
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Aug 21, 2022

From detection of individual metastases to classification of lymph node status at the
patient level: the CAMELYON17 challenge

Bandi, Peter; Geessink, Oscar; Manson, Quirine; van Dijk, Marcory; Balkenhol, Maschenka; Hermsen,
Meyke; Bejnordi, Babak Ehteshami; Lee, Byungjae; Paeng, Kyunghyun; Zhong, Aoxiao

Total number of authors:
36

Published in:
I E E E Transactions on Medical Imaging

Link to article, DOI:
10.1109/TMI.2018.2867350

Publication date:
2018

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Bandi, P., Geessink, O., Manson, Q., van Dijk, M., Balkenhol, M., Hermsen, M., Bejnordi, B. E., Lee, B., Paeng,
K., Zhong, A., Li, Q., Zanjani, F. G., Zinger, S., Fukuta, K., Komura, D., Ovtcharov, V., Cheng, S., Zeng, S.,
Thagaard, J., ... Litjens, G. (2018). From detection of individual metastases to classification of lymph node status
at the patient level: the CAMELYON17 challenge. I E E E Transactions on Medical Imaging, 38(2), 550-560.
https://doi.org/10.1109/TMI.2018.2867350

https://doi.org/10.1109/TMI.2018.2867350
https://orbit.dtu.dk/en/publications/978083a4-cf77-416e-86a4-d48d06f991db
https://doi.org/10.1109/TMI.2018.2867350


0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2867350, IEEE

Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 1

From detection of individual metastases to

classification of lymph node status at the patient

level: the CAMELYON17 challenge
Péter Bándi, Oscar Geessink, Quirine Manson, Marcory van Dijk, Maschenka Balkenhol, Meyke Hermsen,

Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong, Quanzheng Li,

Farhad Ghazvinian Zanjani, Svitlana Zinger, Keisuke Fukuta, Daisuke Komura, Vlado Ovtcharov,

Shenghua Cheng, Shaoqun Zeng, Jeppe Thagaard, Anders B. Dahl, Huangjing Lin, Hao Chen, Ludwig Jacobsson,

Martin Hedlund, Melih Çetin, Eren Halıcı, Hunter Jackson, Richard Chen, Fabian Both, Jörg Franke,

Heidi Küsters-Vandevelde, Willem Vreuls, Peter Bult, Bram van Ginneken, Jeroen van der Laak, and Geert Litjens

Abstract—Automated detection of cancer metastases in lymph
nodes has the potential to improve assessment of prognosis for
patients. To enable fair comparison between the algorithms for
this purpose, we set up the CAMELYON17 challenge in con-
junction with the IEEE International Symposium on Biomedical
Imaging 2017 conference in Melbourne.

Over 300 participants registered on the challenge website, of
which 23 teams submitted a total of 37 algorithms before the
initial deadline. Participants were provided with 899 whole-slide
images for developing their algorithms. The developed algorithms
were evaluated based on the test set encompassing 100 patients
and 500 whole-slide images. The evaluation metric used was a
quadratic weighted Cohen’s kappa.

We discuss the algorithmic details of the ten best pre-
conference and two post-conference submissions. All these par-
ticipants used convolutional neural networks in combination
with pre- and postprocessing steps. Algorithms differed mostly
in neural network architecture, training strategy and pre- and
postprocessing methodology.

Overall, the kappa metric ranged from 0.89 to -0.13 across
all submissions. The best results were obtained with pre-trained
architectures such as ResNet. Confusion matrix analysis revealed
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that all participants struggled with reliably identifying isolated
tumor cells, the smallest type of metastasis, with detection
rates below 40%. Qualitative inspection of the results of the
top participants showed categories of false positives, such as
nerves or contamination, which could be targets for further
optimization. Last, we show that simple combinations of the
top algorithms result in higher kappa metric values than any
algorithm individually, with 0.93 for the best combination.

Index Terms—breast cancer; sentinel lymph node; lymph node
metastases; whole-slide images; grand challenge

I. INTRODUCTION

BREAST cancer is the most common cancer among

women in the United States of America [1]. Within their

lifetime, 12% of women are diagnosed with breast cancer.

In 2017, an estimated 252,710 women were diagnosed with

breast cancer, which accounts for 30% of all diagnosed cancer

cases, and approximately 40,610 women died from the disease.

The prognosis of breast cancer patients is mainly determined

by whether the cancer is organ-confined or has spread to other

parts of the body [2]. An internationally accepted means to

classify the extent of cancer is the tumor, (regional) lymph

nodes, distant metastasis (TNM) staging system [3]. The TNM

staging system is one of the most important tools for clinicians

to select a suitable treatment for the patient. In breast cancer,

TNM staging takes into account the size of the tumor (T-stage),

whether the cancer has spread to the (regional) lymph nodes

(N-stage), and whether the tumor has metastasized to other

parts of the body (M-stage).

The axillary lymph nodes are typically the first location

breast cancer metastasizes to. Currently, the status of these

lymph nodes is almost always assessed by applying the

sentinel lymph node procedure. This procedure tries to identify

the nearest lymph nodes to which the tumor drains, which are

then excised for pathologic examination [4], [5]. Typically, a

blue dye and/or a radioactive tracer is injected in or near the

tumor prior to surgery to identify these sentinel lymph nodes.

