastruc-

ture Council released the NSF Cyberinfrastructure Vi-

sion for 21st Century Discovery in March 2007 [37],

which included the following observation:

While hardware performance has been growing

exponentially – with gate density doubling every

18 months, storage capacity every 12 months, and

network capability every 9 months – it has become

clear that increasingly capable hardware is not the

only requirement for computation-enabled discov-

ery (NSF Cyberinfrastructure Vision for 21st Cen-

tury Discovery, March 2007).

This is indeed a key question. Given the ever-

increasing availability of computational resources and

their effective integration into grids and collaborato-

ries, there does not seem to be a corresponding acceler-

ation in the pace of scientific advances. The document

went on to state five major challenge areas: cyberin-

frastructure planning and sustainment, data and visual-

ization, virtual organizations, and learning and work-

force development. All five areas are clearly important

and deserve major investments. Interestingly, an alter-

native perspective was put forward by another NSF re-

port [8]:
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A key motivating question posed by domain sci-

entists was: Given the exponential growth in com-

puting, sensors, data storage, network, and other

performance elements, why is the growth of scien-

tific data analysis and understanding not propor-

tional?

There was a broad consensus in the group that

in the scientific community there is a perceived

importance of workflows in accelerating the pace

of scientific discoveries. Today, complex scientific

analyses increasingly require tremendous amounts

of human effort and manual coordination. Data is

growing exponentially, but the number of scien-

tists is roughly constant. Thus researchers need

exponentially more effective tools to aid in their

work, if they are not to be inundated in data and

associated tasks. Workflow environments that sup-

port and improve the scientific process at all levels

are crucial if we are to sustain the current rapid

growth rate in data and processing (NSF Work-

shop on Challenges of Scientific Workflows, Octo-

ber 2006).

The argument is that capturing scientific analyses

explicitly in declarative data structures known as work-

flows will enable the development of new aids to scien-

tists for coping with the scale of the new computational

environments. Workflows represent complex composi-

tions of software components and the dataflow among

them. Workflow systems can then support scientists by

automating low-level aspects of the process, providing

detailed records of each analysis and its products, and

enabling rapid reuse of software compositions. Perhaps

a more pressing need in current cyberinfrastructure that

was raised in that report results from a perceived threat

to the scientific method in research involving complex

computations:

An important requirement is reproducibility of sci-

entific analyses and processes. This requirement

is at the core of the scientific method, in that it

enables scientists to evaluate the validity of each

other’s hypothesis and provides the basis for estab-

lishing known truths. Reproducibility requires rich

provenance information, so that researchers can re-

peat techniques and analysis methods to obtain sci-

entifically similar results. Today, reproducibility is

virtually impossible for complex scientific appli-

cations. First, because so many scientists are in-

volved, the provenance records are highly frag-

mented, and in practice they are reflected in a va-

riety of elements including emails, Wiki entries,

database queries, journal references, codes (includ-

ing compiler options), and others. All this infor-

mation, often stored in a variety of locations and

in a variety of forms, needs to be appropriately in-

dexed and made available for referencing. With-

out tracking and integrating these crucial bits of

information together with the analysis results, re-

producibility can be largely impractical, and more

likely impossible, for many important discoveries

involving complex computations (NSF Workshop

on Challenges of Scientific Workflows, October

2006).

Capturing the scientific analysis process in a declar-

ative manner so that they can be easily reproduced by

other groups or replicated on other datasets, also leads

us into looking at workflows as an important and miss-

ing element in cyberinfrastructure.

The next section introduces workflows, the capabil-

ities that workflow systems are already contributing to

scientific computing, and the benefits that result from

using workflow environments in science projects.

3. Workflows and workflow systems

Scientific applications can be very complex as soft-

ware artifacts. They may contain a diverse amalgam

of legacy codes, compute-intensive parallel codes, data

conversion routines, and remote data extraction and

preparation. These individual codes are often stitched

together using scripting languages that specify the data

and software to be executed, and orchestrate the allo-

cation of computing resources and the movement of

data across locations. To manage a particular set of

codes, a number of interdependent scripts may be used.

Scripted scientific applications are common today in

cyberinfrastructure environments.

Although scripted applications provide an approach

to specifying and managing computations, there are

major drawbacks to their adoption to manage complex

scientific software. First, any modifications are costly

and error prone. Small routine changes such as adding

a new code or a new version of an existing code re-

quires walking through the scripts manually and mak-

ing changes where appropriate. Adding new require-

ments could require major changes to a significant por-

tion of the scripts. Second, they require a significant

amount of human intervention to specify ad-hoc data

and execution management. Although cyberinfrastruc-

ture services may be available to determine available
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execution and storage resource, they only facilitate the

task because the scripts must still manage the resource

allocation and data location specifications. Third, any

execution failures require manual intervention for re-

covery and finding a good point to relaunch the script

without repeating expensive computations that were

successful. Fourth, the scripts must be undergo signif-

icant changes to run the computations using a differ-

ent set of hosts or datasets. Fifth, these scripts typically

include a significant amount of code to assemble and

record metadata and provenance information about the

results of the computations. This code is also error-

prone, costly, and hard to evolve. Last but not least,

scripting languages are programming languages and as

a result are inaccessible to any scientists without com-

puting background. Given that a major aspect of sci-

entific research is the assembly of scientific processes,

the fact that scientists cannot assemble or modify the

applications themselves results in a significant bottle-

neck. All these reasons point to the need for better

management of complex scientific computations than

the commonly used approach of relying on scripting

languages.

