
From Desktop Grid to Cloud Computing Based on
BonjourGrid Middleware

Karim Hassan, Heithem Abbes, Mohamed Jemni
Research Laboratory LATICE
ESSTT/Université de Tunis,

5, Av. Taha Hussein, B.P. 56, Bab Mnara,Tunis,TUNISIA
karim.hassen@hotmail.fr, heithem.abbes@lipn.univ-paris13.fr, mohamed.jemni@fst.rnu.tn

Abstract—Desktop Grids provide computing and storage power,
with a low economic cost, through the federation of free
resources. Their performance relies strongly on the voluntary
participation of users who make their machines available when
these are unexploited. Several criteria such as number and
volatility of resources make the execution of many applications in
desktop grid, a great challenge. We attend today the emergence
of a new concept: Cloud Computing. Similar to desktop grid,
cloud computing provide resources for the execution of HPC
(High Performance Computing) applications. In this context, we
are interested in designing an approach, with an aim of having a
hybrid execution’s environment formed by BonjourGrid desktop
grid middleware and a cloud computing, to overcome the
constraint of lack of resources caused by the volatility of
machines.

Keywords—Desktop Grid; Cloud Computing; BonjourGrid

I. INTRODUCTION
Desktop grid is a hardware and software infrastructure

aimed at exploiting the personal computers resources
(processor, memory, disk space…). Several projects exploited
the resources of desktop grid such as SETI@Home [1], the
project of research of the extraterrestrial intelligence, and
Climaprediction.net [2], a distributed computing project to
produce predictions of the Earth's climate up to 2100 and to
test the accuracy of climate models.

SungJin Choi et al. [3] present taxonomy of desktop grid:
Desktop Grid is classified according to organization, platform,
scale and resource type (see figure 1):

A. Organization
Desktop grid can be categorized in two categories

according to the organization of the components of the grid:
centralized and decentralized.

Centralized desktop grid such as BOINC [2] and

XtremWeb [4], consists of three components: client, volunteer
and server. A client is a parallel job submitter. A resource
provider donates its computing resources during idle time. A
server is a central manager that controls submitted jobs and

volunteers and performs scheduling. Generally, a client
submits a parallel job to a server. The job is divided into sub-
jobs which have each own input data. The server allocates the
sub-jobs to volunteers by using scheduling mechanisms. Each
volunteer executes its task during idle time while continuously
requesting data to the server. When each volunteer finishes the
sub-job, it returns the result to the server. Finally, the server
checks the correctness of the results and then returns the final
result of the job back to the client.

Distributed desktop grid such as CCOF [5, 6, 7], Organic
Grid [8, 9] and Messor [10, 11] consists of two components:
client and volunteer. In contrast to centralized Desktop Grid,
there is no server. Volunteers have the partial information of
other volunteers. Volunteers are responsible for scheduling a
job in a distributed way.

 Centralized

• Organization

 Distributed

 Web-based

• Platform

 Middleware-based

 Internet

• Scale

 LAN

 Volunteer

• Resource Type

 Enterprise

Figure 1. Taxonomy of Desktop Grid

U.S. Government work not protected by U.S. copyright

B. Platform
Desktop Grid can be categorized in two categories

according to platform running on volunteers: Web-based and
Middleware-based.

In the Web-based desktop grid such as Charlotte [12],
Bayanihan [13, 14, 15] and Javelin [16, 17], clients write their
parallel applications in Java and post them as Applet on
theWeb. Then, volunteers only join the web page with their
browsers. The Applet are downloaded automatically and run
on the resource provider’s machine.

In the middleware-based desktop grid such as BOINC,
XtremWeb, Korea@Home [18, 19, 20] and Entropia,
volunteers need to install and run a specific middleware on the
resource provider’s machine.

C. Scale
Desktop grid is categorized into Internet-based and LAN-

based ones according to scale. Internet-based desktop grid is
based on anonymous resource providers. On the other hand,
LAN-based desktop grid is based on resource providers within
a corporation, institution, and university.

