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From Denoising to Compressed Sensing
Christopher A. Metzler, Arian Maleki, and Richard G. Baraniuk

Abstract—A denoising algorithm seeks to remove noise, errors,
or perturbations from a signal. Extensive research has been
devoted to this arena over the last several decades, and as a
result, todays denoisers can effectively remove large amounts
of additive white Gaussian noise. A compressed sensing (CS)
reconstruction algorithm seeks to recover a structured signal
acquired using a small number of randomized measurements.
Typical CS reconstruction algorithms can be cast as iteratively
estimating a signal from a perturbed observation. This paper
answers a natural question: How can one effectively employ a
generic denoiser in a CS reconstruction algorithm? In response,
we develop an extension of the approximate message passing
(AMP) framework, called Denoising-based AMP (D-AMP), that
can integrate a wide class of denoisers within its iterations. We
demonstrate that, when used with a high performance denoiser
for natural images, D-AMP offers state-of-the-art CS recovery
performance while operating tens of times faster than competing
methods. We explain the exceptional performance of D-AMP by
analyzing some of its theoretical features. A key element in D-
AMP is the use of an appropriate Onsager correction term in its
iterations, which coerces the signal perturbation at each iteration
to be very close to the white Gaussian noise that denoisers are
typically designed to remove.

Index Terms—Compressed Sensing, Denoiser, Approximate
Message Passing, Onsager Correction

I. INTRODUCTION

A. Compressed sensing

The fundamental challenge faced by a compressed sens-

ing (CS) reconstruction algorithm is to reconstruct a high-

dimensional signal from a small number of measurements. The

process of taking compressive measurements can be thought of

as a linear mapping of a length n signal vector xo to a length

m, m ! n, measurement vector y. Because this process is

linear, it can be modeled by a measurement matrix Φ P C
mˆn.

The matrix Φ can take on a variety of physical interpretations:

In a compressively sampled MRI, Φ might be sampled rows

of an nˆn Fourier matrix [1], [2]. In a single pixel camera, Φ

might be a sequence of 1s and 0s representing the modulation

of a micromirror array [3].

Oftentimes a signal xo is sparse (or approximately sparse)

in some transform domain, i.e., xo “ Ψu with sparse u,

where Ψ represents the inverse transform matrix. In this case

we lump the measurement and transformation into a single

measurement matrix A “ ΦΨ. When a sparsifying basis is
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not used A “ Φ. Future references to the measurement matrix

refer to A.

The compressed sensing reconstruction problem is to deter-

mine which signal xo produced y when sampled according

to y “ Axo ` w where w represents measurement noise.

Because A P R
mˆn and m ! n, the problem is severely

under-determined.1 Therefore to recover xo one first assumes

that xo possesses a certain structure and then searches, among

all the vectors x that satisfy y « Ax, for one that also exhibits

the given structure. In case of sparse xo, one recovery method

is to solve the convex problem

minimize
x

}x}1 subject to }y ´ Ax}22 ď λ, (1)

which is known formally as basis pursuit denoising (BPDN).

It was first shown in [4], [5] that if xo is sufficiently sparse and

A satisfies certain properties, then (1) can accurately recover

xo.

The initial work in CS solved (1) using convex programming

methods. However, when dealing with large signals, such as

images, these convex programs are extremely computationally

demanding. Therefore, lower cost iterative algorithms were

developed; including matching pursuit [6], orthogonal match-

ing pursuit [7], iterative hard-thresholding [8], compressive

sampling matching pursuit [9], approximate message passing

[10], and iterative soft-thresholding [11]–[16], to name just a

few. See [17], [18] for a complete set of references.

Iterative thresholding (IT) algorithms generally take the

form
xt`1 “ ητ pA˚zt ` xtq,
zt “ y ´ Axt,

(2)

where ητ pyq is a shrinkage/thresholding non-linearity, xt is the

estimate of xo at iteration t, and zt denotes the estimate of the

residual y´Axo at iteration t. When ητ pyq “ p|y|´τq`signpyq
the algorithm is known as iterative soft-thresholding (IST).

AMP extends iterative soft-thresholding by adding an extra

term to the residual known as the Onsager correction term:

xt`1 “ ητ pA˚zt ` xtq,
zt “ y ´ Axt ` 1

δ
zt´1xη1

τ pA˚zt´1 ` xt´1qy.
(3)

Here, δ “ m{n is a measure of the under-determinacy

of the problem, x¨y denotes the average of a vector, and
1

δ
xη1

τ pA˚zt´1 ` xt´1qy, where η1
τ represents the derivative

of ητ , is the Onsager correction term. The role of this term

is illustrated in Figure 1. This figure compares the QQplot2

of xt ` A
˚zt ´ xo for IST and AMP. We call this quantity

1Note that for notational simplicity in our current derivations and algorithms
we restrict A to be in Rmˆn. However, an extension to Cmˆn is also
possible.

2A QQplot is a visual inspection tool for checking the Gaussianity of
the data. In a QQplot, deviation from a straight line is an evidence of non-
Gaussianity.
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Fig. 1. QQplot comparing the distributions of the effective noise of the
IST and AMP algorithms at iteration 5 while reconstructing a 50% sampled
Barbara test image. Notice the heavy tailed distribution of IST. AMP remains
Gaussian because of the Onsager correction term.

the effective noise of the algorithm at iteration t. As is clear

from the figure, the QQplot of the effective noise in AMP is a

straight line. This means that the noise is approximately Gaus-

sian. This important feature enables the accurate analysis of

the algorithm [10], [19], the optimal tuning of the parameters

[20], and leads to the linear convergence of xt to the final

solution [21]. We will employ this important feature of AMP

in our work as well.

B. Main contributions

A sparsity model is accurate for many signals and has

been the focus of the majority of CS research. Unfortunately,

sparsity-based methods are less appropriate for many imaging

applications. The reason for this failure is that natural images

do not have an exactly sparse representation in any known

basis (DCT, wavelet, curvelet, etc.). Figure 2 shows the

wavelet coefficients of the classic signal processing image

Barbara. The majority of the coefficients are non-zero and

many are far from zero. As a result, algorithms that seek only

wavelet-sparsity fail to recover the signal.

In response to this failure, researchers have considered more

elaborate structures for CS recovery. These include minimal

total variation [1], [22], block sparsity [23], wavelet tree

sparsity [24], [25], hidden Markov mixture models [26]–[28],

non-local self-similarity [29]–[31], and simple representations

in adaptive bases [32], [33]. Many of these approaches have

led to significant improvements in imaging tasks.

In this paper, we take a complementary approach to en-

hancing the performance of CS recovery of non-sparse signals

[34]. Rather than focusing on developing new signal models,

we demonstrate how the existing rich literature on signal

denoising can be leveraged for enhanced CS recovery.3 The

idea is simple: Signal denoising algorithms (whether based

on an explicit or implicit model) have been developed and

3In this paper, denoising refers to any algorithm that receives xo`σz, where
σz „ Np0, σ2Iq denotes the noise, as its input and returns an estimate of
xo as its output. Refer to Sections III-B and VII-A for more information on
denoisers.

Fig. 2. Histogram of the Daubechies 4 wavelet coefficients of the Barbara test
image. Notice the non-sparse distribution of the coefficients. Sparsity-based
compressed sensing algorithms fail because of this distribution.

optimized for decades. Hence, any CS recovery scheme that

employs such denoising algorithms should be able to capture

complicated structures that have heretofore not been captured

by existing CS recovery schemes.

The approximate message passing algorithm (AMP) [21],

[35] presents a natural way to employ denoising algorithms

for CS recovery. We call the AMP that employs denoiser D

D-AMP. D-AMP assumes that xo belongs to a class of signals

C Ă R
n, such as the class of natural images of a certain size,

for which a family of denoisers tDσ : σ ą 0u exists. Each

denoiser Dσ can be applied to xo ` σz with z „ Np0, Iq and

will return an estimate of xo that is hopefully closer to xo than

xo`σz. These denoisers may employ simple structures such as

sparsity or much more complicated structures, which we will

discuss in Section VII-A. In this paper we treat each denoiser

as a black box; it receives a signal plus Gaussian noise and

returns an estimate of xo. Hence, we do not assume any

knowledge of the signal structure/information the denoising

algorithm is employing to achieve its goal. This makes our

derivations applicable to a wide variety of signal classes and

a wide variety of denoisers.

D-AMP has several advantages over existing CS recovery

algorithms: (i) It can be easily applied to many different

signal classes. (ii) It outperforms existing algorithms and is

extremely robust to measurement noise (our simulation results

are summarized in Section VII). (iii) It comes with an analysis

framework that not only characterizes its fundamental limits,

but also suggests how we can best use the framework in

practice.

D-AMP employs a denoiser in the following iteration:

xt`1 “ Dσ̂tpxt ` A
˚ztq,

zt “ y ´ Axt ` zt´1divDσ̂t´1pxt´1 ` A
˚zt´1q{m,

pσ̂tq2 “
}zt}22
m

. (4)
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Fig. 3. Reconstructions of a piecewise constant signal that was sampled at a rate of δ “ 1{3. Notice that NLM-AMP successfully reconstructs the piecewise
constant signal whereas AMP, which is based on wavelet thresholding, does not.

Here, xt is the estimate of xo at iteration t and zt is an

estimate of the residual. As we will show later, xt ` A
˚zt

can be written as xo `vt, where vt can be considered as i.i.d.

Gaussian noise.4 σ̂t is an estimate of the standard deviation of

that noise. divDσ̂t´1 denotes the divergence of the denoiser.5

The term zt´1divDσ̂t´1pxt´1 ` A
˚zt´1q{m is the Onsager

correction term. We will show later that this term has a major

impact on the performance of the algorithm. The explicit

calculation of this term is not always straightforward: many

popular denoisers do not have explicit formulations. However,

we will show that it may be approximately calculated without

requiring the explicit form of the denoiser.

D-AMP applies an existing denoising algorithm to vectors

that are generated from compressive measurements. The intu-

ition is that at every iteration D-AMP obtains a better estimate

of xo and that this sequence of estimates eventually converges

to xo.

To predict the performance of D-AMP, we will employ a

novel state evolution framework to theoretically track the stan-

dard deviation of the noise, σ̂t at each iteration of D-AMP. Our

framework extends and validates the state evolution framework

proposed in [10], [21]. Through extensive simulations we show

that in high-dimensional settings (for the subset of denoisers

that we consider in this paper) our state evolution predicts the

mean square error (MSE) of D-AMP accurately. Based on the

state evolution we characterize the performance of D-AMP

and connect the number of measurements D-AMP requires to

the performance of the denoiser. We also employ the state

evolution to address practical concerns such as the tuning of

the parameters of denoisers and the sensitivity of the algorithm

to measurement noise. Furthermore, we use the state evolution

to explore the optimality of D-AMP. We postpone a detailed

discussion to Section III.

4This conjecture has been validated empirically elsewhere [21], [35], [36]
for simpler denoisers. For known σt the conjecture has been proven for scalar
denoisers in [37]. By combining the proof of [37] with the proof technique
developed in [38] we can prove the above conjecture for the scalar denoisers.
Since scalar denoisers are not of our main concern in this paper, we do not
include a proof here. We will present empirical evidence that it holds for
many of the state-of-the-art image denoising algorithms.

5In the context of this work the divergence divDpxq is simply the sum
of the partial derivatives with respect to each element of x, i.e., divDpxq “
nř

i“1

BDpxq
Bxi

, where xi is the ith element of x.

Figure 3 compares the performance of the original AMP

(which employs sparsity in the wavelet domain) with that of D-

AMP based on the non-local means denoising algorithms [39],

called NLM-AMP here. Since NLM is a better denoiser than

wavelet thresholding for piecewise constant functions, NLM-

AMP dramatically outperforms the original AMP. The details

of our simulations are given in Section VII-D.

C. Related work

1) Approximate message passing and extensions: In the

last five years, message passing and approximate message

passing algorithms have been the subject of extensive research

in the field of compressed sensing [10], [19], [21], [28], [36]–

[38], [40]–[53]. Most previously published papers consider a

Bayesian framework in which a signal prior px is defined on

the class of signals C to which xo belongs. Message passing

algorithms are then considered as heuristic approaches of

calculating the posterior mean, Epxo | y,Aq. Message passing

has been simplified to approximate message passing (AMP) by

employing the high dimensionality of the data [10]. The state

evolution framework has been proposed as a way of analyzing

the AMP algorithm [10]. The main difference between this

line of work and our work is that we do not assume any

signal prior on the signal space C. This distinction introduces

a difference between the state evolution framework we develop

in this paper and the ones that have been developed elsewhere.

We will highlight the connection between these two different

state evolutions in Section IV.

Note that in the development of D-AMP we are not

concerned about whether the algorithm is approximating a

posterior distribution for a certain prior or not. Nor are we

concerned about whether or not the denoisers used within D-

AMP’s iterations are tied to any prior. Instead, we rely on

only one important feature of AMP—that xt ` A
˚zt ´ xo

behaves similar to i.i.d. Gaussian noise. Our analysis is based

on this assumption. We validate this assumption with extensive

simulations that are presented in Section VII-C.

Donoho et al. [35] also extended the AMP framework

based upon the fact that xt ` A
˚zt ´ xo behaves similar

to i.i.d. Gaussian noise. In their framework the denoiser D

can be any scale-invariant function. There are several major

differences between our work and theirs: (i) We do not impose
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scale-invariance on the denoiser, because this assumption does

not hold for many practical denoisers. (ii) We present a far

broader validation of our method and state evolution: The

empirical validation [35] presented is concerned with very

specific simple denoisers and has remained at the level of

maximin phase transition [21]. Likewise, the state evolution

they employed in their empirical validation is based on the

Bayesian framework described above and the validations are

restricted to simple distributions. In this paper we consider a

deterministic version of the state evolution and for the first

time present evidence that such a state evolution can in fact

predict the performance of D-AMP. Note that the evidence

we present goes far beyond the match in the maximin phase

transition. This development is important because the maximin

framework employed in [35] is not useful in most practical

applications that deal with naturally occurring signals. (iii) We

present a signal-dependent parameter tuning strategy for AMP

and show that our deterministic state evolution can cope with

those situations as well. (iv) We show how practical denoisers

whose explicit functional form is not given can be employed

in AMP. (v) We investigate the optimality of D-AMP as a

means to employ different denoisers in the AMP algorithm.

While writing this paper, we became aware of another

relevant paper about extensions to the AMP algorithm [54]. In

this work, the authors employ AMP with scalar denoisers that

are better adapted to the statistics of natural images. By doing

so, they have obtained a major improvement over existing

algorithms. In this paper, we consider a much broader class

of denoisers. We not only show how the AMP algorithm can

be adapted to such denoisers; we also explore the theoretical

properties of our recovery algorithms.

2) Model-based CS imaging: Many researchers have no-

ticed the weakness of sparsity-based methods for imaging

applications and have therefore explored the use of more

complicated signal models. These models can be enforced

explicitly, by constraining the solution space, or implicitly, by

using penalty functionals to encourage solutions of a certain

form.

Initially these model-based methods were restricted to sim-

ple concepts like minimal total variation [22] and block

sparsity [23], but they have since been extended to structures

such as wavelet trees [24], [25] and mixture models [26]–[28].

Furthermore, some researchers have employed more compli-

cated signal models through non-local regularization [29]–[31]

and the use of adaptive over-complete dictionaries [32], [33].