Workflows have emerged as a useful paradigm to

describe, manage, and share complex scientific analy-

ses [8,14,47]. Workflows represent declaratively the

components or codes that need to be executed in a

complex application, as well as the data dependen-

cies among those components. Workflows have been

used for several decades not to express computations

but to represent complex processes in human organiza-

tions [5,32] that reflect tasks and the flow of informa-

tion among them, as well as people and resources in-

volved throughout. Here we refer to workflows instead

as compositions of computational steps, although one

can envision workflows for science applications that

combine manual and computational steps.

Some scientific workflows represent compositions

of remote services. They specify how to use services

provided by third parties to accomplish an overall task.

Other scientific workflows combine software compo-

nents as codes that can be submitted for execution to

different remote resources. Some of these codes can be

legacy applications, and the workflow expresses how

to combine their results into a new end-to-end applica-

tion.

Workflow systems exploit workflow representations

in order to manage the elaboration and execution

of workflows in a distributed environment. Several

workflow systems have been developed for a va-

riety of applications, including Askalon [51], Cac-

tus [20], Kepler/PtolemyII [31], Pegasus/Wings [6,9],

Taverna/myGrid [16,21,38], Triana [48] and Wings

[26]. Surveys and overviews of current workflow sys-

tems are provided in [47,53]. In this paper we will use

Pegasus, Taverna and Wings to illustrate the capabili-

ties and benefits of workflow systems.

Pegasus manages mapping and execution of com-

putational workflows in distributed shared resources

that may be highly heterogeneous [6,9]. Mapping in-

volves selecting execution resources for each workflow

task. Execution management includes handling new

data products and recovery from execution failures. To

map workflow tasks, Pegasus uses descriptions of the

execution requirements of each of the codes, and finds

available hosts in the execution environment that sat-

isfy those requirements. It takes into account queuing

times in selecting among suitable resources, and clus-

ters together workflow tasks into a single queued job

to improve execution performance. Pegasus also man-

ages new data generated by the workflow, moving it

to the location of the next workflow task that will use

it and registering results in data catalogs. To manage

very large datasets reliably and efficiently, it uses grid

services for data transfer and for finding alternative lo-

cations of data replicas. Pegasus includes several al-

gorithms for optimizing the selection of execution re-

sources not only based on task performance but also on

minimizing queuing delays and data movement times.

Another optimization strategy is the reduction of com-

putations by eliminating workflow tasks that generate

data that already exists and can be reused, perhaps gen-

erated by the prior execution of workflows. Pegasus re-

lies on Condor DAGman and Condor-G [49] to submit

jobs in the order specified by the workflow dataflow.

Pegasus has also facilities to recover from execution

failures that may occur due to bugs in the application

codes, memory faults in the execution host, network

failures, and other unexpected errors that are common-

place in distributed architectures. When a computation

fails, it is retried a few times and then submitted to

an alternative resource. If nothing works, DAGman re-

turns a rescue graph that is used by Pegasus to figure

out what portions of the computations to resume.

Pegasus is used in several cyberinfrastructure proj-

ects. For an application of the Southern Califor-

nia Earthquake Center (www.scec.org/cme) for seis-

mic hazard analysis, Pegasus mapped workflows to

heterogeneous shared cyberinfrastructure resources in

NSF’s TeraGrid (www.teragrid.org), managing more

than 260,000 tasks for a total of 1.8 CPU years of com-

putation that generated 20 TB of data in 23 days [7].
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Montage is perhaps the most successful deployment of

Pegasus, where it is used by a broad community of as-

tronomers [2,25]. Montage is part of the National Vir-

tual Observatory (www.nvo.org) and is used to create

science-grade mosaics of the sky from multiple images

that may have different characteristics (e.g., differ-

ent coordinate systems, projection, etc.). Montage in-

cludes several application codes for re-projection into

common scale and coordinates, modeling background

radiation to minimize inter-radiation differences, recti-

fication into common flux scale, and co-addition into a

final mosaic. Montage can process data using two al-

ternative approaches: one is a system that parallelizes

computations implemented as a message passing inter-

face (MPI) code that can be executed in a cluster, and

the other uses Pegasus workflows to parallelize com-

putations and execute them on distributed resources.

Detailed comparisons showed that there is no notable

difference in the execution performance of these two

approaches, and that Pegasus has the additional advan-

tages of fault tolerance and computation management

[25]. Pegasus improved runtime by 90% through au-

tomatic workflow restructuring and minimizing execu-

tion overhead [2].

Taverna [16,21,38] focuses on workflows for bioin-

formatics applications. In this area, there are thousands

of services that are made available over the network for

access by a wide community of scientists. The mech-

anism to access the services varies, some are web ser-

vices, others are REST services, and others are simply

legacy command line applications. Taverna provides a

framework to integrate these components and isolates

users from this diversity of access mechanisms. Tav-

erna workflows are composed from these services, and

are cast in a simple and intuitive workflow language.