After formalin fixation and paraffin embedding, a couple

of micrometers thin slices are cut from the excised nodes

and placed on glass slides (typically 3-5 sections per lymph

node). These slides are then stained with hematoxylin and
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eosin (H&E) to highlight the cell nuclei and the general

structural features of the tissue (Figure 1). Through micro-

scopic assessment the pathologist screens the slides for tumor

presence. If tumor cells are found, the pathologist measures

their extent in order to determine the pathologic N stage (pN-

stage) of the tumor. In case of unclear diagnosis on H&E,

immunohistochemical (IHC) staining for cytokeratin can be

used for clarification and is standard diagnostic practice in the

Netherlands [6], [7].

The histopathological analysis of lymph nodes is time con-

suming, tedious and pathologists may miss small metastases

[8]. The introduction of whole-slide imaging, which allows

for the high-resolution digitization of glass slides, has paved

the way for (partly) automating this work [9]. Automation can

potentially improve the efficiency and accuracy of histopatho-

logical lymph node assessment.

In the medical image analysis research field, grand chal-

lenges have shown to be a very successful approach to quickly

advance the state of the art. Typically, the challenge organizers

define a clinically relevant task and release a sufficiently large

and diverse training set to allow participants to build algo-

rithms to solve a specific problem. Subsequently, algorithms

are uniformly evaluated by the organizers to allow a fair

performance comparison. There have been many successful

challenges in recent years, in many medical imaging fields,

for example: liver segmentation in CT (SLIVER07) [10], brain

tumor segmentation in MRI (BRATS) [11], or lung nodule

detection in CT (LUNA16) [12].

In 2016, we organized the ’CAncer MEtastases in LYmph

nOdes challeNge’ (CAMELYON16) to improve automated

breast cancer metastases detection in whole-slide images

(WSIs) of sentinel lymph nodes [13]. As part of the chal-

lenge, we organized a reader study in which 11 pathologists

under time constraint and 1 pathologist without time-constraint

performed the same task as the algorithms in the challenge.

We found that the best performing algorithms in the challenge

perform at the level of the pathologist without time-constraint

and perform significantly better than pathologists under time

pressure. However, CAMELYON16 did not yet mimic clinical

practice, limiting the conclusions that could be drawn from its

results. We sought to amend these limitations with CAME-

LYON17. The following key changes were made to the setup

of CAMELYON16:

• In CAMELYON16 we focused on classification of single

WSIs whereas in CAMELYON17 we focus on patient-

level pN-stage prediction including multiple WSIs per

patient.

• Isolated tumor cells (ITC), the smallest type of metastasis,

were excluded in CAMELYON16 and have now been

included.

• Five centers providing cases were included instead of

only two centers, allowing for a more accurate rep-

resentation of preparation and staining diversity across

laboratories and scanners.

• The challenge data set size increased from 399 to 1399

WSIs to get a better estimate of algorithm performance

and allow participants to train better systems.

This paper discusses the results of the CAMELYON17 chal-

lenge, which were partly presented in a workshop during the

IEEE International Symposium on Biomedical Imaging (ISBI)

2017 in Melbourne, Australia. The next sections describe the

data set, the challenge setup, and the algorithm evaluation

strategy. Subsequently, we describe the methodology of the

ten best pre-workshop and two post-workshop submissions and

compare their results (ranking in Table I). Last, we discuss the

results, the limitations of the study and recommendations for

future work.

II. MATERIALS

A. Whole-slide images

We included patients from five different medical centers

from the Netherlands: slides from 130 lymph node resec-

tions from Radboud University Medical Center in Nijmegen

(RUMC), 144 from Canisius-Wilhelmina Hospital in Nij-

megen (CWZ), 129 from University Medical Center Utrecht

(UMCU), 168 from Rijnstate Hospital in Arnhem (RST),

and 140 from Laboratory of Pathology East-Netherlands in

Hengelo (LPON). Of these patients we collected glass slides

of H&E-stained sentinel lymph nodes. Whenever available,

we also collected the corresponding IHC slides, stained for

cytokeratin, to establish the reference standard. IHC slides

were generally only available for more difficult cases for which

in the H&E slides no tumor was detected on first reading.

No consecutive H&E-slides from the same lymph node were

included.

The glass slides were digitized with whole-slide scanners,

resulting in WSIs. The slides from RUMC, CWZ and RST

were scanned in the RUMC with an 3DHistech P250 whole-

slide scanner with a pixel size of 0.24 µm. The slides from

LPON were scanned locally with their Philips IntelliSite Ultra

Fast Scanner with a 0.25 µm pixel size. The UMCU used a

Hamamatsu XR C12000 whole-slide scanner with a 0.23 µm
pixel size.

The WSIs contained multiple resolution levels, with approx-

imately 1× 105 by 2× 105 pixels at the highest resolution

level. Each consecutive resolution level doubled the pixel

size in both directions and halved the pixel count in each

dimension. The typical file size of a WSI was about 4 GB,

but it varied greatly depending on the scanner and tissue

content of the image. The vendor-specific image formats were

anonymized and converted to standard multi-resolution TIFF

image files. For a description of the file format, see http:

//openslide.org/formats/generic-tiff/. The size of the complete

data set was 3030.5 GB divided as 715.9 GB and 2314.6 GB

between CAMELYON16 and CAMELYON17, respectively.

