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From Diagrammar to Diagrammalgebra

1. Introduction

Feynman integrals play a fundamental role in Classical and Quantum Field Theory, since they
naturally emerge in the perturbative calculations of Scattering Amplitudes and related quantities -
such as cross sections, impact parameters, scattering angles, interaction potential, to name a few -,
relevant to physicists [1]. Mathematically, bounded integrals represent fluxes of differential forms
through manifolds with boundaries and they can express invariant quantities, whose identification
constitute (one of) the the main objective of the research in theoretical physics, finally yielding to
conservation laws: if a quantity remains unaltered under the action of a given transformation, then
the considered transformation is a symmetry of that quantity.

For bounded integrals there are two types of transformations that can be naturally accounted
for: modifying either its integrand, by shifting a differential form, or its integration domain, by
deforming its boundaries. If, upon any of these transformations the values of the integral does not
change, then the original integral and its modified copies are equivalent, as they would produce
the same result, hence they would give the same physical effect, appearing as indistinguishable
to an observer. For these reasons, the properties of symmetry, or invariance of integrals are
naturally related to the mathematical concept of equivalence classes [2]. The analytic properties
of Feynman integrals, as well as of all integrals, falling in the rather wide family of the so-called
Aomoto-Gel’fand integrals [3–5] - also including the Gauss hypergeometric integrals, their multi
fold generalizations, and the Euler integrals - can be studied by means of techniques developed
in Differential and Algebraic Topology (of compact Riemann surfaces): therein, homology and
co-homology classes are the vector spaces of integration contours and of differential forms, which
leave the result of the integration invariant.

During the developments of the S-Matrix theory, it was recognized that topology and co-
homological methods offered a clear view on the connection between the analytic properties of
Feynman integrals and the geometry dictated by their singularity structure [6–8]. The appearence
of special transcendental functions, of multiple Riemann zeta values and periods of algebraic
varieties, in the results of the analytic evaluations of multi-loop integrals triggered the investigation
of scattering amplitudes with Number Theory based concepts, yielding the developments of a
Motivic theory for Feynman integrals, based on periods of Mellin moments [9–21]. Over the
years, the investigation of similarities between hypergeometric integrals and Feynman integrals has
revealed interesting structures (see [22, 23] for recent reviews, and references therein).

In more recent studies, the role of co-homology has been found to be pivotal for identifying
novel properties of Feynman integrals and to expose the deep connections of scattering amplitudes
and graph polynomials that naturally emerge in the parametric representations of Feynman integrals
[24–43], see [44, 45], for recent reviews.

In particular, the vector space structure of Feynman integrals has emerged through a series of
articles [27, 30–35], which exploited the intersection numbers for twisted de Rham co-homology
groups [3, 4, 25, 26, 46–62], see [63–68] in these Proceedings, As observed in [27], intersection
numbers can be employed to build two representations of the resolution of the identity, respectively
in the homology and co-homology spaces, which are the dawn of the existence of linear and
quadratic relations for Feynman integrals, and more generally, for Aomoto-Gel’fand integrals. The
linear relations yields contiguity relations, that, in the case of Feynman integrals, are equivalent to
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From Diagrammar to Diagrammalgebra

the known integration-by-parts identities (IBPs) [69, 70]: intersection numbers of differential forms
[50] can be employed to define a scalar product of Feynman integrals, so that the projection of any
multi-loop integral onto a basis of independent elements, called master integrals (MIs) becomes
conceptually identical to the projection of a vector onto a basis of a vector space [27, 31, 33, 35]:
within this approach, it becomes natural to interpreting the finite number of MIs [71] as the
dimension of the vector space of Feynman integrals, and can be related to topological quantities such
as the number of critical points [24], Euler characteristics [33, 72–75], as well as to the dimension of
quotient rings of polynomials, for zero dimensional ideals, in the context of computational algebraic
geometry [35].

