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Abstract Let ( ),G V E=  be a graph of order n . Let ( )B S  be the set of vertices in \V S  that 

have a neighbor in the vertex set S . The differential of a vertex set S  is defined as 

( ) ( )S B S S = −  and the maximum value of ( )S  for any subset S  of V  is the differential 

of G . For ( )S V G , the set ( )p
N S  is defined as the perfect neighborhood of S  such that 

all vertices in ( ) \V G S  have exactly one neighbor in S . The perfect differential of S  is 

defined to be ( ) ( ) = −
p p

S N S S  and the perfect differential of a graph is defined as 

( ) ( ) ( ) max : =  
p p

G S S V G . A Roman dominating function of G  is a function 

 : 0,1,2f V →  such that every vertex v  for which ( ) 0f v =  has a neighbor u  with 

( ) 2f u = . The weight of a Roman dominating function f  is ( ) ( )
v V

w f f v


= . The Roman 

domination number of a graph G , denoted by ( )R
G , is the minimum weight of all possible 

Roman dominating functions. A perfect Roman dominating function is defined as an Roman 

dominating function f  satisfying the condition that every vertex u  for which ( ) 0=f u  is 

adjacent to exactly one vertex v  for which ( ) 2=f v . The perfect Roman domination number, 

denoted by ( ) p

R
G , is the minimum weight among all perfect Roman dominating functions 

on G , that is ( ) ( ) min :  is a perfect Roman dominating function on  =p

R
G w f f G . This 

paper is devoted to the computation of differential, perfect differential and Roman 

domination, perfect Roman domination of probabilistic neural networks by the use of the 

proven Gallai-type results ( ) ( )R
G n G = − , ( ) ( ) + =p

R p
G G n . Besides, existing Roman 

and perfect Roman graph classes of probabilistic neural networks are characterized. 
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1. Introduction 

In this paper, simple, finite and undirected graphs without loops and multiple edges are 

considered. Let ( ),G V E=  be a graph with vertex set V  and edge set E . The order of G  is 

given by =V n  and the size is defined as =E m  where *  denotes the number of elements 

in the set (i.e. the cardinality). The neighborhood of a vertex v V  is the set of vertices 

adjacent to v , denoted ( )G
N v  or just ( )N v , and the closed neighborhood of v  is given by 

  ( )  N v N v v=  . Thus, ( )  =  N v u V uv E  and ( )N v  is referred to as the open 

neighborhood of v . For a set S V , ( ) ( )v S
N S N v=  and   ( )N S N S S=  . For S V , 

the subgraph of G  induced by S  is denoted by  G S  [4]. 

The differential of a graph was introduced to model ways of influencing a network. 

The differential in graphs is a subject of increasing interest, both in pure and applied 

mathematics. The research and application of the ( )G  appears mainly in computational 

mathematics. The differential of a graph was introduced in [10], and studied by several 

authors [2,9,11-12,14,24,26-33,39], motivated by its applications to information diffusion in 

social networks. The study of the mathematical properties of the differential in graphs stated 

in [2,9,10-12,14,24,26-33,39]. This parameter has been studied by many authors, both from 

the viewpoint of combinatorics and from the viewpoint of the algorithmic complexity. We 

refer to the papers [2,9,10-12,14,24,26-33,39] and the literature quoted therein.  

Let ( ),G V E=  be a graph of order n , for every set D V  let ( )B D  be the set of 

vertices in \V D  that have a neighbor in the vertex set D . The differential of D  is defined as 

( ) ( )D B D D = −  and the differential of a graph G , written ( )G , is equal to 

( ) max :D D V  . A ( ) G -set is a set D V  such that ( ) ( ) = D G . 

The perfect neighborhood of a set S V  is defined to be 

( ) ( ) \ : 1=   =
p

N S v V S N v S . The perfect differential of a set S V  is defined as 

( ) ( ) = −
p p

S N S S  and the perfect differential of a graph is defined as 

( ) ( ) max : =  
p p

G S S V . A ( )
p

G -set is a set S V  such that ( ) ( ) = 
p p

S G  [1]. 



A subset S V  is a dominating set of G , if for any vertex u V S − , there exists a 

vertex v S  such that uv E . The domination number of G , denoted by ( )G , equals the 

minimum cardinality of a dominating set [35]. A dominating set S  of G  is a perfect 

dominating set if for every \v V S , there exists exactly one u S  for which uv E . The 

minimum cardinality of a dominating set is the perfect domination number of G , which is 

denoted by ( ) p
G . Since perfect dominating sets are dominating sets, ( ) ( )  p

G G  for any 

graph G . The theory of perfect domination was introduced in [ ], and has been studied by 

several authors [ ]. The Roman domination number is defined as a variant of domination 

number in [7]. A Roman dominating function on graph ( ),G V E=  is defined as a function 

