
8
Language Documentation & Conservation Special Publication No. 4 (October 2012)

Electronic Grammaticography ed. by Sebastian Nordhoff pages 179-206

http:/ /nf lrc.hawaii .edu/ ldc

ht tp:/ /hdl.handle.net/10125/4535

http:/ /nf lrc.hawaii .edu/ ldc/ sp04

From Database to Treebank: On Enhancing

Hypertext Grammars with Grammar Engineering

and Treebank Search

Emily M. Bender♠, Sumukh Ghodke♥,

Timothy Baldwin♥ and Rebecca Dridan♣

♠University of Washington, ♥University of Melbourne, ♣University of Oslo

This paper describes how electronic grammars can be further enhanced by adding

machine-readable grammars and treebanks. We explore the potential benefits of im-

plemented grammars and treebanks for descriptive linguistics, following the discursive

methodology of Bird & Simons (2003) and the values and maxims identified by Nord-

hoff (2008).1 We describe the resources which we believe make implemented grammars

and treebanks feasible additions to electronic descriptive grammars, with a particular

focus on the Grammar Matrix grammar customization system (Bender et al. 2010) and

the Fangorn treebank search application (Ghodke & Bird 2010). By presenting an ex-

ample of an implemented grammar based on a descriptive prose grammar, we show one

productive method of collaboration between grammar engineer and field linguist, and

propose that a tighter integration could be beneficial to both, creating a virtuous cycle

that could lead to more effective and informative resources.

1 Introduction This paper describes how electronic grammars can be further enhanced

by adding machine-readable grammars and treebanks, or sets of structured annotations pro-

duced by the machine-readable grammars.2 Following Good (2004), we understand a de-

scriptive grammar to be a set of annotations over texts and lexicon, including both prose

descriptions and structured descriptions. In an electronic descriptive grammar, annotations

are illustrated with exemplars drawn from the text but are understood to express general-

izations over more examples. This is illustrated in Figure 1, from Good 2004. Machine-

readable grammars can be understood as another kind of structured description. Because

they are interpreted by computers, they are required to achieve a higher level of consis-

tency, with descriptions of various phenomena integrated to form a cohesive whole (Bender

1 A list of these maxims is given in the appendix of this volume.
2 We are grateful to the audience at the Conference on Electronic Grammaticography and an anonymous reviewer

for helpful discussion. This material is based in part upon work supported by the National Science Foundation

under Grants No. 0644097 and No. 0317826, and the Australian Research Council under Grant No. DP0988242.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the National Science Foundation.

Licensed under Creative Commons Attribution License

http://nflrc.hawaii.edu/ldc
http://hdl.handle.net/10125/4535
http://nflrc.hawaii.edu/ldc/sp04

From Database to Treebank 180

2008b). Implemented grammars can automatically produce annotations over individual ex-

amples, which can in turn be aggregated and searched (Ghodke & Bird 2010). This vision

is illustrated in Figure 2.

Figure 1.: The structure of an annotation (Good 2004)

Our purpose in this paper is to explore the potential benefits of implemented grammars

and treebanks for descriptive linguistics and to present to the descriptive linguistic commu-

nity the currently existing tools which can facilitate their creation. In section 2, we describe

implemented grammars and treebanks and give an example of grammar engineering in the

context of endangered languages. Section 3 describes treebank search, including use cases

relevant to descriptive and documentary linguistics and how it can be integrated into an

electronic descriptive grammar. Following the discursive methodology of Bird & Simons

(2003) and the values and maxims identified by Nordhoff (2008), in section 4 we explore

the impact of augmenting descriptive grammars with treebanks. Finally, in section 5 we ex-

plore the resources which we believe make implemented grammars and treebanking feasible

additions to electronic descriptive grammars.

2 Background

2.1 Implemented grammars Implemented grammars are collections of linguistic rules

written in a formalism that can be interpreted by appropriate software in order to apply those

rules to linguistic inputs.3 These inputs can be sentences of the language, in which case the

goal is generally to find the syntactic and/or semantic structures assigned to those sentences

by the rules (in parsing). If the rules are morphological rules, the inputs are word forms

3 Implemented grammars of this sort are also descriptive in the sense that they capture linguistic generalizations.

For present purposes, we will use the phrase (electronic) descriptive grammars to refer to prose statements of

linguistic analyses and implemented grammars or machine-readable grammars to refer to formal sets of rules

that can be interpreted by a computer.

Electronic Grammaticography

From Database to Treebank 181

Grammatical
description

(human readable)
Lexicon

Texts
Implemented

grammar
(machine readable)

Parse structures
for each utterance

Exemplar
selection

Exemplar
selection

Inform

Treebank
search

Figure 2.: Schematic view of electronic grammars with treebanks

and the outputs morphological analyses of the word forms. Phonological rule sets map

surface forms to underlying phoneme or feature sequences. In many cases, implemented

grammars are reversible, allowing processing that takes more abstract structures (seman-

tic representations, morphological analyses, underlying phoneme sequences) and produces

surface forms. Software for working with such rule sets is most developed for syntax,4

morphology5 and phonology,6 but in the future one can expect other levels of linguistic

structure to receive similar treatment. Implemented grammars can be extremely valuable

for linguistic hypothesis testing, allowing linguists to check their analyses of different phe-

nomena for consistency (Bierwisch 1963, Müller 1999, Bender 2008b, Bender et al. 2011)

and to discover counterexamples to analyses in collected texts (Baldwin et al. 2005).

It is worth noting that while implemented grammars are necessarily formalized (i.e., writ-

ten in some formalism which is precise enough for a machine to handle), they are not typ-

ically formalist. That is, where a formalist approach to linguistics attributes explanatory

power to formal structures and, as a result, typically seeks to state theoretical results in

the form of constraints on the allowable formal devices, grammar engineering uses formal

structures in order to state analyses and typically favors flexible formalisms which allow

for the exploration of multiple analyses (Bender et al. 2011). This practical approach to

capturing linguistic generalizations is therefore not at odds with the goals of documentary

and descriptive linguistics.

Bender’s (2008a, 2010) work on developing an implemented grammar for Wambaya

[wmb] on the basis of Nordlinger’s (1998) descriptive grammar serves as a proof of concept

of the applicability of the computational tools referenced above to endangered languages

4 e.g., LKB (Copestake 2002), XLE (Crouch et al. 2001), TRALE (Meurers et al. 2002).
5 e.g. XFST(Beesley & Karttunen 2003) and the morphological engine in SIL’s FieldWorks, (Black & Simons

2008).
6 e.g. XFST

Electronic Grammaticography

From Database to Treebank 182

wmb-head-2nd-comp-phrase := non-1st-comp-phrase &

[SYNSEM.LOCAL.CAT.VAL.COMPS [FIRST #firstcomp,

REST [FIRST [OPT +,

INST +,

LOCAL #local,

NON-LOCAL #non-local],

REST #othercomps]],

HEAD-DTR.SYNSEM.LOCAL.CAT.VAL.COMPS [FIRST #firstcomp,

REST [FIRST #synsem &

[INST -,

LOCAL #local,

NON-LOCAL #non-local],

REST #othercomps]],

NON-HEAD-DTR.SYNSEM #synsem].

head-comp-phrase-2 := wmb-head-2nd-comp-phrase & head-arg-phrase.

comp-head-phrase-2 := wmb-head-2nd-comp-phrase & verbal-head-final-head-nexus.

Figure 3.: Sample rule types from Wambaya grammar

and language description. Bender (2008a) reports that in 5.5 person-weeks of work, she

was able to create an implemented grammar on the basis of Nordlinger’s descriptive (prose)

grammar that assigned correct analyses to 91% of the exemplar sentences in the grammar

and 76% of a held-out test set (one of the transcribed, glossed and translated narratives

included in Nordlinger’s volume).

Our purpose in citing these numbers here is to show the feasibility of grammar engineer-

ing in the context of language documentation and to emphasize its relative inexpensiveness:

The grammar engineering effort built on Nordlinger’s original fieldwork and analysis, and

was minor in comparison, representing about 1/20th of the time. Furthermore, this case

study illustrates that grammar engineering for language documentation can be done col-

laboratively: this methodology does not rely on individuals mastering both the skill sets

required for linguistic field work and for grammar engineering, a point we return to in sec-

tion 5 below.

To make the notion of implemented grammars more concrete, we include a set of sam-

ple rule types from the Wambaya grammar in Figure 3. These types are written in tdl

(Copestake 2000), the formalism interpreted by the LKB grammar development environ-

ment (Copestake 2002), and represent part of an hpsg (Pollard & Sag 1994) analysis. The

supertype in this set (wmb-head-2nd-comp-phrase) describes all rules that allow a head to

combine with its second complement regardless of whether it has already combined with the

first (a key piece of the analysis of Wambaya’s nearly free word order). The two subtypes

integrate the constraints on the supertype with those on other types to define the head-initial

and head-final variants of the rule (again related to free word order). The rules combine a

head daughter with a non-head daughter, and match the constraints on the non-head daugh-

ter with the constraints on the second complement of the head-daughter (through the identity

tag #synsem). These types inherit from further types which handle aspects of the rules such

as semantic compositionality and ensure that the non-head daughter is linked semantically

to the appropriate role in the semantics of the head daughter.

Electronic Grammaticography

From Database to Treebank 183

Figure 4.: Seven analyses of (1)

Again in the interests of making the notion of implemented grammars concrete to readers

who have not worked with them, Figure 4 shows a screen shot of the LKB processing the

Wambaya sentence in (1) from Nordlinger (1998:75).