D. Resource type
Resource type specifies how resources are provided to the

system. There are two main trends: volunteer and enterprise.
Volunteer desktop grid is based on voluntary participants,
while enterprise desktop grid is based on non-voluntary
participants usually within a corporation, research lab or
university. Mostly, volunteer desktop grid relies on Internet,
while enterprise desktop grid is LAN-based. Volunteer
desktop grid is more volatile, malicious, and faulty, whereas
enterprise desktop grid is more controllable because its
resource providers are located in the same administrative
domain.

Due their inherent resource volatility it is difficult to
exploit desktop grid for applications that require rapid
turnaround.

We attend today the emergence of a new concept to
execute HPC applications: Cloud Computing.
Today there is not yet a consensus for what exactly this term
means. Examining some of the existing definitions helps to
clarify the term and what it involves. Here we quote four
definitions for cloud computing:

• “Cloud computing is a model for enabling
convenient, on-demand network access to a shared
pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with
minimal management effort or service provider
interaction.” - U.S. National Institute of Standards
and Technology (NIST) [21].

• “A pool of abstracted, highly scalable, and managed
compute infrastructure capable of hosting end

customer applications and billed by consumption” -
Forrester Research, Inc. [22].

• “A style of computing where massively scalable IT-
enabled capabilities are delivered as a service to
external customers using Internet technologies.” -
Gartner, Inc. [23].

• “A Cloud is a type of parallel and distributed system
consisting of a collection of interconnected and
virtualized computers that are dynamically
provisioned and presented as one or more unified
computing resources based on service-level
agreements established through negotiation between
the service provider and consumers” - R. Buyya, C.S
Yeo, and S.Venugopal [24]

Cloud computing can be classified by the model of service

it offers into one of three different groups. These will be
described using the XaaS taxonomy, first used by Scott
Maxwell in 2006, where “X” is Software, Platform, or
Infrastructure, and the final "S" is for Service (see figure 2).

Figure 2. Cloud computing service models

It is important to note, as shown in Figure 2, that SaaS is

built on PaaS, and the latter on IaaS. Hence, this is not an
excluding approach to classification, but rather it concerns the
level of the service provided. Each of these service models is
described as follows:

• IaaS (Infrastructure as a Service): The capability
provided to the customer of IaaS is raw storage
space, computing, or network resources with which
the customer can run and execute an operating
system, applications, or any software that they
choose. The cloud customer is not able to control the
distribution of the software to a specific hardware
platform or change parameters of the underlying
infrastructure, but the customer can manage the
software deployed.

• PaaS (Platform as a Service): In the case of PaaS, the
cloud provider not only provides the hardware, but
they also provide a toolkit and a number of supported
programming languages to build higher level services
(i.e. software applications that are made available as
part of a specific platform). The users of PaaS are
typically software developers who host their
applications on the platform and provide these
applications to the end-users.

SaaS

PaaS

IaaS

End Users

Application
Developers

Network
Architects

• SaaS (Software as a Service): The SaaS customer is
an end-user of complete applications running on a
cloud infrastructure and offered on a platform on-
demand. The applications are typically accessible
through a thin client interface, such as a web browser.
The customer does not control either the underlying
infrastructure or platform, other than application
parameters for specific user settings.

Clouds can also be classified based upon the underlying
infrastructure deployment model as Public, Private or Hybrid
clouds.

A public cloud’s physical infrastructure is owned by a
cloud service provider. Such a cloud runs applications from
different customers who share this infrastructure and pay for
their resource utilization on a utility computing basis.

A pure private cloud is built for the exclusive use of one
customer, who owns and fully controls this cloud.

Finally, any composition of clouds, be they private or
public, could form a hybrid cloud.

In this paper, we propose an approach to overcome the
constraint of lack of desktop grid resources caused by the
volatility of machines. This approach aims to make
BonjourGrid desktop grid able to supply resources from a
public cloud.

The rest of the paper is structured as follows. Section 2
illustrates an overview of some related works. Section 3
presents BonjourGrid desktop grid middleware. Section 4
presents our approach. Section 5 concludes the paper.

