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Abstract This paper reviews the state of the art of research

and industry practice on demand response and the new

methodology of transactive energy. Demand response

programs incentivize consumers to align their demand with

power supply conditions, enhancing power system relia-

bility and economic operation. The design of demand

response programs, performance of pilot projects and

programs, consumer behaviors, and barriers are discussed.

Transactive energy is a variant and a generalized form of

demand response in that it manages both the supply and

demand sides. It is intended for a changing environment

with an increasing number of distributed resources and

intelligent devices. It utilizes the flexibility of various

generation/load resources to maintain a dynamic balance of

supply and demand. These distributed resources are con-

trolled by their owners. However, the design of transaction

mechanisms should align the individual behaviors with the

interests of the entire system. Transactive energy features

real-time, autonomous, and decentralized decision making.

The transition from demand response to transactive energy

is also discussed.

Keywords Demand response, Incentive-based program,

Price-based program, Direct load control, Transactive

energy

1 Introduction

1.1 What is demand response

Demand response is defined by the U.S. Federal Energy

Regulatory Commission as follows [1].

Changes in electric usage by end-use customers from

their normal consumption patterns in response to changes

in the price of electricity over time, or to incentive pay-

ments designed to induce lower electricity use at times of

high wholesale market prices or when system reliability is

jeopardized.

Demand response contributes to the economy and reli-

ability of a power system. From an economic point of view,

demand response can shift energy use from high-cost to

low-cost periods, thus reducing the costs of generation.

From a power system reliability point of view, demand

response can help maintain the system frequency and

supply-demand balance.

Demand response programs can be categorized into

incentive-based and price-based programs. They differ in

what drives customers to change their consumption

behaviors, i.e., incentive payments or time-varying prices.

Incentive-based programs take a variety of forms. A pop-

ular form is direct load control (DLC), in which customers

receive incentives and allow power companies to control

some of their loads at certain times. Incentive-based pro-

grams were initially implemented in 1968 [2], when Detroit

Edison, a power utility, implemented a DLC program.

Price-based programs expose customers to prices that vary
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within 24 hours a day. They gain popularity as a result of

installation of the smart meter technology [3]. Traditional

meters accumulate energy usage over time, and customers

are billed typically on a monthly basis. In contrast, smart

meters can record energy usage on a more frequent basis,

e.g., every 10 minutes, making time-varying pricing tariffs

feasible.

1.2 What is transactive energy

Since the first demand response program was imple-

mented, power systems have become much more complex.

Distributed resources increasingly penetrate the grid, and

generation has become more variable [4]. Also, intelligent

devices such as smart thermostats are more accessible [5].

According to [5], networks of smart devices take com-

plexity to ‘‘a scale where we cannot manage things cen-

trally.’’ Furthermore, these new resources are mostly

controlled by end users. It is a challenging task to monitor

and manage these devices in real time. Traditional demand

response programs have to adapt in the new

environment.

Transactive energy is associated with ‘‘democratization

of electricity’’, ‘‘eBay of electricity’’, and ‘‘internet of

things’’ [6]. According to GridWise Architecture Council,

transactive energy is ‘‘a set of economic and control

mechanisms that allow the dynamic balance of supply and

demand across the entire electrical infrastructure using

value as a key operational parameter’’ [7]. The term

‘‘value’’ here basically equates to prices.

Under the framework of transactive energy, dis-

tributed flexible resources are directly controlled by their

owners. Transaction mechanisms are designed to align

individual behaviors with the system’s interests. Similar

to existing demand response programs, transactive

energy is concerned with creating incentives to ensure

all resources are generating/consuming electricity in a

system friendly manner. However, transactive energy

extends the concept of demand response to both the

supply side and demand side, and aims to balance sup-

ply and demand in a real-time, autonomous, and

decentralized manner.

