
■ The value of scientific digital-image libraries sel-

dom lies in the pixels of images. For large collec-

tions of images, such as those resulting from

astronomy sky surveys, the typical useful product

is an online database cataloging entries of inter-

est. We focus on the automation of the cata-

loging effort of a major sky survey and the avail-

ability of digital libraries in general.

The SKICAT system automates the reduction and

analysis of the three terabytes worth of images,

expected to contain on the order of 2 billion sky

objects. For the primary scientific analysis of these

data, it is necessary to detect, measure, and classi-

fy every sky object. SKICAT integrates techniques

for image processing, classification learning,

database management, and visualization. The

learning algorithms are trained to classify the

detected objects and can classify objects too faint

for visual classification with an accuracy level

exceeding 90 percent. This accuracy level increas-

es the number of classified objects in the final cat-

alog threefold relative to the best results from dig-

itized photographic sky surveys to date. Hence,

learning algorithms played a powerful and

enabling role and solved a difficult, scientifically

significant problem, enabling the consistent,

accurate classification and the ease of access and

analysis of an otherwise unfathomable data set. 

I
n astronomy and space sciences, we cur-

rently face a data-glut crisis. The problem

of dealing with the huge volume of data

accumulated from a variety of sources, corre-

lating the data, and extracting and visualizing

the important trends is now fully recognized.

This problem will rapidly become more acute

because of the advent of new telescopes,

detectors, and space missions, with the data

flux measured in terabytes. We face a critical

need for information-processing technology

and methodology with which to manage this

data avalanche to produce interesting scien-

tific results quickly and efficiently. The fields

of knowledge discovery in databases and data

mining (Fayyad et al. 1996) are mainly con-

cerned with the extraction of higher-level

knowledge from low-level data. This article

presents a data-mining approach based on

machine-learning classification methods that

represents a good example of how this new

generation of automated analysis tools can

offer novel and effective solutions to classical

problems in the analysis of large data sets in

science. 

Across a variety of disciplines, two-dimen-

sional digital-image data are now a fundamen-

tal component of routine scientific investiga-

tion. The proliferation of image-acquisition

hardware such as multispectral remote-sensing

platforms, medical-imaging sensors, and high-

resolution cameras has led to the widespread

use of image data in fields such as oceanogra-

phy, atmospheric studies, planetary science,

agriculture, glaciology, forestry, astronomy,

and diagnostic medicine. Across all these

fields, the pixel image is but a means to an

end. The investigator is interested in using

the image data to infer some conclusion

about the physical properties of the target

being imaged. Image data rely on the human

visual system’s ability to aid in abstraction

and recognition. 

In the past, both in planetary science and

astronomy, images were painstakingly ana-

lyzed by human inspection, and much inves-

tigative work was carried out using hard-copy

photographs or photographic plates. Howev-

er, the image data sets that are currently being

acquired are so large that simple manual cata-

loging is no longer practical, especially if all

the available data are to be used. We focus on

one such digital image set that results from
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ment a classification algorithm to achieve the

second step, a machine-learning approach

can be used to automatically construct the

classifier based on training examples provid-

ed by the user. Not only does this eliminate

the burden of programming for the user, it

also provides a mechanism for tackling the

often difficult problem of recognizing objects

in feature space.

The Query-Formulation Problem

Work on techniques for digital libraries has

focused mainly on digitization techniques,

storage and retrieval mechanisms, search

mechanisms (especially for text), and data-

base issues dealing with efficient indexing

and query execution. We believe there is an

important and crucial problem that needs to

be addressed before collections of digital

images can be turned into useful digital

libraries, namely, the query-formulation

problem. Users would mainly like to be able

to use a digital-image library to search for

particular targets for cataloging or investiga-

tive purposes. A typical query would be some-

thing like, “In how many images does this

object occur?” Another would be, “Catalog all

occurrences and properties-observations of

objects in images satisfying certain condi-

tions.” Unfortunately, unlike dealing with a

relational database or the text of a book,

there is no easy way for the user to formulate

the required query. This poses a potentially

difficult bottleneck that stands in the way of

making the notion of a digital-image library a

reality.