B. WSI labeling

Clinically, three types of metastases are distinguished, based

on size: macro-metastases, micro-metastases and ITC (Table

II). Although the clinical relevance of ITCs is debated, they

have to be reported by pathologists and affect the pN-stage

when no macro- or micro-metastases are present. When mul-

tiple metastases are present in a slide, the metastasis with the

largest size determines the slide label.

http://openslide.org/formats/generic-tiff/
http://openslide.org/formats/generic-tiff/


0278-0062 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2018.2867350, IEEE

Transactions on Medical Imaging

IEEE TRANSACTIONS ON MEDICAL IMAGING 3

TABLE I: CAMELYON17 combined leaderboard (pre- and post-workshop submissions)

Rank Team Affiliation Kappa Score

1 Lunit Lunit Inc. 0.8993
2 HMS-MGH-CCDS Harvard Medical School, Mass. General Hospital, Center for Clinical Data Science 0.8806
3 VCA-TUe Electrical Engineering Department, Eindhoven University of Technology 0.8729
4 MIL-GPAT The University of Tokyo, Tokyo Medical and Dental University 0.8567
5 Indica Labs Indica Labs 0.8554
6 chengshenghua Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics 0.8439
7 DTU Technical University of Denmark 0.8098
8 IMT-CUHK Imsight Medical Technology, Chinese University of Hong Kong, Xiamen University 0.7718
9 desuto ContextVision 0.7640

10 METU-VISION Middle East Technical University 0.7599
11 Proscia Proscia Inc., Carnegie Mellon University, Moffitt Cancer Center 0.7594
12 ML-KA Karlsruhe Institute of Technology 0.7330

TABLE II: Rules for assigning single cells or clusters of

metastasized tumor cells to a metastasis category

Category Size

Macro-metastasis Larger than 2 mm
Micro-metastasis Larger than 0.2 mm and/or containing more

than 200 cells, but not larger than 2 mm
Isolated tumor cells Single tumor cells or a cluster of tumor cells

not larger than 0.2 mm or less than 200 cells

Every WSI was labeled with one of the ”macro”, ”micro”,

or ”ITC” metastasis categories by a pathologist, based on

the largest lesion present in the H&E stained slide using

the corresponding cytokeratin-stained slide as a reference, if

available. When no metastasis was present in the H&E stained

slide, it was labeled ”negative”. Examples are shown in Figure

1 and 2.

C. Assigning pN-stage labels

The pN-stages are based on several slides per lymph node

and, depending on the surgical procedure, several lymph

nodes per patient. Furthermore, some pN-stages are based

on lymph node locations or extra molecular tests. To keep

the total data set size of CAMELYON17 within reasonable

limits, the stages which require more than 5 lymph nodes

per patient were excluded. Furthermore, as this is an image

analysis challenge, we removed the stages that depend on non-

imaging information. The final subset of pN-stages used in the

challenge is indicated in Table III. For a full listing we refer

the reader to the seventh edition of the TNM Classification of

Malignant Tumors [3].

As it is almost impossible to find a roughly uniform dis-

tribution of patients across pN-stages at multiple institutions.

For the purpose of this challenge we decided to create artificial

patients. These artificial cases were constructed by grouping

5 WSIs from different patients from a single center as being

from one individual, where each WSI resembled one lymph

node. This facilitated a comparable pN-stage distribution be-

tween centers. We shared 40 of these artificial patients per

medical center. The training set included 20 patients from each

center with a disclosed pN-stage for each artificial patient and

the metastasis label for each individual slide in the set.

The test set was composed of another 100 artificial patients

(Table IV). The complete CAMELYON17 data set contained

1000 WSIs of H&E stained slides. The complete CAME-

LYON16 data set (training and test), was made available to

give participants a good starting point for training algorithms.

Altogether, 1399 WSIs were shared for the challenge (TableV).

TABLE III: pN-stages used in the challenge

pN-Stage Slide Labels

pN0 No micro-metastases or macro-metastases or ITC found.
pN0(i+) Only ITC found.
pN1mi Micro-metastases found, but no macro-metastases found.
pN1 Metastases found in 1 – 3 lymph nodes, of which

at least 1 is a macro-metastasis.
pN2 Metastases found in 4 - 9 lymph nodes, of which

at least 1 is a macro-metastasis.

TABLE IV: Patient-level characteristics for the CAME-

LYON17 data set

Center
Total Patients Stages (Train)

Train Test pN0 pN0(i+) pN1mi pN1 pN2

CWZ 20 20 4 3 5 7 1
RST 20 20 4 2 5 6 3
UMCU 20 20 8 2 4 3 3
RUMC 20 20 3 2 4 8 3
LPON 20 20 5 2 3 6 4

Total 100 100 24 11 21 30 14

TABLE V: WSI-level characteristics for the complete data set

Center
Total WSIs Metastases (Train)

Train Test Negative ITC Micro Macro

CWZ 100 100 64 11 10 15
RST 100 100 58 7 23 12
UMCU 250 100 165 2 34 49
RUMC 349 100 210 8 64 67
LPON 100 100 61 8 5 26

Total 899 500 558 36 136 169

D. Detailed lesion annotations

In addition to the patient and slide level labels, a pathologist

exhaustively annotated 10 WSIs from each of the 5 centers in

the CAMELYON17 training set by carefully outlining each

lesion in the WSIs with polygons (TableVI). The cytokeratin-

stained slides were used as a reference, when available.
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TABLE VI: Exhaustive annotations in the CAMELYON17

data set

Center Total WSIs
Metastases (Train)

ITC Micro Macro

CWZ 10 3 3 4
RST 10 2 5 3
UMCU 10 2 4 4
RUMC 10 4 3 3
LPON 10 5 2 3

Total 50 16 17 17

Additionally, the detailed annotations of the 159 WSIs with

metastases of the complete CAMELYON16 data set were

made available. The annotation polygons were shared as a

series of pixel coordinates on the highest resolution level in

XML file format.