1.3 Comparison

An example is given to illustrate existing demand

response programs and potential transactive energy pro-

grams. Consider a scenario with a photovoltaic (PV) and

some flexible loads. Due to forecasting errors, PV gener-

ation is lower than expected. To re-balance power supply

and demand, different methods will be used in transactive

energy programs and conventional demand response

programs.

In a price-based program, the market will temporarily

raise electricity prices, expecting that consumers will

reduce their load.

In a DLC program, the control center managing the area

will remotely control and curtail some load.

In a transactive energy pilot in the U.S. Pacific North-

west, all flexible loads are represented by one agent [8, 9].

The load balancing authority is represented by another

agent. The balancing authority agent negotiates with the

load agent, requesting it to lower consumption.

In an extended form of transactive energy scheme, the

PV will negotiate with the flexible loads. The PV will

‘‘buy’’ from the flexible loads the difference between its

forecasted generation and actual generation. Table 1

compares the above schemes from three aspects.

Section 2 and Section 3 will review the industry prac-

tice and research on demand response. Section 4 gives an

overview of transactive energy, including its features,

applications, and concerns.

2 Demand response: industry practice

2.1 Classifications of demand response programs

In incentive-based programs, users are offered monetary

incentives and agree to reduce load to help maintain system

reliability or to avoid high generation costs. DLC, inter-

ruptible load, and load as a capacity resource are common

incentive-based programs [1].

In a DLC program, a power company is allowed to

remotely control participants’ appliances such as heating,

ventilating, and air conditioning (HVAC), water heaters, or

pool pumps. For example, HVAC can be controlled to be

cycled on and off via a switch on the compressor, or by

adjusting room temperature set points via a smart

thermostat.

In an interruptible load program, participants are subject

to load interruption during system contingencies.

In a program where load serves as a capacity resource,

participants commit to load reduction by pre-specified

levels when system contingencies arise.

Price-based demand response provides time-varying

price signals to induce consumers to reduce energy usage

during high-price hours. According to [1, 3, 10, 11], time-

varying tariffs typically include time-of-use (TOU) tariffs,

critical peak pricing (CPP) tariffs, critical peak rebate

(CPR) tariffs, and real time pricing (RTP) tariffs.

TOU is a tariff where electricity prices vary by time

periods, each period being a block of hours. A 24-hour day

is typically divided into peak hours and off-peak hours. In

summer, for example, peak hours can include 6 hours in

weekday afternoons, whereas off-peak hours include all
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other hours in the week. Prices are pre-determined at the

beginning of a tariff cycle and kept constant until the end

of the cycle (e.g., a season).

CPP is similar to a TOU, except that power companies

are entitled to call critical events during a time period of

high wholesale market prices and/or system emergency

conditions. A critical event lasts for a limited number of

hours, within which electricity prices increase substantially

to incentivize users to reduce energy usage. When critical

events are called, the time and duration of the price

increase can either be pre-determined or vary based on how

much load needs to be reduced in the events.

CPR is analogous to CPP, except that during a critical

event, electricity prices remain the same while a user is

refunded for a pre-determined rebate. The billing factor is a

user’s usage reduction relative to what the power com-

pany’s expectation.

RTP is a tariff where the retail prices track wholesale

market prices. As a result, it typically fluctuates hourly or

more often.

Electricity rates in time-varying tariffs reflect the time-

varying energy costs. The following cost components

should be included in these tariffs [12].

1) Monthly fixed charge per customer to recover the costs

that vary with the number of customers but do not vary

with electricity usage.

2) Distribution facility charge per kW of peak demand to

recover the operation and maintenance costs of local

distribution facilities.

3) Location-specific and time-varying charge per kWh of

energy usage to recover the marginal costs of

electricity generation.