The linear relations among integrals also allow for the construction of differential equations
[76–87], as well as finite difference equations [70, 88, 89] obeyed by the MIs, and they can be used
for the actual evaluation of the latter. Additionally, the quadratic relations correspond to the twisted
version of the bilinear Riemann relations, therefore called twisted Riemann periods relations (TRPR)
[50], see [64, 65] in these Proceedings. In the case of Feynman integrals, quadratic relations have
been independently found within the application of number-theoretic methods to Feynman calculus
[19–21, 40, 41, 90, 91], see [92] in these Proceedings, and in the study of special differential
equations [93]. Understanding whether these types of bilinear relations are equivalent to the TRPR
is an interesting open question. Additional applications of algebraic and differential topology to
Scattering Amplitudes in QFT and String theory are presented in [68, 94–97].

In the following pages, I will briefly introduce the topic of intersection theory for twisted de
Rham co-homology and its application to Feynman integrals, which will be further discussed in
these Proceedings, in particular in [92, 98–101].

2. Feynman integrals and Intersection Theory: a smooth invitation

Let B8 , with 8 = 1, . . . , < , be complex polynomials in the variables I = {I1, . . . , I=}. We
introduce an oriented manifold " = C= − ∪<

8=1S8 , where the hypersurfaces S8 are identified by
the equations B8 = 0. We introduce the Aomoto-Gel’fand integrals, namely the subject of our
investigation, defined as twisted period integrals,∫

Γ=

D i= , (1)

where: D is a multivalued function, which regulates the integral, called twist; Γ= is a regularised
cycle called twisted or loaded cycle, i.e. a =-chain with empty boundary on " (usually Γ= is
represented as Γ= ≡ W= ⊗ D, to indicate the pure integration path W= together with a specific choice
of the branch along it, required because D is multivalued); i= is a meromorphic differential =-form
defined on " , called twisted cocycle. In general D is written as product of factors, D =

∏<
8=1 B

U8
8
,

raised to non-integer powers U8 , with the requirement that D vanishes on the integration boundary,
say D(mΓ=) = 0. The latter property ensures that the integral of any total differential vanishes:

0 =
∫
Γ=

3 (D i=−1) =
∫
Γ=

D ∇l i=−1 , (2)

where we introduced the covariant derivative

∇l = 3 + l∧ = D−1 · 3 · D , with l = 3log(D) , (3)
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for any generic (= − 1)-form i=−1.
Aomoto-Gel’fand integrals represent rather a wide class of integrals, such as Gauss hypergeo-

metric functions, Lauricella functions, and their generalizations, Euler-type integrals, and Feynman
integrals [27]. The considered class of integrals are invariant, under the following transformations:

• either shifting the differential =-form, by a term containing a covariant derivative, i.e. i= →
i= + ∇l i=−1;

• or shifting the integration domain, by a pure boundary term (containing no holes), i.e.
Γ= → Γ= + mΓ=+1;

namely, ∫
Γ=

D i= =

∫
Γ=

D (i= + ∇l i=−1) =
∫
Γ=+mΓ=+1

D i= , (4)

Similar results are obtained also for the so called dual integrals, obtained from the integrals defined
above by replacing D → D−1 (and correspondingly l → −l, in the definition of the covariant
derivative).

In the case of Feynman integrals, according to the chosen parametric representation, the factors
�8 that appear in D are identified with (or built out of) the graph polynomial(s) and the denominators.
For these set of functions, analyticity, unitarity, and algebraic structure are related to the geometry
captured by the Morse function ℎ ≡ '4(log(D)).

The multivalued twist D carries informations on the regularization: for dimensionally regulated
Feynman integrals, it depends on the integration variables as well as on external scales, such as
Mandelstam invariants and masses (all appearing in the polynomials �8), and on the space time 3
(appearing in the U8). The topological information of integrals and dual integrals are contained in
l that is a differential form with zeroes and poles, collected in the respective sets,

Zl = {zeroes of l} , and Pl = {poles of l} ∪ {∞} . (5)

The invariance of integrals and dual integrals under the two types of transformation mentioned
above can be exploited to expose the algebraic structure of Aomoto-Gel’fand integrals. Let us
introduce four vector spaces, for twisted cycles and cocycles: the de Rham =-th homology group,