A non-local regularization method, NLR-CS [31], represents

the current state-of-the-art in CS recovery. Through the use of

denoisers, rather than explicit models or penalty functionals,

our algorithm outperforms these methods on standard test

images.

An additional reconstruction algorithm does not fit into any

of the above categories but in many ways relates closely to

our own. Egiazarian et al. developed a denoising-based CS

recovery algorithm [55] that uses the same research group’s

BM3D denoising algorithm [56] to impose a non-parametric

model on the reconstructed signal. This method solves the

CS problem when the measurement matrix is a subsampled

DFT matrix. The method iteratively adds noise to the missing

part of the spectra and then applies BM3D to the result. In

[31] it was shown that the BM3D-based algorithm performed

considerably worse than NLR-CS. Therefore it is not tested

here.

Finally we should emphasize another major difference be-

tween our work and other approaches designed for imaging

applications. D-AMP comes with an accurate analysis that ex-

plains the behavior of the algorithm, its optimality properties,

and its limitations. Such an accurate analysis does not exist

for other methods.

D. Structure of the paper

The remainder of this paper is structured as follows: Section

II introduces our D-AMP algorithm and some of its main

features. Section III is devoted to the theoretical analysis of

D-AMP and its optimality properties. Section IV establishes

a connection between our state evolution and existing state

evolutions. Section V explains two different approaches to

calculating the Onsager correction term. Section VI explains

how to smooth poorly behaved denoisers so that they can be

used within our framework. Section VII summarizes our main

simulation results: it provides evidence on the validity of our

state evolution framework; it provides a detailed guideline on

setting and tuning of different parameters of the algorithms; it

compares the performance of our D-AMP algorithm with the

state-of-the-art algorithms in compressive imaging.

II. DENOISING-BASED APPROXIMATE MESSAGE PASSING

Consider a family of denoising algorithms Dσ for a class

of signals C. Our goal is to employ these denoisers to obtain

a good estimate of xo P C from y “ Axo ` w, where

w „ Np0, σ2
wIq. We start with the following approach that is

inspired by the iterative hard-thresholding algorithm [8] and its

extensions for block-based compressive imaging [57]–[59]. To

better understand this approach, consider the noiseless setting

in which y “ Axo, and assume that the denoiser is a projection

onto C. The affine subspace defined by y “ Ax and the set

C are illustrated in Figure 4. We assume that the point xo is

the unique point in the intersection of y “ Ax and C.

We know that the solution lies in the affine subspace

tx|y “ Axu. Therefore, starting from x0 “ 0, we move in the

direction that is orthogonal to the subspace, i.e., A˚y. A˚y is

closer to the subspace however it is not necessarily close to

C. Hence, we employ denoising (or projection in the figure)

to obtain an estimate that satisfies the structure of our signal

class C. After these two steps we obtain DpA˚yq. As is also

clear in the figure, by repeating these two steps, i.e., moving

in the direction of the gradient and then projecting onto C, our

estimate may eventually converge to the correct solution xo.

This leads us to the following iterative algorithm:6

xt`1 “ Dσ̂pA˚zt ` xtq,
zt “ y ´ Axt.

(5)

6Note that if D is a projection operator onto C and C is a convex set,
then this algorithm is known as projected gradient descent and is known to
converge to the correct answer xo.
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Fig. 4. Reconstruction behavior of denoising-based iterative thresholding
algorithm.

Fig. 5. QQplot comparing the distribution of the effective noise of D-IT and
D-AMP at iteration 5 while reconstructing a 50% sampled Barbara test image.
Notice the highly Gaussian distribution of D-AMP and the slight deviation
from Gaussianity at the ends of the D-IT QQplot. This difference is due to
D-AMP’s use of an Onsager correction term. The denoiser that is employed
in these simulations is BM3D. BM3D will be reviewed in Section VII-A.

For ease of notation, we have introduced the vector of esti-

mated residual as zt. We call this algorithm denoising-based

iterative thresholding (D-IT). Note that if we replace D (that

was assumed to be projection onto set C in Figure 4) with

a denoising algorithm we implicitly assume that xt ` A
˚zt

can be modeled as xo ` vt, where vt „ Np0, pσtq2Iq and is

independent of xo. Hence, by applying a denoiser we obtain a

signal that is closer to xo. Unfortunately, as is shown in Figure

5(a) (we will show stronger evidence in Section III-C), this

assumption is not true for D-IT. This is the same phenomenon

that we observed in Section I-A for iterative soft-thresholding.

Our proposed solution to avoid the non-Gaussianity of

the noise in the case of the iterative thresholding algorithms

was to employ message passing/approximate message passing.

Following the same path, we propose the following message

passing algorithm:

xt
¨Ña “ Dσ̂t

¨
˚̊
˚̋

»
———–

ř
b‰a Ab1z

t
bÑ1ř

b‰a Ab2z
t
bÑ2

...ř
b‰a Abnz

t
bÑn

fi
ffiffiffifl

˛
‹‹‹‚,

ztaÑi “ ya ´
ÿ

j‰i

Aajx
t
jÑa. (6)

Here, xt
¨Ña “ rxt

1Ña, x
t
2Ña, . . . , x

t
nÑasT provides an estimate

of xo. σ̂t denotes the standard deviation of the vector

vt¨Ña “

¨
˚̊
˚̋

»
———–

ř
b‰a Ab1z

t
bÑ1ř

b‰a Ab2z
t
bÑ2

...ř
b‰a Abnz

t
bÑn

fi
ffiffiffifl

˛
‹‹‹‚´ xo.

Our empirical findings, summarized in Section VII-C, show

that vt¨Ña closely resembles i.i.d. Gaussian noise in high-

dimensional settings (both m and n are large). This result

has been rigorously proved for a class of scalar denoisers and

can also be proved for a class of block-wise denoisers [35],

[36].7

Despite their advantage in avoiding the non-Gaussianity of

the effective noise vector v, message passing algorithms have

m (number of measurements) different estimates of xo; each

xt
¨Ña is an estimate of xo. Similarly, they have n different

estimates of the residual y ´ Axo. The update of all these

messages is computationally demanding. Fortunately, if the

problem is high dimensional, we can approximate a message

passing algorithm’s iterations and obtain the denoising-based

approximate message passing algorithm (D-AMP):

xt`1 “ Dσ̂tpxt ` A
˚ztq,

zt “ y ´ Axt ` zt´1
divDσ̂t´1pxt´1 ` A

˚zt´1q

m
.

(7)

The only difference between D-AMP and D-IT is again in the

Onsager correction term zt´1divDσ̂t´1pxt´1 ` A
˚zt´1q{m.

The derivation of D-AMP from the Denoising-based Message

Passing (D-MP) algorithm is similar to the derivation of

AMP from Message Passing (MP) which can be found in

Chapter 5 of [21]. Similar to D-IT, D-AMP relies on the

assumption that the effective noise vt “ xt ` A
˚zt ´ xo

resembles i.i.d. Gaussian noise (independent of the signal

xo) at every iteration. Our empirical findings confirm this

assumption: Figure 5(b) displays the effective noise at iteration

5 of D-AMP with BM3D denoising, which will be briefly

explained in Section VII-A (we call this algorithm BM3D-

AMP). Notice the clearly Gaussian distribution. Based on

this observation, and stronger evidence that we will provide

in Section VII-C, we conjecture that vt indeed behaves as

additive white Gaussian noise for high dimensional problems.

The proof of this property is left for future work. In this paper

7There are some subtle differences between our claim regarding the
Gaussianity of vt¨Ña and the claims presented in other works. Our claim
is made in a deterministic setting, while in existing works the Gaussianity
claim is made in regards to stochastic settings. This point will be clarified in
Section IV.
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we not only provide strong empirical evidence to support our

conjecture, but also explore its theoretical implications.

III. THEORETICAL ANALYSIS OF D-AMP

The main objective of this section is to characterize the

theoretical properties of the D-AMP framework. In this section

(and also in our simulations) we start the algorithm with x0 “
0 and z0 “ y. Our analysis is under the high dimensional

setting: n,m are very large while m{n “ δ ă 1 is a fixed

number. δ is called the under-determinacy of the system of

equations.

A. Notation

We use boldfaced capital letters such as A for matrices.

For a matrix A; Ai, Ai,j , and A
˚ denote its ith column,

ijth element, and its transpose, respectively. Small letters such

as x are reserved for vectors and scalars. For a vector x, xi

and }x}p denote the ith element of the vector and its p-norm,

respectively. The notations E and P denote the expected value

of a random variable (or a random vector) and probability of

an event, respectively. If the expected value is with respect

to two random variables X and Z, then EX (or EZ) denotes

the expectation with respect to X (or Z) and E denotes the

expected value with respect to both X and Z.

B. Denoiser properties

The role of a denoiser is to estimate a signal xo belonging

to a class of signals C Ă R
n from noisy observations, xo`σǫ,

where ǫ „ Np0, Iq, and σ ą 0 denotes the standard deviation

of the noise. We let Dσ denote a family of denoisers indexed

with the standard deviation of the noise. At every value of σ,

Dσ takes xo ` σǫ as the input and returns an estimate of xo.

To analyze D-AMP, we require the denoiser family to be

(near) proper, monotone, and Lipschitz continuous (proper and

monotone are defined below). Because most denoisers easily

satisfy these first two properties, and can be modified to satisfy

the third (see Section VI), the requirements do not overly

restrict our analysis.

Definition 1. Dσ is called a proper family of denoisers of

level κ (κ P p0, 1q) for the class of signals C if

sup
xoPC

E}Dσpxo ` σǫq ´ xo}22
n

ď κσ2, (8)

for every σ ą 0. Note that the expectation is with respect to

ǫ „ Np0, Iq.

To clarify the above definition, we consider the following

examples:

Example 1. Let C denote a k-dimensional subspace of R
n

(k ă n). Also, let Dσpyq be the projection of y onto subspace

C denoted by PCpyq. Then,

E}Dσpxo ` σǫq ´ xo}22
n

“
k

n
σ2,

for every xo P C and every σ2. Hence, this family of denoisers

is proper of level k{n.

Proof. First note that since the projection onto a subspace is

a linear operator and since PCpxoq “ xo we have

E}PCpxo`σǫq´xo}22 “ E}xo`σPCpǫq´xo}22 “ σ2
E}PCpǫq}22.

Also note that since P 2
C “ PC , all the eigenvalues of PC

are either zero or one. Furthermore, since the null space of

PC is n ´ k dimensional, the rank of PC is k. Hence, PC

has k eigenvalues equal to 1 and the rest are zero. Hence

}PCpǫq}22 follows a χ2 distribution with k degrees of freedom

and E}PCpxo ` σǫq ´ xo}22 “ kσ2.

Next we consider a slightly more complicated example that

has been popular in signal processing for the last twenty-five

years. Let Γk denote the set of k-sparse vectors.

Example 2. Let ηpy; τσq “ p|y| ´ τσq`signpyq denote the

family of soft-thresholding denoisers. Then

sup
xoPΓk

E}ηpxo ` σǫ; τσq ´ xo}22
n

“
” p1 ` τ2qk

n
`

n ´ k

n
Epηpǫ1; τqq2

ı
σ2.

Similar results can be found in other papers including [19].

But since the proof is short and the result is slightly different

from similar existing results, we mention the proof here.

Proof. For notational simplicity we assume that the first k

coordinates of xo are non-zero and the rest are equal to zero.

E}ηpxo ` σǫ; τσq ´ xo}22
nσ2

“

řk
i“1

Epηpxo,i ` σǫi; τσq ´ xo,iq
2

nσ2
`

n ´ k

nσ2
Epηpσǫn; τσqq2

“

řk
i“1

E
`
η

`xo,i

σ
` ǫi; τ

˘
´

xo,i

σ

˘2

n
`

n ´ k

n
Epηpǫn; τqq2.

(9)

Note that E
`
η

`xo,i

σ
` ǫi; τ

˘
´

xo,i

σ

˘2
is an increasing function

of
xo,i

σ
[60]. Therefore, it is straightforward to see that

E

´
η

´xo,i

σ
` ǫi; τ

¯
´

xo,i

σ

¯2

ď lim
xo,iÑ8

E

´
η

´xo,i

σ
` ǫi; τ

¯
´

xo,i

σ

¯2

“ 1 ` τ2,(10)

where the last step swaps the lim and E (by the dominated

convergence theorem). We obtain the desired result by com-

bining (9) and (10).

Note that the optimal threshold τ to use within soft-

thresholding depends on the sparsity k{n of the signal being

denoised. One can optimize the parameter τ for every value

of k{n and obtain an optimized family of denoisers. Figure

6 displays the level κ of the optimized soft-thresholding in

terms of k{n. Note that for sparse signals (k{n small) soft-

thresholding is an effective denoiser and thus κ is small.

The previous denoisers both utilized prior knowledge about

the structure of the signal (its dimensionality and its sparsity)

in order to denoise xo. When nothing is known about xo a

proper denoiser might be too much to ask for. For instance,

consider the maximum likelihood estimator.
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Fig. 6. The level κ of optimal soft-thresholding method as a function
of normalized sparsity k{n. For sparse signals, soft-thresholding is a high
performance denoiser.

Example 3. If Dσpxo`σǫq is the maximum likelihood estimate

of xo from xo ` σǫ, then

E}Dσpxo ` σǫq ´ xo}22
nσ2

“ 1.

So, this family of denoisers are not proper of level κ for any

κ ă 1. The proof of this statement is straightforward and

hence is skipped here. It has been shown that (Chapter 5 of

[61]) for any denoiser D̃σ we have

sup
xoPRn

E}D̃σpxo ` σǫq ´ xo}22
nσ2

“ 1.

In this example the class of signals we have considered is

generic and hence the denoiser cannot employ any specific

structure in xo.

There are occasions when we want to deal with denoisers

that are not proper because of an error/bias term that is

independent of the noise level. To deal with scenarios such

as these, we introduce the definition near proper.

Definition 2. Dσ is called a near proper family of denoisers

of levels κ (κ P p0, 1q) and B (B P R`) for the class of signals

C if

sup
xoPC

E}Dσpxo ` σǫq ´ xo}22
n

ď κσ2 ` B, (11)

for every σ ą 0. Note that the expectation is with respect to

ǫ „ Np0, Iq.

As in Definition 1, the constants κ and B determine the

quality of the denoiser family. Better denoisers have smaller

constants.

Example 4. Let Cp “ tx P R
n : }x}p ď 1u for some

0 ă p ď 1.8 For a fixed k, let Dσ denote a denoiser that,

through oracle information, knows the indices of the k largest

elements of x and projects the noisy observation xo `σǫ onto

those coordinates. Then

sup
xoPCp

E}Dσpxo ` σǫq ´ xo}22
n

ď
k

n
σ2 `

k1´2{p

np2{p ´ 1q
,

8For every 0 ă p ď 1, }x}pp “
řn

i“1
|xi|

p.

for every xo P Cp and every σ2. Hence, this family of denoisers

is near proper with κ “ k
n

and B “ pk`1q1´2{p

np2{p´1q .