III. METHODS

A. Challenge setup

We set up a website to share information about the challenge

and to provide an interface for all challenge-related issues. The

website was set up via https://www.grand-challenge.org, which

has hosted over 155 biomedical image analysis challenges

since 2007. The challenge website is accessible directly at

https://camelyon17.grand-challenge.org.

On the website the participants could register and find a

general overview of the challenge including the deadlines, a

brief description of the biomedical background of the problem,

a description of the data set, the rules of the challenge, the

evaluation metrics, and Python code snippets for accessing

the images and the annotations. Finally, through the website

the participants could submit their results and access a forum

to ask questions and provide comments.

Participants were granted access to the data set, fo-

rum and submission system after they registered and ac-

cepted the rules of the challenge. Anonymous participation

was not allowed. The complete data set was made avail-

able under Creative Commons Attribution-NonCommercial-

NoDerivatives 4.0 International License. The license is

available at https://creativecommons.org/licenses/by-nc-nd/4.

0/legalcode. The complete CAMELYON16 and CAME-

LYON17 data sets were shared on Google Drive. Since the

access to the services of Google are limited in the People’s

Republic of China (PRC) we mirrored the content of the shared

Google Drive to Baidu Pan which is a local service in the PRC

and can be accessed without restrictions.

The challenge aimed for a fair comparison of algorithms,

therefore participants were not allowed to use other data

sources. Making extra annotations on the training data set was

only allowed if the annotations were subsequently submitted to

the organizers along with the submission of the results so that

these annotations can be made available to other participants.

The participants had to submit their results as CSV files

through the challenge website. The deadline for pre-workshop

submissions was April 6, 2017. Maximum 3 submissions

were allowed per participant with a 4 page ISBI style paper

accompanying each submission describing their methods. The

3 submissions had to be methodologically different. Resubmis-

sions with simple hyper-parameter tuning were not allowed.

During the workshop at ISBI 2017 we presented the results

of the challenge and invited the top 5 teams to present

their methods. The results, presentations and participant’s

algorithms were shared via the challenge website after the

workshop. Subsequently, the challenge was reopened for reg-

istration and submissions.

B. Metrics and evaluation

Within the challenge, participants were scored based on the

ability of their algorithm to identify the pN-stages of the 100

test patients. To evaluate the performance of the algorithms,

we used Cohen’s kappa with 5 classes and quadratic weights

[14] which is a statistic that measures inter-observer agreement

for categorical variables.

Given n test patients and m categories (pN-stages), let nij

denote the number of patients with the ith pN-stage that were

categorized to the jth pN-stage. Let ri denote the total number

of patients with the ith pN-stage and sj the total number of

patents categorized to the jth pN-stage. Finally, let wij denote

the disagreement weight associated with the ith and the jth

pN-stages.

The weight matrix is

wij = (i− j)2, i, j ∈ 1..m (1)

The mean observed degree of disagreement is

Do =
1

n

m∑

i=1

m∑

j=1

nijwij (2)

The mean degree of disagreement expected by chance is

De =
1

n2

m∑

i=1

m∑

j=1

risjwij (3)

Weighted kappa is then defined by

κw =
De −Do

De

(4)

The κw metric ranges from −1 to +1: a negative value indi-

cates lower than chance agreement, zero indicates exact chance

agreement, and a positive value indicates better than chance

agreement. As pN-stages are ordinal, a quadratic weighted

kappa was chosen to penalize misclassification which are more

than one stage apart more severely.

In this paper we also use confusion matrices at the slide

level for the top 4 teams to assess accuracies for specific types

of metastases. This will allow us to identify the most promising

areas of improvement for the algorithms. Furthermore, we

qualitatively inspected the likelihood maps provided by the

best two contestants to assess localization performance and

identify common false positives and negatives.

Last, we assessed whether combining algorithms could lead

to even better performance than each algorithm individually.

We combined the submitted pN-stages and also the reported

slide-level labels of the best 2 up till the best 12 teams by

averaging the labels and by majority voting. The new slide-

level labels were converted to pN-stages by applying the TNM-

criteria. In case of a tie in majority voting, the highest pN-stage

or slide-level label was selected from the votes.

https://www.grand-challenge.org
https://camelyon17.grand-challenge.org
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
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Fig. 1: Example of a WSI of a H&E stained section with a delineated micro-metastasis at increasing zoom levels, and the

corresponding IHC (cytokeratin 8-18 stained) slide at the same location. The metastasis is outlined with black.

Fig. 2: Low-resolution examples of WSIs. One H&E stained slide from each medical center in the training set and the

corresponding IHC (cytokeratin 8-18 stained) slide for the last H&E stained slide.

C. Summary of submitted algorithms

We had 300 registered participants before March 1, 2017

when the test data set was released and over a 1000 by the

time of writing this article.

Altogether 23 teams submitted their results before the work-

shop deadline. To keep the paper concise we only present the

methodology and results of the ten best performing algorithms.

We also received four submissions after the challenge was re-

opened (but before 31st December 2017), of which one was a

resubmission and one was excluded for not providing sufficient

algorithmic detail. The other two post-workshop submissions

were included. This resulted in a total of twelve algorithms

which are presented in this paper.