 : 0,1,2f V →  satisfying the condition that every vertex v  for which ( ) 0f v =  is adjacent to 

at least one vertex u  for which ( ) 2f u = . The weight of a Roman dominating function is the 

value ( ) ( )
v V

f V f v


= . The Roman domination number of a graph G , denoted by ( )R
G , 

is the minimum weight of all possible Roman dominating functions on G . A graph G  is a 

Roman graph or Roman if ( ) ( )2
R

G G = . We refer to the papers [5,15,20-23,28,33,36-38] 

and the literature quoted therein. A perfect version of Roman domination was introduced in 

[16]. A perfect Roman dominating function is defined as an Roman dominating function f  

satisfying the condition that every vertex u  for which ( ) 0=f u  is adjacent to exactly one 

vertex v  for which ( ) 2=f v . The perfect Roman domination number, denoted by ( ) p

R
G , is 

the minimum weight among all perfect Roman dominating functions on G , that is 

( ) ( ) min :  is a perfect Roman dominating function on  =p

R
G w f f G . Obviously, 

( ) ( ) ( )2   p p

R R
G G G  for every graph G , and those graphs attaining the equality 

( ) ( )2 =p p

R
G G  are called perfect Roman graphs. For recent results on perfect Roman 

domination in graphs, we refer to the cited papers [13,17,18,25].  

The domination based parameters reveal an underlying effcient and stable 

communication network. The study of domination in graphs is an important research area, and 

also the fastest-growing area within graph theory. The reason for the steady and rapid growth 

of this area may be the diversity of its applications to both theoretical and real-world 

problems. For instance, dominating sets in graphs are natural models for facility location 

problems in operations research. Research on domination in graphs has not only important 



theoretical signification, but also varied application in such fields as computer science, 

communication networks, ad hoc networks, biological and social networks, distributed 

computing, coding theory, and web graphs. Domination and its variations have been 

extensively studied [3,6,8,34-35,40]. In general, the concept of dominating sets in graph 

theory finds wide applications in different types of communication networks. A broadcast 

from a communication vertex is received by all its neighbors. This is captured by the notion of 

domination in a graph. The minimum dominating set of sites plays an important role in the 

network for it dominates the whole network with the minimum cost. A thorough study of 

domination appears in [34-35]. 

The differential set problem was proved to be an NP-complete problem [27]. Since 

also the problem of computing the Roman domination number of an arbitrary graph is NP-

complete [22], it is worthwhile to compute the differential and Roman domination number of 

various classes of graphs [5,15,20-21,23,36-38]. In [25], it was shown that the perfect Roman 

domination problem is NP-complete for chordal graphs, planar graphs, and bipartite graphs. 

In [1], it was also shown that perfect differential problem is NP-complete, even for chordal 

graphs, planar graphs, and bipartite graphs. Since both the problem of computing the perfect 

Roman domination number and the perfect differential of a graph is NP-complete in general, 

it is worthwhile to compute the perfect Roman domination number and the perfect differential 

of various classes of graphs. 

The theory of differential and perfect differential in graphs can be seen as novel 

approaches to the theory of Roman domination and perfect Roman domination. In [28] and 

[1], Gallai-type theorems are established which state the relationship between the differential 

and the Roman domination number, and the relationship between the perfect differential and 

the perfect Roman domination number. Allowing to study the Roman domination number and 

perfect Roman domination number of a graph without the use of functions are the advantages 

of these approaches. The perfect differential sets play an important role in the theory of 

perfect Roman domination. The aforementioned Gallai-type theorems allow us to derive 

results on the Roman domination number and perfect Roman domination number from results 

on the differential and perfect differential and vice versa.  

A neural network is a computer system modeled on the nerve tissue and nervous 

system. Neural networks are not only studied in Neurochemistry but also in many applications 

in different areas of studies such as intrusion detection system, image processing, artificial 

intelligence localization, medicine, chemical and environmental sciences [19]. 



The 3-layered probabilistic neural network consists of three layers of nodes. The first 

layer, second layer and third layer are known as input layer, hidden layer and output layer, 

respectively. The first layer, second layer and third layer contain n  nodes, k  classes with m  

nodes in each class and k  nodes, respectively. In the architecture of a 3-layered probabilistic 

neural network, each node of input layer is connected to all the nodes of each class of the 

hidden layer and all the nodes of each class of the hidden layer are connected to a unique node 

of the output layer. Thus, a 3-layered probabilistic neural network denoted by ( ), ,PNN n k m  

has ( )( ) ( ), , 1V PNN n k m n k m= + +  vertices where , ,n k m
+ . Let the vertices of the 3-

layered probabilistic neural network of the input layer be 1, ,
n

v v , the vertices of the hidden 

layer be 11 1 1, , , , , ,
m k km

u u u u , the vertices of the output layer be 1, ,
k

z z . The graphical 

representation of the 3-layered probabilistic neural network ( ), ,PNN n k m  is shown in Figure 

1.1.  