Proof. Let Λ denote the set of indices of the k-largest coeffi-

cients of xo. For a vector x, define xΛ in the following way:

xΛ,i “ xi if i P Λ and otherwise xΛ,i “ 0. Note that xo,Λ is

the best k-term approximation of xo. We have

E}Dσpxo ` σǫq ´ xo}22 “ E}xo,Λ ` σǫΛ ´ xo}22
“ }xo,Λ ´ xo}22 ` σ2

E}ǫΛ}22. (12)

Following the same logic as used in Example 1 we see that

E}ǫΛ}22 “ k. (13)

The term }xo,Λ ´xo}22 above is simply the squared ℓ2-norm

of the smallest n´ k values of xo. Below we obtain an upper

bound for this quantity. Note that since xo P Cp, we have

nÿ

i“1

|xo,i|
p ď 1. (14)

Let xo,pjq denote the jth largest element in absolute value of

xo. It is clear that |xo,p1q| ě |xo,p2q|, . . . , |xo,pj´1q| ě |xo,pjq|.
Combining this fact with (14) we obtain j|xo,pjq|p ď 1, which

in turn implies |xo,pjq| ď j´1{p. Returning to (12), we see that

}xo,Λ ´ xo}22 ď
nÿ

j“k`1

}xo,pjq}2 ď
nÿ

j“k`1

j´2{p

ď

ż 8

k

γ´2{pdγ “
γ1´2{p

p1 ´ 2{pq

ˇ̌
ˇ
8

k
“

pkq1´2{p

p2{p ´ 1q
. (15)

Substituting (13) and (15) into (12) gives the desired result.

In subsequent sections we assume our signal belongs to a

class C for which we have a proper or near proper family

of denoisers Dσ. The class and denoiser can be very general.

For instance, we may assume C to be the class of natural

images and Dσ to denote the BM3D algorithm9 at different

noise levels [56].

Definition 3. We call a denoiser monotone if for every xo its

risk function

Rpσ2, xoq “
Ep}Dσpxo ` σǫq ´ xo}22q

n
,

is a non-decreasing function of σ2.

We make a few remarks regarding monotone denoisers.

Remark 1. Monotonicity is a natural property to expect from

denoisers. Many standard denoisers such as soft-thresholding

and group soft-thresholding are monotone if we optimize over

the threshold parameter. See Lemma 4.4 in [20] for more

information.

Remark 2. If a family of denoisers Dσ is not monotone,

then it is straightforward to construct a new denoiser that

9We will review this algorithm briefly in Section VII-A
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outperforms Dσ . Here is a simple proof. Suppose that for

σ1 ă σ2 we have

Rpσ2

1 , xoq ą Rpσ2

2 , xoq.

Then construct a new denoiser for noise level σ1 in the

following way:

D̃σ1
pyq “ Eǫ̃Dσ2

ˆ
y `

b
σ2
2

´ σ2
1
ǫ̃

˙
,

where ǫ̃ „ Np0, Iq is independent of y and Eǫ̃py`
a
σ2
2

´ σ2
1
ǫ̃q

denotes the expected value with respect to ǫ̃. Let σ̃2 “a
σ2
2

´ σ2
1
. A simple application of Jensen’s inequality shows

that

Eǫp}D̃σ1
pxo ` σ1ǫq ´ xo}22q

n

“
Eǫp}Eǫ̃Dσ2

pxo ` σ1ǫ ` σ̃2ǫ̃q ´ xo}22q

n

ď
Eǫ,ǫ̃p}Dσ2

pxo ` σ1ǫ ` σ̃2ǫ̃q ´ xo}22q

n
.

Note that since ǫ̃ and ǫ are independent
Eǫ̃,ǫp}Dσ2

pxo`σ1ǫ`σ̃2 ǫ̃q´xo}2
2

q
n

“ Rpσ2
2 , xoq. Therefore, D̃

improves D and does not violate the monotone property.

Therefore, as is clear from this statement, non-monotone

denoisers are not desirable in general since we can easily

improve them.

In the rest of the paper we consider only monotone denois-

ers.

C. State evolution

A key ingredient in our analysis of D-AMP is the state evo-

lution; a series of equations that predict the intermediate MSE

of AMP algorithms at each iteration. Here we introduce a new

“deterministic” state-evolution to predict the performance of

D-AMP. Starting from θ0 “
}xo}2

2

n
the state evolution generates

a sequence of numbers through the following iterations:

θt`1pxo, δ, σ
2

wq “
1

n
E}Dσtpxo ` σtǫq ´ xo}22, (16)

where pσtq2 “ θt

δ
pxo, δ, σ

2
wq `σ2

w and the expectation is with

respect to ǫ „ Np0, Iq. Note that our notation θt`1pxo, δ, σ
2
wq

is set to emphasize that θt may depend on the signal xo, the

under-determinacy δ, and the measurement noise. Consider the

iterations of D-AMP and let xt denote its estimate at iteration

t. Our empirical findings show that the MSE of D-AMP is

predicted accurately by the state evolution. We formally state

our finding.

Finding 1. If the D-AMP algorithm starts from x0 “ 0, then

for large values of m and n, state evolution predicts the mean

square error of D-AMP, i.e.,

θtpxo, δ, σ
2

wq «
1

n
}xt ´ xo}22.

Based on extensive simulations, we believe that this finding

is true if the following properties are satisfied: (i) The elements

of the matrix A are i.i.d. Gaussian (or subGaussian) with mean

zero and standard deviation 1{m. (ii) The noise w is also i.i.d.

Fig. 7. The MSE of the intermediate estimate versus the iteration count for
BM3D-AMP and BM3D-IT alongside their predicted state evolution. Notice
that BM3D-AMP is well predicted by the state evolution whereas BM3D-IT
is not.

Gaussian. (iii) The denoiser D is Lipschitz continuous.10 In

all our simulations the elements of A are i.i.d. Gaussian. The

same is true for the elements of w.

Figure 7 compares the state evolution predictions of D-

AMP (based on the BM3D denoising algorithm [56]) with the

empirical performance of D-AMP and D-IT. As is clear from

this figure, the state evolution is accurate for D-AMP but not

for D-IT. We have checked the validity of the above finding

for the following denoising algorithms: (i) BM3D [56], (ii)

BLS-GSM [62], (iii) Non-local means [39], (iv) AMP with

soft-wavelet-thresholding [10], [63]. We report some of our

simulations on this phenomenon in Section VII-C. We have

posted our code online11 to enable other researchers to verify

our findings in more general settings and explore the validity

of this conjecture on a wider range of denoisers.

In the following sections we assume that the state evolution

is accurate for D-AMP and derive some of the main features

of D-AMP based on this assumption.

D. Analysis of D-AMP in the absence of measurement noise

In this section we consider the noiseless setting σ2
w “ 0

and characterize the number of measurements D-AMP requires

(under the validity of the state evolution framework) to recover

the signal xo exactly. We consider monotone denoisers, as

defined in section III-B. Consider the state evolution equation

under the noiseless setting σ2
w “ 0:

θt`1pxo, δ, 0q “
1

n
E}Dσtpxo ` σtǫq ´ xo}22,

where pσtq2 “ θtpxo,δ,0q
δ

. Starting with θ0pxo, δ, 0q “
}xo}2

2

n
,

depending on the value of δ there are two conceivable scenar-

ios for the state evolution equation:

10A denoiser is said to be L-Lipschitz continuous if for every x1, x2 P
C we have }Dpx1q ´ Dpx2q}2

2
ď L}x1 ´ x2}2

2
. Many advanced image

denoisers have no closed form expression, thus it is very hard to verify whether
or not they are Lipschitz continuous. That said, every advanced denoisers we
tested was found to closely follow our state evolution equations (Finding 1),
suggesting they are in fact Lipschitz. In Section VI we show examples in
which Lipschitz continuity is violated and propose a simple approach for
dealing with discontinuous denoisers.

11http://dsp.rice.edu/software/DAMP-toolbox

http://dsp.rice.edu/software/DAMP-toolbox
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(i) θtpxo, δ, 0q Ñ 0 as t Ñ 8.

(ii) θtpxo, δ, 0q Û 0 as t Ñ 8.

θtpxo, δ, 0q Ñ 0 implies the success of D-AMP algorithm,

while θtpxo, δ, 0q Û 0 implies its failure in recovering xo. The

main goal of this section is to study the success and failure

regions.

Lemma 1. For monotone denoisers, if for δ0, θtpxo, δ0, 0q Ñ
0, then for any δ ą δ0, θtpxo, δ, 0q Ñ 0 as well.

Proof. Define pσtq2 “
θtpxo,δ,σ

2

wq
δ

. Clearly, since

θtpxo, δ0, σ
2
wq Ñ 0 so does σt. Our first claim is that

for every σ2 ă
}xo}2

2

nδ0
“ pσ0q2 (this is where D-AMP is

initialized) we have

1

nδ0
E}Dσpxo ` σǫq ´ xo}22 ă σ2, @σ2 ą 0.

Suppose that this is not true and define

σ2

˚ “ sup

σ2ď }xo}2
2

nδ0

tσ2 :
1

nδ0
E}Dσpxo ` σǫq ´ xo}22 ě σ2u.

We claim that if 1

nδ0
E}Dσpxo ` σ0ǫq ´ xo}22 ă pσ0q2, then

σt Ñ σ˚ as t Ñ 8. First, it is straightforward to see that
1

nδ0
E}Dσ˚ pxo `σ˚ǫq ´xo}22 “ σ2

˚. For σ ą σ˚ we know that

1

nδ0
E}Dσpxo ` σǫq ´ xo}22 ă σ2.

By using the monotonicity of the denoiser we have for every

σ ě σ˚

1

nδ0
E}Dσpxo`σǫq´xo}22 ě

1

nδ0
E}Dσ˚ pxo`σ˚ǫq´xo}22 “ σ2

˚.

This (through simple induction) implies that for every t,

pσtq2 ě pσ˚q2.

Furthermore according to the definition of σ2
˚ and the fact that

σt ą σ˚, we have

pσt`1q2 “
1

nδ0
E}Dσtpxo ` σtǫq ´ xo}22 ă pσtq2.

Therefore, σt`1 is a decreasing sequence with lower bound

σ˚. Hence, σt converges to σ8 ě σ˚. The last step is to

show that σ8 “ σ˚. If this is not the case, then σ8 ą σ˚.

But according the definition of σ˚ and the supposition that

σ8 ą σ˚, we have

1

nδ0
E}Dσ8 pxo ` σ8ǫq ´ xo}22 ă pσ8q2,

which is a contradiction to σ8 being a fixed point. Hence

σ8 “ σ˚. Since σ8 “ 0, we conclude that σ˚ “ 0 and we

have

1

nδ0
E}Dσpxo ` σǫq ´ xo}22 ă σ2, @σ2 ą 0.

Since, δ ą δ0 we can conclude that

1

nδ
E}Dσpxo ` σǫq ´ xo}22 ă σ2, @σ2 ą 0.

Hence the only fixed point of this equation is also at zero

and hence θtpxo, δ, 0q Ñ 0. Note that all the above argu-

ment is based on the assumption that 1

nδ0
E}Dσpxo ` σ0ǫq ´

xo}22 ă pσ0q2. What if this assumption is violated? Using

similar argument it is straightforward to show that if the
1

nδ0
E}Dσpxo `σǫq ´xo}22 has a fixed point above pσ0q2, then

the algorithm converges to the closest fixed point above σ0,

which is a contradiction again. Also, if the algorithm does not

have any fixed point above σ0, then it will diverge to infinity,

which is again a contradiction.

Note that for very small values of δ, it is straightforward

to see that θtpxo, δ, 0q Û 0 as t Ñ 8. If we combine this

result with Lemma 1 we conclude the following simple result:

For small values of δ D-AMP fails in recovering xo. As δ

increases, after a certain value of δ D-AMP will successfully

recover xo from its undersampled measurements. Define

δ˚pxoq “ inf
δPp0,1q

tδ : θtpxo, δ, 0q Ñ 0 as t Ñ 8u.

δ˚pxoq denotes the minimum number of measurements re-

quired for the successful recovery of xo. Our goal is to char-

acterize δ˚pxoq in terms of the performance (we will clarify

what we mean by performance) of the denoising algorithm.

However, since the number of measurements δ˚pxoq depends

on the signal xo, a more natural question in the design of a

system is the following: How many measurements does D-

AMP require to recover every signal xo P C? The following

result addresses this question.

Proposition 1. Suppose that for signal class C the denoiser

Dσ is proper at level κ. Then

sup
xoPC

δ˚pxoq ď κ.

Proof. The proof of this proposition is a simple application of

the state evolution equation. Similar to the proof of Lemma 1

define

pσtpxo, δ, σ
2

wqq2 “
θtpxo, δ, σ

2
wq

δ
.

Also for notational simplicity we use the notation σt instead of

σtpxo, δ, 0q in the equation below. According to state evolution

we have

pσt`1q2 “
1

nδ
E}Dσtpxo ` σtǫq ´ xo}22

“
pσtq2

nδpσtq2
E}Dσtpxo ` σtǫq ´ xo}22

ď
pσtq2

δ
sup
xoPC

E}Dσtpxo ` σtǫq ´ xo}22
npσtq2

ď
κpσtq2

δ
. (17)

It is straightforward to see that

pσtpxo, δ, 0qq2 ď
´κ

δ

¯t

pσ0pxo, δ, 0qq2.

Hence, if δ ą κ, then pσtpxo, δ, 0qq2 Ñ 0 as t Ñ 8.

We can apply Proposition 1 to the examples of Section

III-B and derive some well-known results, such as the phase

transition of AMP with the soft-threshold denoiser [10].
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If our denoiser is only nearly proper, perfect recovery may

not be possible. However, we can use the same technique to

bound the recovery error of D-AMP.

Lemma 2. Let Dσ denote a near proper family of denoisers

with levels κ and B, as defined in Definition 2. Then, if δ ą κ,

the error of D-AMP is upper bounded by

lim
tÑ8

pσtpxo, δ, 0qq2 ď
B

δ ´ κ
.

Proof. The proof of this result is much like the one used for

proper denoisers. Again define σtpxo, δ, σ
2
wq “

θtpxo,δ,σ
2

wq
δ

.

Using the state evolution and the definition of near proper we

have

pσt`1pxo, δ, 0qq2

“
1

nδ
E}Dσtpxo,δ,0qpxo ` σtpxo, δ, 0qǫq ´ xo}22

ď
κpσtpxo, δ, 0qq2 ` B

δ
.

Hence

pσtpxo, δ, 0qq2 ď p
κ

δ
qt

||xo||22
n

` p
1 ´ pκ{δqt

1 ´ κ{δ
q
B

δ
.

For δ ą κ, the limit of this sequence is as follows

lim
tÑ8

pσtpxo, δ, 0qq2 ď
B

δ ´ κ
.

Note that the proof techniques employed above was first

developed in [10] and was later employed to establish the

phase transition of AMP extensions [35]. There are some

minor differences between our derivation and the derivations

presented in the other papers since we have not adopted the

minimax setting.

E. Noise sensitivity of D-AMP

In Section III-D we considered the performance of D-AMP

in the noiseless setting where σ2
w “ 0. This section will be

devoted to the analysis of D-AMP in the presence of the

measurement noise. Here we assume that the denoiser is near

proper at levels κ and B, i.e.,

sup
σ2

sup
xoPC

E}Dσpxo ` σǫq ´ xo}22
n

ď κσ2 ` B. (18)

The following result shows that D-AMP is robust to the

measurement noise. Let θ8pxo, σ
2
w, δq denote the fixed point

of the state evolution equation. Since there is measurement

noise, θ8pxo, σ
2
w, δq ‰ 0, i.e., D-AMP will not recover xo

exactly. We define the noise sensitivity of D-AMP as

NSpσ2

w, δq “ sup
xoPC

θ8pxo, δ, σ
2

wq.