2.2 Findings of demand response pilots

and programs

2.2.1 Overall performances and challenges

Starting from 2006, each year the U.S. Federal Energy

Regulatory Commission publishes an Assessment of

Demand Response and Advanced Metering Staff Report

[1, 13, 14]. These reports document the latest progress of

U.S. demand response programs, lessons learned, and

trends. For example, one can find in these reports the peak

load reduction by customer class in the U.S. In Fig. 1

(source: 2012 Assessment of Demand Response and

Advanced Metering Staff Report), the largest portion of

peak load reduction is attributable to commercial &

industrial customers and wholesale market participants.

The growth of peak load reduction is mainly driven by

those customers. Relatively, residential customers make a

modest contribution to peak load reduction.

These reports also identified some barriers to demand

response as follows.

1) Customers have not been fully engaged. It is chal-

lenging to expect a large number of consumers to

actively participate for monetary incentives. They

need to be informed about the significance and

opportunities of demand response.

2) Uniform standards for demand response pricing and

incentives have not been established. Incentives,

prices, and information exchange protocols are typi-

cally designed on a company-specific basis.

3) The measurement and cost-effectiveness of demand

reductions continue to be an issue. It is crucial yet

unsolved how to recover the costs of deploying

demand response technologies and implementing

programs.

2.2.2 Findings of price-based programs

Reference [15] reviewed 15 time-varying pricing pilots

in the U.S. designed for households. It is found that the

Table 1 Comparison of demand response and transactive energy

Programs Decentralized Autonomous Automated

Time-varying pricing No Yes No

DLC No No Yes

Northwest Pacific transactive energy pilot Yes Yes No

Envisioned transactive energy Yes Yes Yes

Fig. 1 Potential peak reduction by customer class
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magnitude of peak load reduction depends on several fac-

tors, including the presence of central air conditioning,

magnitude of the price increase, and availability of

enabling technologies (such as programmable communi-

cating thermostats). Across various pilots, TOU induces a

peak demand reduction ranging from 3% to 6%. CPP

achieves a peak demand reduction ranging from 13% to

20%.

The promises of price-based programs are as follows.

Enabling technologies are vital to the success of time-

varying pricing. They free customers from manual response

to price changes. According to [15], CPP with enabling

technologies achieved a peak load reduction as high as 51%

in the California’s Advanced Demand Response System

program. This reveals the great potential of CPP in allevi-

ating the pressure of peak load on a power system.

However, some challenges also arise from this type of

programs.

1) The number of retail customers on price-based

programs is limited. A possible reason is that retail

customers’ savings in electricity bill resulting from a

change in consumption behavior are trivial relative to

the efforts to make such changes [16]. Another

possible reason is that most retail customers are risk-

averse and are not in favor of price variations [17].

2) Price-based programs may fail without technologies

that enable automated response. According to [18],

consumers, especially residential consumers, may not

self-respond to prices in a meaningful manner. The

largest TOU pricing pilot in the U.S. operated by

Puget Sound Energy was discontinued. It turned out

that a number of consumers had to pay more than they

do under flat tariffs [5]. The lesson is that one can lose

consumers’ time and attention by asking them to

manually self-adjust their usage behaviors.

2.2.3 Findings of incentive-based programs

As opposed to price-based program participants, par-

ticipants in DLC are not expected to self-change con-

sumption behaviors. Reference [19] surveyed a number of

DLC programs. The recruitment incentives in the programs

include free installation of enabling equipment, one-time

payments, and/or a recurring annual payment. It is reported

that an average peak load reduction between 0.8 and 1.5

kW is achievable per residential participant. Small com-

mercial and industrial participants can reach an average

reduction between 2 and 4 kW.

The promises of DLC programs include the

following.

In a DLC program, a participant can receive incentive

payments without additional efforts beyond enrollment.

Therefore, peak load reduction can be more significant and

controllable compared to time-varying pricing [20]. In a

Federal Energy Regulatory Commission survey, DLC

ranked first in total peak load reduction potential [1].

Some associated challenges are as follows.