 

Figure 1.1. The 3-layered probabilistic neural network ( ), ,PNN n k m  

 



The 4-layered probabilistic neural network consists of four layers of nodes. The first layer, 

second layer, third layer and fourth layer are known as input layer, hidden layer, summation 

layer, and output layer, respectively. The first layer, second layer, third layer and fourth layer 

contain n  nodes, k  classes with m  nodes in each class, k  nodes and one node, respectively. 

Each node of input layer is connected with every node in hidden layer, each node of a class in 

the hidden layer is connected to a unique node in the summation layer and all the nodes of 

summation layer are connected to the only node of the output layer. Thus, a 4-layered 

probabilistic neural network denoted by ( ), , ,1PNN n k m  has 

( )( ) ( ), , ,1 1 1V PNN n k m n k m= + + +  vertices where , ,n k m
+ . Let the vertices of the 

input layer be 1, ,
n

v v , the vertices of the hidden layer be 11 1 1, , , , , ,
m k km

u u u u , the 

vertices of the summation layer be 1, ,
k

z z , and the vertex of the output layer be w . The 

graphical representation of the 4-layered probabilistic neural network ( ), , ,1PNN n k m  is 

shown in Figure 1.2. 

 

Figure 1.2. The 4-layered probabilistic neural network ( ), , ,1PNN n k m  

 



The paper proceeds as follows. In section 2 and 3, average lower independence and 

domination numbers of 3 and 4-layered probabilistic neural networks are computed. 

Domination and independent domination numbers 3 and 4-layered probabilistic neural 

networks are given as immediate results.  

 

2. Differential and Roman domination of probabilistic neural networks 

 

Theorem 2.1 [9] Let G  be a graph of order n . Then, a graph G  is dominant differential iff 

( ) ( )2 = −G n G . 

 

Theorem 2.2 [28] If G  is a graph of order n , then ( ) ( )R
G n G = − . 

 

Theorem 2.3 Let ( ), ,PNN n k m  be a 3-layered probabilistic neural network with 

( )1n k m+ +  vertices. Then, the differential of ( ), ,PNN n k m  is 

( )( )
1,  1  2, 2, 1;

, , 1,  1, 1;

3,  2, 1, 1  2, 3, 1.

+ − =  = =
 = − = 
 + −      =

n m if k or n k m

PNN n k m km if n k

n km if n k m or n k m

 

 

Proof. If we take a vertex 
i

v  ( )1 i n  of the input layer of ( ), ,PNN n k m  and so  1 = i
D v , 

then we have that ( ) ( ) ( )1 , ,
1 1= =

= =
k m

i xyPNN n k m
x y

B D N v u  and so ( )1 1 = −D km , and adding either 

any vertex 
j

v  ( )1 ,  j n j i  of the input layer or any vertex 
t

z  ( )1 t k  of the output 

layer of ( ), ,PNN n k m  to the set 1D  yields ( )1 1  −D km . 

If we add a vertex 
xy

u  ( )1 ,1   x k y m  of the hidden layer of ( ), ,PNN n k m  to the set 

1D , that is the set  2 ,=
i xy

D v u , we have ( )        2 1
1 1

, , \ \
= =

=  
k m

n i ab xy x
a b

B D v v v u u z  

yielding ( )2 3 = + −D n km , and taking any other subset of ( )( ), ,V PNN n k m  to the set 2D  

yields ( )2 3  + −D n km . 



If we take a vertex 
xy

u  ( )1 ,1   x k y m  of the hidden layer and so  3 = xy
D u , then we 

have that ( ) ( ) ( )    3 1, ,
, ,= = 

xy n xPNN n k m
B D N u v v z  and so ( )3 =D n , and adding any 

other vertex subset of the hidden layer to the set 3D  yields ( )3 D n . 

If we add the vertex 
x

z  of the output layer to the set 3D , that is the set  4 ,=
xy x

D u z , then we 

have ( )    4 1
1

, , \
=

= 
m

n xb xy
b

B D v v u u  yielding ( )4 3 = + −D n m . 

If we add all of the vertices of the output layer except the vertex 
x

z  to the set 
3D , that is the 

set      5 1, , \= 
xy k x

D u z z z , then we have ( ) ( )  5 3 1
1 1

\ , ,
= =

= 
k m

ab x xm
a b

B D B D u u u  

yielding ( ) ( )( )5 1 1 = + − −D n k m . 

If we add the vertex 
x

z  of the output layer to the set 5D , that is the set 

   6 1, ,= 
xy k

D u z z , then we have ( )    6 1
1 1

, , \
= =

= 
k m

n ab xy
a b

B D v v u u  yielding 

( ) ( )6 1 2 = + − −D n k m , and adding any other subset of ( )( ), ,V PNN n k m  to the set 6D  

yields ( ) ( )6 1 2  + − −D n k m . 