The following proposition provides an upper bound for the

noise sensitivity as a function of the number of measurements

and the variance of the measurement noise.

Proposition 2. Let Dσ denote a near proper family of denois-

ers at levels κ and B. Then, for δ ą κ, the noise sensitivity

of D-AMP satisfies

NSpσ2

w, δq ď
κσ2

w ` B

1 ´ κ
δ

. (19)

Proof. Note that θ8pxo, δ, σ
2
wq is a fixed point of the state

evolution equation and hence it satisfies

θ8pxo, δ, σ
2

wq “
1

n
E}Dσ8 pxo ` σ8pxo, δ, σ

2

wqǫq ´ xo}22,

where σ8pxo, δ, σ
2
wq “

a
θ8pxo, δ, σ2

wq{δ ` σ2
w. Therefore,

NSpσ2

w, δq “ sup
xoPC

θ8pxo, δ, σ
2

wq

“ sup
xoPC

1

n
E}Dσ8 pxo ` σ8pxo, δ, σ

2

wqǫq ´ xo}22

ď sup
xoPC

κpσ8pxo, τ, σ
2

wqq2 ` B

“ sup
xoPC

κ

ˆ
θ8pxo, δ, σ

2
wq

δ
` σ2

w

˙
` B

“
κ

δ
NSpσ2

w, δq ` κσ2

w ` B.

A simple calculation completes the proof.

Substituting in B “ 0 into the above result gives the noise

sensitivity for proper denoisers.

NSpσ2

w, δq ď
κσ2

w

1 ´ κ
δ

. (20)

There are several interesting features of this proposition that

we would like to emphasize.

Remark 3. The bound we presented in Proposition 2 is a

worst case analysis. The bound may be achieved for certain

signals in C and certain noise variances. However, for most

signals in C and most noise variances D-AMP will perform

better than what is predicted by the bound. Figure 8 shows the

performance of BM3D-AMP in terms of the standard deviation

of the noise.

The technique we employed above was first developed in

[19]. The result we derived in Proposition 2 can be considered

as a generalization of the result of [19] to much broader class

of denoisers.

As an aside, upper and lower bounds were recently derived

for the minimax noise sensitivity of any recovery algorithm

when the measurement matrix is i.i.d. Gaussian and the

compressively sampled signal is sparse [49]. Note that while

our results can be applied to sparse signals, they have been

derived under much more general setting. In this section we

discussed upper bounds on the noise sensitivity. See Section

III-G for some preliminary results on the lower bound.

F. Tuning the parameters of D-AMP

Practical denoisers typically have a few free parameters and

the denoisers’ performance relies on the effective tuning of

these parameters. One of the simplest examples of a denoiser

with parameters is soft-thresholding (introduced in Example
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Fig. 8. The MSE of BM3D-AMP reconstructions of 128ˆ 128 Barbara test
image with varying amounts of measurement noise at different sampling rates
(δ).

2), for which the threshold can be regarded as a parameter.

There exists extensive literature on tuning the free parameters

of denoisers [64], [65]. Diverse and powerful algorithms

such as SURE (Stein’s Unbiased Risk Estimation) have been

proposed for this purpose [66].

D-AMP can employ any of these tuning schemes. However,

once we use a denoising algorithm in the D-AMP framework

the problem of tuning the free parameters of the denoiser

seems to become dramatically more difficult: to produce good

performance from D-AMP the parameters must be tuned

jointly across different iterations. To state this challenge we

overload our notation of a denoiser to Dσ,τ , where τ denotes

the denoiser’s parameters. According to this notation the state

evolution is given by

ot`1pτ0, τ1, . . . , τ tq “
1

n
E}Dσt,τtpxo ` σtǫq ´ xo}22,

where pσtq2 “ otpτ0,τ1,...,τt´1q
δ

` σ2
w. Note that we have

changed our notation for the state evolution variables to em-

phasize the dependence of ot`1 on the choice of the parameters

we pick at at the previous iterations. The first question that we

ask is the following: What does the optimality of τ0, τ1, . . . , τ t

mean? Suppose that the sequence of parameters τ t is bounded.

Definition 4. A sequence of parameters τ1˚, . . . , τ
t
˚ is called

optimal at iteration t ` 1 if

ot`1pτ0˚, . . . , τ
t
˚q “ min

τ0,τ1,...,τt
ot`1pτ0, τ1, . . . , τ tq.

Note that τ0˚, . . . , τ
t
˚ is optimal in the sense that they

produce the smallest mean square error D-AMP can achieve

after t iterations. This definition was first given in [20] for

the AMP algorithm based on soft-thresholding.

It seems from our formulation that we should solve a joint

optimization on τ0, . . . , τ t to obtain the optimal values of

these parameters. However, it turns out that in D-AMP the

optimal parameters can be found much more easily. Consider

the following greedy algorithm for setting the parameters:

(i) Tune τ0 such that o1pτ0q is minimized. Call the optimal

value τ0˚ .

(ii) If τ0, . . . , τ t´1 are set to τ0˚, . . . , τ
t´1
˚ , then set τ t such

that it minimizes ot`1pτ0˚, . . . , τ
t´1
˚ , τ tq.

Note that the above strategy is a greedy parameter selection.

The following result proves that in the context of D-AMP this

greedy strategy is optimal:

Lemma 3. Suppose that the denoiser Dσ,τ is monotone in the

sense that infτ E}Dσ,τ pxo ` σǫq ´ xo}22 is a non-decreasing

function of σ. If τ0˚, . . . , τ
t
˚ is generated according to the

greedy tuning algorithm described above, then

ot`1pτ0˚, . . . , τ
t
˚q ď ot`1pτ0, . . . , τ tq, @τ0, . . . , τ t,

for every t.

Proof. Our proof is based on an induction. According to the

first step of our procedure we know that

o1pτ0˚q ď o1pτ0q, @τ0.

Now suppose that the claim of the theorem is true for every

t ď T . We would like to prove that the result also holds for

t “ T ` 1, i.e.,

oT`1pτ0˚, . . . , τ
T
˚ q ď oT`1pτ0, . . . , τT q, @τ0, . . . , τT .

Suppose that it is not true and for τ0o , . . . , τ
T
o we have

oT`1pτ0˚, . . . , τ
T
˚ q ą oT`1pτ0o , . . . , τ

T
o q. (21)

Clearly,

oT`1pτ1˚, τ
2

˚, . . . , τ
T
˚ q “

1

n
E}Dσt,τT pxo ` σT

˚ ǫq ´ xo}22,

where pσT
˚ q2 “

oT pτ0

˚,...,τ
T´1

˚ q
δ

` σ2
w. If we define pσT

o q2 “
oT pτ0

o ,...,τ
T´1

o q
δ

`σ2
W , then according to the induction assump-

tion σT
˚ ď σT

o . Therefore, according to the monotonicity of

the denoiser

oT`1pτ0˚, τ
1

˚, . . . , τ
T
˚ q “ inf

τT

1

n
E}DσT

˚ ,τT pxo ` σT
˚ ǫq ´ xo}22

ď inf
τT

1

n
E}Dσt

o,τ
T pxo ` σT

o ǫq ´ xo}22

ď
1

n
E}Dσt

o,τ
T
o

pxo ` σT
o ǫq ´ xo}22

“ oT`1pτ0o , τ
1

o , . . . , τ
T
o q.

This is in contradiction with (21). Hence,

oT`1pτ0˚, . . . , τ
T
˚ q ď oT`1pτ0, . . . , τT q, @τ0, . . . , τT .

To summarize the above discussion, greedy parameter tun-
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ing is optimal for D-AMP, thus the tuning of D-AMP is as

simple (or as difficult) as the tuning of the denoising algorithm

that is employed in D-AMP. Many researchers in the area of

signal denoising have optimized the parameters of state-of-the-

art denoisers, such as BM3D. Lemma 3 implies that optimally

tuned denoisers will induce the best possible performance from

D-AMP. Therefore, the tuning of D-AMP has already been

thoroughly addressed in the denoising literature [64]–[66].

G. Optimality of D-AMP

1) Problem definition: D-AMP is a framework by which to

employ denoisers to solve linear inverse problems. But is D-

AMP optimal? In other words, given a family of denoisers,

Dσ , for a set C, can we come up with an algorithm for

recovering xo from y “ Axo ` w that outperforms D-AMP?

Note that this problem is ill-posed in the following sense: the

denoising algorithm might not capture all the structures that

are present in the signal class C. Hence, a recovery algorithm

employs extra structures not used by the denoiser (and thus

not used by D-AMP) clearly might outperform D-AMP. In the

following sections we use two different approaches to analyze

the optimality of D-AMP.

2) Uniform optimality: Let Eκ denote the set of all classes

of signals C for which there exists a family of denoisers DC
σ

that satisfies

sup
σ2

sup
xoPC

E}DC
σ pxo ` σǫq ´ xo}22

nσ2
ď κ. (22)

We know from Proposition 1 that for any C P Ek, D-AMP

recovers all the signals in C from δ ą κ measurements.

We now ask our uniform optimality question: Does there

exist any other signal recovery algorithm that can recover all

the signals in all these classes with fewer measurements than

D-AMP? If the answer is affirmative, then D-AMP is sub-

optimal in the uniform sense, meaning there exists an approach

that outperforms D-AMP uniformly over all classes in Eκ.

The following proposition shows that any recovery algorithm

requires at least m “ κn measurements for accurate recovery,

i.e., D-AMP is optimal in this sense.

Proposition 3. If m˚ denotes the minimum number of mea-

surements required (by any recovery algorithm) for a set

C P Eκ, then

sup
CPEκ

m˚pCq

n
ě κ.

Proof. First note that according to Example 1 any κn dimen-

sional subspace of R
n belongs to Eκ (assume that κn is an

integer). From the fundamental theorem of linear algebra we

know that to recover the vectors in a k dimensional subspace

we require at least k measurements. Hence

sup
CPEκ

m˚pCq

n
ě

κn

n
“ κ.

According to this simple result, D-AMP is optimal for at

least certain classes of signals and certain denoisers. Hence,

it cannot be uniformly improved.

3) Single class optimality: The uniform optimality

framework we introduced above considers a set of signal

classes and measures the performance of an algorithm on

every class in this set. However, in many applications such

as imaging we are interested in the performance of D-AMP

on a specific class of signals, such as images. Unfortunately,

the uniform optimality framework does not provide any

conclusion in such cases. Therefore, in this section we

introduce another framework for evaluating the optimality of

D-AMP that we call single class optimality.

Let C denote a class of signals. Instead of assuming that we

are given a family of denoisers for the signals in class C, we

assume that we can find the denoiser that brings about the best

performance from D-AMP. This ensures that D-AMP employs

as much information as it can about C. Let θ8
Dpxo, δ, σ

2
wq

denote the fixed point of the state evolution equation given in

(16). Note that we have added a subscript D to our notation

for θ to indicate the dependence of this quantity on the choice

of the denoiser. The best denoiser for D-AMP is a denoiser

that minimizes θ8
Dpxo, δ, σ

2
wq. Note that according to Finding

1, θ8
Dpxo, δ, σ

2
wq corresponds to the mean square error of the

final estimate that D-AMP returns.

Definition 5. A family of denoisers D˚
σ is called minimax

optimal for D-AMP at noise level σ2
w, if it achieves

inf
Dσ

sup
xoPC

θ8
Dpxo, δ, σ

2

wq.

Note that according to our definition, the optimal denoiser

may depend on both σ2
w and δ and it is not necessarily unique.

We call the version of D-AMP that employs D˚
σ , D˚-AMP.

Armed with this definition, we formally ask the single

class optimality question: Can we provide a new algorithm

that can recover signals in class C with fewer measurements

than D˚-AMP? If negative, it means that if we employ the

optimal denoiser for D-AMP algorithm no other algorithm can

outperform D-AMP. Unfortunately, we will show that there

are signal classes for which D-AMP is not optimal in this

sense. Our proof requires the following standard definition

from statistics text books [61]:

Definition 6. The minimax risk of a set of signals C at the

noise level σ2 is defined as

RMM pC, σ2q “ inf
D

sup
xoPC

E}Dpxo ` σǫq ´ xo}22,

where the expected value is with respect to ǫ „ Np0, Iq. If

DM
σ achieves RMM pC, σ2q, then it will be called the family

of minimax denoisers for the set C under the square loss.

Proposition 4. The family of minimax denoisers for C is a

family of optimal denoisers for D-AMP. Furthermore, in order

to recover every xo P C, D˚-AMP requires at least nκMM

measurements:

κMM “ sup
σ2ą0

RMM pσ2q

nσ2
.

Proof. Since the proof of this result is slightly more involved,

we postpone it to Appendix A.



13

Based on this result, we can simplify the single class

optimality question: Does there exist any recovery algorithm

that can recover every xo P C from fewer observations than

nκMM? Unfortunately, the answer is affirmative.

Consider the following extreme example. Let Bn
k denote the

class of signals that consist of k ones and n´k zeros. Define

ρ “ k{n and let φpzq denote the density function of a standard

normal random variable.

Proposition 5. For very high dimensional problems, there are

recovery algorithms that can recover signals in Bk accurately

from 1 measurement. On the other hand, D˚-AMP requires

at least npκMM ´ op1qq measurement to recover signals from

this class, where

κMM “ sup
σ2ą0

1

σ2
Ez1„φ

ˆ
ρφσpz1q

ρφσpz1q ` p1 ´ ρqφσpz1 ` 1q
´ 1

˙2

ρ

`Ez1„φ

ˆ
ρφσpz1 ´ 1q

ρφσpz1 ´ 1q ` p1 ´ ρqφσpz1q

˙2

p1 ´ ρq,

where φσpzq “ φpz{σq.

The proof of this result is slightly more involved and hence

is postponed to Appendix B. According to this proposition,

since κMM is non-zero, the number of measurements D˚-

AMP requires is proportional to the ambient dimension n,

while the actual number of measurements that is required for

recovery is equal to 1. Hence, in such cases D˚-AMP is sub-

optimal.

However, it is also important to note that while D-AMP

is sub-optimal for this class, according to Proposition 3 D-

AMP is optimal for other classes. Characterizing the classes of

signals for which D-AMP is optimal is left as an open direction

for future research. Despite this sub-optimality result, we will

show in Section VII that D-AMP provides impressive results

for the class of natural images and outperforms state-of-the-art

recovery algorithms.

H. Additional miscellaneous properties of D-AMP

1) Better denoisers lead to better recovery: This intuitive

result is a key feature of D-AMP. We formalize it below.

Theorem 1. Let a family of denoisers D1
σ be a better denoiser

than a family D2
σ for signal xo in the following sense:

E}D1
σpxo ` σǫq ´ xo}22

nσ2
ď

E}D2
σpxo ` σǫq ´ xo}22

nσ2
, @σ2 ą 0.

(23)

Also, let θ8
Di

pxo, δ, σ
2
wq denote the fixed point of state evolution

for denoiser Di. Then,

θ8
D1

pxo, δ, σ
2

wq ď θ8
D2

pxo, δ, σ
2

wq.

Proof. The proof of this result is straightforward. Since, the

state evolution of D1 is uniformly lower than D2, its fixed

point is lower as well.