(1) Gujarrarna

two.ii(acc)

nyilangunya

echidna.ii(acc)

nga

1.sg.a-pst

yanybi.

get

‘I got two echidnas.’ [wmb]

The seven trees shown in the figure represent the seven analyses that the current imple-

mented Wambaya grammar licenses for this sentence. (Note that each analysis is in fact

much more detailed; the trees are merely abbreviations of larger syntactico-semantic struc-

tures which can be accessed through the software.) Of these seven, the last (bottom left)

matches the gloss provided by Nordlinger (shown in (1)). In that analysis, the constituent

Gujarrarna nyilangunya (‘two echidnas’) combines with the constituent nga yanybi (‘aux

get’) via the comp-head-phrase-2 rule.7

Returning to the goals of integrating treebanks with electronic descriptive grammars,

the examples above highlight two important points about implemented grammars and tree-

banks: First, annotations derived from implemented grammars make explicit ambiguity in

natural language that speakers rarely notice and even linguists often skip over, focusing

7 This is because the NP ‘two echidnas’ is the second complement of the auxiliary+verb cluster ‘aux get’. The

first complement of the auxiliary is the verb itself.

Electronic Grammaticography

From Database to Treebank 184

only on the relevant reading of the examples they are interested in.8 In most cases, however,

only one of the analyses will correspond to a pragmatically plausible reading. Creating

a treebank involves selecting that pragmatically plausible analysis, as discussed further in

section 2.2 below. Second, implemented grammars and tools like the LKB are not enough

to meet the needs of grammar readers looking to use the annotations in order to find relevant

examples in a corpus. A separate set of tools is required which can take the output of the

implemented grammar and the treebanking process and provide search functionality. Fan-

gorn (Ghodke & Bird 2010) is a treebank search application that fills this need, as discussed

further in section 3.

2.2 Treebanks A treebank is a collection of natural language utterances annotated with

tree structures. Traditionally, treebanks have been created by annotating the tree structures

by hand, using a detailed annotation guide. To speed up the process, the text may be first

processed with software tools such as a shallow parser or chunker, so that most of the manual

annotation consists of correcting and elaborating an initial structure, rather than writing trees

“free-hand”. The most well-known treebank for English, the Penn Treebank (Marcus et al.

1993), was constructed in just such a fashion. This manual method of creating a treebank

has many drawbacks. The most forbidding is the amount of time required, even with the

first automatic pass, but there are other problems. Validity of the annotation is one: It is very

difficult to maintain consistency when annotating complex structures by hand, particularly

when different phenomena can interact in many ways. Another issue is the static nature

of these treebanks. Given the amount of time and money needed to create them, once a

treebank is annotated, it is rarely updated. This means that out-of-date analyses are kept,

even if later investigation suggests a better hypothesis.

Dynamic treebanks, such as the Redwoods treebank (Oepen et al. 2004), are produced by

a newer method of treebank construction that uses an automatic parser to process utterances

according to an implemented grammar. Manual annotation is still required, but in this case

the annotator selects from the possible trees produced by the grammar to nominate the most

plausible (with the option of rejecting all trees in case the grammar does not provide a

suitable analysis). Since the annotator never edits tree structure manually, all annotations in

the final treebank are guaranteed to conform to the implemented grammar. Aside from the

benefits of consistency and speed, dynamic treebanks also have the advantage of being easy

to update when the grammar changes, as described below.

For this type of treebank, once the text is parsed, the annotator selects the correct tree by

making a series of binary decisions based on so-called parse discriminants (Carter 1997).

Figure 5 shows the interface of the Redwoods treebanking tool used for this process, with

the trees displayed on the left, and the discriminants on the right. Each discriminant repre-

sents a single aspect of analysis that occurs in some trees, but not others. These differences

could be in the syntactic or in the semantic representation, where a syntactic discriminant

consists of a grammar rule and the portion of the sentence it is being applied to, and a

8 One way that an implemented grammar can be incomplete is by licensing more analyses than are actually

warranted for a string. Not all ambiguity, however, is spurious ambiguity (i.e., involving grammatically ill-

formed structures). Any grammar with reasonable coverage will necessarily find multiple legitimate analyses

of almost any grammatical string it can analyze. One of the lessons of computational linguistics for linguistics

is the sheer amount of ambiguity in natural language (Abney 1996).

Electronic Grammaticography

From Database to Treebank 185

Figure 5.: Treebanking tool

semantic discriminant describes a predicate and one of its properties or arguments. An an-

notator can click on a discriminant and then select Yes to indicate that it is correct, or select

No to exclude any trees that are compatible with this discriminant. Since there are many

dependencies between discriminants, selecting one can entail decisions for many others,

meaning that finding the correct tree may only require a small number of decisions. These

decisions are saved, and can then be used to (semi-)automatically update the treebank after

a change has been made to the implemented grammar. When the text is re-parsed with the

new version of the grammar, the old decisions can be replayed where applicable, and then

the annotator only needs to annotate items that are still ambiguous after the old decisions

have been applied. In this way, treebanks can be easily updated to reflect improvements in

the grammar without the need for complete (and costly) re-annotation.

In addition to their use in linguistic exploration, these treebanks can also be used to

build a statistical parse selection model (Johnson et al. 1999, Toutanova et al. 2005), which

can be used to rank parser output by probability. While most human-detectable ambiguity

requires contextual information to resolve, the large majority of implausible analyses can

be ruled out on the basis of sentence-internal patterns. These patterns are probabilistic and

very difficult to model with hand-written parse ranking rules, but are well handled by the

machine learning (pattern recognition) techniques prevalent in computational linguistics.

For present purposes, parse selection is of interest because it makes subsequent treebanking

efforts easier. By learning characteristics of the trees selected as correct in a first round

of annotation, a parse selection model can be used by the parser to automatically discard

the most improbable analyses before the annotator sees them, speeding up the annotation

process.

Electronic Grammaticography

From Database to Treebank 186

gujarrarna

CLASS-II-DU-ADJ-LEX

ADJ-ABS-CASE

nyilangunya

CLASS-II-NOUN-LEX

II-GEN-ABS

ABS-CASE

NJ-ADJ-HEAD-INT

nga

FIRST-SG-AUX

3-OBJ

PAST-NO-OBJ

DEFAULT-ASP

yanybi

O-STRICT-TRANS-VERB-LEX

NON-FUT

AUX-V-R

COMP-HEAD-2

DECL

Figure 6.: Treebank tree format for (1)

2.3 Summary In this section we have provided background on both implemented gram-

mars and treebanks, with the goal of sketching the technology and methodology available.

The following section will build on this to describe how treebanks can be used for linguistic

research purposes.

3 Using Treebanked data Treebank exploration is simplified by the use of specially de-

signed search tools. These tools read in treebanked corpora and on request provide instances

of trees, similar to the one shown in Figure 6, that match the sought tree-pattern of linguistic

significance from within a corpus. Common features of such tools are: a query language to

specify the pattern of interest and a user-interface to view the matching exemplars from the

corpora.

Treebank search tools such as TIGERSearch (Lezius & König 2000) and TGrep2 (Rohde

2005) have been available for about a decade now. Only recently, however, with the devel-

opment of Fangorn (Ghodke & Bird 2010) has a solution become available which allows

for efficient search over large-scale treebanks.

3.1 Fangorn Fangorn uses a path-based query language that is a subset of the LPath

query language (Bird et al. 2006). For a detailed comparison of different treebank query

languages see Lai & Bird (2004).

Path query languages are used to specify tree nodes of relevance. A path is a sequence of

required node labels together with operators that state the relationship between consecutive

labels. In other words, the path functions as a linear specification of nodes in trees of

interest. For example, one interesting property of Wambaya is that modifiers can generally

stand alone in argument positions (Nordlinger 1998). A linguist interested in sentences with

this property might begin with a query like (2), which finds all parses where a declarative

Electronic Grammaticography

From Database to Treebank 187

Vertical navigation Horizontal navigation

descendant // following -->

ancestor \\ preceding <--

child / immediately following ->

parent \ immediately preceding <-

following sibling ==>

preceding sibling <==

immediately following sibling =>

immediately preceding sibling <=

Table 1.: Query operators and their symbols

clause (label: DECL) has a complement of a verb realized by a modifier (label: HEAD-

COMP-MOD-2) below it.

(2) //DECL//HEAD-COMP-MOD-2

The operator // in (2) is a descendant operator. Table 1 lists the different query operators

in the Fangorn query language. The operators have been categorized into two types: hori-

zontal and vertical, depending on whether they specify dominance or sequential positional

constraints. The semantics of the vertical navigation operators are the same as their defini-

tion in the context of a tree. Similarly, the names for the sibling operators are mnemonic for

their functions. The following operator specifies that the node to the right of the operator

is temporally after the node to the left of the operator. The immediately following operator

specifies that the leftmost descendant of the node to the right is temporally immediately

after the rightmost descendant of the node to the left of the operator. The preceding and

immediately preceding operators are the inverse of following and immediately following,

respectively.

The first operator in the query specifies whether the query pattern should appear at the

root of the tree or anywhere in the tree. For example, if query (2) started with a child

operator (/) rather than a descendant operator (//), then it would match only trees in which

the topmost node is a declarative clause with a HEAD-COMP-MOD-2 somewhere inside

it.