An important challenge for integrating these services

is that they are advertised with simple descriptions that

provide no semantics as to what inputs they expect

and what outputs they produce. To address this, work-

flows may include small steps or shims for data format

conversion. To execute a workflow, Taverna uses the

FreeFluo engine to add the specific invocation details

for each of the services. FreeFluo also includes mech-

anisms for failure recovery, so that when a service fails

it looks for an alternative location for the same service

and retries the invocation there. Taverna includes more

than a thousand diverse services such as the Euro-

pean Molecular Biology Open Source Software Suite

(EMBOSS), BioMOBY, the Kyoto Encyclopedia of

Genes and Genomes (KEGG) and the National Center

for Biotechnology Information (NCBI), totaling more

than 3,000 services in 2006 [21]. Taverna workflow ap-

plications have executions that range from a few sec-

onds to a few days, and do not require handling large-

scale datasets. A recent result obtained with Taverna

is the identification of a candidate gene thought to be

responsible for resistance to African tripanosomiasis

[10]. The workflow looks for correlations between phe-

notype in microarray data to Quantitative Trait Loci

(QTL) genotype data. The paper argues that when

this kind of correlation is done manually there is no

guarantee of a systematic consideration of hypotheses

due to several features: (1) eliminated datasets prema-

turely to reduce complexity, (2) hypothesis-driven re-

search dominates rather than complements data-drive

research, (3) user bias in pursuing hypotheses, (4) re-

analysis of data is hard due to changes in software in-

terfaces and data availability, (5) errors due to all the

above. The workflow provides a mechanism to system-

atically and correctly explore variations of parameter

settings. In addition, it is possible to re-analyze data

since the provenance of any result is made available

and the workflows are easily re-executed.

These results illustrate key benefits of workflow sys-

tems:

Automation of workflow execution: Data manage-

ment and execution are automatically handled,

including mechanisms for failure recovery and

repair. Failures during execution can be handled

automatically since the workflow system can fig-

ure out what computations remain to be done

and where prior computation results reside in

the execution environment. Executing the same

workflow in a new execution environment be-

comes trivial, as it is a simple matter of assign-

ing computations to the new resources and this

is done automatically.

Managing distributed computations: Whether sub-

mitting computing jobs to remote hosts or in-

voking third party services, workflows man-

age computations in a distributed environment.

Since failures are commonplace and failure re-

covery can be complex in distributed systems,

manual management of distributed applications

becomes impractical and is better handled by

workflow systems.

Managing parallel computations: Scientific appli-

cations often benefit from parallelism, whether

to process large datasets efficiently by farm-

ing out subsets to different resources or by ac-

cessing distributed services concurrently. Work-
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flow structures for scientific applications repre-

sent parallelism in the dataflow graph and their

efficient concurrent execution is automatically

managed.

Systematic exploration of the parameter space: Ap-

plication parameters can be explicitly indicated

in the workflow. This enables the systematic as-

signment of values to explore the space of possi-

ble parameter combinations.

Managing the evolution of an application: Work-

flow applications are modular by design, and as

a result the evolution of the application is more

manageable. Updating individual components

either has little impact in the overall workflow or

the impact is localized and amounts to updates to

the dataflow structure. With scripts, the overall

code has to be changed particularly the metadata

propagation, no matter how small the change to

an individual component.

Provenance recording: Metadata and provenance in-

formation are automatically recorded by the

workflow system. When expressing a new appli-

cation as a workflow, no special code has to be

written to record provenance.

Low-cost high-fidelity reproducibility: Workflows

provide explicit representations of the computa-

tional processes used to derive new data. When

a significant result is achieved, there is a detailed

provenance trail of what processes were exe-

cuted and how parameter values were set to ob-

tain those results. Every detail of the provenance

of new data products can be recorded and sup-

plied by the workflow system. Workflows can be

easily re-executed to reproduce results, and can

be easily applied to new datasets to replicate re-

sults in alternative settings. When new datasets

become available in a shared environment, it is

easier to replicate a computational experiment

with the new data.

Workflow systems have already demonstrated the

benefits of automatic management of computations. If

adopted broadly in cyberinfrastructure environments

they have the potential to greatly streamline the pro-

ductivity in computational experimentation processes

and accelerate the pace of scientific research, since

they can result in significant savings in terms of hu-

man time and effort spent in computational experi-

ments. Perhaps more importantly, workflow systems

could have a profound impact in reproducibility of

computational experiments. Figure 2 shows workflow

systems augmenting the common components of cy-

berinfrastructure.

The next section argues that workflows will be indis-

pensable to support new capabilities envisioned in sci-

entific roadmaps being laid out in many sciences, and

that they open the door to new possibilities in cyberin-

frastructure to support scientific discovery.

Fig. 2. Workflow systems as components of cyberinfrastructure.
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4. Towards large-scope science: The need for

a knowledge level view

The coming decades will present great opportuni-

ties for scientific discovery on questions encompass-

ing complex natural phenomena that science was not

even in a position to pose until now. Of paramount

importance to pursuing such questions is breaking the

barriers across insular research disciplines to enable

increasingly integrative scientific pursuit [50]. From

neuroscience to cancer research, any aspect of bio-

medical research is increasingly viewed as a system of

systems science that requires integration of data and

models across a variety of disciplines [35]. Physician’s

observations and data must be integrated with mod-

els at the cellular level, the organ level and the sys-

tem (e.g., circulatory and nervous systems) level. En-

vironmental science is another example of the study of

a complex system of systems requiring interdiscipli-

nary integration. The chair of the Science Council of

the NSF’s 30-year old US Long Term Ecological Re-

search (LTER) network describes the vision for envi-

ronmental observatories that produce data that can be

integrated and analyzed across perspectives and disci-

plines:

The importance of self-organizing networks of en-

vironmental scientists for identifying and address-

ing the non-linear and cross-scale phenomena that

underlie and, in some cases, define global envi-

ronmental change today. [. . . ] With the emergence

of new complementary networks, such as the Na-

tional Ecological Observatory Network (NEON),

the Global Lake Ecological Observatory Network

(GLEON), the Water and Environmental Systems

Network (WATERS), and the Oceans Observatory

Initiative (OOI), comes the potential for research

synergies hardly imaginable even 15 years ago.