2) D-AMP as a regularization technique: Explicit regu-

larization is a popular technique to recover signals from an

undersampled set of linear measurements [5], [22], [29]–[33],

[67]. In these approaches a cost function, Jpxq, also known

as a regularizer, is considered on R
n. This function returns

large values for x R C and returns small values for x P C.

Regularized techniques recover xo from measurements y by

setting up and solving the following optimization problem:

x̂ “ argmin
x

1

2
||y ´ Ax||22 ` λJpxq. (24)

Since in many cases Jpxq is non-convex and non-

differentiable, iterative heuristic methods have been proposed

for solving the above optimization problem.12 D-AMP pro-

vides another heuristic approach for solving (24). It has two

main advantages over the other heuristics: (i) D-AMP can

be analyzed by the state evolution theoretically. Hence, we

can theoretically predict the number of measurements required

and the noise sensitivity of D-AMP. (ii) The performance of

most heuristic methods depend on their free parameters. As

discussed in Section III-F there are efficient approaches for

tuning the parameters of D-AMP optimally. Below we briefly

review the application of D-AMP for solving (24).

Assume that there exists a computationally efficient

scheme for solving the optimization problem χJpu;λq “
argmin 1

2
}u ´ x}22 ` λJpxq. χJpu, λq is called the proximal

operator for the function J . The D-AMP algorithm for solving

(24) is given by

xt`1 “ χJpxt ` A
˚zt;λtq, (25)

zt “ y ´ Axt ` zt´1divχJpxt´1 ` A
˚zt´1;λt´1q{m.

Considering χJ as a denoiser, this algorithm has exactly the

same interpretation as our generic D-AMP algorithm. Further-

more, if the explicit calculation of the Onsager correction term

is challenging we can employ the Monte Carlo technique that

will be discussed in Section V-B.

IV. CONNECTION WITH OTHER STATE EVOLUTIONS

In Section III we introduced a new, “deterministic” state

evolution (SE) and used it to analyze D-AMP. Here we review

this SE and compare it with AMP’s Bayesian SE, which was

first introduced in [10], [17].

A. Deterministic state evolution

The deterministic SE assumes that xo is an arbitrary but

fixed vector in C. Starting from θ0 “
}xo}2

2

n
, the deterministic

SE generates a sequence of numbers through the following

iterations:

θt`1pxo, δ, σ
2

wq “
1

n
Eǫ}Dσtpxo ` σtǫq ´ xo}22, (16)

where pσtq2 “ 1

δ
θtpxo, δ, σ

2
wq ` σ2

w and ǫ „ Np0, Iq.

B. Bayesian state evolution

The Bayesian SE assumes that xo is a vector drawn from

a probability density function (pdf) px, where the support of

px is a subset of C. Starting from θ̄0 “
}xo}2

2

n
, the Bayesian

12Many of these methods solve (24) accurately when J is convex.
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SE generates a sequence of numbers through the following

iterations:

θ̄t`1ppx, δ, σ
2

wq “
1

n
Exo,ǫ}Dσ̄tpxo ` σ̄tǫq ´ xo}22, (26)

where pσ̄tq2 “ 1

δ
θ̄tppx, δ, σ

2
wq ` σ2

w. We have used the

notation θ̄ to distinguish the Bayesian SE from its deterministic

counterpart. In Definition 6 we presented a definition of the

optimal denoiser under the deterministic framework. One can

do the same for the Bayesian framework.

Definition 7. A family of denoisers D̃σ is called Bayes-optimal

for D-AMP at noise level σ2
w, if it achieves

inf
Dσ

θ̄8
Dppx, δ, σ

2

wq.

It is straightforward to see that the family D̃σpxo ` σǫq “
Epxo | xo ` σǫq is Bayes-optimal for D-AMP.

While the deterministic and Bayesian SEs are different, we

can establish a connection between them by employing stan-

dard results in theoretical statistics regarding the connection

between the minimax risk and the Bayesian risk. Next section

briefly discusses this connection.

C. Connection between the two state evolutions

In this section we would like to establish a connection

between the fixed points of the Bayes-optimal denoisers and

the minimax-optimal denoisers for D-AMP. Let θ̄8ppx, δ, σ
2
wq

denote the fixed point of the Bayesian SE (26) associated with

the family of Bayes-optimal denoisers from Definition 7. Also,

let θ8pxo, δ, σ
2
wq denote the fixed point of the deterministic SE

(16) for the family of minimax denoisers from Definition 5.

Theorem 2. Let P denote the set of all distributions whose

support is a subset of C. Then,

sup
pxPP

θ̄8ppx, δ, σ
2

wq ď sup
xoPC

θ8pxo, δ, σ
2

wq.

Proof. For an arbitrary family of denoisers Dσ we have

Exo,ǫ}Dσpxo ` σǫq ´ xo}22 ď sup
xoPC

Eǫ}Dσpxo ` σǫq ´ xo}22.

(27)

If we take the minimum with respect to Dσ on both sides of

(27), we obtain the following inequality

Exo,ǫ}D̃σpxo `σǫq ´xo}22 ď sup
xoPC

Eǫ}D
MM pxo `σǫq ´xo}22,

where DMM denotes the minimax denoiser and D̃σp xo `σǫq

denotes Epxo | xo ` σǫq. Let pσ̄8q2 “
θ̄8pxo,δ,σ

2

wq
δ

` σ2
w and

pσ8
mmq2 “

θ8pxo,δ,σ
2

wq
δ

` σ2
w. Also, for notational simplicity

assume that supxoPC Eǫ}D
MM pxo ` σ̄8ǫq ´xo}22 is achieved

at a certain value xmm. We then have

θ̄8ppx, δ, σ
2

wq “
Exo,ǫ}D̃σ̄8 pxo ` σ̄8ǫq ´ xo}22

n

ď
Eǫ}D

MM
σ̄8 pxmm ` σ̄8ǫq ´ xmm}22

n
.

(28)

This inequality implies that θ̄8ppx, δ, σ
2
wq is below the

fixed point of the deterministic SE using DMM at xmm.

Therefore, because supxoPC θ8pxo, δ, σ
2
wq will be equal to

or above the fixed point of DMM at xmm, it will satisfy

suppxPP θ̄8ppx, δ, σ
2
wq ď supxoPC θ8pxo, δ, σ

2
wq.

Under some general conditions it is possible to prove that

sup
πPP

inf
Dσ

Exo,ǫ}Dσpxo ` σǫq ´ xo}22

“ infDσ
supxoPC Eǫ}Dσpxo ` σǫq ´ xo}22. (29)

For instance, if we have

sup
πPP

inf
Dσ

Exo,ǫ}Dσpxo ` σǫq ´ xo}22

“ infDσ
supπPP Exo,ǫ}Dσpxo ` σǫq ´ xo}22,

then (29) holds as well. Since we work with square loss in

the SE, swapping the infimum and supremum is permitted

under quite general conditions on P . For more information,

see Appendix A of [68]. If (29) holds, then we can follow

similar steps as in the proof of Theorem 2 to prove that under

the same set of conditions we can have

sup
pxPP

inf
Dσ

θ̄8ppx, δ, σ
2

wq “ inf
Dσ

sup
xoPC

θ8pxo, δ, σ
2

wq.

In words, the supremum of the fixed point of the Bayesian SE

with the Bayes-optimal denoiser is equivalent to the supremum

of the fixed point of the deterministic SE with the minimax

denoiser.

D. Why bother?

Considering that the deterministic and Bayesian SEs look so

similar, and under certain conditions have the same supreme-

mums, it is natural to ask why we developed the deterministic

SE at all. That is, what is gained by using SE (16) rather than

(26)?

The deterministic SE is useful because it enables us to deal

with signals with poorly understood distributions. Take, for

instance, natural images. To use the Bayesian SE on imaging

problems, we would first need to characterize all images

according to some generalized, almost assuredly inaccurate,

pdf. In contrast, the deterministic SE deals with specific

signals, not distributions. Thus, even without knowledge of

the underlying distribution, so long as we can come up with

representative test signals, we can use the deterministic SE.

Because the SE shows up in the parameter tuning, noise

sensitivity, and performance guarantees of AMP algorithms,

being able to deal with arbitrary signals is invaluable.

V. CALCULATION OF THE ONSAGER CORRECTION TERM

So far, we have emphasized that the key to the success

of approximate message passing algorithms is the Onsager

correction term, zt´1divDσ̂t´1pxt´1 ` A
˚zt´1q{m, but we

have not yet addressed how one can calculate it for an arbitrary

denoiser. In this section we provide some guidelines on the

calculation of this term. If the input-output relation of the

denoiser is known explicitly, then calculating the divergence,

divDpxq, and thus the Onsager correction term, is usually
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straightforward.13 We will review some popular denoisers

and calculate the corresponding Onsager correction terms in

the next section. However, most state-of-the-art denoisers are

complicated algorithms for which the input-output relation

is not explicitly known. In Section V-B we show that, even

without an explicit input-output relationship, we can calculate

a good approximation for the Onsager correction term.

A. Soft-thresholding for sparse and low-rank signals

Three of the most popular signal classes in the literature

are sparse, group-sparse, and low-rank signals (when the

signal has a matrix form). The most popular denoisers for

these signals are soft-thresholding, block soft-thresholding,

and singular value soft-thresholding, respectively. The goal of

this section is to derive the Onsager correction term for each of

these denoisers. Most of the results mentioned in this section

have been derived elsewhere. We summarize these results to

help the reader understand the steps involved in explicitly

computing the Onsager correction term.

1) Soft-thresholding: Let ητ denote the soft-threshold func-

tion. ητ pxq for x P R
n denotes the component-wise application

of the soft-threshold function to the elements of x. In this case

we have divητ pxq “
řn

i“1
Ip|xi| ą τq, where I denotes the

indicator function.

2) Block soft-thresholding: For a vector xB P R
B block

soft-thresholding is defined as ηBτ pxBq “ p}xB}2 ´ τq xB

}xB}2 .

In other words, the threshold function retains the phase of the

vector xB and shrinks its magnitude toward zero. Let n “ MB

and x “ rpx1
BqT , px2

BqT , . . . , pxM
B qT sT . The notation ηBτ pxq

is defined as the block soft-thresholding function that is

applied to each individual block. The divergence of block soft-

thresholding can then be calculated according to

divηBτ pxq “
Mÿ

ℓ“1

ˆ
B ´

pB ´ 2q2

}xℓ
B}2

2

˙
Ip}xℓ

Bq}2 ě τq.

This result was derived in [35], [36], [69].

3) Singular value thresholding: Let Xo P R
nˆn denote

our signal of interest. If Xo is low-rank then it can be

estimated accurately from its noisy version Φ “ Xo ` σW

where Wij denote i.i.d., Np0, 1q random variables. If the

singular value decomposition of Φ is given by USV
T , with

S “ diagpσ1, . . . , σnq, where σis denote the singular values

of Φ, then the estimate of Xo has the form

X̂ “ SVTλpΦq

“ Udiagppσ1 ´ λq`, pσ2 ´ λq`, . . . , pσn ´ λq`qVT ,

in which λ is a regularization parameter that can be optimized

for the best performance. Again this denoiser can be employed

in the D-AMP framework to recover low-rank matrices from

their underdetermined set of linear equations. To calculate the

Onsager correction term we should compute divSVTλpΦq.

13In the context of this work the divergence divDpxq is simply the sum
of the partial derivatives with respect to each element of x, i.e., divDpxq “
nř

i“1

BDpxiq
Bxi

.

According to [70] the divergence of singular value threshold-

ing is given by

divSVTλpΦq “
nÿ

i“1

Ipσi ą λq ` 2

nÿ

i,j“1,i‰j

σipσi ´ λq`
σ2
i ´ σ2

j

.

B. Monte Carlo method

While simple denoisers often yield a closed form for their

divergence, high-performance denoisers are often data depen-

dent; making it very difficult to characterize their input-output

relation explicitly. Here we explain how a good approximation

of the divergence can be obtained in such cases. This method

relies on a Monte Carlo technique first developed in [66]. The

authors of that work showed that given a denoiser Dσ,τ pxq,

using an i.i.d. random vector b „ Np0, Iq, we can estimate

the divergence with

divDσ,τ “ lim
ǫÑ0

Eb

"
b˚

ˆ
Dσ,τ px ` ǫbq ´ Dσ,τ pxq

ǫ

˙*

« Eb

ˆ
1

ǫ
b˚pDσ,τ px ` ǫbq ´ Dσ,τ pxqq

˙
,

for very small ǫ.

The only challenge in using this formula is calculating the

expected value. This can be done efficiently using Monte

Carlo simulation. We generate M i.i.d., Np0, Iq vectors

b1, b2, . . . , bM . For each vector bi we obtain an estimate of

the divergence xdivi. We then obtain a good estimate of the

divergence by averaging

divD̂σ,τ “
1

M

Mÿ

i“1

xdivi.

According to the weak law of large numbers, as M Ñ 8 this

estimate converges to Eb

`
1

ǫ
b˚pDσ,τ px ` ǫbq ´ Dσ,τ pxqq

˘
.

When dealing with images, due to the high dimensionality

of the signal, we can accurately approximate the expected

value using only a single random sample. That is, we can

let M “ 1.14 Note that in this case the calculation of the

Onsager correction term is quite efficient and requires only

one additional application of the denoising algorithm. In all

of the simulations in this paper we have used either the explicit

calculation of the Onsager correction term or the Monte Carlo

method with M “ 1.

VI. SMOOTHING A DENOISER

The denoiser used within D-AMP can take on almost

any form. However, the state evolution predictions are not

necessarily accurate if the denoiser is not Lipschitz continuous.

This requirement seems to disallow some popular denoisers

with discontinuities, such as hard-thresholding. Figure 9 com-

pares the state evolution predictions for the hard thresholding

denoiser alongside the actual performance of D-AMP based on

hard thresholding; the state evolution predictions fail entirely.

One simple idea to resolve this issue is to “smooth” the

14When dealing with short signals (n ă 1000), rather than images, we
found that using additional Monte Carlo samples produced more consistent
results.
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Fig. 10. Reconstructions of a sparse signal that was sampled at a rate of δ “ 1{3. Notice that D-AMP based on smoothed-hard-thresholding successfully
reconstructs the signal whereas D-AMP based on hard-thresholding, does not. The failure of hard-thresholding-based D-AMP is due to the discontinuity of
the hard-thresholding denoiser.

Fig. 9. Predicted and observed intermediate MSEs of hard-thresholding-
based AMP, with and without smoothing. Notice that the smoothed version is
well predicted by the state evolution whereas hard-thresholding-based AMP
without smoothing is not. This discrepancy is due the fact that the hard-
thresholding denoiser is not continuous.

denoisers. The smoothed version should behave nearly the

same as the original denoiser but, because it has no discontinu-

ities, should satisfy the state evolution equations. The concept

of smoothing simple denoisers and this process’s effects on

the performance of simple denoisers has been analyzed in

[71], [72]. Here we explain how smoothing can be applied

in practice.

Let ηpxq be a discontinuous denoiser. Now define a new

denoiser η̃pxq as follows

η̃pxq “

ż

ζPRn

ηpx ´ ζq
1

p2πqn{2rn
e´}ζ}2

2
{2r2dζ, (30)

where dζ “ dζ1dζ2 . . . dζn.