Query (2) specifies a path consisting of two nodes, however, paths could contain any

number of operator-node pairs. Both vertical and horizontal navigation operators can appear

at any position in the path. The only restriction is on the first operator in the main path in

the query. It has to be either a child or a descendant operator.

An operator in a path specifies the relationship between the node preceding and following

it. In some cases, however, we would want to specify more than one relationship at a single

node. For example, we may want to modify query (2) so that the head and complement

positions are irrelevant, which means the node under the declarative clause could be either

HEAD-COMP-MOD-2 or COMP-HEAD-MOD-2. Each of the two labels has a descendant

relationship with the declarative clause DECL. Example (3) describes such a query.

(3) //DECL[//HEAD-COMP-MOD-2 OR //COMP-HEAD-MOD-2]

Square brackets after any node in a path are called filter expressions, and can be used to

indicate alternatives (a split into two or more possible paths) or conjoined constraints on a

Electronic Grammaticography

From Database to Treebank 188

Figure 7.: Fangorn’s web interface

node as shown in (3). The paths within a filter expression are connected using logical oper-

ators AND, OR and NOT to add flexibility to the constraints. Further, since the paths within

filter expressions are themselves paths again, queries can have nested filter expressions.

Fangorn uses a web-based user interface, where the page contains a search box and a

result display area to show the matching trees. A screen shot of the user interface for

query (2) is shown in Figure 7. The left-hand top corner of the display area shows the total

number of trees that match the query pattern in the corpus. The first page, showing 10 trees,

is displayed by default. The user can choose to navigate to other pages. Each tree may

match the query pattern more than once. Hence, the total number of matches within the tree

and the match currently being displayed is shown at the top of each tree. Other matches

within the same tree can be viewed using the ‘<’ and ‘>’ buttons at the top of each tree. The

trees are minimally expanded to show the results in a concise manner, but additional nodes

can be expanded or collapsed in the display. The nodes that match the query are highlighted

and joined by lines that denote the operators between the nodes. Each matching tree can

be exported in either a bracketed format or as an SVG image identical to how the tree is

displayed on screen.

Fangorn can be used in a number of modalities, including linguistic exploration, grammar

engineering, and cross-linguistic comparison.

Linguistic exploration can be viewed as a kind of “exploratory data analysis” (Tukey

1977), whereby users query for particular lexico-syntactic patterns in a given language,

and, e.g., explore the productivity of a construction, investigate the interactions between

different constructions, investigate the distribution/behavior of a given construction across

different domains (as instantiated in different treebanks), or simply observe the distribution

of given lexical items in different syntactic contexts. Resnik et al. (2005) is a good example

Electronic Grammaticography

From Database to Treebank 189

of this sort of exploration using linguistic structure, although that work was not tied to a

descriptive grammar.

Grammar engineers can use Fangorn to validate a new analysis, by analyzing all instances

of the given lexical rule or construction in trees licensed by a grammar. Traditionally, Fan-

gorn has been applied to “gold standard” disambiguated trees. In indexing a larger set of

analyses licensed by the grammar (e.g., the top-500 analyses, as selected by a parse selec-

tion model), however, it is possible to retrieve all analyses in which a given pattern occurs,

allowing the grammar engineer to gauge whether an analysis is adding spurious ambiguity.

Fangorn can also aid in the education of grammar engineers, in exploring how the analy-

sis of a given construction is manifested in syntactic trees, and comparing this back to the

“source code” for the analysis in the grammar files.

Finally, assuming a comparable label set between grammars of different languages, it

is possible to perform cross-linguistic queries to compare, e.g., differences in right-node

raising between English and German in a data-driven manner. We come back to this briefly

in Section 5.3.

3.2 Incorporating Treebank Search in Descriptive Grammars Good (2004) presents a

vision of electronic descriptive grammars as linked to searchable corpora, where exemplars

chosen by the author to illustrate particular phenomena can be linked back to their original

context, and additional examples can be retrieved from the database. We see the main benefit

of treebanks to descriptive grammars as enriching the range of ways in which examples can

be retrieved.

Treebank search can be incorporated into a descriptive grammar in two different (and

complementary) ways: (i) The author of the grammar can include specific “canned” queries

at various points in order to allow the reader to retrieve examples with properties relevant

to the discussion (this would of course be in addition to providing exemplars, as is usual

practice); (ii) The treebank search interface can be made available to the reader to input

arbitrary queries matching their own interests. At present, Fangorn allows searching over

tree structures with the nodes labeled by the rule (phrasal or lexical) or lexical type which

licensed them, as well as over the words at the leaves of the tree. For the purposes of

inclusion in descriptive grammars, it would be useful to extend that search capability to

include the other annotations over the data (i.e., glosses and translations). Longer term, it

would also be interesting to include searches over the feature structures abbreviated by the

tree structures, including especially the embedded semantic representations.

The addition of “canned” queries will be relatively straightforward (once the imple-

mented grammar and treebank are built), and will most likely be done in collaboration

between the field linguist writing the descriptive grammar and the grammar engineer devel-

oping the treebank (cf. section 5). The exact mechanism for making the canned queries and

associated results accessible to users of the grammars is open to debate, but can potentially

build off the work of Hashimoto et al. (2007) on lexical type documentation via illustrative

positive and negative examples.

Making the search interface itself useful to readers will require documentation. General

documentation about the query language will be applicable to all such treebank-enhanced

grammars, but information about the implemented grammar licensing each treebank will

also be required. The “canned” queries themselves will provide a useful part of this doc-

Electronic Grammaticography

From Database to Treebank 190

umentation, serving as models for other similar queries. In addition, the documentation

should include a glossary of all of the labels in the treebanks (e.g., names of phrase struc-

ture rules, names of lexical rules, names of lexical types, as well as category labels used).

Ideally, this glossary would include links to the relevant sections of the descriptive gram-

mar and thus be accessible from those sections as well (following the links in the opposite

direction).

3.3 Summary In this section, we have given a brief overview of Fangorn, how it can be

used to formulate queries, and how those queries could be used to assist readers of electronic

descriptive grammars in getting information from an associated treebank. In the following

section we reflect further on how implemented grammars and treebanks can help fulfill the

goals of descriptive and documentary linguistics.

4 Values andMaxims Bird & Simons (2003) structure a discussion of best practices for

creating portable (and thus useful and enduring) language documentation around a series of

value statements and maxims that follow from those values. Nordhoff (2008) picks up that

discussion with a particular focus on how values identified by Bird & Simons influence the

form of electronic descriptive grammars and inform the design of software supporting the

development of such resources. Nordhoff is focusing in particular on those values that are

relevant to electronic grammars with non-linear (i.e., graph-like) structure.

In this section, we explore how the addition of treebanks to electronic descriptive gram-

mars can respond to some of those values, with a particular focus on those that treebanks

speak to, either because they can enhance the ability of an electronic grammar to fulfill a

maxim or because they would in fact be problematic in some way. Following Nordhoff, we

structure the discussion according to the general areas of data quality, grammar creation (by

authors), and grammar exploration (by readers). All of the maxims are given in the conse-

quent of a conditional with the associated value in the antecedent, as in Bagish (1983), the

inspiration for Bird & Simons’s (2003) approach to discussing these issues.9 This discussion

includes both near-term goals using existing technology as well as longer-term possibilities.

4.1 Data quality

(4) Accountability: If we value the application of the scientific method, more sources

for a phenomenon are better than fewer sources (Rice 2006:395, Noonan 2006:355).

This maxim is the most obvious win for treebank and treebank search enhanced electronic

grammars: If an electronic grammar is paired with a database of interlinear glossed text

(IGT), it is already possible to search for some phenomena in that database. The trees in

a treebank make much more of the structure of the sentences explicit than even the most

meticulous IGT, and thus treebanks make it possible to more easily find examples of a

broader range of phenomena (cf. section 3).

9 Except where noted, the antecedents and consequents are direct quotes from Nordhoff (2008:308–318). Addi-

tional citations are provided when Nordhoff indicated other sources for the maxims. Where there are multiple

maxims for the same value statement, we have kept them as separate statements or merged them into one ac-

cording to the most convenient structure for the present discussion. In Nordhoff’s terminology, ‘GD’ stands for

‘grammatical description’, i.e., what we are referring to here as an electronic descriptive grammar.

Electronic Grammaticography

From Database to Treebank 191

(5) Accountability: If we value the application of the scientific method, every step of

the linguistic analysis should be traceable to a preceding step, until the original

utterance of the speaker is reached.

As noted above, an implemented grammar requires that the various analyses it imple-

ments be integrated into a cohesive whole. The flip side of this is that every tree in a treebank

represents several levels of linguistic structure. In grammars such as the Wambaya gram-

mar discussed in section 2.1, these include semantic, syntactic and morphological analyses.

Thus, to the extent that the reader is supported in exploring the trees, the trees themselves

will help ground semantic and syntactic analyses in previous steps. The connection between

the morphological string and the original utterance will have to be handled outside of the

treebank, however.

(6) Accountability: If we value the application of the scientific method, the context of

the utterance should be retrievable (Weber 2006:450).

Nordhoff discusses this one in terms of the communicative context (who’s speaking, to

whom, with what goals, etc). We assume that if this information is documented in the

database underlying the treebank, then it should be accessible from the treebank as well.