All the twelve teams followed the same basic algorithmic

steps: preprocessing, slide-level classification, slide-level post-

processing, and patient-level classification. We first give a brief

summary and then cover each of the four steps in more detail.

In the preprocessing step all teams started with identifying

the tissue regions on the WSIs. Typically, large parts of the

slide do not contain tissue (Figure 2), and do not need to

be processed. Therefore, the preprocessing step is essential

for developing efficient algorithms. Subsequently, to perform

metastases detection in each slide, all twelve teams trained

convolutional neural networks architectures (CNN) with image

tiles extracted from the identified tissue regions (normal and

metastatic areas). The trained networks were then applied to

the test images to obtain metastasis-likelihood maps. Within

the postprocessing step, most participants thresholded the like-

lihood map and collected several features from the identified

cancerous areas and used a separate classifier (e.g. random

forest) to determine the class of the WSI: negative, ITC, micro,

or macro. Last, the participants typically followed the pN-stage

definitions to combine their slide-level findings into a patient-

level pN-stage.

1) Preprocessing: All participants used a preprocessing

step to identify tissue regions in the WSIs. All participants

used simple filtering and thresholding algorithms, mostly

Otsu’s adaptive threshold at a low resolution level [15].

Differences between the methods were mainly found in which

color space the thresholds were applied, for example RGB

(red-green-blue), HSV (hue-saturation-value), or HSI (hue-

saturation-intensity), and the type of morphological operations

that were used to refine the thresholded image. For example,

team 4 and 11 used a median filter to remove small regions,

team 5 used connected component analysis and size filtering,

and team 6 used morphological hole-filling. For a full listing

we refer to Table VII.
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TABLE VII: Differences in preprocessing and augmentation.

G: Grayscale (mean value of RGB channels), CCA: Connected

component analysis, Max/Min ∆: Threshold on the difference

between maximum and minimum value across RGB channels.

Rank
Resolution Color Threshold Morphological

Level Space Type Operations

1 5 G Value of G -
2 5 G Otsu’s -
3 6 G Otsu’s -
4 6 HSV Otsu’s Median filter,
5 8 G Otsu’s Size filter using CCA
6 7 RGB Max/Min ∆ Hole filling
7 6 HSI, I in HSI, Remove small obj.,

H&E E in H&E Closing
8 4 G Otsu’s -
9 6 G Otsu’s -

10 2 G Value of G -
11 0 HSV Otsu’s Median filter,

Size filter using CCA
12 4 G Yen’s [16] Variance filter,

Mean filter

2) Slide-level classification: Almost all participants used

the CAMELYON16 WSIs, the 50 exhaustively annotated

CAMELYON17 WSIs, and all the negative WSIs from the

CAMELYON17 data set to develop their algorithms. Team 4,

7 and 12 used only the CAMELYON16 data set.

With respect to the different types of algorithms, all partici-

pants used CNNs. Specifically, they used variants of common

network architectures: ResNet [17], GoogLeNet/Inception

[18], VGG-Net [19], U-Net [20], and one team used DenseNet

[21]. In contrast to CAMELYON16, none of the included

twelve algorithms used a custom architecture. Team 2 and 4

used significantly adapted versions of the common architec-

tures. Team 2 used a variant of ResNet-101 called DeepLab

[22]. DeepLab employs convolution with dilated filters instead

of downsampling (e.g. max-pooling) to increase the spatial

resolution of the network when applied in a fully-convolutional

fashion. Furthermore, in order to combat reduced localization

accuracy due to inherent translational invariance in CNNs

the architecture also uses conditional random fields (CRF).

Team 4 used GoogLeNet in their ensemble to create texture

representation by taking the location-wise outer product of

the feature maps at the ’inc4d’ layer. Subsequently, these are

averaged across location to obtain a single feature vector. This

vector is then fed into a softmax classifier. This approach is

similar to that of the bilinear CNNs [23].

Five of the teams used model ensembles but only 2 teams,

team 4 and 12 used fundamentally different networks in their

ensembles. For example, team 4 used a combination of 2

GoogLeNets with different input patch sizes and a Resnet-50

architecture. The rest of the teams used instances of the same

architecture with different initialization, parameters or patch

augmentation settings. Eight of the teams used pre-trained

networks for the challenge. They all used networks that were

pre-trained on the ImageNet challenge [24], except team 2

who used a network that has been pre-trained on Microsoft

COCO challenge [25].

All participants extracted small image patches of metastases

and normal areas from the WSIs to train their CNNs, although

the exact patch size and pixel resolution differed substantially.

For the complete details of the network architectures and

training parameters we refer to Table VIII.

In addition, almost all teams performed extensive data

augmentation to increase the variation in the training set;

only team 6 did not use any data augmentation. Random

mirroring and rotations of 90°, 180°and 270°were the most

popular augmentation strategies. Two teams applied rotations

with angles sampled from the continuous [0°, 360°] interval

instead. Other strategies included random cropping of patches,

and applying affine transformations (e.g. scaling).

In addition, to make their CNNs robust to color varia-

tion caused by differences between scanners and/or staining

protocols, most participants used patch color augmentation

in the HSV, RGB or H&E color spaces by adding noise

to the individual color channels. Some of the teams used

additional brightness, contrast and gamma adjustments. Two

teams took a completely different approach and tried to use

stain normalization algorithms [26] to ensure a uniform color

distribution across the images. For the complete details of the

augmentation strategies we refer to Table IX.