�l= =
Ker(m : Γ=+1 → Γ=)
Im(m : Γ= → Γ=−1)

, (6)

and the de Rham =-th co-homology group,

�=l =
Ker(∇l : i= → i=+1)
Im(∇l : i=−1 → i=)

, (7)

which is the quotient space of closed =-forms, (i= | ∇li= = 0) modulo exact forms (i= | i= =
∇li=−1); and their dual spaces, (�l= )∗ = �−l= , and (�=l)∗ = �=−l , respectively. These spaces are
isomorphic, and their dimension a,

a ≡ dim(�=±l) = dim(�±l= ) , (8)
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can be determined by counting the number of critical points of B, namely a = dim(Zl) [24], or
equivalently from the Euler characterisics j(Pl) of the projective variety generated by the poles of
l, as a = (−1)= (= + 1 − j(Pl)) [33], see also [74], or by the Shape Lemma [35].

The corresponding elements, generically denoted as 〈i! | ∈ �=l , |i'〉 ∈ �=−l , [C! | ∈ �=l ,
|C'] ∈ �=−l , can be used to define four types of natural twisted Poincarè pairings:

• Integrals:

� = 〈i! |C'] ≡
∫
C'
D i! ; (9)

• Dual Integrals:

�̃ = [C! |i'〉 ≡
∫
C!
D−1 i' ; (10)

• Intersection numbers for twisted cycles (or topological intersection numbers):

[C! |C'] ; (11)

• Intersection numbers for twisted cocycles

〈i! |i'〉 ≡
∫
"

(D i!) ∧ (D−1 i') =
∫
"

i! ∧ i' . (12)

where i!,' are understood to have compact support on " .

2.1 Linear and Bilinear Relations

Consider the following bases generating the four spaces introduced above: {〈48 |}8=1,...,a ∈ �=l
and {|ℎ8〉}8=1,...,a ∈ �=−l , respectively for the cohomology and for the dual cohomoloygy spaces;
as well as, {[W8 |}8=1,...,a ∈ �l= , and {|[8]}8=1,...,a ∈ �−l= , respectively for the homology and for the
dual homoloygy spaces. The bases of cocycles {〈48 |}8=1,...,a ∈ �=l and {|ℎ8〉}8=1,...,a ∈ �=−l , can
be used to express the identity operator in the cohomology space as [27, 31],

I2 =
a∑

8, 9=1
|ℎ8〉

(
C−1

)
8 9
〈4 9 | (13)

where we defined the metric matrix
C8 9 ≡ 〈48 |ℎ 9〉 , (14)

whose elements are intersection numbers of the twisted basic forms. Similarly, by using the bases of
cycles {[W8 |}8=1,...,a ∈ �l= and {|[8]}8=1,...,a ∈ �−l= , the resolution of the identity in the homology
space reads as,

Iℎ =
a∑

8, 9=1
|W8]

(
H−1

)
8 9
[[ 9 | , (15)

where
H8 9 ≡ [[8 |W 9] , (16)

is the metric matrix, in terms of intersection numbers of the basic twisted cycles.
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The identity resolutions I2 and Iℎ can be derived purely algebraically, as in [27, 31]; also,
in the context of differential topology, the bilinear Riemann relations for periods of holomorphic
differentials, see f.i. [44], can be suitably expressed in order to identify Iℎ (for non twisted-forms),
as shown later.

Linear and bilinear relations for Aomoto-Gel’fand-Feynman integrals, as well as the differential
equations and the finite difference equation they obey are a consequence of the purely algebraic
application of the identity operators defined above [27].

In the context of Feynman integrals calculus, the decomposition of scattering amplitudes in
terms of MIs, as well as the equations obeyd by the latter, are derived by means of IBPs [69] and of
the Laporta method [70]. In the following, we show how these relations emerge by employing the
algebraic properties of twisted cycles and co-cycles.