If we add a vertex i
v  ( )1 i n  of the input layer to the set 5D , that is the set 

     7 1, , , \= 
i xy k x

D v u z z z , then we have 

( )        7 1
1 1

, , \ \
= =

=  
k m

n i ab xy x
a b

B D v v v u u z  yielding ( ) ( )7 1 2 = + − −D n k m  and 

adding any other subset of ( )( ), ,V PNN n k m  to the set 7D  yields ( ) ( )7 1 2  + − −D n k m . 

If we take a vertex 
t

z  ( )1 t k  of the output layer, then we have  8 = t
D z  and 

( )  8 1, ,=
t tm

B D u u  yielding ( )8 1 = −D m . 

If we add a vertex i
v  ( )1 i n  of the input layer to the set 8D , that is the set  9 ,=

t i
D z v , 

then we have ( )9
1 1= =

=
k m

ab
a b

B D u  yielding ( )9 2 = −D km , and adding any other vertex subset 

of the input and output layers to the set 9D  yields ( )9 2  −D km . 

If we add a vertex 
xy

u  ( )1 , ,1    x k x t y m  of the hidden layer to the set 9D , that is the 

set  10 , ,=
t i xy

D z v u , we have ( )        10 1
1 1

, , \ \
= =

=  
k m

n i ab xy x
a b

B D v v v u u z  yielding 



( )10 4 = + −D n km , and adding any other subset of ( )( ), ,V PNN n k m  to the set 
10D  yields 

( )10 4  + −D n km . 

If we add a vertex 
xy

u  ( )1 , ,1    x k x t y m  of the hidden layer to the set 8D , that is the 

set  11 ,=
t xy

D z u , then we get ( )      11 1 1, , , ,=  
n t tm x

B D v v u u z  and so 

( )11 1 = + −D n m . 

If we take all vertices of the output layer to the set 
12D , then we have  12 1, ,=

k
D z z  and 

( )12
1 1= =

=
k m

ab
a b

B D u  yielding ( ) ( )12 1 = −D k m . 

If we add a vertex 
xy

u  ( )1 ,1   x k y m  of the hidden layer to the set 12D , that is the set 

   13 1, ,= 
k xy

D z z u , then we have ( )    13 1
1 1

, , \
= =

= 
k m

n ab xy
a b

B D v v u u  yielding 

( ) ( )13 1 2 = + − −D n k m , and adding any other subset of ( )( ), ,V PNN n k m  to the set 13D  

yields ( ) ( )13 1 2  + − −D n k m . 

By the definition of graph differential, among all the cardinalities of differential sets, we have 

that 

( )( ) ( ) , , max = 
p

PNN n k m D  ( )1 13 p  

( )( )
1,  if 1 or 2, 2, 1;

, , 1,  if 1, 1;

3,  if 2, 1, 1 or 2, 3, 1.

+ − =  = =
 = − = 
 + −      =

n m k n k m

PNN n k m km n k

n km n k m n k m

 

The theorem is thus proved. ■ 

 

Lemma 2.1 [40] The domination number of a 3-layered probabilistic neural network 

( ), ,PNN n k m  is ( )( ) ,   1  1;
, ,

1,  .

k if m and k
PNN n k m

k otherwise


= 
=  +

 

 

Remark 2.1 In [40], the domination number of a 3-layered probabilistic neural network is 

computed as ( )( ), , ,  if 1 and 1; 1,  otherwise. = =  +PNN n k m k m k k  Then, by Theorem 2.1 

and 2.3, we can easily observe that if 1, 2, 1= = =n k m  or 2, 2,3, 1 = =n k m , then a 3-

layered probabilistic neural network ( ), ,PNN n k m  is a dominant differential graph; that is 

the maximal  -sets of those networks are also dominating sets. 



 

Since the order of a 3-layered probabilistic neural network is 

( )( ) ( ), , 1= + +V PNN n k m n k m , by the use of Theorem 2.2, the result in Corollary 2.1 is 

derived directly as a consequence of Theorem 2.3. 

 

Corollary 2.1 The Roman domination number of a 3-layered probabilistic neural network 

( ), ,PNN n k m  with ( )1+ +n k m  vertices is 

( )( )
( )1 1,  1  2, 2, 1;

, , 2,  1, 1;

3,  2, 1, 1  2, 3, 1.


+ − + =  = =


= + = 
 +      =

R

k m m if k or n k m

PNN n k m k if n k

k if n k m or n k m

 

 

Remark 2.2 A graph G  is a Roman graph or Roman if ( ) ( )2 =
R

G G . Then, by the use of 

Corollary 2.1 and Lemma 2.1, Roman 3-layered probabilistic neural networks are identified. 