II. RELATED WORK
Buyya et al. [25] present integration between Aneka cloud

platform and Amazon Elastic Compute Cloud (EC2) [26].
When the Aneka scheduling engine detects that the current
capacity in terms of resources is not enough to satisfy the
user’s QoS requirement and to complete the application on
time, an additional resources must be provisioned. It is the
responsibility of the Aneka Resource Provisioning service to
acquire these resources from the Amazon public cloud.

Yi et al. [27] illustrate integration between Aneka cloud

platform and Windows Azure [28], which enables the usage of
Windows Azure Compute Service as a resource provider of
Aneka PaaS. The integration of Aneka with Windows Azure
includes two different types. The first type is to deploy Aneka
Worker Containers on Windows Azure while the Aneka
Master Container is run on local. The second type is to deploy
the entire Aneka PaaS including Aneka Master Container and
Aneka Worker Containers on Windows Azure.

The third integration of Aneka is with GoGrid [29], it’s
similar to the first case (Aneka/Amazon EC2).

To make possible to write portable and interoperable code
that works with multiple cloud providers, Apache develop
Libcloud API [30]. Libcloud is a python library which allows

users to manage their cloud resources (servers, storage, load-
balancers) using a unified and easy to use interface. Actually
Libcloud supports 16 providers such as: CloudSigma, GoGrid,
OpenNebula, Openstack, OpSource and Eucalyptus.

Libcloud provides several functionalities:

• List_nodes(): returns a list of the currently active
nodes

• Reboot_node(): allows user to restart a node.
• Create_node(): allows user to create a new node.
• Destroy_node() : allows user to destroy an

existing node.
• List_images(): returns a list of available node

images. An image represents an operating system
which is installed on the server.

Libcloud supports these functionalities for all its providers, but
Deploy_node() which allows user to run shell script on the
node after it has been provisioned, is not supported for many
cloud providers such as: Bluebox, Brightbox, CloudSigma,
Dreamhost, VCL Cloud, CloudStack and OpenNebula.

Similar to Libcloud, Jclouds [31] is an open source java
library that helps user to start in the cloud and reuse its java
and clojure development skills. Jclouds supports many clouds
including Amazon EC2, GoGrid, Windows Azure and
Rachspace. Jclouds simplifies the tasks of managing machines
in the cloud. For example, using Jclouds, the computeService
can be used to both start a pool of machines in any of
supported cloud and install software on them. Jclouds supports
also the parallel execution of server commands such as create
and execute scripts. For example, Neotys use this to launch
hundreds of servers simultaneously.

These integrations are between clouds. Moreover, the
approach we propose in this paper is between desktop grid and
public cloud.

III. BONJOURGRID DESKTOP GRID MIDDLEWARE
BonjourGrid is an approach for the decentralization and

the self organization of resources in desktop grid systems [32,
33].
The key idea is to exploit existing desktop grid middleware
(Boinc, Condor, XtremWeb) and concurrently to manage
multiple instances of desktop grid middlewares (Figure.3) [34,
35]. The notion of meta desktop grid middleware has been
introduced with BonjourGrid and the Pub-Sub
(Publish/Subscribe) paradigm is used intensively for the
coordination of the different desktop grid middlewares [36].

Each user, behind a desktop machine in his office, can
submit an application. BonjourGrid deploys a master
(coordinator), locally on the user machine, and requests for
participants (workers). Negotiations to select them should now
take place. Using a publish/subscribe infrastructure, each
machine publishes its state (idle, worker or master) when
changes occur as well as information about its local load or its

Request (35)

Voluntary
resources

Join (25)

Provision (10)

use cost, in order to provide useful metrics for the selection of
participants. These informations about the machine are
interpreted as a resource which is published as a Web service.
Under these assumptions, the master node can select a subset
of worker nodes according to selection criteria. That aspect is
managed as a Web service discovery.

The master and the set of selected workers build the

Computing Element (CE) which will execute and manage the
user application. That aspect is managed as a Web services
composition. When the execution of an application of a CE
terminates, its master becomes free, returns to the idle state
and it releases all workers before returning to the idle state
too. Then, the nodes can participate to others projects.

