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The deployment of machine learning (ML) and statistical models is beginning to transform the practice
of healthcare, with models now able to help clinicians diagnose conditions like pneumonia and skin
cancer, and to predict which hospital patients are at risk of adverse events such as septic shock. A major
concern, however, is that model performance is heavily tied to details particular to the dataset the model
was developed on—even slight deviations from the training conditions can result in wildly different
performance. For example, when researchers trained a model to diagnose pneumonia from chest X-rays
using data from one health system, but evaluated on data from an external health system, they found the
model performed significantly worse than it did internally (Zech and others, 2018). The model failed to
generalize (i.e., predict accurately) due to the shifts between the training conditions (health system one)
and the deployment/testing conditions (health system two). These shifts are very common when moving
a model from the training phase to deployment and can take a variety of forms, including changes in
patient demographics, disease prevalence, measurement timing, equipment, treatment patterns, and more.
Beyond contributing to poor performance, failing to account for shifts can also lead to dangerous decisions
in practice: the system can fail to diagnose severely ill patients or recommend harmful treatments. This
problem of shifting conditions which prevent generalization is referred to as dataset shift (Quiñonero-
Candela and others, 2009), and in this article, we explain what it is, why it occurs, give an overview of
the types of existing solutions, and discuss open challenges that remain.

Generalization is crucial for successfully deploying models since we want model predictions to be
accurate when applied to new situations that were not in the training dataset. In order to ensure that a
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model will generalize, a core requirement is to check that the model or learning procedure satisfies the
stability property: is model performance robust when the data are perturbed in various ways? In particular,
when addressing dataset shift, we want models to be stable to perturbations in (i.e., shifts in) how the data
were generated—such as changes to patient demographics or clinician treatment patterns—as opposed
to leave-one-out sampling perturbations (Yu, 2013; Giordano and others, 2019; Yu and Kumbier, 2019)
or adversarial perturbations of model inputs (Madry and others, 2018; Hendrycks and Dietterich, 2019).
Dataset shift is of particular importance because it frequently occurs when deploying models, is difficult
to test stability against (as we will discuss later), and is highly relevant to the ongoing discussion about
the challenges of regulating ML-driven medical devices (U.S. Food and Drug Administration, 2019) (see
accompanying Stern and Price (2020) for more on this).

Consider the mortality risk prediction model trained by Caruana and others (2015) on a dataset of hos-
pitalized pneumonia patients, using information such as lab measurements, vital signs, and comorbidities.
While the model had high predictive accuracy on one dataset, it was unstable to shifts in the choices driving
which patients get admitted to the ICU versus the floor. As a result, when they evaluated it for triaging
pneumonia patients upon ED presentation, they found that their model incorrectly predicted lower risk
for patients with pneumonia and asthma versus those with only pneumonia. This shift in ICU admission
policy, while subtle, had big implications: had the model been deployed for triage, it would have greatly
endangered asthmatic pneumonia patients by suggesting they should be sent home. In machine learning,
a policy is defined as a distribution over the possible actions that can be taken in any given scenario. Even
subtle shifts in when or whether or not a lab was ordered can impact predictions—these forms of shifts are
called policy shifts (Schulam and Saria, 2017). More generally, dataset shifts can come in various forms
(from shifts in patient demographics to policy shifts in measurement frequency), which makes dataset
shift challenging to address.

Given that dataset shift is highly varied and can lead to dangerous failures if left unaccounted for, what
should we do to address it? Typically, learning methods are developed on a specific dataset. A common
practice for moving the model to a different setting is to adapt or re-learn using a dataset obtained from this
new setting. The challenge with this approach is that it is unrealistic to assume that data from all possible
deployment settings are available upfront. Within a failure prevention paradigm, developers anticipate
and guard against likely sources of shifts between environments during model learning without the need
for data from each setting (Saria and Subbaswamy, 2019). This involves three main components: (i)
determining likely shifts we want models to be robust to, (ii) testing the stability of a model to those shifts,
and (iii) employing learning methods that come with stability guarantees regarding how the model will
perform under those shifts. In order to successfully perform any component, we need a technical language
for identifying and expressing exactly what conditions are shifting across settings.

1. REPRESENTING AND REASONING ABOUT DATASET SHIFT USING GRAPHS

To identify the likely shifts we want to protect against, we need to understand how the variables in the data
were generated and what aspects of this process are vulnerable to shifts across environments. Consider
Figure 1, which shows how the variables in a clinical mortality prediction model are related. An edge,
such as the one from Asthma to Pneumonia, denotes that one variable generates or causes another (e.g.,
asthma is a risk factor for pneumonia). By placing edges as needed between the variables, we can express
the various physiologic and decision factors and how these are related: the values of lab measurements
and vital signs like blood pressure are affected by illnesses such as pneumonia, and all of these determine
a patient’s risk of mortality. The resulting causal directed acyclic graph represents the data generating

process and encodes how all variables are related.
Using graphs, complex processes can be broken down into individual components (variables and

factors driving them in the graph) that are inspected for vulnerability to shifts. In Figure 1, we identify
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From development to deployment 347