2.1.1 Linear Relations

• Decomposition of differential forms. Generic twisted cocycles and dual twisted cocycles
can be projected onto the bases in the correspsonding vector spaces as,

〈i! | = 〈i! |I2 =
a∑
8=1

28 〈48 | , with 28 =

a∑
9=1
〈i! |ℎ 9〉

(
C−1

)
98

; (17)

|i'〉 = I2 |i'〉 =
a∑
8=1

2̃8 |ℎ8〉 , with 2̃8 =

a∑
9=1

(
C−1

)
8 9
〈4 9 |i'〉 . (18)

The latter two formulas, dubbed master decomposition formulas for (dual) twisted cocycles
[27, 31], imply that the decomposition of any (dual) Aomoto-Gel’fand-Feynman integral can
be expressed as linear combination of (dual) master integrals is an algebraic operation, similar
to the decomposition/projection of any vector within a vector space, which can be carried out
by computing intersection numbers of twisted de Rham differential forms.

• Integral decomposition (1). By using the master decomposition formulas of forms and dual
forms, integrals and dual integrals can be straightforwardly written as,

� = 〈i! |C'] =
a∑
8=1

28 �8 , and �̃ = [C! |i'〉 =
a∑
8=1

2̃8 �̃8 , (19)

respectively in terms the MIs �8 = 〈48 |C'], and of the dual MIs �̃8 = [C! |ℎ8〉, for 8 = 1, . . . , a.

• Decomposition of integration contours. Equivalently, using the resolution of the identity in
the homology space. twisted cycles and dual twisted cycles can be projected onto the bases
in the corresponding vector spaces as,

|C'] = Iℎ |C'] =
∑
8

08 |W8] , with 08 =

a∑
9=1

(
H−1

)
8 9
[[ 9 |C'] , (20)

[C! | = [C! | Iℎ =
∑
8

0̃8 [[8 | , with 0̃8 =

a∑
8=1
[C! |W 9]

(
H−1

)
98

(21)

The latter two formulas are dubbed master decomposition formulas for (dual) twisted cycles,
and may lead to alternative decomposition of integrals and dual integrals.
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• Integral decomposition (2). By using the master decomposition formulas of contours and
dual contours, integrals and dual integrals can be straightforwardly written as,

� = 〈i! |C'] =
a∑
8=1

08 �
′
8 , and �̃ = [C! |i'〉 =

a∑
8=1

0̃8 �̃
′
8 , (22)

respectively in terms theMIs � ′
8
= 〈i! |W8], and of the dual MIs �̃ ′

8
= [[8 |i'〉, for 8 = 1, . . . , a.

In the above formulas, C and H are (a×a)-matrices of intersection numbers, which, in general,
differ from the identity matrix. For intersections number of orthonormal elelements they turn
into unit matrices, hence simplifying the decomposition formulas. The Gram-Schmidt algorithm
can be employed to build orthonormal bases from generic sets of independent elements, using
the intersection numbers as scalar products. More generally the coefficients appearing in the four
types of decomposition formulas for twisted cocycles and cycles and their duals given above are
independent of the respective dual elements. Therefore, by exploiting the freedom in choosing the
corresponding dual bases may yield striking simplifications [31, 102, 103].

Let me remark that the above discussion and the decomposition formulas defined above hold
also in the case of relative twisted de Rham theory, namely releasing the non-integer conditions for
the exponents U8 that appear in the definition of D [102–104].

2.1.2 Differential Equations

• Differential Forms. The identity resolution I2 can be used to derive the system of differential
equation obeyed by the master forms 〈48 |. In fact, let as assume that the D depends on an
external variables, say G, then

mG 〈48 | = 〈(mG + fG)48 | = 〈(mG + fG)48 | I2 = Ω8 9 〈4 9 | , (23)

where the entries of the matrix of the system are Ω8 9 = 〈(mG + fG)48 |ℎ:〉 (C−1): 9 , and
fG ≡ mG log(D).
Following similar steps, the system of differential equations for the master dual forms |ℎ8〉
reads,

mG |ℎ8〉 = | (mG − fG)ℎ8〉 = I2 | (mG − fG)ℎ8〉 = Ω̃8 9 |ℎ 9〉 , (24)

where the entries of the matrix 
̃ are Ω̃8 9 = (C−1) 9: 〈4: | (mG − fG)ℎ8〉 .