The denoiser η̃pxq is simply the convolution of ηpxq with

a Gaussian kernel with standard deviation r. Note that the

width r dictates the amount of smoothness we apply to η.

Larger values of r lead to a smoother η̃. Below we present a

simple lemma that proves η̃pxq is in fact smooth.

Suppose that ηpx1, x2, . . . , xnq satisfies the following con-

dition: ż
|ηipζ̃qζ̃i|e

´ }ζ̃}2
2

4r2 dζ̃ ă 8. (31)

Note that this condition implies that ηi is not growing very

fast as ζ1, ζ2, . . . , ζn Ñ 8.

Lemma 4. If η satisfies (31), then η̃pxq defined in (30) is

continuously differentiable with a bounded derivative and is

thus Lipschitz continuous.

Proof. To prove η̃ is continuously differentiable with bounded

derivative, we prove that all the partial derivatives exist, are

bounded, and are continuous. Let η “ pη1, η2, . . . , ηnq and

η̃ “ pη̃1, η̃2, . . . , η̃nq. By a simple change of integration

variables we obtain

η̃pxq “

ż

ζ̃PRn

ηpζ̃q
1

p2πqn{2rn
e´}x´ζ̃}2

2
{2r2dζ̃. (32)

Now we calculate the jth partial derivative of η̃i. Let bj P R
n

denote a vector whose elements are all zero except for the jth

element, which is equal to one. Then,

Bη̃ipxq

Bxj

“ lim
γÑ0

η̃ipx ` γbjq ´ η̃ipxq

γ

“ lim
γÑ0

ż

ζ̃PRn

ηipζ̃q

p2πqn{2rn

¨
˝e

´}x`γbj´ζ̃}2
2

2r2 ´ e´ }x´ζ̃}2
2

2r2

γ

˛
‚dζ̃.

(33)

From the mean value theorem we conclude that there exists γ̃

between 0 and γ such that
˜
e´}x`γbj´ζ̃}2

2
{2r2 ´ e´}x´ζ̃}2

2
{2r2

γ

¸

“
pζ̃j ´ γ̃ ´ xjq

r2
e´}x`γ̃bj´ζ̃}2

2
{2r2 , (34)

where the last equality is due to the fact that the jth element
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of bj is equal to one. Also, note that for |γ| ă 1 we have
ˇ̌
ˇ̌
ˇ
ζ̃j ´ γ̃ ´ xj

r2
e´}x`γ̃bj´ζ̃}2

2
{2r2

ˇ̌
ˇ̌
ˇ

ď
|ζ̃j | ` 1 ` |xj |

r2
e´ ř

k‰jpxk´ζ̃kq2{2r2e
´ζ̃2j `2p|xj |`1q|ζ̃j |

2r2 ,

where to obtain the last equality we used the fact that all the

element of bj except the jth one are zero. Define

hpζ̃q “
|ζ̃j | ` 1 ` |xj |

r2
e´ ř

k‰jpxk´ζ̃kq2{2r2e
´ζ̃2j `2p|xj |`1q|ζ̃j |

2r2 .

It is straightforward to use (31) and check that
ż ˇ̌

ˇ̌ηipζ̃q
1

p2πqn{2rn
hpζ̃q

ˇ̌
ˇ̌ dz̃ ă 8.

So far we have proved that the absolute value of the

integrand in (33) is less than or equal to C
p2πqn{2rn

hpζ̃q, which

is an integrable function. Hence, we can employ the dominated

convergence theorem to show that

Bη̃ipxq

Bxj

“ lim
γÑ0

η̃ipx ` γbjq ´ η̃ipxq

γ

“

ż

ζ̃PRn

ηipζ̃q

p2πqn{2rn
lim
γÑ0

¨
˝e

´}x`γbj´ζ̃}2
2

2r2 ´ e´ }x´ζ̃}2
2

2r2

γ

˛
‚dζ̃

“

ż

ζ̃PRn

ηipζ̃q

p2πqn{2rn
ζ̃j ´ xj

r2
e´}x´ζ̃}2

2
{2r2dζ̃. (35)

It is straightforward to conclude that this derivative is bounded.

Proving the continuity of the derivative employs the same lines

of reasoning and hence we skip it.

Calculating η̃pxq from ηpxq is not straightforward for the

following two reasons: (i) Equation (30) dictates that we

integrate over all of Rn, and (ii) We usually do not have access

to the explicit form of η. To get around this problem we again

turn to Monte Carlo sampling.

To approximately calculate (30) using Monte Carlo sam-

pling first generate a series of M random vectors h1, h2, ...hM ,

each with i.i.d. Gaussian elements with standard deviation r.

Next, for each hi, pass hi ` x through the discontinuous

denoiser ηpxq and then average the results to get a smooth

denoiser ˆ̃ηpxq. That is approximate η̃pxq with

ˆ̃ηpxq “
1

M

Mÿ

i“1

ηpx ` hiq, (36)

where hi „ Np0, r2Iq for all i.

Figure 11 compares the input-output relationship of the

hard-thresholding denoiser before and after it has been

smoothed using this method. Notice the smoothing process

completely removes the discontinuities but otherwise leaves

the function intact.

The above discussion does not provide any suggestion on

how we should pick the smoothing parameter r. In fact,

rigorous study of the effect of r in AMP requires the evaluation

Fig. 11. Hard-thresholding and smoothed-hard-thresholding denoisers. Note
how the smoothing process has removed the discontinuities.

of the difference |
}xt´xo}2

2

N
´ θtpxo, δ, σ

2
wq|, in terms of the

dimension. We leave it as an open problem for future research.

Nevertheless, from a practical perspective r can be considered

as just another denoiser parameter. The problem of optimizing

denoiser parameters has been extensively studied in the field

of image processing [64]–[66].

Figures 9 and 10 demonstrate the benefits of smoothing a

denoiser using this approach. Unlike D-AMP using the orig-

inal hard-thresholding denoiser, D-AMP using the smoothed

denoiser closely follows the state evolution. This change is

significant because it allows us to take advantage of the theory

and tuning strategies developed in Section III. More impor-

tantly, Figure 10 illustrates how D-AMP based on smoothed-

hard-thresholding dramatically outperforms its discontinuous

counterpart.

Before proceeding, we would like to emphasize that the

above process is not needed for any of the advanced denoisers

that we explored in this paper. We found that advanced

denoisers satisfy the state evolution and perform exceptionally

in D-AMP without any smoothing. We believe this finding

implies they are sufficiently smooth to begin with.

VII. SIMULATION RESULTS FOR IMAGING APPLICATIONS

To demonstrate the efficacy of the D-AMP framework, we

evaluate its performance on imaging applications.

A. A menagerie of image denoising algorithms

As we have discussed so far, D-AMP employs a denoising

algorithm for signal recovery problems. In this section, we

briefly review some well-known image denoising algorithms

that we would like to use in D-AMP. We later demonstrate

that any of these denoisers, as well as many others, can be

used within our D-AMP algorithm in order to reconstruct

various compressively sampled signals. As we discussed in

Section III-H, theory says that if denoising algorithm M

outperforms denoising algorithm N , then D-AMP based on

M will outperform D-AMP based on N . We will see this

behavior in our simulations as well.

Below we represent a noisy image with the vector f ; f “
x`σz where x is the noise-free version of the image, σ is the
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standard deviation of the noise, and the elements of z follow

an i.i.d. Gaussian distribution.

1) Gaussian kernel regression: One of the simplest and

oldest denoisers is Gaussian kernel regression, which is

implemented via a Gaussian filter. As the name suggests,

it simply applies a filter whose coefficients follow a

Gaussian distribution to the noisy image. It takes the

form:

x̂ “ f ‹ G, (37)

where G and ‹ denote the Gaussian kernel and the

convolution operator, respectively. The Gaussian filter

operates under the model that a signal is smooth. That is,

neighboring pixels should have similar values. Note that

this assumption is violated on image edges and hence

this denoiser tends to over-smooth them. Compared to

other approaches Gaussian kernel regression has a very

low implementation cost. However, it does not remove

noise as well as other denoisers.

2) Bilateral filter: Similar to kernel regression, the bilateral

filter [73] sets each pixel value according to a weighted

average of neighboring pixels. However, whereas the

Gaussian filter computes weights based on how close to

one another two pixels are, the bilateral filter computes

weights based on the similarity of the pixel values (in ad-

dition to their spatial proximity). The estimate produced

by the bilateral filter can be written as

x̂piq “

ř
jPΩi

wpi, jqfpjqř
jPΩi

wpi, jq
(38)

wpi, jq “ e
´pfpiq´fpjqq2

h2 , (39)

where fpjq is the value of the jth pixel, Ωi is a search

window around pixel i, and h is a smoothing parameter

set according to the amount of noise in the signal. Note

that the bilateral filter tries to avoid averaging together

light and dark pixels on opposite sides of an edge. The

bilateral filter has generally proven much more effective

than the Gaussian filter. However, it fails entirely when

a very large amount of noise is present and the denoiser

cannot determine which pixels should be alike.

3) Non-local means (NLM): Non-local means [39] extends

the bilateral filter concept of averaging pixels with similar

values to pixels with similar neighborhoods. NLM’s orig-

inal implementation takes the same form as the bilateral

filter (38) but with the following weights:

wpi, jq “ e
´}Npiq´Npjq}2

2

h2 , (40)

where Npiq represents a patch of pixels neighboring pixel

i and h is a smoothing parameter set according to the

variance of the noise. Because the true value of a pixel

is better reflected by the noisy value of its neighborhood

than by just its noisy pixel value, NLM better recognizes

which pixels should be alike and thus outperforms the

bilateral filter. However, because two pixels on opposite

sides of an edge usually have very similar neighborhoods,

NLM still produces artifacts around edges [74].

4) Wavelet thresholding: Wavelet thresholding [63] denoises

natural images by assuming they are sparse in the wavelet

domain. It transforms signals into a wavelet basis, thresh-

olds the coefficients, and then inverses the transform.

Hence if Ψ1 and Ψ denote the wavelet transform and its

inverse, respectively, then the denoised image is given by

x̂ “ Ψpητ pΨ1fqq, (41)

where η is some sort of thresholding function. The

two most popular thresholding techniques are soft-

thresholding ηsτ pxq “ p|x| ´ τq`signpxq and hard-

thresholding ηhτ pxq “ pxqIp|x| ě τq. Wavelet thresh-

olding has superb performance if the signal is sparse in

the wavelet domain. Unfortunately, images do not have

an exactly sparse wavelet representation. As a result,

the performance of wavelet thresholding denoising is

generally worse than NLM.

5) BLS-GSM: Bayes least squares Gaussian scale mixtures

[62] extends simple wavelet thresholding by using an

overcomplete wavelet basis and computing denoised co-

efficient values not with a thresholding function, but

via a Bayesian least squares estimate. This estimate is

computed by considering a neighborhood around every

coefficient and then modeling the distribution of the

coefficients within that neighborhood as the product of

a Gaussian random vector and a random scalar, each

with a carefully defined prior. The algorithm uses these

priors to compute the expected value of the noiseless

coefficient value. Because the distributions of the wavelet

coefficients of natural images are highly dependent on one

another, a Bayesian least squares estimate can remove

noise while retaining far more structure than coefficient

thresholding alone. Accordingly, BLS-GSM significantly

outperforms wavelet thresholding. Its performance rela-

tive to NLM depends on the statistics of the image being

denoised.

6) BM3D: Block matching 3D collaborative filtering [56]

can be considered a combination of NLM and wavelet

thresholding. The algorithm begins by comparing patches

around the pixels in an image and then grouping sim-

ilar patches into stacks. It then performs 2D and 1D

transforms on the group. These transforms are a 2D

DCT and a 1D Haar transform or a 2D bi-orthogonal

spline wavelet (Bior) and a 1D Haar transform. Which

pair is used depends on the amount of noise in the

image. Next the algorithm shrinks the coefficients of

these groups and performs an inverse transform to es-

timate each pixel. It performs this process twice; once

by hard-thresholding the coefficients and a second time

using Wiener filtering based on the spectra of the initial

estimate. In practice BM3D significantly outperforms

NLM and wavelet thresholding techniques. It does a

great job at removing noise and produces fewer artifacts

than competing methods. Additionally, the authors of

BM3D have provided well optimized code that makes

this complicated algorithm quite efficient.

7) BM3D-SAPCA: BM3D with shape adaptive principal
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component analysis [75] combines two extensions to the

original BM3D algorithm; block matching using shape

adaptive patches and thresholding/filtering in a PCA

derived basis. Using adaptive patches helps ensure that

the algorithm groups only similar patches. The use of

an adaptive basis means that features not well captured

by the DCT/Bior and Haar bases of BM3D will be

retained. The performance of BM3D-SAPCA tends to

be incrementally better than BM3D. Unfortunately, this

small increase in performance comes at a huge increase

in computational cost.

Table I provides a comparison among the above denoising

algorithms. The parameters of the Gaussian filter, the bilateral

filter, non-local means, and wavelet thresholding were all ex-

perimentally tuned so as to maximize PSNR.15 The parameters

for the other 3 algorithms were set automatically using their

respective packages. The BM3D, BM3D-SAPCA, and BLS-

GSM packages are available online.16 17

B. Implementation details of D-AMP and D-IT

1) Terminology: Our goal is to plug each of the denoising

algorithms that we reviewed in Section VII-A into our D-

AMP algorithm. In the rest of the paper we use the following

terminology: If denoising method M is employed in D-

AMP, then we call the reconstruction algorithm M-AMP. For

instance, if we use NLM, the resulting algorithm will be called

NLM-AMP and if we use BM3D, the resulting algorithm will

be called BM3D-AMP.

We use the same terminology for D-IT: If we use the BM3D

denoiser then we call the resulting algorithm BM3D-IT.

2) Denoising parameters: One of the main challenges in

comparing different recovery algorithms is the tuning of each

algorithm’s free parameters. As discussed in Section III-F,

the parameters of D-AMP can be tuned efficiently with a

greedy strategy. In other words, at every iteration we optimize

the parameters to obtain the minimum MSE at that iteration.

Toward this goal, we can employ different strategies that have

been proposed in the literature for setting the parameters of

denoising algorithms [64]–[66].

A variety of techniques exist to estimate the standard

deviation of the noise in an image; however, we tackled this

problem by using a convenient feature of AMP algorithms:

||zt||22{m « pσtq2 [21]. Additionally, the packages provided

with many of the state-of-the-art denoising algorithms [56],

[62], [75], work with just two inputs; the noisy signal and

an estimate of the standard deviation of the Gaussian noise.

The packages then tune all other parameters internally so as to

minimize the MSE. Thus, for the BM3D, BM3D-SAPCA, and

BLS-GSM variants of D-AMP we use pσ̂tq2 “ ||zt||22{m along

with the packages and skip the parameter tuning problem.

15PSNR stands for peak signal-to-noise ratio and is defined as

10 log10p 255
2

meanppx̂´xoq2q
q when the pixel range is 0 to 255. It is a measure

of how closely a signal estimate x̂ is to the true signal xo. In this paper
we use PSNR to measure both the denoising algorithms’ and CS recovery
algorithms’ rescaled MSE.

16http://www.cs.tut.fi/~foi/GCF-BM3D/
17http://www.io.csic.es/PagsPers/JPortilla/software

Fig. 12. PSNR of a NLM denoised image as a function of the smoothing
parameter, h in (40) divided by the standard deviation of the noise, σ. The
noisy images had been contaminated with AWGN with various standard
deviations. Notice that different noise levels required different smoothing
parameters. We used this data to create a look-up table used for parameter
control within the NLM-AMP algorithm.