1) Based on the survey in [19], only 43% of customers

expressed an interest in DLC while 74% of customers

were interested in time-varying pricing. Recent pilots

have shown that the inconvenience associated with the

mandatory electricity interruption from DLC can lead

to potential reluctance among consumers [17].

2) Privacy and equity issues also arise from DLC

programs. How can one convince customers that

DLC will not jeopardize their privacy? Who should

pay the incentives? How should program benefits be

shared? These are important decisions for a successful

DLC program.

3 Demand response: research

Research on time-varying pricing can be categorized

into two types: how to characterize consumers’ behaviors

under a time-varying electricity tariff and how to design a

time-varying tariff that fully exploits users’ demand

response potentials.

Models characterizing consumer behaviors fall into two

categories: price elasticity and utility functions. The price

elasticity of electricity demand, including own price elas-

ticity and elasticity of substitution, is studied in [21–26].

Own price elasticity refers to the percentage change in

electricity demand in response to a percentage change in

price of that same time period [27]. Elasticity of substitu-

tion refers to the elasticity of the ratio of demand in two

different time periods with respect to the ratio of prices in

those two time periods [27]. It indicates how easy it is for

consumers to substitute demand in one period for another.

The work of [28–33] models consumer behaviors via utility

functions, including quadratic function, logarithm function,

and power function. Consumers are assumed to be rational

and, therefore, determine their load patterns by maximizing

utility.

Approaches for designing time-varying tariffs include

deterministic programming [22], stochastic programming

[21, 23], and game theory [28, 34]. A single-level opti-

mization problem is formulated by both deterministic and

stochastic programming approaches. The decision vari-

ables are prices, and consumers’ elasticity is used to depict

their responses to prices. The stochastic programming

approach differs from the deterministic one in that the

former captures uncertainties associated with consumer

behaviors. Game-theory-based approaches feature a two-
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level optimization problem. In the upper level, a tariff

designer, e.g., a power company, acts as a leader to set

time-varying prices. In the lower level, consumers act as

followers and behave to maximize their utility.

The above work does not rely on knowledge about

specific load models. On the other hand, DLC programs

allow power companies to access specific loads owned by

consumers. This gives rise to another research direction,

i.e., to develop demand response strategies for specific

loads [35], such as HVAC loads, batteries, electric vehicles

(EVs), data centers, and computer servers.

Among these flexible loads, HVAC draws most atten-

tion and is normally considered flexible for two reasons.

First, minor temperature changes in customers’ buildings

may not adversely impact human comfort [36]. Then, heat

can be stored in buildings because of building thermal

insulation, which further enables buildings to ‘‘store’’

electricity. That is, buildings can be overheated or over-

cooled when electricity prices are low, so HVAC devices

can be turned off when electricity prices go up. In the work

of [20, 37–39], HVAC loads are scheduled to minimize

consumer electricity bills. These studies capture the ther-

modynamics of buildings and temperature constraints set

by consumers. It is shown that the HVAC control

scheme has a dramatic effect on both system-wide peak

load and consumer electricity bills.

A battery is another promising resource for demand

response. Indeed, a battery can arbitrage using price dif-

ferences among time periods. That is, a battery can be

charged when prices are low and discharged when prices

are high. References [40, 41] derive the charging/dis-

charging schedules for batteries, taking into account

changes in batteries’ state of charge, charging/discharging

rate limits, energy capacities, and impact of charging/dis-

charging on battery life.

An EV, irrigation pump, or water heater can be

responsive to price variations because they are deferrable

loads. That is, they need to consume a certain amount of

kWh energy within a certain time window, but it is flexible

regarding how much kW load they need to consume at each

instant. References [42, 43] deal with the design load

schedules for such deferrable devices.

4 Transactive energy: overview

4.1 Characteristics of transactive energy

Transactive energy is designed to maintain the real-time

balance of supply and demand in an environment where the

number of distributed and self-controlled generation/load

resources is rapidly increasing. It highlights the following

features.