To implement this approach, BonjourGrid has been

decomposed into three fundamental parts: a) A fully
decentralized resources discovery layer, based on Bonjour
protocol [37]; b) A CE, using a Desktop Grid middleware such
as XtremWeb, Condor or Boinc, which executes and manages
the various tasks of applications; c) A fully decentralized
protocol of coordination between a) and b) to manage and
control all resources, services and CEs.

Figure 3: BonjourGrid abstract layers

As shown on Figure 3, in the user level, user A (resp. B)
deploys his application on his machine and the execution
seems to be local. Level 1 (middleware layer) shows that,
actually, a CE with 4 (resp. 5) workers has been dynamically
created, specifically for user A (resp. B). Level 0 shows that
all machines are interconnected and under the availability of
any user.

IV. CONTRIBUTION
BonjourGrid use participant’s resources to execute user’s

applications. To overcome the constraint of lack of
BonjourGrid resources caused by the volatility of machines,
we propose a designing of an approach aims to provision

resource from public cloud such as OpenNebula [38] and
OpenStack [39] to satisfy the user’s QoS requirement and to
complete the application on time (Figure 4).

BonjourGrid

Figure 4. Use case of resources provisioning under BonjourGrid

As shown in Figure 4, once the client has submitted the

application, the BonjourGrid middleware detects that the
current capacity in terms of resources (25 nodes) is not enough
to satisfy the user’s QoS requirement and to complete the
application on time. An additional 10 resources must be
provisioned.

Our approach consists of two components: 1) a standard

API that abstract away differences among multiple public
cloud provider and BonjourGrid APIs. The use of this API,
make the user's application, portable, which executes on
BonjourGrid or any public cloud without any modification of
the code, 2) a software layer in BonjourGrid which
implements a resource provisioning service from a public
cloud to overcome the lack of resources.

To make BonjourGrid able to provision resources from
public cloud, the first constraint is to modify the discovery
protocol. BonjourGrid is established on Pub/Sub paradigm
which is an asynchronous mode for communicating between
entities. Some users, namely subscribers or clients, express
and record their interest under the form of subscriptions, and
are notified later by another event produced by other users,
namely producers. It is known that this asynchronous
communicating mode allows spatial decoupling (the
interacting entities do not know each other), and time
decoupling (the interacting entities do not need to participate
at the same time). This total decoupling between the
production and the consumption of services increases the

Deployement of computing
middleware

XtremWeb

Network’s construction of
computing element

Resources discovery

Connection establishment to
BonjouGrid

ZeroConf Protocol (Bonjour)

Boinc Condor

Public
Cloud

scalability by eliminating many sorts of explicit dependencies
between participating entities. Eliminating dependencies
reduces the coordination needs and consequently the
synchronizations between entities. These advantages make the
communicating infrastructure well suited to the management
of distributed systems and simplify the development of a
middleware for the coordination of desktop grids.

To overcome the lack of resources from public clouds, our

approach should provide a service for accounting. The large-
scale, heterogeneous, decentralized and distributed nature of
desktop grid environments places special requirements on the
accounting service such as:

• Scalability: The accounting service must scale
with an increasing number of users and resources.

• User Transparency: An ideal accounting service is
completely transparent to users. I.e., the end user
should neither notice the presence of the
accounting service, nor need to be aware of its
existence.

• Fault Tolerance: An accounting service should
run smoothly even in the event of component
failures.

• Trust and Security: Accounting information must
only be exchanged between trusted entities. Thus,
the accounting system needs to maintain some
notion of trusted users, privileged users and their
associated access rights.

V. CONCLUSION
In this paper, we have presented the characteristics of

desktop grid systems and proposed an approach for
provisioning resources from a public cloud to overcome the
constraint of lack of workers in BonjourGrid desktop grid
caused by the volatility of machines. This approach aims also
to make hybrid execution environment formed by BonjourGrid
desktop grid middleware and public cloud such as OpenNebula
and OpenStack.

In the future we aim to implements the two components of
our framework, providing advanced scheduling techniques for
heterogeneous and we would like to extends the number of
resource provider.

REFERENCES

[1] P. A. David, C. Jeff, K. Eric, L. Matt, and W. Dan. Seti@home :an
experiment in public-resource computing. Communications of the ACM,
45(11) :56–61, 2002.