Fig. 1. Graph for the pneumonia mortality prediction example. Red denotes an unstable edge. Dashed node is
unobserved. Color figures are available at Biostatistics online.

the component corresponding to ICU admission criteria as likely to shift between datasets. This can be
visually distinguished with a colored edge or through the addition of auxiliary selection variables (Pearl and
Bareinboim, 2011; Subbaswamy and others, 2019b) (denoted by square S nodes) which point to variables
whose generative process can shift across datasets (the S → ICU edge). The visual representation also
naturally provides a statistical characterization of the shift, which we will see later is important for deriving
methodological solutions. Each component in the graph corresponds to a conditional distribution (of the
variable given its parents in the graph), so when we identify that the ICU admission policy is likely to
shift, we mean that we expect P(ICU | Asthma) to differ across datasets. Importantly, using a graphical
language, we can express richer extensions of commonly considered instances of dataset shift, such as
covariate shift (Shimodaira, 2000) and target/label shift (Storkey, 2009; Zhang and others, 2013).

2. CHECKING A MODEL’S SUSCEPTIBILITY TO SHIFTS

Graphical representations of shifts help us check susceptibility to shifts, which is important because
existing methods for testing stability are limited. Current approaches are primarily empirically based:
Zech and others (2018) trained and validated a pneumonia diagnosis model on one dataset and compared
the performance when applied to datasets from new medical centers, and Nestor and others (2019) trained
a mortality prediction model on data collected from one hospital in 2001 and measured its performance
on data collected in subsequent years at that hospital. Ideally, under the failure prevention paradigm, we
want to train models that are robust to prespecified types of shifts (more on this in the next section), or
at least be able to test robustness to the prespecified shifts. Current empirical evaluations, however, make
it difficult to consider specific shifts. Suppose we want evidence that a mortality prediction model will
generalize to a different hospital, so we apply it to a new dataset and see that the performance deteriorated.
It is difficult to determine exactly why the deterioration occurred, which means we cannot determine if
we are robust to a particular shift. Is it because there was a shift in patient population demographics? Or
perhaps there was a shift in antibiotic prescription habits or lab ordering patterns? Unless test data come
from the intended deployment environment, empirical evaluations give little insight into exactly what
shifts the model is (or is not) robust to, making it difficult to draw meaningful conclusions about whether
the model will generalize.

A key reason graphical representations of shifts are useful is because they allow us to bypass some
of these limitations. Using common graph analysis tools such as d-separation (Pearl, 1988), we can
determine if the model we are fitting is stable (Subbaswamy and Saria, 2018). For example, Figure 2
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Fig. 2. Graph for the pneumonia diagnosis from chest X-rays example. Red denotes an unstable edge. Color figures
are available at Biostatistics online.

depicts a simplified graph for the problem of diagnosing pneumonia (N ) from chest X-rays (X ) which
contains style features (F). The style features (e.g., marks on the image which convey if the X-ray is
front-to-back or back-to-front) are chosen depending on the equipment and clinician preferences in the
particular hospital department (D). The selection variable (S) tells us that style feature preferences are
likely to shift from dataset to dataset. To determine if a particular model (e.g., a model of P(N |X , F) which
learns to diagnose pneumonia from the X-ray and style features) is stable to a shift, we need to check if
the target variable N is d-separated (i.e., conditionally independent) from the selection variable S given
the features we are using. In this example, P(N |X , F) is unstable to shifts in style preferences, while if
we include the department as a feature, the model of P(N |X , F , D) will be stable. Thus, graphs augment
what we can currently do with empirical approaches.

3. ALGORITHMS FOR LEARNING MODELS THAT GUARANTEE STABILITY AGAINST SHIFTS

Even more desirable than providing evidence that a model will generalize, is using stable learning algo-
rithms which allow us to train models with stability guarantees. Broadly, there are two types of stable
training methods: reactive and proactive approaches. Reactive approaches use data from the intended
deployment environment to correct for shifts. Common examples include many domain adaptation

algorithms which use importance sampling techniques to reweight training data (Shimodaira, 2000;
Sugiyama and others, 2006; Huang and others, 2007; Gretton and others, 2009). Unfortunately, deploy-
ment data are often difficult to collect prior to model training in modern ML applications in which there
are many possible deployment environments (e.g., for cloud-based ML models) or when the deploy-
ment environment is left unspecified (in which case no additional data is available). In these settings,
it is important to use proactive learning approaches which learn models that are stable to any antici-
pated shifts (Subbaswamy and Saria, 2018), including stable algorithms that are robust to policy shifts
(Schulam and Saria, 2017).