• Master Integrals Since integrals are obtained by pairing forms and integration contours, the
matrices 
 and 
̃, whose entries are computed by evaluating intersection numbers, are the
matrix of the system of differential equations obeyed by the master integrals �8 and by the
dual master integrals �̃, respectively ,

mG �8 = Ω8 9 � 9 , mG �̃8 = Ω8 9 �̃ 9 . (25)

• IntersectionMatrices. The systems of differential equations for forms and dual forms can be
used to show that the intersection matricesC and its inverseC−1 satisfy differential equations,
known as secondary equations [35, 36, 105],

mGC = 
.C + C.
̃ , mGC−1 = 
̃.C−1 − C−1.
 , (26)
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where the product between generally non commuting matrices is understood.

Following a similar approach, in the homology space, hence using Iℎ, it is possible to derive
differential equations for (dual) master cycles, |W8] and [[8 |, and the secondary equations
obeyed the corresponding H intersection matrix.

2.1.3 Bilinear Relations

Riemann bilinear relations for periods of closed holomorphic (non-twisted) differentials forms,
q! and q', see [44] reads as,

〈q! |q'〉 =
∫
Σ

q! ∧ q' =

6∑
8=1

( ∫
08

q!

∫
18

q' −
∫
18

q!

∫
08

q'

)
, (27)

where Σ is an oriented Riemann surface of genus 6 > 0, built out of a 46-gon with edges∏6

8=1 08180
−1
8
1−1
8

(where the exponent ±1 stands for clock/anticlockwise orientation) and gluing
each edge with its inverse. The integration contours 08 and 18 , for 8 = 1, . . . 6, are a canoni-
cal bases of cycles, hence intersect transversally, i.e. their pairwise intersection numbers are:
08 · 0 9 = 18 · 1 9 = 0 , and 08 · 1 9 = −1 9 · 08 = X8 9 . Riemann bilinear relation can be cast as,

〈q! |q'〉 =
26∑
8, 9

∫
W8

q! (H−1)8 9
∫
W 9

q' , (28)

where {W8}8=1,...,6 = 08 and {W8}8=6+1,...,26 = 18 , and H8 9 = [W8 |W 9] , namely

H =

(
0 I6×6
−I6×6 0

)
, yielding H−1 =

(
0 −I6×6
I6×6 0

)
, (29)

and I6×6 is the identity matrix in the (6 × 6)-space.
Bilinear relations can be derived also for the cases of twisted co-cycles. The operators I2 and

Iℎ can be inserted in the pairing between twisted (co)cyles, to obtain the following identities:

• Twisted Riemann Periods Relations.

〈i! |i'〉 = 〈i! |Iℎ |i'〉 =
a∑

8, 9=1
〈i! |W8]

(
H−1

)
8 9
[[ 9 |q'〉 (30)

[C! |C'] = [C! |I2 |C'] =
a∑

8, 9=1
[C! |ℎ8〉

(
C−1

)
8 9
〈4 9 |C'] , (31)

which are the Twisted Riemann Period Relations (TRPR) [50]. TRPR relates intersection
numbers for (co)-homologies to products of integrals and dual integrals.

2.1.4 Trilinear Identies

Multiple insertions of the identity resolutions Iℎ and I2 can generate multilinear relations.

8
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• Cubic relations. Consider a generic integral, and let us use the resolution of identity twice,
as follows (summation over repeated indices understood, for notation ease)

� = 〈i! |C'] = 〈i! |Iℎ I2 |C'] = 〈i! |W 9]
(
H−1

)
9:
[[: |ℎℓ〉

(
C−1

)
ℓ8
〈48 |C'] , (32)

whose r.h.s. involves two integrals and one dual integral. By rewriting it as,

� ≡ 68 9 〈48 |C'] 〈i! |W 9] , with 68 9 ≡
(
H−1

)
9:
[[: |ℎℓ〉

(
C−1

)
ℓ8
, (33)

it emerges a structure similar to the general formula of coaction on integrals Δ(�) introduced
in [106]: it would be interesting to verify if there is an actual correspondence between the
two constructions (plausibly subject to a special choices the bases).