1) Distributed intelligent devices are controlled in real-

time. Transactive energy can take place at time scales

from fractions of a second to hours, whereas typical

demand response takes place at time scales of hours or

days [44].

2) These devices are ‘‘controlled’’ based on economic

incentives rather than centralized commands. The

participation of devices in balancing supply and

demand is voluntary.

3) These devices exchange information and make trans-

actions in a decentralized way to ensure the scalability

of the control system.

4) These devices are managed under human supervision

rather than human-in-the-loop operation. That is, these

devices should be automated to enable real-time

transactions and control.

5) These devices are controlled by their owners rather

than power companies to ensure autonomy and protect

customer privacy.

6) Transactive energy provides joint market and control

functionality.

7) Both supply-side resources and demand-side resources

are coordinated.

As a generalization of demand response, transactive

energy exploits the flexibility of distributed generation and

load resources to balance supply and demand.

There are also commonalities between the idea of

transactive energy and that of smart grid. However, trans-

active energy highlights additional characteristics [5].

1) Transactive energy allows for faster transmission of

information, including supply and demand quantities

and prices, across the grid.

2) Transactive energy accommodates new generation

assets using a functional decentralized supply model.

3) Transactive energy accommodates two-way power

flows.

4) Transactive energy uses transactions at the retail level.

5) Transactive energy envisions that end users will have

energy management systems (EMSs).

4.2 State of the art of transactive energy

The Pacific Northwest Smart Grid Demonstration is a

$179 million transactive energy pilot project initiated in

2010 and lasting for five years [8, 9]. The project parti-

tioned the Pacific Northwest power grid into 27 sub-regions

that can exchange information with one another. Each sub-

region had a local balancing authority. The authority esti-

mated the cost of electricity delivered to neighboring sub-

regions. The cost was dependent on an estimate of the

quantity of power to be exported. The authority
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communicated the cost information with neighboring sub-

regions. Its neighbors in turn fed back the quantity of

power they would like to import. If the quantity in their

feedback matched the quantity in the authority’s estimate,

no additional information would be exchanged. If there was

a disagreement, say, neighbors wanted to import more

electricity than estimated, the authority would update (in

this case raise) the cost of power export and neighbors

would update (in this case lower) the quantity of power

import. This process iterated until the cost and quantity of

power export matched to the authority. The power

exchange scheme above is analogous to centralized eco-

nomic dispatch, but features decentralized and autonomous

decision-making by sub-regions.

A transactive energy scheme is introduced in [45],

where during a high-price event, flexible loads and less

flexible loads negotiate to reach a consensus to reduce

demand. Flexible loads receive compensation from less

flexible loads because the former can avoid a price spike by

reducing load. This transactive scheme features decentral-

ized and autonomous decision-making between the two

consumers. However, the scalability of this negotiation

scheme should be further studied when hundreds and

thousands of loads are involved.

A transactive energy scheme is envisioned by Pacific

Northwest National Laboratory (PNNL) [46], where indi-

vidual loads communicate with neighborhoods and determine

respective energy consumption schedules in order to smooth

their aggregate load curves. This transactive scheme also

features decentralized and automated decision-making.

However, it is unclear how consumers are incentivized to alter

their energy usage patterns. Nor does [46] estimate the

monetary benefits of smoothing load curves vs. the comfort

degradation arising from user behavior changes.

Reference [47] demonstrates a residential transactive

energy scheme, where a retail electricity market is run on a

distribution feeder every 5 minutes. Each building sends a

demand bid to an operation center located at a substation.

The operation center assembles bids from all buildings on

the same feeder to form an aggregate demand bidding

curve. Supposing that the supply bidding curve in the

feeder’s area is known, the clearing price can be found at

the point where the supply and demand curves inter-

sect. This clearing price is broadcast to all participants so

each smart device knows how to behave. This approach

features automated and autonomous decision-making.