However, another issue relating to context arises for treebanks, namely the importance of

preserving the linguistic context. All implemented grammars are in fact grammar fragments,

and thus will not necessarily have complete coverage over arbitrary samples of naturally

occurring text. With reasonably mature grammars there are robustness strategies (Kiefer

et al. 1999, Riezler et al. 2002) that potentially allow for partial analyses in a treebank,

but these are unlikely to be applicable or desirable in this application. Thus, a treebank

associated with an electronic descriptive grammar will necessarily have gaps, i.e., sentences

which are not assigned any trees. In order to preserve the linguistic context of the examples

which are assigned trees, and which thus can be retrieved with Fangorn, it will be important

to maintain links between the treebank and the underlying dataset.

(7) Actuality: If we value scientific progress, a GD should incorporate provisions to

incorporate scientific progress.

Nordhoff notes descriptive grammars are never finished. In the same way, implemented

grammars also always have room to grow. It is a major benefit of the Redwoods approach

to treebank construction (Oepen et al. 2004) that treebanks can be cheaply and rapidly

updated when the grammar that produced them has been changed. Thus modern treebanking

methodology makes it possible for electronic grammars with treebanks to rise to this maxim.

(8) History: If we value the recognition of the historic evolution of ideas, the GD should

present both historical and contemporary analyses (Noonan 2006:360).

The same software that supports the creation of treebanks ([incr tsdb()], Oepen &

Flickinger 1998) allows for detailed comparisons between treebanks based on different

grammar versions. The primary purpose of these comparisons has been to allow gram-

mar engineers to explore the impacts of various changes they have made to the grammar, in

terms of which items (sentences) are assigned different (or more or fewer) analyses by one

Electronic Grammaticography

From Database to Treebank 192

version of a grammar than another. It is possible that this same software could be adapted

to facilitate the exploration of the evolution of analyses either of particular examples in an

implemented grammar, or of classes of examples. Doing so in a way that would make it in-

formative for linguists who are not grammar engineers would, however, require significant

additional user interface effort.

4.2 Grammar creation The particular maxims that Nordhoff proposes under this head-

ing are specific to the design of a grammar-authoring platform that supports the creation of

electronic descriptive grammars, and therefore don’t speak to the creation of implemented

grammars. Accordingly, instead of reviewing Nordhoff’s maxims, we have proposed some

of our own that concern the creation of implemented grammars (and thus treebanks), but

relate to the same set of values.

(9) Assistance: If we value speed of creation and comparability (across grammars),

we should seek to provide means to assist linguists in rapidly creating comparable

implemented grammars.

This is in fact the goal of the Grammar Matrix project (Bender et al. 2002, 2010). The

Grammar Matrix provides a common core grammar, which defines things such as the format

of semantic representations (using Minimal Recursion Semantics (Copestake et al. 2005)),

an implementation of semantic compositionality, and general types of rules and lexical en-

tries. In addition, the Grammar Matrix provides a set of libraries of analyses of cross-

linguistically variable phenomena. These libraries are developed on the basis of a review

of the typological literature, though of course are not assumed to be comprehensive: the

project always anticipates the addition of new options within a library, as well as changes

to the core grammar. The Grammar Matrix is described further in section 5 below.

(10) Creativity: If we value the individual mind’s expressive abilities, support for cre-

ating implemented grammars should not preclude the linguist exploring alternative

analyses in the implemented grammar.

The Grammar Matrix is in a sense analogous to the prose templates that Nordhoff pro-

poses as part of a grammar authoring platform. Both make it easier to create a linguistic

resource (descriptive grammar or implemented grammar), in terms of coverage of phenom-

ena and in terms of compatibility with the relevant set of tools. At the same time, these

aids can also have the adverse effect of limiting creativity or biasing analyses towards those

anticipated by the creator of templates/libraries of analyses. Compared to prose templates,

Grammar Matrix libraries are more difficult to create (represent a larger investment of time

and effort) and are likely also more limiting. Both of these effects follow from the fact

that implemented grammars require all of their component analyses to interact. On the one

hand, the grammar engineers constructing the libraries must design them carefully to be

interoperable with all of the options of all of the other libraries (Drellishak 2009:Ch. 2). On

the other hand, a linguist attempting to develop an alternative analysis for one phenomenon

will find herself hemmed in to a certain extent by the decisions made in the analyses of other

phenomena.

Nonetheless, we believe that grammar engineering provides a net benefit for analysis ex-

ploration because computers can be harnessed to test the analyses against large data sets

Electronic Grammaticography

From Database to Treebank 193

(Bender 2008b, Bender et al. 2011). Thus even though it can require non-trivial work to im-

plement alternative analyses, their relative advantages and disadvantages can be empirically

explored (Bender 2010). Recently, Fokkens (2011) has been investigating the potential of

‘metagrammar engineering’, or the development of systems that provide not only imple-

mented analyses of varying phenomena, but in fact multiple analyses per variant. Fokkens

argues that this will alleviate the risks of implemented grammars being shaped by the order

in which phenomena are analyzed.

(11) Collaboration: If we value the potential for faster progress when multiple investi-

gators collaborate, we should develop methodologies and tools which support col-

laboration.10

As will be discussed further in section 5, grammar engineering for language documenta-

tion is an excellent example of the kind of project that thrives on collaboration, in this case

between one or more field linguists and one or more grammar engineers. The grammar en-

gineering work is dependent on the field work and cannot proceed without data collection,

transcription and analysis done by the field linguist. At the same time, grammar imple-

mentation allows the hypotheses generated by both the field linguist and (eventually) the

grammar engineer to be systematically tested against the collected data. Tools which would

facilitate this kind of collaboration include those which help field linguists to produce con-

sistent and well-formatted IGT, on the one hand, and those which make the resulting imple-

mented grammar available for interactive inspection (such as web-interfaces to parsing and

generation algorithms) on the other.

4.3 Grammar exploration

(12) Ease of finding: If we value ease and speed of retrieving the information needed, a

GD which has a table of contents, an index and full text search is preferable.

Fangorn is an extremely valuable tool for finding information within a treebank, pro-

vided that readers know how to formulate the queries they are interested in. We envision

embedding pre-formulated search queries within the electronic prose grammar (as links that

retrieve additional examples from the database, for example). An annotated index of these

queries could be a useful source of information for a linguist seeking to formulate additional

queries.

A second question is how to link back to the relevant parts of the grammar from the

trees in the treebank. Ideally, each phrase structure rule, lexical rule and lexical type in

the implemented grammar would be annotated with the phenomenon or phenomena that it

implements. With such annotations, a reader could move from the tree assigned to a partic-

ular sentence to the relevant discussions in the prose grammar (Musgrave & Thieberger this

volume). The exact means of encoding these annotations is an issue for future work. How-

ever, we note here that linking to a particular prose descriptive grammar is probably a more

tractable problem than producing a general index of a stand-alone implemented grammar.

10 Nordhoff provides a different value statement under the heading collaboration: “We value collaboration and the

recognition of the respective contributions of the collaborators” (p. 302). We do not disagree with that value

statement, but find the one provided in (11) more relevant to the present discussion.

Electronic Grammaticography

From Database to Treebank 194

(13) Individual reading habits: If we value the individual linguist’s decisions as to what

research questions could be interesting (Rice 2006:402), a GD should permit the

reader to follow his or her own path to explore it and a short path between two

related phenomena is better.

(14) Manipulation: If we value portability and reusability of the data, the data presented

in a GD should be easy to extract and manipulate.

The key issue regarding individual reading habits, according to Nordhoff (2008), is that

some readers will be asking how a particular function is realized within a language, while

others will be interested in the function(s) associated with a particular form. In this context,

the fact that Redwoods-style treebanks (as described here) include semantic representa-

tions is a key asset. While at present, Fangorn only applies over syntactic structures, it can

conceivably be extended to searches over semantic structures as well as combined syntac-

tic/semantic queries.

Furthermore, if the implemented grammar is made available along with the treebank, it,

too, becomes a tool for both form- and function-based exploration, greatly enhancing the

ways that the data can be manipulated. For form-based exploration, the reader can send

strings to the grammar for parsing.11 For function-based exploration, the reader would

want to use a generation algorithm (e.g., that included with the LKB (Carroll et al. 1999)).

Generation algorithms that work with Grammar Matrix-derived grammars take as input

Minimal Recursion Semantics representations (Copestake et al. 2005), which cannot easily

be written by hand. However, the Grammar Matrix is compatible with the LOGON machine

translation (MT) infrastructure (Lønning et al. 2004). While it would take additional work

to produce an MT system (notably the writing of a transfer grammar), this could in principle

be done. In that case, within the coverage of the MT system, readers could submit sentences

in the other language of the MT pair and retrieve strings in the language being documented.

The trees associated with those strings could then point into the descriptive grammar (as

above).12

(15) Familiarity: If we value ease of access, a GD that is similar to other GDs known to

the reader is better.

Here we must acknowledge that treebanks and implemented grammars will not be imme-

diately familiar to linguists on first encounter, and there is work to be done to make them

more accessible. However, once a linguist has become familiar with one such resource, that

familiarity should be readily transferable to another one constructed in a similar fashion.

This once again underscores the importance of tools in promoting standardization (cf. (9)).

(16) Guiding: If we value an informed presentation of the data, the GD should present

the data in a didactically preferred way (Rice 2006:401).

11 The grammar will return multiple analyses in many cases, but if a parse selection algorithm is trained on the

treebank, those analyses can be ranked by their predicted likelihood.
12 Note that for quality assessment (19) and accountability (5), strings returned by the generator would need to be

flagged according to whether they match strings in the collected data or in fact represent generalizations based

on the hypotheses encoded in the grammar.