Equal in importance to collaborations across phys-

ical networks are collaborations across disciplinary

networks. If there is one lesson to be learned [. . . ]

it is the crucial importance of engaging with other

disciplines – and especially with the social and be-

havioral sciences – to address today’s big ecologi-

cal questions [41].

This cross-disciplinary view on data analysis may be

best described as large-scope science:

Whereas large-scale means increasing the resolu-

tion of the solution to a fixed physical model prob-

lem, large-scope means increasing the physical

complexity of the model itself. Increasing the scope

involves adding more physical realism to the sim-

ulation, making the actual code more complex and

heterogeneous, while keeping the resolution more

or less constant [42].

This emphasis on large-scope science is in con-

trast with large-scale science, which has been a major

driver to date of cyberinfrastructure research. Large-

sale science can be pursued through increasingly more

powerful networks and machines, parallel distributed

computing techniques, and federated services. But al-

though in fact current cyberinfrastructure manages

complexity and heterogeneity, its focus is at the level of

hardware resources and services. The complexity and

heterogeneity required for large-scope science speaks

of a new realm that is not addressed by current cy-

berinfrastructure. The new challenges that we face are

concerned with the diversity of models and the com-

plexity of the methods involved in cross-disciplinary

research. There are essentially two levels of concern

here: one about how the applications are integrated and

another about how the resources are integrated. It is a

key division between the behaviors desired and mech-

anisms used to obtain them. The behaviors depend on

the knowledge available in the system to perform a

task. The mechanisms are important in that they imple-

ment those behaviors, but they are irrelevant to the task

of the system in the sense that the choice of mechanism

does not affect the system’s behavior.

This distinction is crisply expressed in terms of the

knowledge level versus the symbol level in artificial

intelligence:

The knowledge level hypothesis: There exists a dis-

tinct computer systems level which is characterized

by knowledge as the medium and the principle of

rationality as the law of behavior [36].

The knowledge level of an intelligent system is con-

cerned with any characterization of that system in

terms of its response to requests or goals and what

knowledge it uses to solve them. In contrast, a sym-

bol level is concerned with the implementation of the

knowledge and the reasoning mechanisms that are used

to exploit it. For example, a symbol-level description

would characterize a system in terms of whether it uses

a genetic algorithm, a neural network, or a rule base.

An example of a knowledge-level description would

describe an autonomous vehicle in terms of its ability

to pursue standing goals of going to a destination, to

incorporate opportunistic goals when a lane opens, and
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to defend itself from other drivers through fast reactive

behaviors.

If we take this distinction to a workflow environ-

ment, we can see that the capabilities of workflow

systems to map and execute workflows are concerned

with the architecture at the symbol level. The scale

and sharing are enabled by the symbol-level architec-

ture through infrastructure services and resources. The

symbol level is concerned with carrying out the tasks

specified in a given workflow. In contrast, the knowl-

edge level of a workflow system would be concerned

with the kinds of tasks that it is able to accomplish

for a scientist. This suggests a level of workflow de-

scriptions and capabilities that affect what scientific

tasks the workflow system can accomplish. This level

would be concerned with what scientific tasks it can

undertake, what workflows are selected for a task, what

workflows are available in the system, and what their

coverage is with respect to a set of tasks. The more

knowledge, the more kinds of tasks the system can un-

dertake. More knowledge about how to use and inte-

grate workflows will result in improved behavior of the

system in terms of solving more tasks and being capa-

ble of producing new kinds of results.

Thinking about workflow systems as repositories of

scientific knowledge, we can then explore techniques

for managing the heterogeneity of that knowledge and

the capabilities required to perform complex tasks us-

ing that knowledge.

5. Workflows at the knowledge level

What would it mean to describe workflow systems at

the knowledge level? What kinds of behaviors should

we expect workflow systems to accomplish by us-

ing that knowledge? Table 1 shows a set of abstrac-

tion layers in the specification of workflows, from

more abstract to more specific. A more abstract layer

can be implemented by using the information con-

tained on the layer below it. Typically, workflows spec-

ify the datasets and the computational steps (services

or codes) that are to be used. Those correspond to

layers 2 (data) and 1 (computation), which specify

the data that will be processed and when it will be

processed. Layer 1 workflows are then mapped to ex-

ecution resources, resulting in layer 0 workflows that

are directly executable in the execution environment.

Layer 0 workflows correspond to scripted applications,

and layers 1 and 2 workflows correspond to the work-

flows discussed in Section 3.

Going up on layers of abstraction in Table 1, a work-

flow can be described not by the specific computa-

tions but by a sketch the process by specifying abstract

classes of computations and by skipping some of the

workflow steps to be performed if they are not cen-

tral to the experiment. For example, a workflow could

indicate that an initial dataset is first processed with

a normalizing step followed by a discretization step

and then a clustering step without specifying which al-

gorithms and implementations are to be used. These

workflows are layer 3 workflows that specify how data

is to be processed but not specifically when each oper-

ation will be carried out relative to others. At a higher

layer of abstraction, only a description of the desired

results would be specified. For example, the desire to

obtain clusters of temporal sightings of bird observa-

tion data. At the highest layer of abstraction, only ques-

tions are posed and no details are provided about how

to find answers to the questions in terms of workflows

to be executed or data to be generated. For example,

what would be interesting patterns for bird observation

data.