Information exchange is limited to only a feeder to avoid

the scalability issue when centralizing all information in

the operation center. By finding the local instead of global

market equilibrium, however, the optimality of the out-

come may be compromised.

Reference [48] argues that existing bulk power markets

are also examples of transactive energy systems, because

prices and economic signals are used in these markets to

drive economic efficiency and balance supply and demand.

Wholesale power markets in California, Texas, and New

York maintain the real-time balance in power supply and

demand through largely centralized operations, such as

security constrained economic dispatch (SCED) [49–51].

From the authors’ perspective, however, wholesale market

mechanisms such as SCED may not be directly copied to

distribution systems where the number of players can get

extremely large. Transactions and control functionalities

need to be decentralized and automated in a transactive

energy ecosystem.

4.3 Potential transactive energy scheme

This paper also envisions an extended transactive energy

scheme. The scheme requires that each transactive node in

the power system provide and execute a generation/load

schedule. A transactive node is a node equipped with an

agent that communicates with other agents and makes

automated decisions. The generation/load schedules can be

determined either day-ahead or hour-ahead, and derive

from either self-schedules or pool-market clearing. Any

deviation of a schedule would result in a deviation

charge.

If one transactive node cannot follow its schedule in

real-time, it will publish a request regarding the MW

energy deviation it needs to eliminate. The recipients are its

‘‘qualified trading partners’’, i.e., nodes that the transactive

node trusts and prefers to make transactions with. A partner

should also be physically close to the transactive node to

localize the transactions and avoid significant network flow

changes. Upon receipt of the request, the partners respond

by returning offers that specify the MW electricity they are

willing to generate/consume and the prices of their offers.

The transactive node can then decide whether to accept one

or more of these offers. Once an offer is accepted, the

corresponding partner alters its schedule to offset the

transactive node’s deviation, and the transactive node

avoids penalty charges.

Figure 2 illustrates one application of this scheme. A

transactive node with a PV has to generate 1 MWh less

electricity than is scheduled in the next 5 minutes due to

weather forecast errors. To avoid deviation charges, this

node sends a request to four partners, i.e., three buildings

and one battery. The partners have schedules to follow (the

red dotted lines in Fig. 2) and flexible loads that allow

them to change consumption patterns. By estimating the

potential loss (e.g., comfort loss arising from 1 MWh usage

reduction), each partner returns an offer to the PV node.

The PV node then makes a transaction with building 1 who

offers 1 MWh usage reduction with the lowest price. As a

result, both the PV node and building 1 change the
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schedules (from original red dotted lines to black solid

lines), passively and actively, respectively. The changes

offset each other, so the rest of nodes can still stick to

schedules while the power balance is still maintained.

Under this mechanism, supply and demand are balanced

as long as all resources track their schedules. In case some

node is to deviate from its schedule in real-time, localized

and decentralized transactions allow the node to fix the

deviation with its partners, while the rest of nodes are

immune to changes.

Several research topics regarding this mechanism are

identified as follows.

1) To ensure the global optimality of this mechanism, a

transactive node’s qualified trading partners should

include every other transactive node in the power grid.

To ensure real-time communicational and computa-

tional tractability, a transactive node’s qualified trad-

ing partners should be limited to a small number of its

neighboring nodes. It is practical to define the qualified

trading partners by making tradeoffs between opti-

mality and practicability.

2) The transactive node launches an auction when it

needs partners’ help to offset a deviation. There are

four major auction types [52], i.e., open ascending

price auction, open descending price auction, sealed-

bid first-price auction, and sealed-bid second-price

auction. The differences of the four auctions are to be

illustrated using Fig. 2. Table 2 shows the payments to

each player under the four auctions.