[2] P. A. David. Boinc : A system for public-resource computing and
storage. In 5th IEEE/ACM International Workshop on Grid Computing,
pages 4–10, 2004.

[3] C. SungJin, K. HongSoo, B. EunJoung, B. MaengSoon, K. SungSuk, P.
ChanYeol, and H. ChongSun. Characterizing and classifying desktop
grid. In CCGRID ’07 : Proceedings of the Seventh IEEE International
Symposium on Cluster Computing and the Grid, pages 743–748,
Washington, DC, USA, 2007. IEEE Computer Society.

[4] C. Franck, D. Samir, F. Gilles, H. Thomas, M. Frédéric, N. Vincent, and
L. Oleg. Computing on large scale distributed systems : Xtremweb

architecture, programming models, security, tests and convergence with
grid. In Future Generation Computer Systems, volume 21 of issue 3,
pages 417–437, 2005.

[5] V. Lo, D. Zhou, D. Zappala, Y. Liu, and S. Zhao, ”Cluster Computingon
the Fly: P2P Scheduling of Idle Cycles in the Internet,” The 3rd
International Workshop on Peer-to-Peer Systems (IPTPS’04), LNCS
3279, pp.227-236, Feb. 2004

[6] S. Zhao and V. Lo, ”Result Verification and Trust-based Scheduling in
Open Peer-to-Peer Cycle Sharing Systems,” Fifth IEEE International
Conference on Peer-to-Peer Computing (P2P 2005), IEEE CS Press, pp.
31-38, Sept. 2005

[7] D. Zhou and V. Lo, ”Wave Scheduler: Scheduling for Faster Turnaround
Time in Peer-to-peer Desktop Grid Systems,” 11th Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP’05), LNCS 3834,
pp. 194-218, Jun. 2005

[8] A.J. Chakravarti, G. Baumgartner, M. Lauria., ”The Organic Grid: Self-
Organizing Computation on a Peer-to-Peer Network,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 35, no. 3, pp. 1-12,
May 2005.

[9] A.J. Chakravarti, G. Baumgartner, M. Lauria, ”The Organic Grid: Self-
Organizing Computational Biology on Desktop Grids,” Chapter 27 in
Parallel Computing for Bioinformatics and Computational Biology:
Models, Enabling Technologies, and Case Studies, Wiley, 2006

[10] O. Babaoglu, H. Meling, A. Montresor, ”Anthill: a framework for the
development of agent-based peer-to-peer systems,” 22nd International
Conference on Distributed Computing Systems, pp. 15-22, Jul. 2002

[11] A. Montresor, H. Meling and O. Babaoglu, ”Messor: Load-Balancing
through a Swarm of Autonomous Agents,” International Workshop on
Agents and Peer-to-Peer Computing (AP2PC 2002), LNAI 2530, pp.
125-137, Jul. 2003

[12] A. Baratloo, M. Karaul, Z. M. Kedem and P. Wijckoff, ”Charlotte:
Metacomputing on the Web,” Future Generation Computer Systems,
vol. 15, issues 5-6, pp. 559-570, Oct. 1999

[13] L. F. G. Sarmenta, S. Hirano. ”Bayanihan: Building and Studying
Volunteer Computing Systems Using Java”, Future Generation
Computer Systems, Special Issue on Metacomputing, vol. 15, no. 5/6.,
1999

[14] L. F. G. Sarmenta, ”Sabotage-Tolerance Mechanisms for Volunteer
Computing Systems”, Future Generation Computer Systems, vol. 18,
issue 4, 2002.

[15] L. F. G. Sarmenta, ”Volunteer computing,” Ph.D. Thesis, Department of
Electrical Engineering and Computer Science, MIT, Jun. 2001.

[16] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello,
”Javelin++: Scalability Issues in Global Computing”, Concurrency:
Parctice and Experience, pp. 727-735, Dec. 2000.