Table 2 relates these layers of abstraction to the

knowledge level and the symbol level. We should aim

to develop systems that can take on workflows and re-

quests at the highest layers of abstraction from users,

and then have the systems automate the elaboration of

the workflow into the lower layers of abstraction and

their corresponding details. The higher the abstraction

layer, the closer the workflow representation is to how

a scientist may view the process or the request that trig-

gers the process.

Table 1

Layers of abstraction in workflow descriptions

Layer of abstraction Information specified What/When/Who/How/Where

(4) Result Desired data products What result is desired

(3) Method High-level processes How will data be processed

(2) Data Input datasets Who (what data) will be processed

(1) Computation Specific computational steps When will data be processed

(0) Execution Specify execution resources Where to execute the computations and where to find data
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Table 2

The knowledge and symbol levels in workflow descriptions

Level of system description Abstraction layer What/When/Who/How/Where

Knowledge level (5) Question What would be an interesting result

(4) Result What result is desired

(3) Method How will data be processed

(2) Data Who (what data) will be processed

Symbol level (1) Computation When will data be processed

(0) Execution Where to execute the computations and where to find data

The highest layers of abstraction are centered around

what behaviors the system can exhibit, and the knowl-

edge required to accomplish those behaviors. Knowl-

edge will include constraints that must be satisfied by

a workflow in order for it to be valid, strategies to

complete or specialize a high-level workflow, effects-

centered knowledge to accomplish a given experimen-

tal goal, and descriptions of data and their character-

istics. Techniques would include constraint reasoning,

hierarchical decomposition and abstraction reasoning,

automated search, heuristics that focus exploration of

possibilities, and ontology-based reasoning of classes

of data and computations.

In considering the knowledge level, we leave behind

the realm of parallel programming and distributed sys-

tems. We enter the realm of artificial intelligence as an

enabler of significant new capabilities in workflow sys-

tems. Artificial intelligence techniques can play an im-

portant role to represent complex scientific knowledge,

to automate processes involved in scientific discovery,

and to support scientists to manage the complexity of

the hypothesis space. The next section illustrates some

of these techniques for workflow generation assuming

initial descriptions of user requests at the highest levels

of abstraction.

6. Reasoning with workflows at the knowledge

level

Armed with knowledge of what workflow compo-

nents do, what the properties of the datasets are, and

what experiment design entails, workflow systems can

assist scientists by exploiting that knowledge to make

automatically domain-relevant decisions.

Wings is a workflow system that starts with high-

level user descriptions of desired analyses and uses

knowledge about components, data, and workflows to

automatically elaborate, validate, and generate work-

flows to the level of detail that Pegasus needs to map

and execute them [12,13,26,27]. Wings assumes that

all workflow components, data, and their properties

can be organized in hierarchies, and that they can have

associated constraints regarding their proper use. It al-

lows the expression of high-level workflow templates

that can be reused for different datasets, and represents

constraints among datasets and components at the

workflow level. Wings represents this knowledge using

ontologies and rules, and uses the W3C Web Ontology

Language (OWL) (www.w3.org/2004/OWL) and asso-

ciated reasoners as the basis for workflow representa-

tion. Workflows can be expressed at a high level with

component classes, and express iterations in a com-

pact manner. Wings uses OWL reasoners to find out

whether a component can be used to process a dataset

with given properties, to find out whether a component

can generate datasets with certain properties, and to

check if data can flow between two components based

on their respective constraints. Wings issues many such

queries as it assists the user to generate workflows. If

a scientist is creating a workflow interactively, Wings

checks that all the dataflow is consistent with the com-

ponent constraints. When it is not, it makes sugges-

tions regarding what other components can be substi-

tuted to achieve a similar function while respecting

the constraints [28]. When input data is selected, it

checks that its properties comply with the requirements

of the components that will process the data. Once a

workflow is specified, Wings elaborates it to generate

a complete description of the workflow in a format that

can be submitted to Pegasus, which includes command

line invocations of each executable code and logical

names for all the datasets in the workflow.

In addition to workflow validation, Wings can auto-

matically select components and datasets for the scien-

tist. Wings can select datasets based on the constraints

expressed in the workflow, and if several datasets sat-

isfy the constraints then several workflow options will

be generated. When a component class is used as a

step of the workflow, Wings will choose specific com-

ponents based on the constraints that apply to that

step in the workflow. When several components and
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datasets satisfy the constraints in the workflow, it will

generate all corresponding workflow candidates and

execute the top-k workflows ranked according to user-

specified criteria (e.g., faster execution, higher ac-

curacy, etc.). Wings can also automatically generate

workflows based on descriptions of what data products

are desired by a user. Wings propagates the require-

ments on data products throughout the workflow using

a backward projection [12]. This results on a set of con-

straints on the input datasets that are used to query data

catalogs to find appropriate input data. It then finds the

properties of the input data found and propagates them

using a forward projection that enables it to generate

detailed descriptions of the new data products gener-

ated by the workflow [12,27]. This is a very useful ca-

pability, as the system can register new datasets ob-

tained through execution and annotate their metadata

properties so they can be discovered and reused later to

avoid repeating unnecessary and costly computations.