The sealed-bid second-price auction is strategy-proof

and ensures that the optimal strategy for each player is to

bid his/her true valuation. Therefore, by a sealed-bid sec-

ond-price auction one can infer that the four bidders’ val-

uations of 1 MWh electricity are $90, $100, $110, and

$120. By contrast, the first three auctions incentivize

players to strategize. If the four bidders’ valuations are $90,

$100, $110, and $120, Player 1 would not just bid $90 and

receive $90 under the first three auctions. Player 1 would

try to estimate the second lowest price among all bids and

set his/her bid just a bit lower than the second lowest price.

In the first three auctions, Player 1 can bid $99.99 (a bit

lower than $100). By doing so, Player 1 still wins and

maximizes his/her payoff.

It is important to study which auction type is more

appropriate for the transactive scheme. Among them a

sealed-bid second-price auction may be most suitable,

because it is strategy-proof and improves the efficiency of

the auction process. In case the transactive node needs to

divide its MW deviation into multiple pieces and buy/sell

these pieces to multiple partners, a Vickrey–Clarke–Groves

(VCG) auction may be used [53]. It is a generalization of a

sealed-bid second-price auction with multiple items.

3) It is important to identify the bidding strategy for the

partners. A partner may lower its utility by altering its

schedule to offset the transactive node’s deviation. The

partner should quantify its degradation of utility

arising from schedule changes. This utility degradation

can serve as a basis of bidding prices.

4.4 Promises and challenges of transactive energy

Transactive energy is motivated by the need to manage a

complex system consisting of a large number of distributed

Fig. 2 Illustration of one potential transactive energy scheme

Table 2 Comparison of auction types

Player Open ascending($) Open descending($) Sealed-bid first-

price($)

Sealed-bid second-

price($)

Bid Pay Bid Pay Bid Pay Bid Pay

Player 1 90 90 90 90 90 90 90 100

Player 2 100 0 100 0 100 0 100 0

Player 3 110 0 110 0 110 0 110 0

Player 4 120 0 120 0 120 0 120 0
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and self-controlled generation/load resources. Those con-

trollable and flexible resources, either on the supply side or

demand side, are incentivized to cooperate with those

noncontrollable and variable ones. Some potential benefits

that transactive energy is expected to deliver include: (a) it

optimizes the use of distributed energy resources; (b) it

improves power system efficiency and reliability; (c) it

reduces the requirements for capacities and spinning

reserves to address generation/load uncertainties; (d) it

creates a fair and transparent platform that allows all

resources to transact.

However, there are also challenges that stakeholders

should consider [5].

1) Technology. What is the current level of automation of

energy management devices and appliances? Are they

ready for deployment, reliable and affordable?

2) Scalability. A distributed platform in the transactive

world is expected to scale well. Can the platform

function well when the number of smart devices in the

distribution system increases significantly?

3) System management. As a highly centralized control

system moves toward a more decentralized system,

who will oversee and govern such a platform? The

emerging technology of blockchain is perceived as a

promising platform for transactive energy due to its

decentralized, cyber-attack proof, and transparent

feature [54]. Can a blockchain platform manage

problems such as congestion, power quality, and

reliability?

4) Consumer behavior. Transactive energy is based on

the vision that ‘‘individual customers understand their

needs best [55].’’ Is transactive energy empowering

consumers or making their lives more complicated?

How can one prepare consumers for this new concept?

How can consumers derive enough values from this

platform so they are willing to participate?

All these questions are crucial for the transition from

conventional demand response to transactive energy, and

should be further studied by the industry and academia.

5 Conclusion

Although significant progress has been made in demand

response, there are outstanding barriers to overcome to

further its performance. In addition, the power grids are

undergoing a transformative change that requires demand

response to adapt. Transactive energy has been proposed as

a promising solution that goes beyond demand response. It

is expected to maintain the dynamic balance of supply and

demand by enabling real-time, decentralized, automated,

and autonomous transactions among distributed generation

and load resources. In this emerging field, much research is

needed. One can identify the value proposition of trans-

active energy, design the mechanics of how it should

function, develop enabling platforms, and derive strategies

for individual participants.
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