If 1, 2, 1= = =n k m  or 2, 2,3, 1 = =n k m , then the 3-layered probabilistic neural network 

( ), ,PNN n k m  is a Roman tree. 

 

Theorem 2.4 Let ( ), , ,1PNN n k m  be a 4-layered probabilistic neural network with 

( )1 1n k m+ + +  vertices. Then, the differential of ( ), , ,1PNN n k m  is 

( )( ) ( )
( )

,  1  2, 2, 2  2, 2, 1;

, , ,1 1 2,  1, 1  2, 1, 2  2, 2, 1;

1 5,  2, 1, 2 7.

 + =    = = =


 = + − =  =   =  =
 + + −   + 

n m if k or n k m or n k m

PNN n k m k m if n k or n k m or n k m

n k m if n k m k

 

 

Proof. If we take a vertex i
v  ( )1 i n  of the input layer of ( ), , ,1PNN n k m  and so 

 1 = i
D v , we have ( ) ( ) ( )1 , , ,1

1 1= =
= =

k m

i abPNN n k m
a b

B D N v u  yielding ( )1 1 = −D km . 

If we add the vertex w  of the output layer to the set 1D , that is the set  2 ,=
i

D v w , then we 

get ( ) ( )  2 1 1, ,= 
k

B D B D z z  and so ( ) ( )2 1 2 = + −D k m . 

If we add a vertex 
xy

u  ( )1 ,1   x k y m  of the hidden layer to the set 2D , that is the set 

 3 , ,=
i xy

D v w u , then we get ( )        3 1 1
1 1

, , \ \ , ,
= =

=  
k m

n i ab xy k
a b

B D v v v u u z z  and so 



( ) ( )3 1 5 = + + −D n k m , and adding any other subset of ( )( ), , ,1V PNN n k m  to the set 
3D  

yields ( ) ( )3 1 5  + + −D n k m . 

If we take a vertex 
xy

u  ( )1 ,1   x k y m  of the hidden layer to the set 4D , then we have 

 4 = xy
D u  and ( ) ( ) ( )    4 1, , ,1

, ,= = 
xy n xPNN n k m

B D N u v v z  yielding ( )4 =D n . 

If we add the vertex w  of the output layer to the set 4D , that is the set  5 ,=
xy

D u w , then we 

get ( )    5 1 1, , , ,= 
n k

B D v v z z  yielding ( )5 2 = + −D n k . 

If we add all vertices of the summation layer except the vertex 
x

z  to the set 4D , that is the set 

     6 1, , \= 
k x xy

D z z z u , then we have ( ) ( )  6 4
1, 1=  =

=  
k m

ab
a a x b

B D B D u w  and so 

( ) ( )( )6 1 1 1 = + − − +D n k m . 

If we add the vertex 
x

z  of the summation layer to the set 6D , that is the set 

   7 1, ,= 
xy k

D u z z , then we have ( )      7 1
1 1

, , \
= =

=  
k m

n ab xt
a b

B D v v u u w  ( )1 t m  

and so ( ) ( )7 1 1 = + − −D n k m , and adding any other subset of ( )( ), , ,1V PNN n k m  to the set 

7D  yields ( ) ( )7 1 1  + − −D n k m . 

If we take a vertex 
p

z  ( )1 p k  of the summation layer to the set 8D , then we get 

 8 = p
D z , ( ) ( ) ( )    8 1, , ,1

, ,= = 
p p pmPNN n k m

B D N z u u w , and so ( )8 =D m . 

If we take all of the vertices of the summation layer as a differential set  9 1, ,=
k

D z z , then 

we receive ( )  9
1 1= =

= 
k m

ab
a b

B D u w  and so ( ) ( )9 1 1 = − +D k m , and taking any other vertex 

subset of the input layer to the set 9D  yields ( ) ( )9 1 1  − +D k m . 

If we add a vertex i
v  ( )1 i n  of the input layer to the set 8D , that is the set  10 ,=

p i
D z v , 

then we get ( )  10
1 1= =

= 
k m

ab
a b

B D u w  and so ( )10 1 = −D km . 

If we add a vertex 
xy

u  ( )1 , ,1    x k x p y m  of the hidden layer to the set 10D , that is 

the set  11 , ,=
p i xy

D z v u , then we have ( )        11 1
1 1

, , \ \
= =

=  
k m

n i ab xy
a b

B D v v v u u w  and 

so ( )11 3 = + −D n km , and adding any other subset of ( )( ), , ,1V PNN n k m  to the set 11D  

yields ( )11 3  + −D n km . 



If we add a vertex 
xy

u  ( )1 , ,1    x k x p y m  of the hidden layer to the set 
8D , that is the 

set  12 ,=
p xy

D z u , then we have ( )        12 1 1, , , ,=   
n p pm x

B D v v u u z w  and so 

( )12 = +D n m . 