Electronic Grammaticography

From Database to Treebank 195

(17) Ease of exhaustive perception: If we value the quest for comprehensive knowledge

of a language (Cristofaro 2006:162), the readers should be able to know that they

have read every page of the grammar.

Implemented grammars are intricate objects (full of interconnections) and the field of

grammar engineering is still struggling with developing best practices for documenting

them. It is unlikely that a treebank or implemented grammar would assist in the ordering

of information or the creation of paths through a prose descriptive grammar or with ease of

exhaustive perception. However, by embedding links to Fangorn in that grammar, the prose

descriptive grammar could become a very effective guide to the implemented grammar (to

the extent that the analyses in the implemented grammar all directly map to analyses in the

prose grammar).

(18) Relative importance: If we value the allocation of scarce resources of time to pri-

mary areas of interest, the relative importance of a phenomenon for (a) the lan-

guage and (b) language typology should be retrievable (Zaefferer 1998:2, Noonan

2006:355).

There are of course many different ways of defining importance of phenomena. If one

takes a quantitative approach, a treebank can be a useful tool in exploring such things.

Assuming we have an index linking grammar rules and lexical entries to phenomena de-

scribed in the prose grammar, it should be possible to quantify the text frequency of each

phenomenon. Likewise, the number of rules/entries in the grammar which are indexed to

the phenomenon would give a sense of the degree to which that phenomenon interacts with

others.

Regarding cross-linguistic relevance, in the long term, the Grammar Matrix project has

the potential to provide this information: If there are many grammars constructed on the ba-

sis of the Grammar Matrix and its libraries (the “customization system”), we will be able to

quantify the relative prevalence of each choice in each library, as well as co-occurrence ten-

dencies between the choices. In addition, it is in principle possible to detect whether specific

analyses in an implemented grammar remain consistent with the starting point provided by

the Grammar Matrix or required changes.13

(19) Quality assessment: If we value indication of the reliability of analyses, the quality

of a linguistic description should be indicated.

The development of an implemented grammar is a fairly stringent test of the quality of

linguistic analyses.14 It is not of course the case that implemented analyses are necessarily

correct. However, with implemented analyses it is possible to tell whether analyses of

multiple phenomena are consistent with each other and also the extent to which the analyses

collectively account for the available data (cf. Good’s concept of internal coverage (this

volume)). That is, the quality of a treebank and its underlying implemented grammar can

13 Of course, there is also always the influence of the grammar engineer (cf. creativity (10) above): a grammar

could differ from the analyses provided by the Grammar Matrix because those analyses did not work for the

language in question, or because the grammar engineer chose to explore alternatives.
14 See also Maxwell (this volume)

Electronic Grammaticography

From Database to Treebank 196

be partially assessed in terms of the number of examples in the underlying database which

are assigned a tree.

In order for this assessment to reflect on the prose descriptive grammar which is the basis

of the implemented grammar, at least two points need to be made explicit: (1) the extent

to which the analyses in the implemented grammar are faithful to the descriptive grammar,

and (2) the extent to which the implemented grammar incorporates all of the analyses in the

descriptive grammar. That is, the descriptive grammar could be very comprehensive, but if

the implemented grammar does not include analyses for every phenomenon treated in the

descriptive grammar, treebank coverage will be poor.

Using treebanks to assess the quality of individual analyses is somewhat more problem-

atic. The same indexing of implemented grammars that was suggested for measuring the

relevance or importance of particular phenomena could also be used to estimate the success

of their analysis in implemented grammar. However, these two factors are confounded: A

highly central or important phenomenon with a poor analysis would appear to be relatively

unimportant, since the poor analysis could lead to poor coverage for the sentences with the

phenomenon. Thus what is called for is an independent way to measure the frequency of

phenomena (perhaps based on interlinear glossed text alone) and then compare that to the

measurements taken over the treebank.

So far this brief discussion has considered grammar/treebank quality only in terms of

coverage, or the ability to find a correct analysis for any given example. Another important

measure of grammar quality, however, is ambiguity: Grammars or analyses which are un-

derconstrained will produce many spurious analyses. These will not be apparent in the final

treebank, as they are discarded in the manual annotation step. However, the maxim in (19)

suggests that the degree of ambiguity found by the grammar underlying the treebank should

be reported. In addition, it is straightforward to quantify the extent to which particular rules

and lexical entries contribute to ambiguity.15

Finally, we note that in the development of treebanks for descriptive grammars, the cor-

rectness of a tree is determined by comparing the semantic representation associated with

that tree to the translation and gloss provided for the example. Thus to the extent that qual-

ity issues in the descriptive grammar affect the quality of the glossing, these issues will be

masked in measures involving the treebank.

(20) Persistence: If we value citability (Bird & Simons 2003:14), in order to facilitate

longterm reference, a grammatical description should not change over time.

As Bird & Simons and Nordhoff note, the solution to the conflict between this maxim

and the one in (7) is to take snapshots which can be the anchors for citations. The addi-

tion of treebanks to electronic descriptive grammars makes this somewhat more difficult

as the versions between the treebank (and implemented grammar) on the one hand and the

prose descriptive grammar on the other need to be synchronized. This is perfectly possible,

however, with proper planning.

(21) Tangibility: If we value the appreciation of a grammatical description as a compre-

hensive aesthetic achievement, a GD that can be held in the hand is better.

15 Note, however, if a particular rule is prone to adding ambiguity, that may not be the fault of the analyses of the

phenomena it currently implements (and thus is indexed for) but rather the analysis of some other phenomenon

which should involve constraints on that rule but does not.

Electronic Grammaticography

From Database to Treebank 197

Implemented grammars and treebanks are only valuable as computational artifacts, and

thus will only be the sort of thing that can be held in the hand when hand-held devices are

powerful enough to run them. That said, the addition of an implemented grammar should

not get in the way of the production of the associated descriptive grammar as book. In

practical terms, any links to treebank searches that are embedded in prose chapters should

be either stripped or made non-disruptive. In addition, any links in a printed volume must

be stable links that will continue to function as long as possible.

(22) Multilingualization: If we value the interest of every human in a given language,

especially interest from the speakers of the language in question, a GD should be

available in several languages, among others the language of wider communication

in the region where the language is spoken (Weber 2006:433).

There are two primary ways in which implemented grammars and treebanks can respond

to this maxim. The first is to be designed to be able to incorporate and display glossing of

the primary data into multiple different languages. The second (and longer term) method

is through the machine translation possibilities discussed in reference to the values individ-

ual reading habits (13) and manipulation (14) above. It is possible in principle to set up

multiple MT systems between a language being described and different languages of wider

communication. Furthermore, while there is additional work required for every language

pair, each additional language pair should require less set up work than the first.

4.4 Summary Our purpose in this discussion has been twofold: On the one hand, by

reflecting on values and maxims, we have proposed a series of design desiderata for the

incorporation of treebanks in electronic descriptive grammars. On the other hand, we hope

to have provided arguments in favor of the value of treebanks and implemented grammars

to the enterprise of language documentation and description, and clarified the role that they

can play.

The incorporation of treebanks into descriptive grammars is possible on the basis of ex-

isting technology, including technology supporting grammar development, parsing, gen-

eration, treebank creation and maintenance and treebank search. This is sketched in the

following section. The preceding discussion makes it clear that achieving the full potential

of the integration will rely on further advances in a few areas. These include: methodologies

and software support for indexing components of implemented grammars, support for rapid

deployment of machine translation, and user interface improvements to make implemented

grammars and the analyses they assign to strings more accessible to non-grammar engineer

linguists.

5 Getting there In the previous sections, we have presented the idea of augmenting

electronic descriptive grammars with treebanks and reflected on how doing so will help

descriptive grammars fulfill the values that have been articulated for them. This section

addresses the feasibility of creating implemented grammars and treebanks and discusses

the resources that are available to assist in the creation of such resources as well as future

directions.

Electronic Grammaticography

From Database to Treebank 198

5.1 TheGrammarMatrix Building implemented grammars can be expensive and time-

intensive. The English Resource Grammar (ERG) has been under development since 1994,

and now achieves 62-94% verified coverage over naturally occurring corpora from a variety

of genres (Flickinger 2011).16 The example of the ERG shows that this kind of grammar and

treebank construction is indeed possible, but it also suggests that it might be too expensive

to be applied in context of language documentation, as envisioned here.

We contend that it is not, for several reasons. First, a grammar does not have to be

comprehensive, or even approach the ERG’s level of coverage, in order to be useful. Even a

partial treebank would begin to yield benefits for linguists searching for examples (though

it will be important to make clear the extent to which the treebank covers the total corpus,

cf. quality assessment (19) above). Secondly, it is unfortunately the case that language

documentation projects rarely approach a range of genre diversity in the data collected that

compares to the range of genres the ERG has been tested against. A smaller genre range

means a more tractable problem for grammar engineering. Finally, much of the effort that

has gone into the ERG represents solutions to problems that are not in fact English-specific,

but more general contributions to efficient, implemented hpsg parsing.