For a seismic hazard analysis application of the

Southern California Earthquake Center (http://www.

scec.org/cme), Wings was used to expand a workflow

template containing a dozen application codes, includ-

ing MPI codes, into a workflow of more than 8,000

computations [13,27]. Pegasus expanded this work-

flow to add data movements and registrations for a to-

tal of 24,135 jobs. The workflow processed an earth-

quake forecast model with thousands of possible fault

ruptures for a total of 110,000 input files, and run for

1.9 CPU years. Wings generated provenance records

for 100,000 new data products.

Taverna also uses knowledge-rich descriptions of

components and workflows [17–19]. It matches user

requests with available workflows and services. Users

can specify the type of service they wish to use, or

the type of workflow structure specified as a graph of

services and their dataflow. Taverna uses semantic de-

scriptions of services and workflows combined with

graph matching algorithms to discovered appropriate

workflows for the user.

These results illustrate key additional benefits of

adding a knowledge level to workflow systems:

Automation of workflow generation and of repet-

itive constraint checking tasks: During the

generation of even simple workflows, a genera-

tion algorithm can formulate hundreds of queries

about components and dozens of queries to

check constraints about datasets based on their

use in the context of the workflow. Scientists

should not need to check by hand the myriads of

constraints about components and datasets that

must be taken into account within an analysis.

The system can undertake these kinds of repeti-

tive tasks because it has knowledge about exper-

imental processes (workflows), models (work-

flow components) and data.

Systematic exploration of the experiment design

space: A workflow system can explore in a me-

thodical and exhaustive manner all possible ex-

perimental settings for a workflow: all possible

combinations of components, all possible rele-

vant data, and all possible parameter settings.

Invalid combinations will be automatically (and

correctly) ruled out as inconsistent within the

context of the workflow. While at a lower layer

of abstraction in the symbol level one could ex-

plore the space of different parameter settings,

the knowledge level is needed to enable this sys-

tematic exploration in terms of all workflow con-

figurations that use alternative components and

data.

Validation of workflows: Given a user-specified

sketch of a workflow, the system can use its

knowledge of components and data to ensure

that the workflow is valid. Components repre-

sent models or operations on data that are de-

signed to work on certain kinds of data, and

when composing these models together it is hard

for scientists to have fresh in their mind all the

constraints on all the models. Even when scien-

tists are intimately familiar with the constraints

on those models as published in the literature

and code documentation, it is hard to keep track

of all of them when the compositions are com-

plex and when they evolve over time.

Automated generation of metadata for new data

products: Because the system has knowledge-

level descriptions of the kinds of transformations

performed on datasets, it can use these descrip-

tions to qualify the properties of new data prod-

ucts. At the symbol level, the description of new

data products is limited to what software and in-

put data were used as shown in the provenance

records.

Guarantees of data pedigree: The system can in-

clude knowledge about well-formed widely ac-

cepted workflows that can be directly reused on

new datasets. A scientific method that is well

tested and widely accepted by a community can

be captured in an earmarked workflow that can

be referred to as a proof of pedigree of results
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Fig. 3. Functions within a workflow system that form the knowledge level to determine behavior and the symbol level to provide mechanisms.

obtained by it. That is, when the provenance of

new data products shows that they were obtained

through a highly regarded workflow that serves

a guarantee of the high quality of the process

used to obtain them, or pedigree, of those new

results. This would bypass the current need to

check how any surprising results are obtained,

either when they look too good or when they

look too routine, as the surprise is often times

due to errors that lead to incorrect code selection

or parameter settings. These workflows provide

a guarantee that any results obtained from those

workflows comply with vetted methods and their

requirements. At the symbol level, the system

can offer a provenance trail of how new results

were obtained. At the knowledge level, the sys-

tem can offer a guarantee of trusted provenance

or pedigree of the new results.

Correct reproducibility and reuse: At the symbol

level, workflows can be reused to reproduce re-

sults with new datasets. However, at that level

only syntax validity can be checked. At the

knowledge level, the constraints of the compo-

nents and data of a workflow can be checked to

ensure its correct reuse.

Clearly the knowledge level has benefits that speak

directly to large-scope science in terms of managing

complexity and heterogeneity through automation of

workflow tasks that are closer to the science realm than

what was possible in the symbol level. Note that these

benefits are in addition to the benefits that we discussed

for the symbol level of workflow systems architecture.

There are many possibilities for the knowledge level

once it is in place in a workflow system. Here we dis-

cussed automatic template-based generation and com-

pletion of workflows. Other possibilities to improve

automated workflow generation include hierarchical

decomposition of tasks in a workflow, selection among

software implementations of workflow components

based on available execution resources, and dynamic

selection of components interleaved with execution

based on results obtained from execution of prior steps.

Figure 3 summarizes the functions within a work-

flow system discussed here contrasting the knowledge

level with the symbol level.

7. Looking to the future: From data to knowledge

to discoveries

We discussed many additional benefits of having a

knowledge level in the architecture of workflow sys-

tems. The discussion centered on benefits arising from

the ability to automate the generation and validation

of workflows from high-level requests. This section ar-

gues that the potential for the knowledge level is enor-

mous in terms of significant paradigm shifts in the

way computational experimentation is practiced and

outlines areas for future investigation. Figure 4 illus-
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Fig. 4. A view on future cyberinfrastructure components.

trates the potential in terms of significant new cyberin-

frastructure capabilities.