By the definition of graph differential, among all cardinalities of differential sets, we receive 

( )( ) ( ) , , ,1 max = 
l

PNN n k m D  ( )1 12 l  

( )( ) ( )
( )

,  if 1 or 2, 2, 2 or 2, 2, 1;

, , ,1 1 2,  if 1, 1 or 2, 1, 2 or 2, 2, 1;

1 5,  if 2, 1, 2 7.

 + =    = = =


 = + − =  =   =  =
 + + −   + 

n m k n k m n k m

PNN n k m k m n k n k m n k m

n k m n k m k

 

The theorem is thus proved. ■ 

 

Lemma 2.2 [40] The domination number of a 4-layered probabilistic neural network 

( ), , ,1PNN n k m  for 1n  , 2k  , 1m   is ( )( ), , ,1 3PNN n k m = . 

 

Remark 2.3 In [40], the domination number of a 4-layered probabilistic neural network is 

computed as ( )( ), , ,1 3 =PNN n k m  for 1, 2, 1  n k m . In addition, it can be easily 

observed that the domination number of a 4-layered probabilistic neural network 

( )( ), , ,1 2 =PNN n k m  or 3. Then, by the use of Theorem 2.1 and 2.4, we can conclude that if 

2, 2, 1= = =n k m  or 1, 1= n k  or 2, 1, 2 7  + n k m k , then a 4-layered probabilistic 

neural network ( ), , ,1PNN n k m  is dominant differential, that is the maximal  -sets of those 

networks are also dominating sets. 

 

Since the order of a 4-layered probabilistic neural network is 

( )( ) ( ), , ,1 1 1= + + +V PNN n k m n k m , by the use of Theorem 2.2, the result in Corollary 2.2 

is derived directly as a consequence of Theorem 2.4. 

 

Corollary 2.2 The Roman domination number of a 4-layered probabilistic neural network 

( ), , ,1PNN n k m  with ( )1 1+ + +n k m  vertices is  

( )( )
( )1 1,  1  2, 2, 2  2, 2, 1;

, , ,1 3,  1, 1  2, 1, 1  2, 2, 1;

6,  2, 1, 2 7.


+ − + =    = = =


= + =  =   =  =
   + 

R

k m m if k or n k m or n k m

PNN n k m n if n k or n k m or n k m

if n k m k

 



 

Remark 2.4 By the use of Corollary 2.2 and Lemma 2.2., Roman 4-layered probabilistic 

neural networks are identified. Also, we emphasize that the domination number of a 4-layered 

probabilistic neural network is ( )( ), , ,1 2 =PNN n k m  or 3. Then, we can easily observe that 

for 1, 1= n k  or 2, 1, 2 7  + n k m k , the 4-layered probabilistic neural network 

( ), , ,1PNN n k m  is a Roman graph. 

 

3. Perfect differential and perfect Roman domination of probabilistic neural networks 

 

Theorem 3.1 [1] If G  is a graph of order n , then ( ) ( ) + =p

R p
G G n . 

 

Theorem 3.2. Let ( ), ,PNN n k m  be a 3-layered probabilistic neural network with 

( )1n k m+ +  vertices. Then, the perfect differential of ( ), ,PNN n k m  is 

( )( )
( )1 ,  1, 1  1, 2;

, , 1,  1, 2;

3,  1, 2.

+ − = =  


 = − = 
 + −  

p

n k m if n k or n k

PNN n k m km if n k

n km if n k

 

 

Proof. If we take a vertex 
i

v  ( )1 i n  of the input layer of ( ), ,PNN n k m  to the set 1S , then 

 1 = i
S v , the perfect neighborhood of 1S  is ( )1

1 1= =
=

k m

p xy
x y

N S u  with cardinality 

( )1 =
p

N S km  and so ( )1 1 = −
p

S km . 

If we add a vertex 
xy

u  ( )1 ,1   x k y m  of the hidden layer to the set 1S , that is the set 

 2 ,=
i xy

S v u , then being ( )        2 1
1 1

, , \ \
= =

=  
k m

p n i ab xy x
a b

N S v v v u u z  with cardinality 

( )2 1= + −
p

N S n km  yields ( )2 3 = + −
p

S n km , and adding any other possible subset of 

( )( ), ,V PNN n k m  to the set 2S  yields ( )2 3  + −
p

S n km . 

If we take a vertex 
xy

u  ( )1 ,1x k y m     of the hidden layer to the set 3S , then  3 = xy
S u , 

the perfect neighborhood of 3S  is ( )    3 1, ,= 
p n x

N S v v z  with cardinality 

( )3 1= +
p

N S n  and so ( )3 =
p

S n . 



If we add all vertices of the output layer except the vertex 
x

z  to the set 
3S , that is the set 

     4 1, , \= 
xy k x

S u z z z , then being ( )      4 1
1 1

, , \
= =

=  
k m

p n ab xy x
a b

N S v v u u z  with 

cardinality ( )4 = +
p

N S n km  yields ( ) ( )4 1 = + −
p

S n k m . 