3) Slide-level postprocessing: All participants used the

trained networks to generate metastasis-likelihood maps for

the WSIs. Team 3 used test time augmentations to generate the

likelihood map. Test time augmentation refers to the practice

of applying training augmentations to patches at test time to

get multiple metastasis likelihoods per patch. Often these are

then averaged to obtain the final likelihood for that patch, but

team 3 used the most certain likelihood (i.e. closest to 1.0). To

obtain the actual metastasis candidates most teams thresholded

the likelihood maps and post-processed the resultant binary

masks. A typical strategy, used for example by team 1 and 6

is to remove small detections to reduce the amount of false

positives. Instead of thresholding, team 3 and team 12 used

conditional random fields to assign pixel labels [27].

Assigning a slide-level label is trivial in case of perfect

pixel level classification: a metastasis class can be assigned

by measuring the largest detected area (Table II). Only two

teams used this approach in CAMELYON17. As we already

learned in the CAMELYON16 challenge, many algorithms

submitted by participants suffer from high false positive rates

[13]. The winner in CAMELYON16 solved this by extracting

features from the binary detection mask and the likelihood map

and feeding these features to a random forest classifier. This

approach was replicated by several participants in CAME-

LYON17. Features that were typically used are, for example,

the number of detected metastases, mean detection size and

standard deviation, mean detection likelihood and standard

deviation. Team 3 used a different approach by applying a

more extensive rule-based system. To better separate between

micro-metastases and ITC, they tried to calculate the number

of cells via color deconvolution and thresholding on the

hematoxylin channel. Subsequently, the DBSCAN algorithm

was used to group together small metastases areas which were

in close proximity [28].

Most teams determined the patient-level pN-stages by ap-

plying the rules according to the definition of pN-stages,

except team 9 and 12. Team 9 combined the extracted features
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TABLE VIII: Network architecture and training details. DO: Dropout, HNM: Hard Negative Mining

Rank Architecture Pre-trained
Ensemble Batch Patch Image Batch

Iterations
Training L2

DO HNM
(Size) Norm Sizes Level Size Set Size Loss

1 ResNet-101 ImageNet x (3) x 256 × 256 0 32 5× 105 4.5× 107 - - -

2 ResNet-101 COCO - x 960 × 960 1 10 2× 104 1.6× 106 x - x

3 GoogLeNet ImageNet - x 299 × 299 1 32 9.5× 104 3× 106 x x x

4 GoogLeNet, ImageNet x (3) - 256 × 256, 0 128 1× 105 5× 105 x - x
ResNet-50 512 × 512

5 VGG ImageNet - - 435 × 435 0 1 1.3× 106 1.3× 106 x x -

6 GoogLeNet ImageNet - x 299 × 299 0 32 1× 105 1.2× 107 - x x

7 GoogLeNet - - x 128 × 128 1 32 3.2× 104 1× 106 - x x

8 VGG ImageNet - - 244 × 244 0 75 3× 105 1.3× 107 x x x

9 U-Net - - - 512 × 512 2 20 1.5× 106 1.3× 106 - - x

10 U-Net - x (2) - 256 × 256, 2 16 5.3× 105 1.1× 106 - - -
512 × 512

11 GoogLeNet ImageNet - - 256 × 256 0 32 2.5× 105 5× 106 x - -

12 Dense U-Net, - x (3) x 416 × 416 2 4 - 75 2.5× 105 1.8× 105 x x -
Densenet

TABLE IX: Augmentation methods. AT: Affine transforma-

tions, AGN: Additive Gaussian noise, M90: multiples of 90°

Rank Mirroring Rotation Color Other

1 x [0°, 360°] HSV contrast
2 x - RGB brightness and

contrast
3 x M90 HSV -
4 x M90 - cropping
5 x M90 HSV -
6 - - - -
7 x M90 H&E gamma adjustment
8 x [0°, 360°] RGB cropping
9 x M90 stain norm. -

10 x M90 - -
11 x M90 stain norm. brightness, zoom,

AT, and AGN
12 x M90 HSV contrast

of all 5 slides per patient and used gradient boosted trees to

determine the pN-stage of the patient directly. Team 12 on the

other hand used a regression on slide-level prediction instead

of direct rule based method to construct pN-stage from slide

classifications.

Team 10 built a two stage binary decision tree to determine

the metastases category on the individual slides. First they

differentiated between negative and ITC; or micro and macro

categories. Then they further divided the two sets into negative

or ITC; and micro- or macro-metastases accordingly. At each

step they used a different combination of the outputs of

the 2 networks. For the complete details of the slide-level

postprocessing we refer to Table X.

IV. RESULTS

The metric used to rank the algorithms, the quadratic-

weighted κ score, ranged from 0.8993 to -0.1341 for all 23

participating teams and from 0.8993 to 0.7330 for the methods

included in this paper. As such, in terms of agreement,

performance ranged from near-perfect agreement to worse-

than-chance when including all participants. For a complete

listing of the top 12 teams and their κ scores we refer to

Table I.

TABLE X: Likelihood map postprocessing, slide-level classifi-

cation and pN-stage assignment. TH: Threshold, CRF: Condi-

tional Random Field, RFC: Random Forest Classifier, RBS:

Rule-based System, GBT: Gradient Boosted Trees, SVM:

Support Vector Machine.