For denoisers without self-tuning packages, such as NLM,

the tuning problem is challenging because at early iterations

the effective noise has a large standard deviation but at later

iterations the effective noise has a small standard deviation.

This means the best parameters for early iterations are very

different than the best parameters for later iterations. To

get around this problem we use look-up-tables to set the

parameters according to σ̂t. We naively generated these tables

by first constructing artificial denoising problems with varying

amounts of additive white Gaussian noise and then sweeping

through the tuning parameters at each noise level. Figure 12

presents how we chose the parameter h used in NLM. At

each noise level we simply chose the parameter values that

maximized the PSNR of the denoising problem. For example,

for NLM our look-up-table set h to .9 for σ̂t between 15 and

30. The same parameters were applied to all images; we did

not optimize our code for individual images.

Recall that the state evolution comparison (Figure 7)

showed that the MSE of BM3D-IT rose as the number

of iterations increased. We attribute this to non-Gaussian

effective noise and correct for this behavior by over-smoothing

BM3D-IT at each iteration. The over-smoothing was set by

using parameters optimized for 2σ̂ rather than σ̂. The scalar

2 was chosen as it provided the best MSE among the scalar

values we tested.

3) Stopping criterion: AMP is typically designed to stop

after some number of iterations or when
}xt´xt´1}2

}xt}2 is less

http://www.cs.tut.fi/~foi/GCF-BM3D/
http://www.io.csic.es/PagsPers/JPortilla/software
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TABLE I
PERFORMANCE (PSNR IN DB) AND COMPUTATION TIME (SECONDS) COMPARISON OF SEVERAL DENOISERS. RESULTS ARE FOR 256 ˆ 256 IMAGES

WITH ADDITIVE WHITE GAUSSIAN NOISE WITH STANDARD DEVIATION 15.

Denoiser Lena Barbara Boat Fingerprint House Peppers Average Time

Gaussian filter 26.5 25.9 24.4 18.0 28.1 24.2 0.005

Bilateral filter 27.9 27.2 27.5 25.6 29.3 27.6 1.430

Non-local means 31.3 30.8 30.0 27.6 32.8 30.8 7.507

Wavelet thresholding 28.9 28.3 28.2 25.7 29.5 28.8 0.063

BLS-GSM 32.4 30.7 30.9 27.8 33.8 31.9 14.548

BM3D 33.2 32.4 31.2 28.3 35.1 32.6 1.128

BM3D-SAPCA 33.5 32.8 31.5 28.6 35.3 32.9 1251.633

Fig. 13. The progression of the intermediate estimates’ PSNRs on a 128ˆ128

Barbara test image over several iterations at different sampling rates. Notice
that the estimates have high variance at first but generally stabilize by iteration
30.

than a threshold. Figure 13 demonstrates the PSNR evolution

of BM3D-AMP (as a function of iterations) for different

sampling rates of the 128 ˆ 128 Barbara test image. As

the figure suggests, after about 10 iterations the PSNR has

generally approached its maximum, but the variance of the

estimates remains very high. After 30 iterations the variance

is quite low. Therefore to reduce variation in our results,

we decided to run BM3D-AMP for 30 iterations. The other

D-AMP algorithms, as well as D-IT, IST, and AMP, exhibited

similar behavior and were also run for 30 iterations.

4) Onsager correction: In all our implementations of D-

AMP (except for the original AMP for which we used the

closed form solution) we have used the Monte Carlo method

for calculating the Onsager correction term, as reviewed in

Section V-B. While the algorithm seems to be insensitive to

the exact value of ǫ and works for a wide range of values of

ǫ, we used ǫ “ }x}8

1000
. We found this value was small enough

for the approximation to be effective while not so small as to

result in rounding errors. In the case of the original AMP, we

have used the calculations we described in Section V-A.

C. State evolution of D-AMP

Because the effective noise within D-AMP iterations is

Gaussian, as further illustrated in Figure 14, state evolution

serves as an effective predictor of D-AMP’s performance. As

the first step in our simulations, we would like to provide

evidence of this prediction accuracy. To do so we compare the

predicted and observed performance of D-AMP with NLM,

wavelet thresholding, BLS-GSM, and BM3D.

Recall that the state evolution of D-AMP is defined by

θt`1pxo, δ, σ
2

wq “
1

n
E}Dσtpxo ` σtǫq ´ xo}22,

where pσtq2 “ θt

δ
pxo, δ, σ

2
wq ` σ2

w. To compute this value

in practice, at every iteration we added white Gaussian noise

with standard deviation σt to xo, denoised the signal with

denoiser Dσt (using the true, rather than estimated, σt), and

then computed the MSE.

Figure 15 displays the state evolutions alongside the true

intermediate MSEs of the four aforementioned denoising-

based algorithms when applied to a δ “ 0.4 sampled 128ˆ128

House test image with no measurement noise. The average true

MSEs at iteration 29 of AMP, NLM-AMP, BLS-GSM-AMP,

and BM3D-AMP are all within 1.2% of the MSEs predicted

by their respective state evolutions. We have posted our code

online18 to enable other researchers to verify and explore the

validity of our state evolution predictions for these and other

D-AMP algorithms.

D. One-dimensional synthetic test

As a simple demonstration of the improvements that can

be achieved by employing better denoising algorithms in

AMP, we compare the performance of the original AMP (that

employs sparsity in the wavelet domain) with the performance

of NLM-AMP on a piecewise constant signal. Within the test

18http://dsp.rice.edu/software/DAMP-toolbox

http://dsp.rice.edu/software/DAMP-toolbox
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Fig. 14. QQplots of the effective noise at various iterations of BM3D-AMP and NLM-AMP. Notice that the effective noise remains Gaussian.

AMP used a Haar basis for wavelet thresholding and used

the max-min optimal threshold as determined by [47]. The

Haar basis was chosen because it well captures signal discon-

tinuities. NLM-AMP used a length 11 patch, |Npiq| “ 11, a

length 21 search window, |Ωi|=21, and a smoothing parameter

of 1.5, h “ 1.5. These settings were chosen because they

allow NLM to effectively denoise piecewise constant signals

at a variety of noise levels. The results of our simulation

are shown in Figure 3. As is clear from the figure, NLM-

AMP significantly outperforms the original AMP. Even though

the signal is relatively sparse in the wavelet domain, NLM

captures its structure far more effectively. Hence NLM-AMP

outperforms the standard AMP that employs sparsity in the

wavelet domain.

E. Imaging tests

1) State-of-the-art recovery algorithms: In this section we

compare the performance of D-AMP, using a variety of de-

noisers, with other CS reconstruction algorithms. In particular,

we compare the performance of our D-AMP algorithm with

turbo-AMP [28]19, which is a hidden Markov tree model-based

AMP algorithm, and ALSB [33]20 and NLR-CS [31]21, which

both utilize non-local group-sparsity. NLR-CS represents the

current state-of-the-art in CS image reconstruction algorithms.

We compare these 3 algorithms to D-AMP based on the

NLM, BLS-GSM, BM3D, and BM3D-SAPCA denoisers. The

performance of D-AMP using the Gaussian filter and the

19http://www2.ece.ohio-state.edu/~schniter/turboAMPimaging/
20http://idm.pku.edu.cn/staff/zhangjian/ALSB/
21http://see.xidian.edu.cn/faculty/wsdong/NLR Exps.htm

bilateral filter was not competitive and has been omitted

from the results. We include comparisons with AMP, using a

wavelet basis. We also include comparisons with the BM3D-

IT algorithm to illustrate the importance of the Onsager

correction term in the performance of D-AMP. Other D-IT

algorithms demonstrated considerably worse performance and

are therefore omitted from the results.

2) Test Settings: ALSB uses rows drawn from a 322 ˆ 322

orthonormalized Gaussian measurement matrix to perform

block-based compressed sensing, as described in [58]. All

other tests used an m ˆ n measurement matrix that was

generated by first using Matlab’s randn(m,n) command and

then normalizing the columns. All simulations were conducted

on a 3.16 GHz Xeon quad-core processor with 32GB of

memory.

For the AMP algorithm we used Daubechies 4 wavelets as

the sparsifying basis and set its threshold optimally according

to [47]. The parameters of D-AMP and D-IT were set

following the methods described in section VII-B2. All D-IT

and D-AMP algorithms were run for 30 iterations. AMP

was run for 30 iterations as well. Turbo-AMP was run for

10 iterations. We experimented with running turbo-AMP for

30 iterations but found that this yielded no improvement

in performance while nearly tripling the computation time.

Because the DCT-sparsity-based iterative soft-thresholding

method used to generate an initial estimate in NLR-CS’s

provided source code failed for Gaussian measurement

matrices, we generated the initial estimates used by NLR-CS

by running BM3D-AMP for 8 iterations for noiseless tests and

4 iterations for noisy tests. Only 4 iterations of BM3D-AMP

http://www2.ece.ohio-state.edu/~schniter/turboAMPimaging/
http://idm.pku.edu.cn/staff/zhangjian/ALSB/
http://see.xidian.edu.cn/faculty/wsdong/NLR_Exps.htm
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Fig. 15. State evolutions of multiple D-AMP algorithms when applied to a 40% sampled 128 ˆ 128 House test image with no measurement noise. There is
near perfect correspondence between the predicted and true MSE.

were used during noisy tests because if run for 8 iterations

the initial estimates from BM3D-AMP were often better than

the final estimates from NLR-CS. Turbo-AMP, ALSB, and

NLR-CS were otherwise tested under their default settings.

3) Image database: The data was generated using

six standard image processing images drawn from Javier

Portilla’s dataset:22 Lena, Barbara, Boat, Fingerprint, House,

and Peppers. The images each have a pixel range of roughly

0´ 255. Each of these images, except the examples presented

in Figures 16 and 17, were rescaled to 128 ˆ 128 for

testing. Restricting the tests to 128 ˆ 128 enabled the entire

measurement matrix A to be stored in memory. We also

created a version of D-AMP that does not store A but instead

generates sections of A as required. This version can handle

images of arbitrarily large size but is extremely slow.

4) Noiseless image recovery: While matching the denoiser

to the signal produces impressive results in one-dimensional

settings (as summarized in Section VII-D), the results in 2D

are even more pronounced. We begin this section with a visual

comparison of three algorithms: Figure 16 illustrates the image

recovery performance of AMP, NLR-CS, and our BM3D-

SAPCA-AMP algorithm. BM3D-SAPCA-AMP outperformed

NLR-CS slightly; 29.96 dB vs 29.31 dB. Both of these

algorithms dramatically outperformed the wavelet sparsity-

based AMP algorithm; 20.07 dB.

We also present a more complete comparison of D-AMP

22http://www.io.csic.es/PagsPers/JPortilla/software

with other algorithms in Table II.23 As is clear from this

table, BM3D-AMP or BM3D-SAPCA-AMP outperform all

the other algorithms in a large majority of the tests. In the

next section we demonstrate that the denoising based-AMP

algorithms perform far better than competing methods when

in the presence of measurement noise.

5) Imaging in the presence of measurement noise:

In realistic settings compressive samples are subject to

measurement noise. Noisy sampling can be modeled by

y “ Ax ` w where w represents additive white Gaussian

noise (AWGN). In Figure 17 we provide a visual comparison

between the reconstructions of BM3D-SAPCA-AMP (26.86

dB) and NLR-CS (25.30 dB) in the presence of measurement

noise. In Table III we compare the performance of the BM3D

variant of D-AMP to NLR-CS and ALSB when varying

amounts of measurement noise are present. As one might

expect from a denoising-based algorithm, D-AMP was found

to be exceptionally robust to noise. It outperformed the other

methods in almost all tests and in some tests by as much as

7.4 dB.

6) Computational complexity: Table IV demonstrates that,

depending on the denoiser in use, D-AMP can be quite

23Model-CoSaMP and other model-based techniques have not been in-
cluded in our simulation results. First and foremost these methods were too
slow for us to gather data before finishing the report. Additionally, we found
they were not competitive: In the original Model-CoSaMP paper [24] the
authors reported a RMSE of 11.1 (PSNR of 27.22 dB) from a reconstruction
of a 128 ˆ 128 pepper test image using 5000 Gaussian measurements. By
comparison, BM3D-AMP returns a RMSE of 5.1 (PSNR of 33.98 dB) on the
same test.

http://www.io.csic.es/PagsPers/JPortilla/software
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(a) Original (b) AMP recovery

(c) NLR-CS recovery (d) BM3D-SAPCA-AMP recovery

Fig. 16. Reconstructions of 10% sampled 256ˆ 256 Barbara test image. The performance of BM3D-SAPCA-AMP is slighlty better than the state-of-the-art
NLR-CS algorithm and dramatically better than AMP.

efficient: The BM3D variant of D-AMP is dramatically faster

than NLR-CS and ALSB. The table also illustrates how using

different denoisers within D-AMP presents not only a means

of capturing different signal models, but also a way to balance

performance and run times.

VIII. CONCLUSIONS

Through extensive testing we have demonstrated that the

approximate message passing (AMP) compressed sensing re-

covery algorithm can be extended to use arbitrary denoisers

to great effect. Variations of this denoising-based AMP algo-

rithm (D-AMP) deliver state-of-the-art compressively sampled

image recovery performance while maintaining a low compu-

tational footprint. Our theoretical results and simulations show

that the performance of D-AMP can be predicted accurately

by state evolution. We have also proven that the problem of

tuning the parameters of D-AMP is no more difficult than

the tuning of the denoiser that is used in the algorithm.

Finally, we have shown that D-AMP is extremely robust to

measurement noise. D-AMP represents a plug and play method

to recover compressively sampled signals of arbitrary class;

simply choose a denoiser well matched to the signal model

and plug it in the AMP framework. Since designing denoising

algorithms that employ complicated structures is usually much

easier than designing recovery algorithms, D-AMP can benefit

many different application areas.

A significant amount of work remains to be done. First and

foremost, all of the theory we developed for D-AMP relies

upon the assumption that residual signals follow Gaussian

distributions. In this paper we supported this assumption with

state evolution and QQplot experiments. Theoretical validation

of this assumption is left for future research. Likewise, all

theory and results have been for i.i.d. Gaussian (or subGaus-

sian) measurement matrices. Extension to other measurement

matrices such as Fourier samples is another open direction that

is left for future research.
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(a) NLR-CS recovery (b) BM3D-SAPCA-AMP recovery

Fig. 17. Reconstructions of 10% sampled 256 ˆ 256 Barbara test image with additive white Gaussian measurement noise with standard deviation 30. Note
that BM3D-SAPCA-AMP exhibits far fewer artifacts than NLR-CS.

APPENDIX

A. Proof of Proposition 4

Let DM
σ and D˚

σ denote the minimax denoiser, and minimax

optimal family of denoisers for D-AMP, respectively. For nota-

tional simplicity we assume that supxo
E}DM

σ pxo`σǫq´xo}22
is achieved at certain point xm,σ

o , and that supxo
E}D˚

σpxo `
σǫq ´ xo}22 is achieved at certain point x˚,σ

o . Note that

according to the state evolution for every xo the fixed point

of state evolution is given by

θ8
DM pxo, δ, σ

2

wq “
1

n
E}DM

σ pxo ` σǫq ´ xo}22,

where σ2 “
θ8
DM pxo,δ,σ

2

wq
δ

` σ2
w. Define

θ̃8
DM pδ, σ2

wq “ sup
xoPtxm,σ

o σą0u
θ8
DM pxo, δ, σ

2

wq.