7.1. Workflow as scientific currency

Workflows are valuable in their own right as sci-

entific research products. Workflows should be the

objects of scientific discourse, and their description

should be used to capture formally a novel method or

analysis process discovered through careful design and

testing. Workflow design is a contribution to science

in its own right, in fact new methods are publishable

in scientific articles and those articles could be ac-

companied by the formal workflow description as sup-

plementary information to the article that describes

the workflow in textual form. For workflows to be-

come scientific currency, workflow descriptions need

to become closer to the knowledge level and therefore

closer to representing scientific concerns rather than

low-level system concerns.

Workflows should become currency of scientific ex-

changes. Where today we see sharing of data across en-

tire communities, tomorrow we should see workflows

being published and exchanged across research groups.

Where today we see citations to papers that explain the

scientific method used to obtain a result, tomorrow we

should see citations of workflows that should be down-

loadable and inspectable and reproducible at minimal

cost. Where today we see common use of portals to

access datasets, tomorrow we should see the common

use of workflow libraries to access and to contribute

workflows.

Workflows could be shared as computational objects

much like data is shared today across scientific com-

munities in cyberinfrastructure [15,45]. Unlike data,

workflows can evolve over time as new or faster meth-

ods are discovered. A workflow may be superseded by

a new one, and if so any results obtained with the for-

mer would be worth revisiting using the new workflow.

A user community could drift from preferring the use

of a workflow template to a new workflow that repre-

sents an improved or newly created method. It will be

important to manage the evolution of workflows as the

experimental methods that they represent evolve while

being used by a community of scientists.

A related and important area of future research

building on the knowledge level is learning from work-

flow usage in order to improve and adapt the behavior

of the workflow system. Rather than expecting users to

define reusable templates by hand, a system could learn

reusable workflow templates from observing regulari-

ties and generalizing traces of workflows executed by

a community of users. A workflow system could also

learn component and data selection criteria based on

what workflows are found most useful by a user com-

munity. Workflow patterns that may appear repeatedly

in the context of certain types of data analysis could be

discovered autonomously by the system by observing

usage of workflows over time. One could envision that

the learned workflows could ultimately result in new

discoveries made by the workflow system, and could

be scientific contributions made by the system in its

own right.
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7.2. Workflows for cross-disciplinary integrative

research

Large-scope science requires managing heterogene-

ity across disciplines. Consider the environmental ob-

servatories mentioned in Section 4. There is a clear

cross-disciplinary data analysis activity expected of the

various scientific communities involved in analyzing

the data collected. For example, sensor data regarding

weather trends will need to be coupled with ornithol-

ogy migration data to discover significant correlations

between environmental conditions and animal behav-

ior. An ornithologist would very likely not be familiar

enough with weather analysis methods to set up valid

workflows. However, the system could act as an ex-

pert weather analyst and assist the ornithologist by au-

tomatically generating workflows from given general

questions about general weather patterns known to or-

nithologists. Although this is an example of chaining

workflows together, one could imagine arbitrary inter-

weaving of workflows created by researchers in dif-

ferent disciplines into a complex and heterogeneous

cross-disciplinary analysis.

The existence of a knowledge level to reason about

behaviors within disciplines would make it possible

to envision systems that will reason about behaviors

that cross-disciplinary boundaries. These are areas of

the research space that will very likely lead to funda-

mentally new discoveries. These are also areas of re-

search that are precisely the motivation of developing

cross-disciplinary research programs such as the envi-

ronmental observatories in the first place.

7.3. Workflows for education and broadening

participation in science

Science must be an ecosystem in order to foster dis-

coveries and innovation across the board. Researchers

and educators at all levels are needed to push science

forward, from expert Nobel-quality talent to the most

inexperienced undergraduate research assistants, from

faculty retreats to facilitate inter-disciplinary collabo-

rations to high-school teachers that form future gen-

erations of scientists through hands-on involvement in

science, from the most prestigious university depart-

ments to the humblest of corporate research laborato-

ries and startups. Workflows have enormous potential

as a paradigm to facilitate training across this science

research ecosystem. Workflows can illustrate methods,

data usage, results and processes in a hands-on manner

to complement the general or theoretical descriptions

found in articles and textbooks. The knowledge-level

will enable the presentation of workflows in domain-

relevant terms found in those articles and books that is

not possible with the symbol level alone.

Just as important as supporting the training of future

generations of scientists is the support to train seasoned

scientists on new techniques and methods or new areas

of research. The need for cross-disciplinary training is

already commonplace in any scientific practice. Cross-

disciplinary training is already costly to individuals,

and there is very little technology for hands-on practice

of another science’s methods and analyses processes.

One could imagine ultimately opening up science

to a much broader population than our current

scientist and student pool. Pioneering efforts to volun-

teer compute cycles have been very successful (setiath-

ome.berkeley.edu, milkyway.cs.rpi.edu). There are

already significant projects that rely on citizen sci-

entists to collect data [3,4,33,40] spanning astron-

omy (www.galaxyzoo.org), ornithology (www.ebird.

org), botany (www.windows.ucar.edu/citizen_science/

budburst) and weather (wxqa.com). A workflow sys-

tem could autonomously create combinations of work-

flows and data that are separately contributed to the

system and that may be worth analyzing. Citizen sci-

entists could volunteer their skills to accomplish real

scientific analysis tasks by being trained by or assisted

by underlying workflow systems.