Rank
Likelihood Map Binary Mask Slide-level pN-Stage

Filtering Generation Classifier Assignment

1 - 1 TH RFC rule-based
2 - 2 THs RFC rule-based
3 upsampling CRF RBS rule-based
4 - 3 THs RFC rule-based
5 - 3 THs - rule-based
6 - 1 TH RFC -
7 - 1 TH RFC rule-based
8 - 5 THs RFC rule-based
9 - - GBT model-based

10 downsampling 1 TH - rule-based
11 Gaussian Otsu’s RFC rule-based

filtering
12 morphological CRF SVM regression

smoothing

Confusion matrices at the slide-level were also generated

for the best 4 teams to inspect the quantitative results in more

detail (Table XI). We can see that all teams performed well

in identifying negative slides and slides containing macro-

metastases. All teams performed poorly in identifying ITC,

although the range in accuracy is quite large (0 – 34.3%

correct). Teams 1 and 2 additionally performed well on slides

containing micro-metastases, whereas team 3 and 4 performed

significantly worse.

When combining the submissions of multiple teams a best

κ score of 0.9261 was obtained by combining the slide-level

classification of teams 1, 2 and 3 by averaging slide-level

labels. This is 0.0268 higher than the single best team. The

κ scores of the 5 best combinations are shown in Table XII.

Focusing on the pN-stage classification specifically, the best

single team assigned 76 out of 100 patients to the correct pN-

stage, whereas the best combination got 77 out of 100 correct.

Furthermore, the largest difference between the predicted pN-

stage and the reference pN-stage was 3 stages for team 1 and

only 2 stages for the best combination. Miss with larger than
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TABLE XI: Slide-level confusion matrices of the best four teams with the accuracy indicated in percentages. BC is the best

combination of algorithms. The cell colors range from white, representing low error rate to red, representing high error rate.

1 difference occurred 5 times for the single best algorithm

and only twice for the best combination. At slide-level the

best combination performed equally on negative and macro-

metastasis class slides, a few percentage points worse on

micro-metastasis class slides but was almost 30 percentage

points better in identifying ITC (Table XI).

TABLE XII: Kappa scores of different algorithm combination

outputs

Teams Type Combination Kappa Score

1 – 3 slide-level mean 0.9261
1 – 3 slide-level majority 0.9236
1 – 5 slide-level majority 0.9226
1 – 3 patient-level mean 0.9209
1 – 2 patient-level mean 0.9175

Evaluation of the likelihood maps of team 1 and 2 provided

insight in the performance of their algorithms, and clarified

some of the false positives and false negatives. Examples

of the likelihood maps are depicted in Figure 3. On the

first row, a nerve is depicted that was identified by both

teams as a metastasis. On the second row of Figure 3 an

example of contamination is shown. The tissue sample was

contaminated with a small piece of breast tissue during glass

slide preparation. This contamination is not a metastasis but

was picked up as such by both systems. Rows three and

four show a macro- and micro-metastasis, respectively. The

macro-metastasis was missed by team 1 and misclassified

as a micro-metastasis by team 2. The micro-metastasis was

missed by both teams. Both these metastases showed very

diffuse infiltration of the healthy tissue, making it challenging

to identify them. Last, the fifth row shows a micro-metastasis

nicely segmented by both team 1 and 2. The detection of team

1 was a bit more precise since they correctly identified the

extending arms on the top left and right side.

V. DISCUSSION

Given that the participation requirements for CAME-

LYON17 were very high in terms of amounts of data that had

to be processed within a limited time frame, both the quality

and quantity of submissions was high. With 37 submissions, it

was even slightly higher than for CAMELYON16, which had

32 submissions at the initial deadline.

The submitted algorithms were not only able to detect

the presence of metastases but also measure their extent to

derive the metastasis category, including ITC, and to determine

the pN-stage that is used in clinical practice. Therefore, the

outcome of CAMELYON17 more directly relates to clinical

practice and the submitted algorithms can more readily be

evaluated in that context.

A key observation is that the best performing algorithms do

well on slides containing macro-metastases and metastasis-free

slides. However, even the current best algorithm still performs

very poorly on identifying ITC with only 11.4% accuracy. It

has to be noted that ITC only play a very limited role in the

pN-staging system and often are also missed by pathologists

on H&E-stained slides [8]. These very small metastases can

subsequently be picked up by using additional IHC staining.

The data set contained only 36 whole-slide images with

ITCs of which only 16 were annotated. This could limit the

performance of the algorithms detecting ITC. However, we

think another reason might be also be important: to achieve

high sensitivity on the small ITC lesions, one most likely needs

to allow more small false positives in normal cases (i.e. it is

harder to get rid of spurious detections automatically). For

example, team 3, which used a rule-based system to obtain

slide level classifications, was the best in ITC detection but at

a cost of the highest false positive ratio in normal images.

The most important aspect of a well-performing system in

terms of pN-staging and clinical relevance is its ability to

detect macro- and micro-metastases. There are only relatively

minor differences in the ability of the best systems to pick-up

macro-metastases as the accuracies are within 5%. As such,

most of the difference in the ranking is caused by the ability

of the top two to identify micro-metastases much better than

all other algorithms.