If we add all of the vertices of the output layer to the set 3S , that is the set 

   5 1, ,= 
xy k

S u z z , then being ( )    5 1
1 1

, , \
= =

= 
k m

p n ab xy
a b

N S v v u u  with cardinality 

( )5 1= + −
p

N S n km  yields ( ) ( )5 1 2 = + − −
p

S n k m , and any other subset of 

( )( ), ,V PNN n k m  cannot be added to the set 5S . 

If we take a vertex 
t

z  ( )1 t k   of the output layer to the set 6S , then  6 = t
S z , the perfect 

neighborhood of 6S  is ( )  6 1, ,=
p t tm

N S u u  with cardinality ( )6 =
p

N S m  and so 

( )6 1 = −
p

S m . 

If we take all the other vertices of the output layer to the set 6S , that is the set 

 7 1, ,=
k

S z z , then being ( )7
1 1= =

=
k m

p ab
a b

N S u  with cardinality ( )7 =
p

N S km  yields 

( ) ( )7 1 = −
p

S k m . 

By the definition of perfect differential of a graph, among all the perfect differential sets, we 

receive 

( )( ) ( ) , , max = 
p p l

PNN n k m S  ( )1 7 l  

( )( )
( )1 ,if 1, 1 or 1, 2;

, , 1, if 1, 2;

3,if 1, 2.

+ − = =  


 = − = 
 + −  

p

n k m n k n k

PNN n k m km n k

n km n k

 

Thus, the proof holds. ■ 

 

Theorem 3.1 allows us to derive results on the perfect Roman domination number from results 

on the perfect differential and vice versa. The next result is a direct consequence of combining 

Theorem 3.1 and 3.2. 

 

Corollary 3.1. The perfect Roman domination number of a 3-layered probabilistic neural 

network ( ), ,PNN n k m  with ( )1+ +n k m  is  



( )( )
2 ,  1  2, 1, 2;

, , 1,  1, 1;

3,  2, 1, 1  2, 1, 3.


=  = =

= + + = 
 +     = 

p

R

k if k or n m k

PNN n k m n k if n k

k if n m k or n m k

 

 

Theorem 3.3. Let ( ), , ,1PNN n k m  be a 4-layered probabilistic neural network with 

( )1 1n k m+ + +  vertices. Then, the perfect differential of ( ), , ,1PNN n k m  is  

( )( )
( )

,  1  2, 1  2, 2, 2  3, 1, 2;

, , ,1 3,  2, 3, 3  3, 1, 4  3, 1;

1 2,  2, 1, 3  3, 3  3, 1.

 + = = = = =  = = 


 = + − =   =     +
 + − =   =    +

p

n m if k or k m or k m n or k m n

PNN n k m n km if k m n or k m n or k n k

k m if k m n or k n or k n k

 

Proof. If we take a vertex 
i

v  ( )1 i n  of the input layer of ( ), , ,1PNN n k m  to the set 1S , 

then  1 = i
S v , the perfect neighborhood of 1S  is ( )1

1 1= =
=

k m

p ab
a b

N S u  with cardinality 

( )1 =
p

N S km  and so ( )1 1 = −
p

S km . 

If we add a vertex 
xy

u  ( )1 ,1x k y m     of the hidden layer to the set 1S , that is the set 

 2 ,=
i xy

S v u , then being ( )        2 1
1 1

, , \ \
= =

=  
k m

p n i ab xy x
a b

N S v v v u u z  with cardinality 

( )2 1= + −
p

N S n km  yields ( )2 3 = + −
p

S n km , and adding any other possible subset of 

( )( ), , ,1V PNN n k m  to the set 2S  yields ( )2 3  + −
p

S n km . 

If we add the vertex w  of the output layer to the set 1S , that is the set  3 ,=
i

S v w , then being  

( )  3 1
1 1

, ,
= =

= 
k m

p ab k
a b

N S u z z  with cardinality ( ) ( )3 1= +
p

N S k m  yields 

( ) ( )3 1 2 = + −
p

S k m , and adding any other possible subset of ( )( ), , ,1V PNN n k m  to the set 

3S  yields ( ) ( )3 1 2  + −
p

S k m . 

If we take a vertex 
xy

u  ( )1 ,1x k y m     of the hidden layer to the set 4S , then  4 = xy
S u , 

the perfect neighborhood of 4S  is ( )    4 1, ,= 
p n x

N S v v z  with cardinality 

( )4 1= +
p

N S n  and so ( )4 =
p

S n . 



If we add a vertex 
t

z  ( )1 ,  t k t x  of the summation layer to the set 
4S , that is the set 

 5 ,=
xy t

S u z , then being ( )        5 1 1, , , ,=   
p n t tm x

N S v v u u z w  with cardinality 

( )5 2= + −
p

N S n m  yields ( )5 = +
p

S n m . 