Again for notational simplicity assume that the supremum is

achieved at xm˚
o . The following lemma will be useful in our

proof. It also has a nice interpretation that we describe after

proving it.

Lemma 5. If θ8
Dpxo, δ, σ

2
W q denotes the fixed point of the state

evolution with denoiser D at signal xo, then

θ8
DM pxo, δ, σ

2

wq ď θ̃8
DM pδ, σ2

wq “ θ8
DM pxm˚, δ, σ2

wq.

Proof. We first claim that for every θ ą θ̃8
DM pδ, σ2

wq and for

every xo we have

θ ą
1

n
E}DM

σ pxo ` σǫq ´ xo}22, (42)

where σ2 “ θ
δ

` σ2
W . Suppose that this is not true, i.e., there

exists xo and θ ą θ̃8
DM pδ, σ2

wq such that

θ ď
1

n
E}DM

σ pxo ` σǫq ´ xo}22.

Then

θ ď
1

n
E}DM

σ pxo ` σǫq ´ xo}22

ď
1

n
E}DM

σ pxσ,M
o ` σǫq ´ xσ,M

o }22, (43)

where the last inequality is due to the definition of xσ,M
o .

This implies that the fixed point of DM
σ for vector xσ,M

o will

be larger than θ and hence will be larger than θ̃8
DM pδ, σ2

wq.

This is in contradiction with the definition of θ̃8
DM pδ, σ2

wq.

Therefore, for any xo (42) holds. Furthermore, (42) implies

that for every xo the fixed point of the state evolution of DM
σ

can only happen for θ ă θ̃8
DM pδ, σ2

wq. Hence establishes the

result.

This result has an interesting interpretation. The least favor-

able signal for D-AMP, i.e., the signal that leads to the highest

fixed point, is one of the least favorable signals for the denoiser

Dσ . While we proved this result for a specific denoiser DM
σ ,

the proof can be easily extended to any denoiser Dσ .

We may now return to the proof of Proposition 4. Similar

to Lemma 5 define

θ̃8
D˚ pδ, σ2

wq “ sup
xoPtx˚,σ

o : σą0u
θ8
D˚ pxo, δ, σ

2

wq.

Also, suppose that the supremum is achieved at x˚˚
o . Clearly,

for any θ ą θ̃8
D˚ pδ, σ2

wq we have

θ ą
1

n
E}D˚

σpx˚˚
o ` σǫq ´ x˚˚

o }22

“ sup
xo

1

n
E}D˚

σpxo ` σǫq ´ xo}22

ě inf
Dσ

sup
xo

1

n
E}Dσpxo ` σǫq ´ xo}22

“
1

n
E}DM

σ pxm,˚
o ` σǫq ´ xm,˚

o }22. (44)

Hence the fixed point of DM
σ is less than or equal to the fixed

point of D˚
σ . Hence the proof is complete.
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B. Proof of Proposition 5

Let Bk denote the class of k-sparse signals with zero-one

elements. Suppose that we have observed y “ Axo (xo P Bk)

and the goal is to recover xo from y. Consider the following

recovery algorithm that is a special form of compressible

signal pursuit proposed in [76], [77]:

x̂o “ arg min
xPBk

}y ´ Ax}22.

Lemma 6. For m ě 1,

E}x̂o ´ xo}22 “ 0.

Proof. First note that Ppx̂o ‰ xoq “ PpApxo ´ x̂oq “ 0q “ 0.

We can use the union bound and the fact that there are only`
n
k

˘
vectors in this space, to show that

PpDxo P Bk : x̂o ‰ xoq “ 0.

When the algorithm incorrectly estimates xo, }x̂o ´xo}22 is at

most 2k. Since the error is bounded our result is established.

This is essentially the proof of the second part of the

theorem. We now prove the first part of the theorem.

Consider the distribution π˚
i “ p1´ k

n
` γqδ0 ` p k

n
´ γqδ1,

where δa denotes a point mass at a. Construct a distribution

on R
n in the following way:

π˚ “ π˚
1 ˆ π˚

2 ˆ . . . ˆ π˚
n.

Here are the main steps of the proof:

(i) We first prove that the samples we draw from π˚ belong

to Bk with high probability.

(ii) We employ the result of step one to derive a lower bound

for the minimax risk.

Step (i) is a simple application of Hoeffding inequality. Let

xo be a sample from this distribution. By using Hoeffding

inequality we obtain:

P

ˆˇ̌
ˇ 1
n

}xo}0 ´
k

n
´ γ

ˇ̌
ˇ ă γ

˙
ď 2e´nγ2{2.

Therefore,

P

ˆ
1

n
}xo}0 ă

k

n

˙
ď 2e´nγ2{2.

In other words, with very high probability the samples that

are generated from π˚ belong to Bk. Set γ “
?
2

n1{4 , define the

event A as }xo}0 ď k and let π˚˚ denote the distribution of

xo conditioned on event A. Note that the support of π˚˚ is

a subset of Bk. Now we can discuss step (ii), i.e., deriving a

lower bound for minimax risk. Since the support of π˚˚ is a

subset of Bk, for every denoiser Dσ we have

Exo„π˚˚Ep}Dσpxo ` σzq ´ xo}22 | xoq

ď sup
xoPBk

Ep}Dσpxo ` σzq ´ xo}22 | xoq. (45)

By taking the infimum over Dσ from both sides, since the

optimal denoiser on the left is the Bayes denoiser, we obtain

E}Exo„π˚˚ pxo | xo ` σzq ´ xo}

ď inf
Dσ

sup
xoPBk

E}Dσpxo ` σzq ´ xo}22. (46)

In other words we have derived a lower bound for the minimax

risk based on π˚˚. Our next step is to calculate the lower

bound we have on the left hand side. Note that PpAcq “
Ope´?

nq, and

Eπ˚˚ pxo | y “ xo ` σzq “ Eπ˚ pxo | y “ xo ` σz,Aq. (47)

Hence we have

Eπ˚˚ pxo | y “ xo ` σzq

“
Eπ˚ pxo | xo ` σzq ´ Eπ˚ pxo | xo ` σz,AcqPpAcq

PpAq
.(48)

Define φpziq “ 1?
2π

e´z2

i {2 and φpzq “ φpz1q ˆ φpz2q ˆ . . .ˆ

φpznq.

Exo„π˚˚,z„φ}xo ´ Eπ˚˚ pxo | y “ xo ` σzq}22

“ Exo„π˚˚,z„φ

››››xo ´
Eπ˚ pxo | y “ xo ` σzq

1 ´ PpAcq

››››
2

2

`Opne´?
nq

“ Exo„π˚˚,z„φ

››››
xo ´ Eπ˚ pxo | y “ xo ` σzq

1 ´ PpAcq

››››
2

2

`Opne´?
nq

“ Exo„π˚˚,z„φ}xo ´ Eπ˚ pxo | y “ xo ` σzq}22

`Opne´?
nq

“ Exo„π˚,z„φ}xo ´ Eπ˚ pxo | y “ xo ` σzq}22

`Opne´?
nq. (49)

Define φσpzq “ φpz{σq, γ̃ “ k{n ´ γ and ¯̃γ “ 1 ´ k{n ` γ.

Note that since the prior we defined on xo, i.e., π˚ is a product

of similar measure on the individual xo,i we conclude that

Exo„π˚,z„φ}xo ´ Eπ˚ pxo | y “ xo ` σzq}22

“ nExo,1„π˚
1
,zi„φpxo1 ´ Eπ˚

1

pxo1 | y1 “ xo1 ` σz1qq2

“ Ez1„φ

ˆ
pk{n ´ γqφσpz1q

pγ̃qφσpz1q ` p¯̃γqφσpz1 ` 1q
´ 1

˙2

pγ̃q

`Ez1„φ

ˆ
pk{n ´ γqφσpz1 ´ 1q

pγ̃qφσpz1 ´ 1q ` p¯̃γqφσpz1q

˙2

p¯̃γq.

Finally, by the dominated convergence theorem we prove that

lim
nÑ8

Exo„π˚,z„φ}xo ´ Eπ˚ pxo | y “ xo ` σzq}22

“ Ez1„φ

ˆ
ρφσpz1q

ρφσpz1q ` p1 ´ ρqφσpz1 ` 1q
´ 1

˙2

ρ

`Ez1„φ

ˆ
pρqφσpz1 ´ 1q

ρφσpz1 ´ 1q ` p1 ´ ρqφσpz1q

˙2

p1 ´ ρq.
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TABLE II
PSNR OF 128 ˆ 128 RECONSTRUCTIONS WITH NO MEASUREMENT NOISE.

10% Sampling Lena Barbara Boat Fingerprint House Peppers

AMP 18.47 17.67 18.96 15.87 19.98 17.50

Turbo-AMP 18.35 17.46 18.62 16.30 21.77 17.01

ALSB 25.30 24.01 22.44 16.25 31.09 24.01

NLR-CS 26.74 24.95 23.97 18.11 34.46 25.21

BM3D-IT 5.68 5.97 5.43 4.70 4.93 5.72

NLM-AMP 21.81 20.17 21.43 17.69 24.81 20.42

BLS-GSM-AMP 24.92 23.35 23.98 17.53 30.52 24.09

BM3D-AMP 26.01 24.24 24.07 18.24 34.12 24.41

BM3D-SAPCA-AMP 15.04 24.28 22.62 18.17 32.74 23.99

20% Sampling Lena Barbara Boat Fingerprint House Peppers

AMP 21.26 20.08 21.62 16.86 22.97 20.27

Turbo-AMP 23.48 21.45 23.36 16.31 28.20 21.78

ALSB 28.66 27.98 26.09 17.42 36.28 28.12

NLR-CS 31.88 30.31 26.96 21.10 38.70 30.42

BM3D-IT 25.64 24.38 23.79 6.63 32.92 23.87

NLM-AMP 27.73 24.27 23.97 19.72 31.75 23.70

BLS-GSM-AMP 29.77 28.00 27.06 18.45 35.76 29.14

BM3D-AMP 31.12 29.83 27.58 21.14 38.30 30.00

BM3D-SAPCA-AMP 32.15 30.41 27.35 22.02 38.94 31.09

30% Sampling Lena Barbara Boat Fingerprint House Peppers

AMP 23.90 22.70 23.67 17.57 26.15 23.12

Turbo-AMP 25.88 24.35 24.80 16.33 32.18 24.58

ALSB 31.91 30.69 28.69 22.76 38.51 31.85

NLR-CS 35.86 33.78 30.27 23.01 41.15 34.80

BM3D-IT 28.16 27.21 24.43 18.44 35.48 25.49

NLM-AMP 29.94 29.39 27.67 20.81 36.49 29.92

BLS-GSM-AMP 33.29 31.06 29.95 19.20 39.17 32.73

BM3D-AMP 34.87 33.14 30.60 22.95 40.92 33.83

BM3D-SAPCA-AMP 36.21 34.18 31.22 23.71 41.55 34.91

40% Sampling Lena Barbara Boat Fingerprint House Peppers

AMP 26.35 24.77 25.41 18.65 29.20 25.36

Turbo-AMP 27.91 26.11 26.98 16.65 35.37 26.83

ALSB 34.17 34.19 30.92 24.14 41.13 35.15

NLR-CS 39.07 36.99 32.75 24.78 43.45 37.63

BM3D-IT 29.50 28.22 25.13 19.47 36.94 28.86

NLM-AMP 32.58 32.15 28.94 21.53 38.62 31.47

BLS-GSM-AMP 36.50 34.33 32.41 20.32 40.84 35.86

BM3D-AMP 38.05 35.94 32.77 24.59 42.97 36.77

BM3D-SAPCA-AMP 39.33 37.05 33.56 25.01 43.86 38.06

50% Sampling Lena Barbara Boat Fingerprint House Peppers

AMP 28.12 27.19 27.44 19.84 31.86 27.99

Turbo-AMP 30.64 27.69 28.80 19.24 37.54 29.17

ALSB 36.95 37.10 32.96 25.80 42.76 38.11

NLR-CS 42.05 39.86 35.31 26.26 45.65 40.51

BM3D-IT 30.95 29.18 27.14 20.24 38.19 29.56

NLM-AMP 35.09 34.72 31.45 25.34 39.71 34.10

BLS-GSM-AMP 38.92 36.42 34.72 21.61 42.34 38.72

BM3D-AMP 40.89 38.21 35.07 25.99 44.91 39.38

BM3D-SAPCA-AMP 42.12 39.49 36.05 26.76 45.70 40.61
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TABLE III
PSNR OF RECONSTRUCTION OF 128 ˆ 128 BARBARA TEST IMAGE WITH ADDITIVE WHITE GAUSSIAN MEASUREMENT NOISE WITH VARIOUS STANDARD

DEVIATIONS (S.D.).

AWGN with s.d. 10

Sampling rate (%) 10 20 30 40 50

ALSB 21.82 24.20 25.44 26.52 27.30

NLR-CS 24.29 27.84 28.85 29.24 28.48

BM3D-AMP 24.25 28.44 29.88 31.06 31.34

AWGN with s.d. 20

Sampling Rate (%) 10 20 30 40 50

ALSB 19.32 20.83 21.40 22.15 22.72

NLR-CS 22.30 25.43 25.74 25.43 23.84

BM3D-AMP 23.79 26.65 27.54 28.18 28.24

AWGN with s.d. 30

Sampling Rate (%) 10 20 30 40 50

ALSB 15.89 16.92 17.69 18.16 17.96

NLR-CS 21.90 22.49 22.05 20.46 18.38

BM3D-AMP 22.61 24.21 24.38 24.75 24.89

AWGN with s.d. 40

Sampling Rate (%) 10 20 30 40 50

ALSB 15.89 16.92 17.69 18.16 17.96

NLR-CS 21.92 22.48 21.99 20.44 18.38

BM3D-AMP 22.65 24.22 24.61 24.88 25.06

AWGN with s.d. 50

Sampling Rate (%) 10 20 30 40 50

ALSB 14.54 15.72 16.42 16.62 16.20

NLR-CS 21.02 21.49 20.66 18.77 16.56

BM3D-AMP 22.04 23.36 23.47 23.82 23.95

TABLE IV
AVERAGE COMPUTATION TIMES, IN MINUTES, OF 128 ˆ 128 RECONSTRUCTIONS AT VARIOUS SAMPLING RATES.

Sampling Rate (%) 10 20 30 40 50

AMP 0.3 0.6 1.0 1.3 1.6

Turbo-AMP 1.4 2.4 3.4 4.5 5.5

ALSB 52.4 60.1 66.2 70.9 71.7

NLR-CS 31.6 60.6 88.1 122.8 152.2

BM3D-IT 0.8 1.2 1.4 1.7 2.0

NLM-AMP 11.3 6.7 4.4 4.2 3.8

BLS-GSM-AMP 5.1 5.0 5.3 5.6 5.9

BM3D-AMP 1.0 1.3 1.5 1.7 2.2

BM3D-SAPCA-AMP 318.3 328.7 345.1 362.1 378.0
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[45] F. Krzakala, M. Mézard, F. Sausset, Y. F. Sun, and L. Zdeborová,
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