While proactive approaches do not require data from the deployment environment(s), this brings with
it new challenges. In general, learning algorithms learn everything they can from a dataset. However,
when shifts occur between development and deployment, we only want to learn stable information that
will generalize. This means we need a way to constrain what the model learns, and that the goal of a
stable learning algorithm is to learn all stable information without learning any unstable information.
Fortunately, by defining operators on a graph, we have a way to retain stable information while getting rid
of unstable information. For example, in Figure 2, if we had some way to delete the red edge (denoting
the unstable style feature preferences) and only this edge, and learn the rest of the information in the
graph (all of which is stable), then such a model would be the optimal stable model. Thus, graphs give
us a framework for comparing different stable models in terms of the stability-accuracy tradeoff : as we
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constrain what the model can learn, its training accuracy decreases while the model’s ability to generalize
improves (Subbaswamy and others, 2019a).

More broadly, there is a hierarchy of shift-stable solutions (Subbaswamy and others, 2019a) (or more
accurately, distributions) which correspond to three classes of operators on a graph (Pearl, 2000; Shpitser
and Tchetgen Tchetgen, 2016): (i) conditioning, (ii) intervening, and (iii) computing counterfactuals. At
the lowest level of the hierarchy, conditioning, we remove unstable parts of the graph by essentially deleting
variables (and all paths from them). Compare this to the highest level operator, computing counterfactuals,
which precisely deletes individual edges in the graph. Intervening falls between the two, and deletes all
edges into a variable. Due to the increased precision of the highest level operators (levels 2 and 3), these
operators are more efficient at removing unstable components from the graph while retaining as much
stable information as possible. Consider Figure 2 again, and suppose that the department an X-ray was
taken in is not recorded in the data (i.e., the variable D is unobserved). Using conditioning alone, there is
no stable solution (we can retain no stable information about X or F without including the unstable edge).
However, there are levels 2 and 3 solutions which only delete the unstable edge, and thus they are optimal
in this case (Subbaswamy and others, 2019a).

Solutions at the highest level do have limitations, however. First, while only one model needs to be
fitted for conditional solutions, levels 2 and 3 solutions require fitting multiple submodels which increases
chances for model misspecification. While there has been work on doubly robust estimation to counteract
model misspecification (Bang and Robins, 2005; Funk and others, 2011), thus far this work has only
considered specific types of graph structures. Second, level 2 distributions are not always identifiable (i.e.,
not able to be estimated from the training data alone), and level 3 distributions require knowledge beyond
the structure of the graph. Regarding the identifiability limitation, Subbaswamy and others (2019b) provide
an algorithm which determines if an identifiable level 2 (or level 1) solution exists, and if so, returns the
optimal one.

To end this section, we want to note that there are also existing stable learning algorithms which do not
require an explicit graph (though they can be cast in terms of the graphical hierarchy; see Subbaswamy and

others, 2019a for a discussion). These include dataset-driven approaches (e.g., Rojas-Carulla and others,
2018; Magliacane and others, 2018) which learn stable models using data from many environments, and
bounded magnitude distributionally robust methods (see, e.g., Rothenhäusler and others, 2018) which
assume shifts take a particular form and have a known magnitude. Perhaps the most important implication
of the hierarchy is that it provides a common framework for comparing the optimality of different solutions
and for developing new algorithms.

4. OPEN CHALLENGES AND LOOKING FORWARD

We have now seen the many ways that explicit graphical representations of shifts are beneficial: graphs
allow us to identify and proactively declare the shifts we want to guard against, they improve our ability
to check if a model will be susceptible to shifts, and they provide a framework for developing shift-stable
learning algorithms. One difficulty is that determining the graph structure requires working closely with
domain experts to elicit prior knowledge in a way that can be used to place and orient edges. To make this
process easier, a promising direction is to combine prior knowledge with structure learning algorithms
to partially learn the graph from data. Further, methods for performing sensitivity analysis to changes
or uncertainty in the graph structure would help to reduce concerns about misspecification of the graph.
Regarding testing susceptibility to shifts, the inability of current empirical evaluations to test robustness
to particular shifts and their reliance on the existence of representative datasets remain fundamental
limitations. New approaches which could semi-synthetically generate data under a particular shift would
allow for targeted evaluation of stability to particular shifts, and would serve as useful empirical evidence
that a trained model will generalize to new environments.
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Finally, we want to mention that addressing dataset shift during and prior to learning is only one part
of building reliable ML systems, with two other critical pieces being monitoring and maintenance (Saria
and Subbaswamy, 2019). Inevitably, unanticipated shifts will occur, and deployed models become stale
resulting in performance decay. Thus, an important part of handling dataset shift is to develop methods that
can detect when and what type of shifts have occurred. Further, once unanticipated shifts are detected, we
need maintenance strategies for updating or replacing the model. Through the combined development of
failure prevention learning techniques, tests for model stability, methods for monitoring, and maintenance
protocols, a comprehensive framework for handling dataset shift is on the horizon.
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