This last point is the motivation for the LinGO Grammar Matrix (Bender et al. 2002,

2010). Specifically, the Grammar Matrix aims to facilitate the development of implemented

grammars in languages without such resources by curating and making available advances

from the ERG and other broad-coverage grammars developed in the DELPH-IN17 con-

sortium, most notably the Jacy Japanese grammar (Siegel & Bender 2002) and the Ger-

man grammar (Müller & Kasper 2000). The Grammar Matrix consists of a core grammar,

shared by all language-specific grammars derived from it, a series of libraries of analyses of

cross-linguistically variable phenomena, and a “customization system” which allows users

to select from among those analyses by filling in a web-based questionnaire (cf Black &

Black this volume).

The core grammar includes definitions (constraints) that are hypothesized to be cross-

linguistically useful. The customization system pairs these with more specialized con-

straints on the basis of information collected through the questionnaire. The questionnaire

elicits from a linguist-user typological information of varying granularity: for example, ma-

jor constituent word order (including various flexible word order options), the means of

expression of negation, the range of cases (if any) marked on core arguments, the possibil-

ity of dropping each core argument and information about its interpretation when dropped.

It also allows users to define classes of lexical items and morphological rules. Morpho-

logical rule definitions include morpheme forms,18 morphosyntactic and morphosemantic

features (case, tense, etc.) associated with the morphemes, and ordering and co-occurrence

constraints with other morphemes (including stems).

This strategy of code reuse necessarily involves taking analyses developed on the basis

of well-studied languages and applying them to lesser-studied languages. However, the

16 The low end of that spectrum relates to fairly technical corpora, including technical manuals and chemistry

papers. Verified coverage over 80% is more typical.
17 http://www.delph-in.net/
18 These are expected to be regularized underlying forms. We follow Bender & Good (2005) in advocating for

separate components for morphophonological and morphosyntactic analysis. Various tools exist for creating

morphophonological analyzers, including XFST (Beesley & Karttunen 2003).

Electronic Grammaticography

http://www.delph-in.net/

From Database to Treebank 199

Grammar Matrix project is explicitly data-oriented in its approach to cross-linguistic uni-

versals and cross-linguistic variation. With regards to the constraints provided in the core

grammar, these are treated as working hypotheses only, ready to be revised (or more pre-

cisely made variable and moved into the libraries) when we encounter languages which

present counter-examples. The methodology of grammar engineering allows us to empiri-

cally test the applicability of analyses and determine when an analysis really won’t work.

Furthermore, our library development methodology begins with a review of the typological

literature so that we are working with the most comprehensive possible view of the range of

variation in the world’s languages as we develop the libraries of analyses.

The work on Wambaya cited above (Bender 2008a) provides a case-study in the fea-

sibility of grammar engineering for language documentation. The grammar produced is

approximately an order of magnitude less complex than the English Resource Grammar.

Nonetheless, it provided interesting coverage over both the exemplars cited in Nordlinger

(1998) and a naturally occurring text used to test the grammar’s ability to generalize beyond

the data used in grammar development. It was possible to achieve this level of coverage

so rapidly thanks in part to the restricted range of data being considered (relatively short

sentences, relatively little genre variation) but more importantly thanks to the analytical

work done by Nordlinger. It is in some ways easier to implement analyses presented in

a descriptive grammar than to work from intuitions about one’s own language combined

with analyses gleaned from the theoretical linguistic literature. In other words: the origi-

nal descriptive work (done in this case by Nordlinger) is the hard part. When this is done

thoroughly and done well, the grammar engineering is relatively straightforward.

5.2 Treebanking Support Once an initial version of an implemented grammar has been

written, building an undisambiguated treebank is an automatic process that can be easily

initiated using the suite of tools available. Treebanking, the process of selecting the most

plausible tree using discriminants (see Section 2.2), requires further effort, but much less

than manually annotating the data. While treebanking will always require a human annota-

tor if we wish to maintain quality, there is some work on automatic methods to help make

treebanking easier. One method that has proved successful in previous experiments is to

rank the discriminants so as to present those most likely for an annotator to select at the

top of the list. Zhang & Kordoni (2010) showed that treebanking speed could be improved

by using the annotation logs of their treebankers to build a statistical model that ranked the

discriminants in the order which an individual treebanker would be likely to select them.

Another method, called blazing (Tanaka et al. 2005, MacKinlay et al. 2011), uses supple-

mentary information available about the text to partially pre-annotate. In this work, the

authors used pre-existing annotations of parts of speech (in the case of Tanaka et al. 2005)

or phrase structure trees (in the case of MacKinlay et al. 2011) to automatically mark some

discriminants, leaving the annotator less decisions to make, and also found increases in tree-

banking speed. Rather than requiring external information, a third strategy would be to use

all the analyses produced for all items to learn trends in the analyses. While this informa-

tion is noisy, the trends from the less ambiguous items inform the decisions to be made for

the more ambiguous items and this partial information can be used to automatically learn

a probabilistic ranking function to rank all analyses. In this way, we can prune improbable

analyses and in the process accelerate treebanking (Dridan & Baldwin 2010).

Electronic Grammaticography

From Database to Treebank 200

5.3 Future Work on Fangorn At present, Fangorn has a query language that is suf-

ficient to express simple queries using paths and filter expressions. However, for more

complicated queries with multiple logical operators in a filter expression, allowing braces

to group terms would make queries more expressive. For example, let us consider query (3)

and add further conditions that require the search to match only those parses where the com-

plement of the verb is realized only by a modifier and not by a nominal head. We would now

have to exclude trees which have a HEAD-COMP-2 or COMP-HEAD-2 label underneath the

declarative clause. Query (3) would have to be reframed as shown in (23). If the grouping

of elements, using braces, were allowed we could rewrite (23) as (24), which is not only

more concise, but is also easier to read.

(23) //DECL[//HEAD-COMP-MOD-2 AND NOT //HEAD-COMP-2 AND NOT

//COMP-HEAD-2 OR //COMP-HEAD-MOD-2 AND NOT //HEAD-COMP-2

AND NOT //COMP-HEAD-2]

(24) //DECL[(//HEAD-COMP-MOD-2 OR //COMP-HEAD-MOD-2) AND NOT

(//HEAD-COMP-2 OR //COMP-HEAD-2)]

Another potential means of grouping terms within a filter expression would be to take

advantage of the types declared in the grammar behind the treebank, which group together

sets of rules. For instance, there are grammar types in Wambaya grammar, shown in (25) (cf.

Figure 3), that match the two elements of the filter expression in (24). Replacing elements

in (24) with their grammar type would allow us to further refine the query to (26). The

search tool could itself perform the substitution of grammar types with actual labels rather

than expect the user to input expanded queries. For this to work, Fangorn has to be aware

of grammar types and expand them prior to execution.

(25) head-2nd-comp-mod-phrase:

{ head-comp-mod-2, comp-head-mod-2 }

wmb-head-2nd-comp-phrase:

{ head-comp-2, comp-head-2 }

(26) //DECL[(//HEAD-2ND-COMP-MOD-PHRASE AND NOT

//WMB-HEAD-COMP-2ND-COMP-PHRASE]

The current version of Fangorn operates over the abbreviated tree structures that are used

for presentation purposes. The abbreviated trees are sufficient to distinguish between com-

peting analyses, but they don’t expose all the information that a user might wish to search

for. As mentioned in Section 4.3, the semantic information embedded in the tree would pro-

vide a useful mode of querying. This provides some interesting challenges in determining

the best way to represent semantic information so that it can be queried, since a tree struc-

ture is not a natural representation for semantics. We are currently pursuing two different

approaches to this problem: either trying to find a natural way to represent the semantic

information we have in a treelike form, or alternatively, looking for an intuitive extension

of the query language that would allow querying over a more appropriate representation.

Being able to query the syntax and semantics separately provides different views and

avenues of access to the same data. Likewise, other levels of annotation that exist, such

Electronic Grammaticography

From Database to Treebank 201

as glosses and translations, could be useful in finding the examples that a user requires. A

simple extension to Fangorn is planned to allow different annotation levels to be aligned, so

that it is possible to search using one representation and see how the same data is analyzed

at a different level. A more complex extension would allow a query to filter using multiple

levels of annotation, for example using semantic restrictions to filter a syntactic query. This

extension could require extensive changes to the query language for a fully general solution,

but it might be possible to achieve most of the desired capabilities by designing a means of

specifying metadata about annotations both within the treebank and in the query language.

Another area of future work for Fangorn is the mapping of labels onto a cross-linguistic

label set, e.g. based on GOLD (Farrar & Lewis 2007). This would involve aligning in-

dividual grammar rules, lexical rules and lexical types onto the GOLD ontology to mark

features such as verb transitivity, noun case and clause illocutionary force, while preserving

the language-specific rule types and/or more familiar node labels (e.g., NP and VP) as are

currently used. This would significantly enhance cross-linguistic treebank search, as the

label set would be harmonized to a much greater extent than occurs using the “native” label

set for individual grammars.

5.4 Virtuous Cycles and the Montage Vision The Wambaya case study described

above was an exercise in post-hoc grammar engineering: The implemented grammar wasn’t

developed until a decade after the original field work was complete, and sadly, the language

lost its last fully fluent speakers in that time. The process of grammar engineering always

raises further questions about the data (as no grammatical description is ever complete), and

the Wambaya case study suggests that collaborations between grammar engineers and field

linguists could be very fruitful:19 While a considerable amount of data collection and analy-

sis has to take place before grammar engineering can get off the ground, if the field linguist

is still working with speakers when the grammar implementation work begins, there is the

potential for a feedback loop that speeds up and strengthens the descriptive work.