We propose an approach for developing a

system that learns from examples. Hence,

rather than issuing queries, the user simply

provides training examples. This approach

promises to bypass a crucial bottleneck in the

way humans currently interact with large

databases: query formulation. For most inter-

esting image-analysis tasks, formulating

queries to specify a set of target objects

(regions) requires solving difficult problems

that often involve effectively translating

human visual intuition into pixel-level algo-

rithmic constraints. This task is fairly chal-

lenging in its own right. In many cases, for-

mulating the query can be impractical for a

user to do. Querying a database by providing

examples and counterexamples forms a novel

and powerful basis for a new generation of

intelligent database interface tools. Such tools

could enable order-of-magnitude improve-

ments in both the quantity and the quality of

analyses of digitized image libraries. 

the Second Palomar Observatory Sky Survey

(POSS-II). This digital image library defies

manual-visual analysis capabilities and illus-

trates the need for automated cataloging tools

to allow users to gain access to its content.

Thus, we target the problem of turning a digi-

tal-image data set into a true digital library—

one that can be queried by content and used

for scientific investigation. 

In science image libraries, the typical most

fundamental operation is that of cataloging

content for later retrieval and large-scale statis-

tical analysis. Cataloging and indexing often

involve recognition of objects. We use an

approach that is based on classification learn-

ing algorithms, where the user (astronomer)

trains the system to perform classification

tasks by providing it with training examples.

An example is represented as a vector of fea-

tures. A feature (also called attribute or vari-

able) is a dimension along which some proper-

ty of the example is measured. Features can be

either numeric or continuous (for example,

temperature, intensity) or can be categorical,

with no ordering on the values (for example,

shape that can take the values of circle, trian-

gle, quadrilateral, and so on). The dimensions

define a space, called feature space. 

As an example, suppose the image of an

object is represented by 50 3 50 pixels. One

choice of feature space is the pixels. In this

case, an example would be a feature vector

consisting of 2500 numeric values. This low-

level representation is often referred to as pix-

el space. Clearly, pixel space is high dimen-

sional and contains many highly correlated

dimensions. Hence, it is not a convenient or

compact representation of the information

contained in the pixels. In problems where

the goal is to learn from examples, high

dimensionality is a big problem. If a problem

has 2500 variables, then an algorithm would

need a much higher number of examples to

infer anything about the problem. However,

if one were able to re-express the problem in

a much smaller number of variables (a lower-

dimensional feature space) without losing

essential information, a dramatically smaller

number of examples would be needed to sup-

port sufficient statistics for inference and

induction. 

As every pattern-recognition practitioner

knows, two familiar issues are at the heart of

the problem of inferring a model out of data:

(1) transforming (reducing) the data from

pixels to meaningful or useful features and

(2) recognizing (classifying) the detected

objects in feature space. In our case, rather

than requiring the user to design and imple-
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Encoding Knowledge in 
Pixel-to-Feature Projections

Although it would be convenient to have a

system that can be trained directly from

training data given only pixel values as input

(for example, the work on recognizing volca-

noes on Venus (Burl et al. 1994) or some

approaches to face recognition (Turk and

Pentland 1991), we recognize that domain-

specific knowledge is important and often

crucial to a recognition task. In many cases,

significant domain knowledge can effectively

be provided to a learning algorithm in the

form of transformations from pixel space to

feature space. Hence, a user might be able to

define a large number of features that are like-

ly to contain the necessary information to

perform the recognition task. The features

serve to transform the problem from the

noisy, high-dimensional, and highly correlat-

ed pixel space to a much–lower-dimensional

space. In the process, noise and random vari-

ation are greatly reduced. Note that although

the users might have good features to mea-

sure about targets of interest, they might not

necessarily have effective recognizers

(classifiers) in feature space. This is exactly

the case in our application in astronomy, but

this phenomenon holds true across many

applications—in medicine, engineering, diag-

nosis, process control, and so on. In the

application we are concerned with in this

article, astronomers have a large set of robust

features to measure for each object but no

good classifiers that can distinguish objects of

interest (say, stars from galaxies) in the result-

ing feature space. 