7.4. Workflows for systematic exploration and

discovery

Today’s paradigm for computational experimenta-

tion is driven by the user’s initiative, design choices,

and experiential biases. Scientists decide what soft-

ware to run and with what settings, what data to an-

alyze and with what granularity, and what aspects of

the hypothesis space to focus on. Scientists have un-

questionable expertise to drive the process, but there

are limits to the effort, reliability and coverage of any

human-centered task of the complexity required in cur-

rent and future scientific endeavors. Humans should

not be the bottleneck to scientific advances when rou-

tine tasks can be automated. We have already seen the

benefits of assistance and automation through work-

flows, but much more can be done.

Workflows can be used to automate processes for

heuristic discovery and pattern detection. Through sys-

tematic hypothesis generation and elimination, work-

flows can explore ever more complex phenomena. Sci-

entists today rely on visualizations to understand com-
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plex datasets, but there is a limit to what can be visu-

alized for complex phenomena. Pattern detection tech-

niques can search datasets to match patterns (or pattern

types) that describe complex relationships across vari-

ables. Heuristic-driven search can automatically dis-

cover new correlations in datasets. The process would

still be driven by the scientist and still be human cen-

tered, in that the scientist can provide a battery of po-

tential patterns to seek or heuristics to follow. There are

already many examples in the AI literature of scientific

discoveries driven by heuristic and pattern search [29,

30,39,43,44]. Workflows today include sometimes vi-

sualization steps that plow through very large datasets

to highlight specific aspects. Workflows for pattern de-

tection and discovery should be developed to process

large data sets and extract phenomena of potential in-

terest. Knowledge level descriptions of the analysis

processes are needed to enable the integration of pat-

tern descriptions and heuristics at the appropriate level

of the scientific domain.

7.5. Workflows as paradigm for “research cockpits”

Today’s scientific environments contain shared dis-

tributed resources that are accessible through web por-

tals. Portals are user interfaces that act as a single

point of access to data collections, application tools,

services, and other resources. Portals are customized

to specific purposes or disciplines, and guide users to

conduct pre-defined tasks through scripted interfaces.

Deviations from the pre-defined system behaviors are

not supported.

In coming years, new user interface paradigms will

need to be developed for computational experimenta-

tion. The underlying system must be able to support

flexible behaviors and be configurable by end users.

Scientists will conduct long-lasting activities, and the

interfaces must be designed to track the information

flow over time and to accommodate the dynamic evo-

lution of such activities. More importantly, the user in-

terfaces must be designed to support collaboration not

only among humans but between humans and the un-

derlying system and the ongoing activities that must be

accomplished jointly.

Aircraft cockpits are a great analogy for the kind of

user interface that will be required. The organization

of the tools and workspace must support collaboration

among several humans (e.g., the pilot, the first officer

and the second officer) and the aircraft navigation sys-

tem, showing how the humans and the aircraft manage

the flow of information among them to jointly accom-

plish the mission [22–24]. Cockpits organize informa-

tion in a task-centered manner, enable several humans

and the system to work as one cognitive unit, and fa-

cilitate steering of the mission by all participants. The

system can be asked to continue the course on auto-

matic pilot, which is expected to be routine but may re-

quire minor adjustments. But when a situation requires

careful analysis, all participants collaborate and share

information while working towards the joint goal of

reaching the destination safely and in compliance with

established rules.

Workflows could enable “research cockpits” as a

new interaction paradigm for scientists with under-

lying cyberinfrastructure. Scientific questions will set

the overall goals and mission for the system. Along

the way, any activities can be represented by work-

flows that will integrate any of the constraints (rules) to

be respected. Workflow systems could automate rou-

tine tasks, while collaborating with scientists in novel

analyses and to convey key information when out-

comes are unusual or unexpected. Knowledge-rich rep-

resentations of tasks, information, delegation, inten-

tion, and scientific goals are needed to support rich in-

teractions for collaboration and automation.

8. Conclusions

Workflows should become first-class citizens in sci-

ence and cyberinfrastructure. They provide explicit

representations of computational analyses and prove-

nance information for new data. Workflow systems

today assist scientists by automating non-experiment

critical tasks, systematically exploring the hypothesis

space, managing parallelism and execution in distrib-

uted shared resources, and enabling low-cost repro-

ducibility.

Using semantic representations of workflows will

have an empowering effect leveling terms of the sci-

entific processes supported. Today, semantic represen-

tations of scientific datasets are becoming more com-

monly used in cyberinfrastructure architectures to en-

able integration and reasoning over data. Similarly,

knowledge-rich representations of workflows capture

scientific principles and constraints that will enable

a variety of artificial intelligence techniques to be

brought to bear for validation, automation, hypoth-

esis generation, and guarantees of data quality and

pedigree. Knowledge-rich workflow systems open the

doors to significant new capabilities for automated dis-

covery, ever more integrative research that broadens
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the scope of scientific endeavors, education in science

at all levels, and novel paradigms for interaction of sci-

entists with cyberinfrastructure to fully exploit its ca-

pabilities.

Workflows are a relatively new research area in com-

puter science. More extensive investments in this area

stand to greatly benefit scientific computing. Collabo-

rative projects between computer scientists and domain

scientists will focus their respective research agenda

in relevant directions, clarify priorities, and provide

data and experiences that will motivate further research

questions. Scientists today speak of a data deluge.

Workflows could provide a much needed layer of cy-

berinfrastructure to move science swiftly through the

path from data to knowledge to discoveries.
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