3. Intersection Numbers of Twisted Forms

The evaluation of intersection numbers for twisted cycles and cocycles is the key operation
required to derive linear and quadratic relations for Aomoto-Gel’fand-Feynman integrals. The
intersection numbers for twisted cycles, also known simply as topological intersection numbers
are discussed in [47], see also [25, 107]. For the application within the linear decomposition and
related (differential and finite difference) equations, it is sufficient to limiting our discussion to the
intersection numbers for twisted forms. Their systematic derivation can be found in [26, 30, 50, 53],
and it is recalled in these Proceedings [98, 99], see also [44, 45]. Let me hereby give a non-rigorous
derivation - which I hope it might be useful for those who approach the subject for the first time. I
will discuss the evaluation of intersection numbers for twisted 1-form, beginning with the case of
non-twisted forms.

3.1 Closed 1-forms

Consider the wedge product of two closed 1-forms, q!and q', and a 1-form Ω, such that
3Ω = q! ∧ q'. Then, the intersection number 〈q! |q'〉 can be computed via Stokes’ theorem, as

〈q! |q'〉 =
1
(2c8)

∫
"

q! ∧ q' =
1
(2c8)

∫
"

3Ω =
1
(2c8)

∫
m"

Ω . (34)

Moreover, if " contains holes, then the integration along its boundary mΣ can be substituted by
a sum of contour integrals around each pole, and the intersection number can be evaluated by
Cauchy’s residue theorem,

〈q! |q'〉 =
∑
?∈Poles

ResI=? (Ω) . (35)

(let us observe that the presence of poles in q! and q' makes the wedge product, hence the
interesection number non-vanishing). Indeed, if we introduce the scalar potential k, such that

3k = q! (36)

then, we can define

Ω ≡ k q' , (37)

9
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having the desired property, 3Ω = 3k ∧ q' + k 3q' = q! ∧ q' + 0 (the second term vanishes
because of the closure).

3.2 Closed Twisted 1-forms

For Aomoto-Gel’Fand/Feynman integrals, owing to the presence of the multivalued function
D, we need to consider the twisted (and dual-twisted) forms

q! ≡ D i! , q' ≡ D−1 i' . (38)

In this case, we take

Ω ≡ D k q' = k i' , (39)

with 3 (D k) = q! , equivalently rewritten as,

∇l k = i! , (40)

such that 3Ω = (D i!) ∧ (D−1 i') = i! ∧ i'. Therefore, the expression of the intersection number
for twisted 1-form reads

〈i! |i'〉 =
1
(2c8)

∫
"

(Di!) ∧ (D−1i') =
1
(2c8)

∫
"

i! ∧ i' =
∫
"

3Ω =
∑
?∈Pl

ResI=? (Ω) . (41)

Equation (40) is the same differential equation obeyed by the potential k as proposed in the
complete algorithm [50, 53]: actually (because of the local compactness of i!), it is sufficient to
know the differential form Ω, hence the scalar function k just locally, around each pole ? ∈ Pl ,
therefore implying a local solution of the differential equation in eq. (40).

To derive relations for multivariate integrals, whose integrand contains generic meromorphic
=-forms, the evaluation of the intersection numbers becomes a key task: for the case of logarithmic
=-forms [53], intersection numbers can be evaluated by means of the global residue theorem [26];
while for the generic case, an iterative approach proposed in [30, 33, 35], (see [98, 99] in these
Proceedings), further refined in [36, 102, 103].