Note that the transformation from pixel to

feature space represents an effective way of

encoding domain-specific prior knowledge

about the problem. Generally speaking,

humans tend to find it easier to define fea-

tures to measure about objects of interest

than to encode recognizers (classifiers) for

these objects. In a strong sense, this repre-

sents an effective way to decompose the

difficult (intuitive) recognition–decision-mak-

ing strategy that is implicitly performed by

the human brain. Nevertheless, simply mea-

suring such features does not give a solution:

One still needs to design a classifier that can

distinguish between classes of interest. This is

still typically difficult because although the

problem has been transformed into a low-

dimensional space (say, 20–80 dimensions), it

is a space in which humans can no longer

“visualize” solutions. We think that the

recognition step is an appropriate stage for

using a supervised learning approach to solve

the classification problem. We use techniques

that can cope with high-dimensional feature

spaces, such as decision trees. Note that many

traditional classification learning algorithms,

for example, K-nearest neighbor (Dasarathy

1991), fitting mixtures of Gaussians, or linear

discriminate analysis (Fukunaga 1990; Duda

and Hart 1973), still have difficulties in these

relatively high dimensions. Hence, in general,

the recognition task being tackled is still fair-

ly difficult and has no classical solutions. 

Sky-Object Cataloging

We target the automation of the tasks of cata-

loging and analyzing objects in digitized sky

images. The sky-image cataloging and analy-

sis tool (SKICAT) (Djorgovski, Weir, and Fayyad

1994) was developed to perform a compre-

hensive analysis of the Second Palomar

Observatory Sky Survey (POSS-II) conducted

by the California Institute of Technology

(Caltech). See Reid et al. (1991) for a detailed

description of the POSS-II effort. The photo-

graphic plates collected from the survey are

digitized at the Space Telescope Science Insti-

tute. This process will result in about 3,000

digital images of 23,040 3 23,040 sixteen-bit

pixels each, totaling over 3 terabytes of data.

When complete, the survey will cover the

entire northern sky in three colors, detecting

virtually every sky object to an equivalent B-

magnitude object intensity of 22.0.1 This

magnitude is at least one magnitude fainter

than previous comparable photographic sur-

veys. We estimate that there are at least 5 3

107 galaxies and 2 3 109 stellar objects

(including over 105 quasars) detectable in this

survey. This data set will be the most compre-

hensive large-scale imaging survey produced

to date and will not be surpassed in scope

until the completion of a fully digital all-sky

survey in the next decade. 

There are three basic functional compo-

nents to SKICAT, serving the purposes of sky-

object catalog construction, catalog manage-

ment, and high-level statistical and scientific

analysis. In this article, we emphasize sky-

object catalog construction, with a special

focus on the use of a supervised classification

learning algorithm to automate object recog-

nition based on training data provided by the

astronomers.

The first step in analyzing the results of a

sky survey is to identify, measure, and catalog

the detected objects in the image into their

respective classes (for example, stars versus

galaxies). Once the objects have been
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therefore, not difficult for domain experts to

interpret (as opposed to a neural network or a

pattern-recognition–based approach). 

In brief, a top-down, nonbacktracking deci-

sion tree algorithm works as follows (Quinlan

1986; Breiman et al. 1984): Assume we are

given a data set of classified examples

expressed in terms of a set of attributes. The

attributes can be nominal (discrete, categori-

cal) or continuous valued (numeric). The

algorithm first discretizes the continuous-val-

ued attributes by partitioning the range of

each into at least two intervals (Fayyad and

Irani 1992a). For each discrete (or discretized)

attribute, the algorithm first formulates a log-

ical test involving the attribute. The test par-

titions the data into several subsets. For

example, in ID3 (Quinlan 1986) and C4.5

(Quinlan 1992), the value of the attribute is

tested, and a branch is created for each value

of the attribute. 

A selection criterion is then applied to

select the attribute that induces the best par-

tition on the data. Once selected, a branch

for each outcome of the test involving the

attribute is created, resulting in at least two

child nodes to the parent node. The algo-

rithm is applied recursively to each child

node. The algorithm refrains from further

partitioning of a given node when all exam-

ples in it belong to one class or when no

more tests for partitioning it can be formulat-

ed. Thus, a leaf node predicts a classification

(sometimes probabilistically). 

Greedy Tree Generation

Because a large number of possible trees are

consistent with the training data, a greedy

search is used. The tree starts at a single root

node containing all the training data. The

algorithm makes a local determination of the

best choice of attribute along which the data

are to be split. The data are then partitioned

along the values of the selected attribute cre-

ating the children. The algorithm is then

applied recursively to each child node. It

takes four rules to specify a greedy tree-grow-

ing algorithm: 

DRule1 selects the best attribute to be used

in splitting a node. 