With regard to false positive detections, all algorithms still

struggle with benign areas that occur rarely in the training set,

for example the nerve shown in Figure 3 or contamination

caused by tissue processing in the lab. Several teams tried to

circumvent this by including hard-negative mining steps, but

with limited success. Most likely this is caused by the fact

that these benign areas are so rare that it is impossible to

learn an accurate representation, even with the three terabytes

of data in the CAMELYON17 data set. A potential avenue
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to address this issue is by incorporating model uncertainty,

for example via test-time dropout [29]. Another type of false

positive which is hard to address is the contamination shown

in row 2 of Figure 3. This can only be identified as a false

positive detection when the global context of the slide is taken

into consideration. As all competing algorithms use mostly

local information (i.e. patches) to train their models, this can

not be incorporated. An efficient strategy to add this global

context to deep networks is interesting for further research.

We tried to identify the key characteristics in terms of

methodology for the top performing algorithms. One important

observation is that it is not possible to achieve competitive

results using only a pre-trained GoogLeNet. Many groups tried

this approach, modeled after the winner of CAMELYON16,

but their results vary substantially. We also know from CAME-

LYON16 that pre-training in itself does not improve perfor-

mance, but does offer the benefit of much faster convergence

[30]. Especially in the context of a time-limited challenge,

the reduced training time is beneficial. The fact that results

vary substantially, even when using the same, pre-trained

architecture indicates that the way the networks are trained

or fine-tuned is more important than the architecture itself.

Observing the training processes used by the teams that are

included in this paper, it can be concluded that the data being

fed to the system is inherently important. All the participating

teams extracted high-resolution patches from the WSIs. The

best eight algorithms used either level 0 (0.25 µm pixel size)

or level 1 (0.5 µm pixel size). The details that are available on

high resolution levels are likely necessary for achieving good

performance for this task. The amount of context included

in the patches did vary greatly between teams. The smallest

spatial area was 256 × 256 pixels at the highest resolution

level, while the the largest spatial area corresponds to 1920 ×

1920 pixels at that same level. Given the results, the context

provided by 256 × 256 pixels at level 0 was enough for

achieving good performance; larger contexts were not needed.

An interesting characteristic of the best performing algo-

rithm is that it was trained for up to a magnitude more

iterations than most of the other contenders. Only team 5,

9 and team 10 trained longer but they were either using a

VGG architecture, which has roughly three times as many

parameters as the ResNet-101 used by team 1, or U-net,

which has not been pre-trained. Team 1 also used the largest

number of patches in their training set of all contenders. These

observations together might indicate that this network has

learned from a more varied set of patches, which could explain

why it generalizes best on the test set.

The majority of the teams focused on the most challenging

patches using hard negative mining. This seemed to benefit

performance overall as it was used by seven out of ten best

teams, even though the best performing team did not use it.

In CAMELYON17, the hard negative mining was used more

widely than in CAMELYON16, where only two of the top-

performing algorithms used it.

One of the other lessons learned from CAMELYON16 was

that proper handling of stain variation between centers is key

to good performance. In CAMELYON17 this is even more

important as we now included 5 centers instead of 2. In

CAMELYON16 the best performing team used color normal-

ization to pre-process all the slides, whereas in this challenge

most of the teams relied on heavy color augmentation to

force their networks to be robust to color variation. In clinical

practice such networks would be more desirable since they do

not rely on a preprocessing step that could potentially fail.

A common question after every Grand Challenge in medical

image analysis is whether the problem, in this case automatic

identification of breast cancer metastases in sentinel lymph

nodes, has been adequately solved. Up till now we can

confidently state that this is not yet the case. Despite the

excellent results of the participating teams the fact that a

straightforward combination of the 3 top teams yields a 0.0268

better kappa score than the current best of 0.8993 shows

that there is still room for improvement for the individual

algorithms. Even more so when we take into account that even

the best combination only classifies 77 out of 100 patients

correctly. The errors are even worse at the slide level. The

best ranked team misclassified 67 of the 500 slides in the test

set. Overall 10 slides containing micro-metastases and 4 slides

containing macro-metastases were classified as negative. That

would be an unacceptable error in clinical practice. Although

the poor performance on ITC is not immediately relevant from

a clinical perspective, it could undermine the trust clinicians

have in such algorithms. Improving the algorithm performance

in this aspect is thus still worthwhile.

In terms of future work, the CAMELYON17 challenge

will remain open for new submissions to allow improved

algorithms to obtain better results. With respect to extending

the scope of the challenge, adding the IHC stains as an

extra layer of information is an option which would bring

the challenge even closer to clinical practice. Alternatively,

lymph nodes with metastases from other tumor entities, such

as melanoma or colon cancer could be added. From a practical

perspective, sharing 3 terabytes of data with participants all

around the world has been challenging. Increasing the data size

even further could render an expanded challenge impractical

or impossible for many to participate in. A possible alternative

would be to host the data at a single location and provide an

environment to the participants that they could access remotely

and where they could use the data to develop their algorithms

without having to download it.

Summarizing, the algorithms competing in CAMELYON17

have proven that it is possible to automatically analyze

histopathological WSIs in a clinically relevant setting, but can

not yet be implemented without some form of supervision

by a clinical expert. In their current state the algorithms

could potentially effectively aid clinicians by pre-screening

the WSIs. The pre-screened images could steer the attention

of the pathologist to the relevant areas and ease the pN-staging

by outlining metastases in advance.
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Fig. 3: Examples of likelihood maps. Columns: maps of teams 1 and 2 on low and high magnifications. Rows: nerve,

contamination, missed macro-metastasis, missed micro-metastasis, identified micro-metastasis. The colors range from green

to red, representing low to high probability respectively. The reference is annotated in black.