Let me simply mention that the resolution of the identity has played an essential role also in the
development of the iterative approach for the evaluation of the intersection numbers. In the case of
=-forms i!,' ∈ �=±l , can be computed by induction, from intersection numbers of (= − 1)-forms,
as

〈i! |i'〉 = 〈i! |I(=−1)
2 |i'〉 (42)

where I(=−1)
2 is the identity resolution within the (= − 1)-dimensional cohomology group, namely

written in terms of the generators of �=−1
±l . Other algorithms for the evaluation of intersection

numbers [60] have been recently proposed, and further ideas based on Stokes’ theorem, extending
what exposed earlier in this contribution, are in progress.
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4. Conclusion

Dimensional regularization has been a crucial concept for the development of computational
methods in gauge theories. Understanding (supposedly knonwn) physics, and searching for devi-
ations from the theoretical expectations within data requires the ability of computing Scattering
Amplitudes at higher order in perturbation theory, therefore of evaluating rather complicated Feyn-
man integrals. Along the last four decades, integration by parts identities, integrand decomposition,
together with differential and difference equations for Feynman integrals, allowed the study of
fundamental interactions among elementary particles at very high accuracy, when any direct at-
tempt through explicit integration techniques becomes prohibitive, especially for those integrals
that depend on many external parameters. The recent developments of solving strategies for linear
systems, based on rational reconstruction over finite fields, pushed to integration-by-parts based
decomposition to a very advanced level of efficiency.

Over the recent few years, theoretical physicists have been borrowing advanced concept and
computational tools from Number Theory, Differential and Algebraic Topology for the study of
Feynman integrals, which indicate that de Rahm theory for (relative) twisted co-homology seems to
represent a complete mathematical framework to investigate the formal properties of these integrals.
This research has recently culminated in the realization of the existence of a vector space structure
controlled by intersection numbers, yielding the possibility of defining an inner product among
integrals: the algebro-analytic properties of Feynman integrals, and more generally of Aomoto-
Gel’fand integrals are characterized, determined by geometry – or to better say, by the topological
properties of the algebraic variety identified by the zeroes of the (graph) polynomial appearing in the
parametric representation of the integral, ı.e. the twist. In this picture, Feynman integrals appear as
moments of a statistical distribution identified with the twist, and related to the linear independence
of the integration variables, and the master integrals become the independent moments of such
distribution [108].

It is probably too early for forecasting if intersection theory based methods can lead to the
development of novel more efficient computational tools than the ones currently available (in this
case, we would say that math was helpful to physics), or if - by turning the arguments around -
we will reach the conclusion that integration-by-parts identities are the most efficient method to
evaluate intersection numbers (in this case, we would say that physics was helpful to math).

In any case, at the moment we can defintely mention that intersection theory offers a novel
perspective to Feynman calculus, and allowed us to explore its underpinningmathematical structure,
which we propose through the correspondence between QFT and de Rham theory, shown in Tab. 1,

The results achieved so far, and the successful outcome of the MathemAmplitudes 2019 work-
shop, motivates us in further addressing open questions related to the adopted integral representation,
hence to the consequent role of regularization of Feynman integrals, and of the corresponding equiv-
alence classes, which may have a twofold impact: on the one side, it can lead to the identification
of new mathematical methods for the evaluation of intersection numbers; but, more globally, on
the other side, it may shed new light on the structure of radiative corrections in Quantum Field
Theories, namely on a new layout of the diagrammatic contributions to the Scattering Amplitudes.

We hope that the vivid interplay between Theoretical Physics and Mathematics, as the one,
sharing the common interest on Aomoto-Gel’fand integrals, which Feynman integrals are part of,
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Quantum Field Theory de Rham Twisted Co-homology Theory
Feynman integrals Aomoto-Gel’fand integrals
graph polynomials Morse functions
regularisation multivaluedness
vector space co-homology groups

integration-by-parts identities contiguity relations
quadratic relations Riemann twisted periods relations
master integrals independent forms / independent cycles

differential / difference equations differential / difference equations

Table 1: Correspondence QFT vs de Rham theory.

can lead to progress in both fields, and, through it, to other areas that make use of these ubiquitous
functions [2].
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