DRule2 decides how the data are to be split

along the values of the attribute selected by

DRule1. 

DRule3 is a stopping rule that determines

whether a node should not be split any fur-

ther and, hence, be deemed a leaf node. 

DRule4 assigns a class prediction to be

associated with each leaf node. 

In addition to these four rules, numeric

classified, further scientific analysis can pro-

ceed. For example, the resulting catalog can be

used to test models of the formation of large-

scale structure in the universe; probe galactic

structure from star counts as in Weir, Djorgov-

ski, and Fayyad (1995); perform automatic

identifications of radio or infrared sources; and

so forth (Weir, Djorgovski, and Fayyad 1995;

Djorgovski, Weir, and Fayyad 1994; Weir 1994;

Weir et al. 1994). Reducing the images to cata-

log entries is an overwhelming task that inher-

ently requires an automated approach. The

goal of our project is to automate this process,

providing a consistent and uniform methodol-

ogy for reducing the data sets. This will pro-

vide the means for objectively performing

tasks that formerly required subjective and

visually intensive manual analysis. Another

goal of this work is to classify objects whose

brightness (isophotal magnitude) is too faint

for recognition by inspection, thus requiring

an automated classification procedure. We do

this by using a limited set of high-resolution

CCD images in which it is possible for

astronomers to assign classes to faint objects.

The learning algorithm’s job is to find a clas-

sifier that can predict classes of faint objects

(which are the majority of objects on any

plate) based only on measurements from the

lower-resolution images (see the Classifying

Faint Objects section). 

Decision Trees and Rules

A classification learning algorithm is given as

input a set of examples that consist of vectors

of attribute values (feature vectors) and a

class. Hence, an example is a point in feature

space. The goal is to output a classification

scheme, known as a classifier, that will predict

the class variable based on the values of the

attributes. When the class variable is continu-

ous, the problem is a regression problem. In

the case of a categorical class variable, the

problem is a classification problem. A particu-

larly efficient method for producing classifiers

from data is to generate a decision tree. A

decision tree consists of nodes that are tests

on the attributes. The outgoing branches of a

node correspond to all the possible outcomes

of the test at the node. The examples at a

node in the tree are thus partitioned along

the branches, and each child node gets its

corresponding subset of examples. 

Decision tree–based approaches to

classification learning are typically preferred

because they are efficient and, thus, can deal

with large training data sets. In addition, the

final classifier produced is symbolic and,
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attributes need some special handling, which

is done by discretizing the attributes based on

the data at each node (Fayyad and Irani

1992a). Discretization can be viewed as a way

to extract a symbolic condition involving the

attribute. The simplest such condition is to

test against a threshold value in the range of

an attribute, thus turning it into a binary-val-

ued attribute. Discretization can be viewed as

part of DRule2. Figure 1 gives a flowchart for

greedy tree growing and shows where the

four rules fit. 

It is beyond the scope of this article to cov-

er the details of the algorithms. For details

relating to the algorithms used in the applica-

tion covered here, refer to Fayyad, Djorgovski,

and Weir (1996). Commercially available algo-

rithms for tree generation use impurity mea-

sures such as GINI in CART (Breiman et al. 1984)

or mutual information entropy between the

attribute and the class variable (used also by

CART [Breiman et al. 1984] and in ID3-C4.5

[Quinlan 1992]). We use variants of these

algorithms that avoid some of their problems. 

For example, rather than splitting the data

along all values of a selected attribute, as is

customary, the GID3* algorithm (Fayyad 1994)

can branch on arbitrary individual values of

an attribute and lump the rest of the values

in a single default branch representing a sub-

set of the values of an attribute. Unnecessary

subdivision of the data can thus be reduced.

See Fayyad (1994) for more details. We also

use the O-BTREE algorithm (Fayyad and Irani

1992b), which is designed to overcome prob-

lems with the information-entropy selection

measure itself. O-BTREE creates strictly binary

trees and uses a measure from a different fam-
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is, are too specific because they used irrele-

vant conditions). Typically, to overcome

overfit in decision trees, the tree is pruned

(Quinlan 1986; Breiman et al. 1984). 