The Montage project (Bender et al. 2004) envisioned a software environment which in-

tegrated tools for the production of IGT, electronic descriptive grammars and implemented

grammars. The IGT and the descriptive grammar would inform the implemented grammar,

and even possibly be input to a system that could automatically create a partial implemented

grammar. The implemented grammar would in turn feed IGT and descriptive grammar

development by locating interesting exemplars (through Fangorn20), highlighting possible

inconsistencies in glossing, and testing out analyses.

The Montage project itself was never funded, but nonetheless there is progress in the

direction of this vision, including:

19 We would like to emphasize that nothing in the preceding discussion requires that the grammar engineering and

field work be done by the same person, and in fact it seems unlikely that many people would have the skill sets

required for both. Going further, it seems like grammar engineering would be a less than efficient use of the

time of someone who has the skills to do original fieldwork.
20 Note that this could even be done before the manual annotation step of the treebank construction process: the

treebank search tools described above work equally with undisambiguated sets of trees.

Electronic Grammaticography

From Database to Treebank 202

• Collaborative annotation and descriptive grammar authoring environments, including

GALOES (Nordhoff 2007), TypeCraft (Beermann & Mihaylov 2009) and Digital Gram-

mar (Drude, this volume)

• The Grammar Matrix customization system (Bender et al. 2010, cf. section 5.1)

• The Redwoods methodology for dynamic treebank construction (Oepen et al. 2004, cf.

Section 2.2)

• Treebank search using Fangorn (Ghodke & Bird 2010, cf. section 3.1)

• Machine learning algorithms that learn typological properties from IGT (e.g., Lewis &

Xia 2007)

The Grammar Matrix makes it feasible to create interesting implemented grammars for

languages without large computational resources, while the Redwoods methodology makes

treebank development practical. Fangorn makes the treebanks useful as resources for read-

ers of descriptive grammars. The longer term goal of semi-automatic grammar implemen-

tation is supported by the Grammar Matrix and the work of Lewis & Xia (2007) which

suggests that it might be possible to learn answers to questions like those in the Gram-

mar Matrix questionnaire on the basis of (sufficiently large) sets of IGT (with sufficiently

meticulous glossing).

6 Conclusion In this paper we have presented a vision of how electronic descriptive

grammars can be enriched with implemented grammars and treebanks, and described how

such a vision is supported by current technology as well as what future developments could

add further value. Following the discursive approach of Bird & Simons (2003) and Nordhoff

(2008), we have explored the ways in which implemented grammars and treebanks can help

to meet the values and associated maxims proposed regarding producing the most useful

possible language resources. To our knowledge, no such treebank-enhanced descriptive

grammar yet exists, but we hope to see them emerge through the collaboration of field

linguists and grammar engineers.

References

Abney, Steven. 1996. Statistical Methods and Linguistics. In Judith L. Klavans & Philip Resnik

(eds.), The Balancing Act: Combining Symbolic and Statistical approaches to language, 1–26.

Cambridge, MA: MIT Press.

Bagish, Henry. 1983. Confessions of a Former Cultural Relativist. In Elvio Angeloni (ed.), Anthro-

pology Annual Editions 83/84, 87–112. Guilford, CT: Dushkin Publishing Group.

Baldwin, Timothy, John Beavers, Emily M. Bender, Dan Flickinger, Ara Kim & Stephan Oepen. 2005.

Beauty and the Beast: What running a broad-coverage precision grammar over the BNC taught us

about the grammar — and the corpus. In Stephan Kepser & Marga Reis (eds.), Linguistic Evidence:

Empirical, Theoretical, and Computational Perspectives, 49–69. Berlin, Germany: Mouton de

Gruyter.

Beermann, Dorothee & Pavel Mihaylov. 2009. TypeCraft: Linguistic Data and Knowledge Sharing,

Open Access and Linguistic Methodology. Paper presented at the Workshop on Small Tools in

Cross-linguistic Research, University of Utrecht. The Netherlands.

Electronic Grammaticography

From Database to Treebank 203

Beesley, Kenneth R. & Lauri Karttunen. 2003. Finite State Morphology. Stanford CA: CSLI Publi-

cations.

Bender, Emily M. 2008a. Evaluating a Crosslinguistic Grammar Resource: A Case Study of

Wambaya. In Proceedings of ACL08:HLt, 977–985. Columbus, OH.

Bender, Emily M. 2008b. Grammar Engineering for Linguistic Hypothesis Testing. In Nicholas

Gaylord, Alexis Palmer & Elias Ponvert (eds.), Proceedings of the Texas Linguistics Society X

Conference: Computational Linguistics for Less-Studied Languages, 16–36. Stanford, CA: CSLI

Publications.

Bender, Emily M. 2010. Reweaving a Grammar for Wambaya: A Case Study in Grammar Engineer-

ing for Linguistic Hypothesis Testing. Linguistic Issues in Language Technology 3. 1–34.

Bender, Emily M., Scott Drellishak, Antske Fokkens, Laurie Poulson & Safiyyah Saleem. 2010.

Grammar Customization. Research on Language & Computation 8(1). 1–50.

Bender, Emily M., Dan Flickinger, Jeff Good & Ivan A. Sag. 2004. Montage: Leveraging Advances

in Grammar Engineering, Linguistic Ontologies, and Mark-up for the Documentation of Underde-

scribed Languages. In Proceedings of the Workshop on First Steps for language documentation of

minority languages: Computational linguistic tools for morphology, lexicon and corpus compila-

tion, lrec 2004, Lisbon, Portugal.

Bender, Emily M., Dan Flickinger & Stephan Oepen. 2002. The Grammar Matrix: An Open-Source

Starter-Kit for the Rapid Development of Cross-Linguistically Consistent Broad-Coverage Preci-

sion Grammars. In Proceedings of the Workshop on Grammar Engineering and evaluation at the

19th international conference on computational linguistics, 8–14. Taipei, Taiwan.

Bender, Emily M., Dan Flickinger & Stephan Oepen. 2011. Grammar Engineering and Linguistic

Hypothesis Testing: Computational Support for Complexity in Syntactic Analysis. In Emily M.

Bender & Jennifer E. Arnold (eds.), Language from a Cognitive Perspective: Grammar, Usage and

Processing, 5–29. Stanford, CA: CSLI Publications.

Bender, Emily M. & Jeff Good. 2005. Implementation for Discovery: A Bipartite Lexicon to Support

Morphological and Syntactic Analysis. In Proceedings from the Panels of the Forty-First Meeting

of the Chicago Linguistic Society: Volume 41-2., 1–15.

Bierwisch, Manfred. 1963. Grammatik des deutschen Verbs, vol. II Studia Grammatica. Akademie

Verlag.

Bird, Steven, Yi Chen, Susan B. Davidson, Haejoong Lee & Yifeng Zheng. 2006. Designing and

Evaluating an XPath Dialect for Linguistic Queries. In ICDE ’06: Proceedings of the 22nd Inter-

national Conference on Data Engineering, 52–62. Washington, DC.

Bird, Steven & Gary Simons. 2003. Seven Dimensions of Portability for Language Documentation

and Description. Language 79(3). 557–582.

Black, Cheryl A. & H. Andrew Black. this volume. Grammars for the people, by the people, made

easier using PAWS and XLingPaper. In Sebastian Nordhoff (ed.), Electronic Grammaticography,

103–28. Manoa: University of Hawai’i Press.

Black, H. Andrew & Gary F. Simons. 2008. The SIL FieldWorks Language Explorer Approach to

Morphological Parsing. In Nicholas Gaylord, Alexis Palmer & Elias Ponvert (eds.), Proceedings

of the Texas Linguistics Society X Conference: Computational Linguistics for Less-Studied Lan-

guages, 37–55. Stanford, CA: CSLI Publications.

Electronic Grammaticography

From Database to Treebank 204

Carroll, John, Ann Copestake, Daniel Flickinger & Victor Poznanski. 1999. An efficient chart gen-

erator for (semi-)lexicalist grammars. In Proceedings of the 7th European Workshop on Natural

Language Generation, 86–95. Toulouse, France.

Carter, David. 1997. The TreeBanker: a Tool for Supervised Training of Parsed Corpora. In Pro-

ceedings of a Workshop on Computational Environments for grammar development and linguistic

engineering, 9–15. Madrid, Spain.

Copestake, Ann. 2000. Appendix: Definitions of Typed Feature Structures. Natural Language Engi-

neering 6. 109–112. doi:10.1017/S1351324900002357.

Copestake, Ann. 2002. Implementing Typed Feature Structure Grammars. Stanford, CA: CSLI Pub-

lications.

Copestake, Ann, Dan Flickinger, Carl Pollard & Ivan A. Sag. 2005. Minimal Recursion Semantics:

An Introduction. Research on Language & Computation 3(4). 281–332.

Cristofaro, Sonia. 2006. The Organization of Reference Grammars: A Typologist User’s Point of

View. In Felix Ameka, Alan Dench & Nick Evans (eds.), Catching Language: The Standing

Challenge of Grammar Writing, 137–170. Berlin, Germany: Mouton de Gruyter.

Crouch, Dick, Mary Dalrymple, Ron Kaplan, Tracy King, John Maxwell & Paula Newman. 2001.

XLE Documentation. On-line documentation, Palo Alto Research Center (PARC).

Drellishak, Scott. 2009. Widespread But Not Universal: Improving the Typological Coverage of the

Grammar Matrix: University of Washington dissertation.

Dridan, Rebecca & Timothy Baldwin. ???? Unsupervised Parse Selection for HPSG, .