[17] M. O. Neary, P. Cappello, ”Advanced eager scheduling for Javabased
adaptive parallel computing,” Concurrency and Computation: Practice
and Experience, vol. 17, issue 7-8, pp. 797-819, Jun. 2005

[18] Korea@Home, http://www.koreaathome.org/eng/
[19] S.J. Choi, M.S. Baik, J.M. Gil, S.Y. Jung, and C.S. Hwang, ”Adaptive

Group Scheduling Mechanim using Mobile Agents in Peer-to-Peer Grid
Computing Environment”, Applied Intelligence, Special Issue on Agent-
based Grid Computing , vol. 25, no. 2, pp. 199-221, Oct. 2006

[20] S.J. Choi, M.S. Baik, J.M. Gil, C.Y. Park, S.Y. Jung, and C.S. Hwang,
”Group-based Dynamic Computational Replication Mechanism in Peer
to Peer Grid Computing”, IEEE/ACM International Symposium on
Cluster Computing and the Grid (CCGRID 2006), Sixth International
Workshop on Global and Peer to Peer Computing (GP2P), IEEE CS
Press, May 2006.

[21] P. Mell and T. Grance. The NIST definition of cloud computing.
National Institute of Standards and Technology, 2009.

[22] J. Staten. Is cloud computing ready for the enterprise? Forrester
Research, March, 7, 2008.

[23] D. C. Plummer, T. J. Bittman, T. Austin, D. Clearley, and D. M. Smith.
Cloud computing: Defining and describing and emerging phenomenon,
Gartner, Inc. Retrieved September, 25:2008, 2008.

[24] R. Buyya, C.S. Yeo, and S. Venugopal. Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as

computing utilities. In High Performance Computing and
Communications, 2008. HPCC’08. 10th IEEE International Conference
on, pages 5–13. IEEE, 2008.

[25] C. Vecchiola, X. Chu, M. Mattess, and R. Buyya, Aneka - Integration of
Private and Public Clouds, Cloud Computing: Principles and Paradigms,
249-274pp, R. Buyya, J. Broberg, A.Goscinski (eds), ISBN-13: 978-
0470887998, Wiley Press, New York, USA, February 2011.

[26] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2/
[27] W. Yi, S. Karthik, V. Christian, K. Dileban and R. Buyya, Aneka

Cloud Application Platform and Its Integration with
Windows Azure, Cloud Computing: Methodology, Systems, and
Applications, L. Wang, R. Ranjan, J. Chen, and B. Benatallah (eds),
ISBN: 9781439856413, CRC Press, Boca Raton, FL, USA, October
2011.

[28] L. Henry, Introducing Windows Azure, ISBN: 978-1-4302-2469-3,
Apress, 2009.

[29] GoGrid, http://www.gogrid.com
[30] Libcloud, http://libcloud.apache.org/
[31] Jclouds, http://www.jclouds.org/
[32] A.Heithem, C. Christophe, and J. Mohamed. Bonjourgrid as a

decentralised job scheduler. In APSCC’08: Proceedings of the 2008
IEEE Asia-Pacific Services Computing Conference, pages 89–
94,Washington, DC, USA, 2008. IEEE Computer Society.

[33] A. Heithem, C. Christophe, J. Mohamed: A decentralized and fault-
tolerant Desktop Grid system for distributed applications. Concurrency
and Computation: Practice and Experience (2010), 22(3):261-277

[34] A. Heithem, C. Christophe, J. Mohamed, Bonjourgrid: Orchestration of
multi-instances of grid middlewares on institutional desktop grids.
Parallel and Distributed Processing Symposium, International, 0:1–8,
2009.

[35] S. Walid, A. Heithem, C. Christophe, J. Mohamed., A Self-Configurable
Desktop Grid System On-Demand, 3PGCIC 2012, November 12-14
2012, Victori, Canada.

[36] A. Heithem, C. Christophe, J. Mohamed, and S. Walid, Toward a meta-
grid middleware. Journal of Internet Technology, Volume 11 No1, 2010.

[37] H .S. Daniel, C. Stuart, Zero Configuration Networking: The Definitive
Guide, Publisher: O’Reilly Media, Released: December (2005) 256

[38] OpenNebula http://www.opennebula.org
[39] OpenStack http://www.openstack.org