We use an approach, called RULER, that is

based on extracting multiple trees from a

training set and then pruning the rules

extracted from the trees. A single tree repre-

sents a set of rules. Each path from the root

node to a leaf is a classification rule whose

conditions are the branches traversed and

whose prediction is the class assignment asso-

ciated with the leaf. In multiple passes, RULER

randomly partitions a training set into a train-

ing subset and a test subset. A decision tree is

generated from the training set, and its rules

are tested on the corresponding test set. Using

Fisher’s exact test (Finney et al. 1963) (the

exact hypergeometric distribution), RULER eval-

uates each condition in a given rule’s precon-

ditions for relevance to the class predicted by

the rule. Conditions that are deemed to be

irrelevant are pruned away. This process

results in a large number of redundant rules

obtained from the multitude of (similar) trees.

The basic idea is to pick the best rules (pruned

leaves) from each tree and discard the majori-

ty of the rules that were the result of weakly

ily of measures that detect class separation

rather than class impurity. For details on

problems with entropy measures and empiri-

cal evaluation of O-BTREE, refer to Fayyad and

Irani (1992b) and Fayyad (1991). 

Both O-BTREE and GID3* differ from ID3 and

C4.5 in one additional aspect: the discretiza-

tion algorithm used at each node to locally

discretize continuous-valued attributes.

Whereas CART and C4.5 use a binary interval

discretization algorithm, we use a generalized

version of the algorithm that derives multiple

intervals rather than strictly two. For details

and empirical tests showing that this algo-

rithm does indeed produce better trees, see

Fayyad (1991) and Fayyad and Irani (1993).

We have found that this capability improves

performance considerably in several domains. 

Optimization of Rules from Trees

The very reason that makes decision tree gen-

eration efficient (the fact that data are quickly

partitioned into ever smaller subsets) is also

the reason why overfitting and incorrect clas-

sification occur. As data are divided, chance

correlations in attribute values begin to

appear significant to the algorithm, leading

to generation trees that overfit the data (that
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supported correlations in the data. Figure 2
gives an overview of the RULER system.

A greedy-covering algorithm is then
employed to select a minimal subset of rules
that covers the examples. Using RULER, we can
typically produce a robust set of rules that has
fewer rules than any of the original decision
trees used to create it. The fact that decision
tree algorithms constitute a fast and efficient
method for generating a set of rules allows us
to generate many trees, without requiring
extensive amounts of time and computation. 

The Cataloging Process

Existing computational methods for classify-
ing the images would preclude the
identification of the majority of objects in
each image because they are at levels too
faint for traditional recognition algorithms or
even manual inspection-analysis approaches.
Each of the 3,000 digitized plates, consisting
of 23,0402 pixels, is subdivided into a set of
partially overlapping frames. Each frame rep-

resents a small part of the plate that is small
enough to be manipulated and processed
conveniently. Figure 3 depicts the overall
architecture of the SKICAT catalog construction
and classification process.

Low-level image processing and object sep-
aration are performed by a modified version
of the FOCAS image-processing public-domain
software (Valdes 1982; Jarvis and Tyson
1981). The FOCAS image-processing steps
detect contiguous pixels in the image that are
to be grouped as one object. The grouping is
done using a low-level region-growing algo-
rithm to perform segmentation (object versus
sky). Some specialized segmentation algo-
rithms are then applied to decide whether an
object needs to be split into two (for example,
binary stars, stars that are close on the image,
and problems in region growing). Attributes
are then measured based on this segmenta-
tion. Based on the pixel group constituting a
single detected object, FOCAS produces basic
attributes describing the object. In the section
Normalizing Attributes, we explain the arrow
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Normalizing Attributes

Using the following approach, we compute
four new normalized attributes based on four
base-level attributes: (1) core magnitude; (2)
log of the isophotal area; (3) intensity-weight-
ed first-moment radius; and (4) S, which is a
function of area, core luminosity, and isopho-
tal intensity: 

S = .

First we derive a nonlinear curve (the stellar
locus) in the two dimensions defined by mag-
nitude versus the original base-level attribute
for each frame within a plate. We define the
new attribute to be the distance of each
object from the stellar locus for the plate. We
essentially subtract out the stellar locus to
normalize the attributes. The quantities
described are used by astronomers, and many
of them have physical interpretations. 