If we add the vertex 
x

z  of the summation layer to the set 4S , that is the set  6 ,=
xy x

S u z , then 

being ( )        6 1 1, , , , \=  
p n x xm xy

N S v v u u u w  with cardinality ( )6 = +
p

N S n m  

yields ( )6 2 = + −
p

S n m . 

If we add the vertex w  of the output layer to the set 6S , that is the set  7 , ,=
xy x

S u z w , then 

being ( )          7 1 1 1, , , , \ , , \=  
p n x xm xy k x

N S v v u u u z z z  with cardinality 

( )7 2= + + −
p

N S n k m  yields ( )7 5 = + + −
p

S n k m . 

If we add all the other vertices of the summation layer to the set 7S , that is the set 

 8 1, , , ,=
xy k

S u w z z , then being ( )    8 1
1 1

, , \
= =

= 
k m

p n ab xy
a b

N S v v u u  with cardinality 

( )8 1= + −
p

N S n km  yields ( ) ( )8 1 3 = + − −
p

S n k m , and adding any other possible subset 

of ( )( ), , ,1V PNN n k m  to the set 8S  yields ( ) ( )8 1 3  + − −
p

S n k m . 

If we take a vertex 
t

z  ( )1 t k  of the summation layer to the set 9S , then  9 = t
S z , the 

perfect neighborhood of 9S  is ( )    9 1, ,= 
p t tm

N S u u w  with cardinality ( )9 1= +
p

N S m  

and so ( )9 =
p

S m . 

If we add the vertex w  of the output layer to the set 9S , that is the set  10 ,=
t

S z w , then 

being ( )        10 1 1, , , , \=  
p t tm k x

N S u u z z z w  with cardinality ( )10 1= + −
p

N S k m  

yields ( )10 3 = + −
p

S k m . 

If we add all the other vertices of the summation layer to the set 10S , that is the set 

 11 1, , ,=
k

S w z z , then being ( )11
1 1= =

=
k m

p ab
a b

N S u  with cardinality ( )11 =
p

N S km  yields 

( ) ( )11 1 1 = − −
p

S k m . 



If we take the vertex w  of the output layer to the set 
12S , then  12 =S w , the perfect 

neighborhood of 
12S  is ( )  12 1, ,=

p k
N S z z  with cardinality ( )12 =

p
N S k  and so 

( )12 1 = −
p

S k . 

By the definition of perfect differential of a graph, among all the perfect differential sets, we 

receive  

( )( ) ( ) , , ,1 max = 
p p l

PNN n k m S  ( )1 12 l  

( )( )
( )

, if 1 or 2, 1 or 2, 2, 2 or 3, 1, 2;

, , ,1 3,if 2, 3, 3 or 3, 1, 4 or 3, 1;

1 2,if 2, 1, 3 or 3, 3 or 3, 1.

 + = = = = =  = = 


 = + − =   =     +
 + − =   =    +

p

n m k k m k m n k m n

PNN n k m n km k m n k m n k n k

k m k m n k n k n k

 

The theorem is thus proved. ■ 

 

The next result is a direct consequence of combining Theorem 3.1 and 3.3. 

 

Corollary 3.2. The perfect Roman domination number of a 4-layered probabilistic neural 

network ( ), , ,1PNN n k m  with ( )1 1+ + +n k m  is  

( )( )
( )1 1,  1  2, 1  2, 2, 2  3, 1, 2;

, , ,1 4,  2, 3, 3  3, 1, 4  3, 1;

3,  2, 1, 3  3, 3  3, 1.


+ − + = = = = =  = = 


= + =   =     +
 + =   =    +

p

R

k m m if k or k m or k m n or k m n

PNN n k m k if k m n or k m n or k n k

n if k m n or k n or k n k

 

As we proceed to show, for the case of perfect Roman graphs, Corollary 3.1 and 3.2 lead to 

the following remark. 

 

Remark 3.1. Obviously ( ) ( )2 p p

R
G G  for every graph G , and those graphs attaining the 

equality ( ) ( )2 =p p

R
G G  are called perfect Roman graphs. It can be easily detected that for a 

3-layered probabilistic neural network ( ), ,PNN n k m , ( )( ), , 1 = +p
PNN n k m k , and for a 4-

layered probabilistic neural network ( ), , ,1PNN n k m , ( )( ) 3,  if 1;
, , ,1

4,  otherwise.


=
= 


p
k

PNN n k m  

By Corollary 3.1, we deduce that 3-layered probabilistic neural networks are not a class of 

perfect Roman graphs. However, by Corollary 3.2, we characterize a class of perfect Roman 

4-layered probabilistic neural networks. If 4=k  and 5n  or 4k  and 5=n , a 4-layered 

probabilistic neural network is a perfect Roman tree.  
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