Drude, Sebastian. this volume. Digital Grammars — Integrating the Wiki/CMS Approach with Lan-

guage Archiving Technology and TEI. In Sebastian Nordhoff (ed.), Electronic Grammaticography,

Honolulu: University of Hawai‘i Press.

Farrar, Scott & William D. Lewis. 2007. The GOLD Community of Practice: An Infrastructure for

Linguistic Data on the Web. Language Resources and Evaluation 41(1). 45–60.

Flickinger, Dan. 2011. Accuracy v. Robustness in Grammar Engineering. In Emily M. Bender & Jen-

nifer E. Arnold (eds.), Language from a Cognitive Perspective: Grammar, Usage and Processing,

31–50. Stanford, CA: CSLI Publications.

Fokkens, Antske. 2011. Metagrammar Engineering: Towards Systematic Exploration of Implemented

Grammars. In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-

guistics: Human Language Technologies, 1066–1076. Portland, OR.

Ghodke, Sumukh & Steven Bird. 2010. Fast Query for Large Treebanks. In Human Language Tech-

nologies: The 2010 Annual Conference of the North American Chapter of the Association for Com-

putational Linguistics, 267–275. Los Angeles, CA. http://www.aclweb.org/anthology/N10-1034.

Good, Jeff. 2004. The Descriptive Grammar as a (Meta)Database. In Proceedings of the E-MELD

Workshop 2004: Linguistic Databases and Best Practice, Detroit, Michigan.

Good, Jeff. this volume. Deconstructing Descriptive Grammars. In Sebastian Nordhoff (ed.), Elec-

tronic Grammaticography, Honolulu: University of Hawai‘i Press.

Hashimoto, Chikara, Francis Bond, Takaaki Tanaka & Melanie Siegel. 2007. Semi-automatic Doc-

umentation of an Implemented Linguistic Grammar Augmented with a Treebank. Language Re-

sources and Evaluation (Special Issue on Asian Language Technology) 42(2). 117–126.

Electronic Grammaticography

http://www.aclweb.org/anthology/N10-1034

From Database to Treebank 205

Johnson, Mark, Stuart Geman, Stephen Canon, Zhiyi Chi & Stefan Riezler. 1999. Estimators for

stochastic “Unification-Based” grammars. In Proceedings of the 37th Annual Meeting of the ACl,

535–541. College Park, MD.

Kiefer, Bernd, Hans-Ulrich Krieger, John Carroll & Rob Malouf. 1999. A Bag of Useful Techniques

for Efficient and Robust Parsing. In Proceedings of the 37th Annual Meeting of the ACl, 473–480.

College Park, MD.

Lai, Catherine & Steven Bird. 2004. Querying and updating treebanks: A critical survey and require-

ments analysis. In Proceedings of the Australasian Language Technology Workshop, 139–146.

Sydney, Australia.

Lewis, William D. & Fei Xia. 2007. Automatically Identifying Computationally Relevant Typolog-

ical Features. In Proceedings of the Third International Joint Conference on Natural Language

Processing, 685–690. Hyderabad, India.

Lezius, Wolfgang & Esther König. 2000. Towards a Search Engine for Syntactically Annotated Cor-

pora. In KONVENS 2000 / Sprachkommunikation, Vorträge der gemeinsamen Veranstaltung 5.

Konferenz zur Verarbeitung natürlicher Sprache (KONVENS), 6. ITG-Fachtagung “Sprachkom-

munikation”, 113–116. Berlin, Germany.

Lønning, Jan Tore, Stephan Oepen, Dorothee Beermann, Lars Hellan, John Carroll, Helge Dyvik,

Dan Flickinger, Janne Bondi Johannessen, Paul Meurer, Torbjørn Nordgård, Victoria Rosén & Erik

Velldal. 2004. LOGON. A Norwegian MT Effort. In Proceedings of the Workshop in Recent

Advances in Scandinavian Machine Translation, Uppsala, Sweden.

MacKinlay, Andrew, Timothy Baldwin, Dan Flickinger & Rebecca Dridan. ???? Using External

Treebanks to Filter Parse Forests for Parse Selection and Treebanking, .

Marcus, Mitchell P., Beatrice Santorini & Mary Ann Marcinkiewicz. 1993. Building a Large Anno-

tated Corpus of English: The Penn Treebank. Computational Linguistics 19(2). 313–330.

Maxwell, Mike. this volume. Electronic Grammars and Reproducible Research. In Sebastian Nordhoff

(ed.), Electronic Grammaticography, 207–234. Manoa: University of Hawai’i Press.

Meurers, W. Detmar, Gerald Penn & Frank Richter. 2002. A Web-based Instructional Platform for

Constraint-Based Grammar Formalisms and Parsing. In Proceedings of the ACL 2002 workshop

on Effective Tools and Methodologies for Teaching NLP and CL, 18–25. Philadelphia, PA.

Müller, Stefan. 1999. Deutsche Syntax deklarativ: Head-Driven Phrase Structure Grammar für das

Deutsche. Tübingen, Germany: Max Niemeyer Verlag.

Müller, Stefan & Walter Kasper. 2000. HPSG Analysis of German. In Wolfgang Wahlster (ed.),

Verbmobil: Foundations of Speech-to-Speech Translation, 238–253. Berlin, Germany: Springer.

Musgrave, Simon & Nick Thieberger. this volume. Language description and hypertext: Nunggubuyu

as a case study. In Sebastian Nordhoff (ed.), Electronic Grammaticography, 63–77. Manoa: Uni-

versity of Hawai’i Press.

Noonan, Michael. 2006. Grammar Writing for a Grammar-Reading Audience. Studies in Language

30. 351–365.

Nordhoff, Sebastian. 2007. Growing a Grammar with Galoes. Paper presented at the DoBeS work-

shop.

Nordhoff, Sebastian. 2008. Electronic Reference Grammars for Typology: Challenges and solutions.

Language Documentation & Conservation 2. 296—-324.

Electronic Grammaticography

Electronic Grammars and Reproducible Research 206

Nordlinger, Rachel. 1998. A Grammar of Wambaya, Northern Australia. Canberra: Research School

of Pacific and Asian Studies, The Australian National University.

Oepen, Stephan, Daniel Flickinger, Kristina Toutanova & Christopher D. Manning. 2004. LinGO

Redwoods. A Rich and Dynamic Treebank for HPSG. Journal of Research on Language and

Computation 2(4). 575–596.

Oepen, Stephan & Daniel P. Flickinger. 1998. Towards Systematic Grammar Profiling. Test Suite

Technology Ten Years After. Journal of Computer Speech and Language 12 (4) (Special Issue on

Evaluation). 411–436.

Pollard, Carl & Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar Studies in Contem-

porary Linguistics. Chicago, IL and Stanford, CA: The University of Chicago Press and CSLI

Publications.

Resnik, Philip, Aaron Elkiss, Ellen Lau & Heather Taylor. 2005. The Web in Theoretical Linguistics

Research: Two Case Studies Using the Linguist’s Search Engine. In 31st Meeting of the Berkeley

Linguistics Society, 265–276. Berkeley, USA.

Rice, Keren. 2006. A Typology of Good Grammars. Studies in Language 30. 385–415.

Riezler, Stefan, Tracy Holloway King, Richard S. Crouch, John T Maxwell & Ronald M. Kaplan.

2002. Parsing the Wall Street Journal using a Lexical-Functional Grammar and discriminative

estimation techniques. In Proceedings of the 40th Annual Meeting of the ACL and 3rd Annual

meeting of the naacl (acl-02), 7–12. Philadelphia, PA.

Rohde, Douglas L. T. 2005. TGrep2 User Manual Version 1.15. http://tedlab.mit.edu/~dr/TGrep2/

tgrep2.pdf.

Siegel, Melanie & Emily M. Bender. 2002. Efficient Deep Processing of Japanese. In Proceedings

of the 3rd Workshop on Asian Language resources and international standardization at the 19th

international conference on computational linguistics, Taipei, Taiwan.

Tanaka, Takaaki, Francis Bond, Stephan Oepen & Sanae Fujita. 2005. High precision treebanking:

blazing useful trees using POS information. In Proceedings of the 43rd Annual Meeting on Asso-

ciation for Computational Linguistics, 330–337. Ann Arbor, MI.

Toutanova, Kristina, Chistopher D. Manning, Dan Flickinger & Stephan Oepen. 2005. Stochastic

HPSG parse selection using the Redwoods corpus. Journal of Research on Language and Compu-

tation 3(1). 83–105.

Tukey, John W. 1977. Exploratory Data Analysis. Reading, MA: Addison-Wesley.

Weber, David. 2006. Thoughts on Growing a Grammar. Studies in Language 30. 417–444.

Zaefferer, Dietmar. 1998. Einleitung: Allgemeine Vergleichbarkeit als Herausforderung für die

Sprachbeschreibung. In Dietmar Zaefferer (ed.), Deskriptive Grammatik und Allgemeiner

Sprachvergleich, 1–5. Tübingen, Germany: Niemeyer.

Zhang, Yi & Valia Kordoni. 2010. Discriminant ranking for efficient treebanking. In Proceedings of

the 23rd International Conference on computational linguistics (coling 2010), 1453–1461. Beijing,

China.

Electronic Grammaticography

http://tedlab.mit.edu/~dr/TGrep2/tgrep2.pdf
http://tedlab.mit.edu/~dr/TGrep2/tgrep2.pdf