The result of this process is a set of features
that exhibit a good degree of invariances
across plates and within different regions on
a plate. For example, a constant shift in back-
ground sky brightness, resulting in differ-
ences in intensity observations would be
removed by such processing. An example of
this normalization process is shown in figure
4, where we can see the stellar locus curve fit
both before and after normalization. In each
figure, a point for every object is plotted in
the two-dimensional space defined by the
total magnitude versus log(area). 

In addition to the four normalized
attributes just described, we compute two
additional attributes that are particularly sta-
ble across images. However, the computation
of these additional attributes requires an
empirical measurement based on a selection
of stars from each frame. This process was
achieved through a second application of the
learning algorithms during the attribute-mea-
surement process; this process is depicted at
the bottom of figure 4 by the arrow going
from “learning” to “attribute definition.” 

Because of turbulence in the earth’s atmo-
sphere, point sources in the sky (stars) appear
as blurred, quasi-Gaussian intensity distribu-
tions. By selecting some of the objects on a
frame that are obviously resolved (sure-thing
stars), one can hope to model this effect and
compensate for it when classifying. To this
end, we fit the pixel values of these sure-
thing stars to define a point-spread–function
(PSF) template. Using the PSF template, the

FOCAS resolution routine determines the best-
fitting scale (α) and fraction (β) values, which
parameterize the fit of a blurred (or sharp-

Area
}}}
log[Lcore/(9 3 Ispht)]

going from the learning algorithm to the

attribute definition box in figure 3, indicating

the fact that we used learning in the attr-

ibute-measurement process. The goal is to

classify objects into four major categories, fol-

lowing the original scheme in FOCAS: (1) star

(s), (2) star with fuzz (sf), (3) galaxy (g), and

(4) artifact (long). 

Feature Extraction and 
Normalization

A total of 40 attributes for each detected

object are measured automatically. These

base-level attributes are generic quantities

typically used in astronomical analyses,

including the following FOCAS-defined

attributes: (1) isophotal, aperture, core, and

asymptotic total magnitudes; (2) isophotal

and total areas; (3) sky brightness and sigma

(variance); (4) peak, intensity-weighted, and

intensity-unweighted positions: xc, yc, icx, icy,
cx, cy; (5) intensity-weighted and intensity-

unweighted image moments: ir1, ir2, ir3, ir4,
r1, r2, ixx, iyy, ixy, xx, yy, xy; and (6) ellipticity

and position angle (orientation).

The base-level attributes are not sufficient

for accurate classification of the fainter

objects that constitute the majority of all

detected objects. Furthermore, the base-level

attributes do not exhibit desirable invariances

that would allow a classifier trained on one

plate to make accurate predictions on a differ-

ent plate that was photographed on a differ-

ent night with different sky conditions.

Hence, a difficult feature-extraction problem

needs to be addressed before we can proceed

with automated classification. 

In classification learning, the choice of

attributes used to define examples is by far the

single most determining factor of the success

or failure of the learning algorithm. Because

the base-level features do not provide a suitable

feature space in which to perform object-accu-

rate classification, it was necessary to derive

additional attributes that have sufficient invari-

ance within a plate (that is, along the borders

versus in the center) and across plates. 

Low-accuracy classifiers and simple analysis

of the value distributions across plates indi-

cated the need for new invariances. For exam-

ple, we determined that the base-level mea-

surements, such as background sky level,

area, and average intensity, are image depen-

dent and, thus, inherently sensitive to plate-

to-plate and even frame-to-frame variation.

For the learning algorithms to be able to pro-

duce robust classifiers, new attributes had to

be derived from the base-level attributes. 
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ened) version of the PSF to each object

(Valdes 1982). The template used to model

each object is of the form

t(ri) = βs(ri/α) + (1 – β) s(ri)  ,

where ri is the position of pixel i, α is the

broadening (sharpening) parameter, β is the

fraction of broadened PSF, and s(ri) represents

the pixel value at position ri. 

To form the PSF template, the sure-thing

stars would normally be hand selected from

an image by the astronomer. We refer to this

process as the star-selection subproblem. To

automate the measurement of these addition-

al attributes, we trained a classifier to detect

the sure-thing stars in each frame using the

four normalized attributes described previous-

ly. We have achieved 98-percent accuracy in

detecting the sure-thing stars used to deter-

mine the PSF template. Once a template is

formed, the resolution attributes are mea-

sured automatically for each object on the

frame. See the Classification Results section

for a discussion of the impact of adding these

derived attributes. 

Classifying Faint Objects

How can a learning algorithm learn to classify

objects too faint for humans to classify? In

addition to the scanned photographic plates,

we have access to CCD images that span sev-

eral small regions in some of the frames. CCD

images are obtained from a separate telescope.

The main advantage of a CCD image is higher

resolution and higher signal-to-noise ratio at

fainter levels. Hence, many of the objects that

are too faint to be classified by inspection on

a photographic plate are easily classifiable in

a CCD image. 

To produce a classifier that classifies faint

objects correctly, the learning algorithm

needs training data consisting of faint objects

labeled with the appropriate class. The class

label is therefore obtained by examining the

CCD frames. This process is illustrated in

figure 5. Once trained on properly labeled

objects, the learning algorithm produces a

classifier that is capable of properly classify-

ing objects based on the values of the

attributes measured from the lower-resolution

plate image. Hence, in principle, the classifier

will be able to classify objects in the photo-

graphic image that are simply too faint for an

astronomer to classify by inspection. With

the class labels, the learning algorithms are

basically being used to solve the more

difficult problem of separating the classes in

the multidimensional space defined by the

set of attributes derived by image processing.

This method is expected to allow us to classi-

fy objects that are at least one magnitude

fainter than objects classified in photographic

all-sky surveys to date.

Classification Results

To assess classifier accuracy, we used data con-

sisting of objects collected from four different

plates from regions for which we had CCD

image coverage. CCD plates provide us with

the “ground truth” because these are the only
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Figure 4. The log(area) Attribute before and after Normalization. 
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through tree generation and rule merging 10

times. 

As a baseline comparison to give the reader

a feel for the degree of difficulty of the prob-

lem, ID3 achieved only 75.6-percent accuracy

on average. If one adds tree pruning and oth-

er optimizations (as in C4.5), improved results

can be obtained. Note that GID3* and O-BTREE

results do not involve any pruning of the

trees. Results with CART, which performs a sig-

nificant amount of pruning using cross-vali-

dation, compare favorably with GID3* and O-

BTREE results. 

For details of data and results and for a

detailed breakdown of accuracy results as a

function of object brightness, the reader is

referred to Weir, Fayyad, and Djorgovski

(1995). Results are provided as magnitude

gets fainter, and accuracy measurements are

broken down into completeness versus con-

tamination for both stars and galaxies (Weir,

Fayyad, and Djorgovski 1995). 

To emphasize the importance of selecting

the right attributes, we report the effect of not

computing the two attributes described in the

section Normalizing Attributes. When the

same experiments were conducted without

using the resolution scale and resolution-frac-

tion attributes, the results were significantly

worse. The error rates jumped above 20 per-

cent for O-BTREE, above 25 percent for GID3*,

data for which true accurate classifications are

available. Each of the learning algorithms is

trained on a data set from three plates and

tested on data from the remaining plate for

cross-validation. This estimates our accuracy

in classifying objects across plates. Note that

the plates cover different regions of the sky

and that CCD frames cover multiple small

portions of each plate. The training data con-

sisted of 1688 objects that were classified

manually by Nicholas Weir by examining the

corresponding CCD frames. It is noteworthy

that for the majority of these objects, the

astronomer would not be able to reliably

determine the classes by examining the corre-

sponding survey (digitized photographic)

images. All attributes used by the learning

algorithms are derived from the survey

images and not, of course, from the higher-

resolution CCD frames. 

The accuracy for RULER averaged 94.2 per-

cent. In comparison, GID3* and O-BTREE

achieved 90.1 percent and 91.2 percent, re-

spectively. These are average accuracy results

obtained using cross-validation over the four

images. Within each cross-validation fold, we

sample a training set 10 times and evaluate

each resulting decision tree on the remaining

subset. The results for RULER quoted here are

with O-BTREE as the decision tree generation

component and were obtained by cycling

Articles

60 AI MAGAZINE

Figure 5. Constructing Training Examples for Faint Objects.
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and above 30 percent for ID3. The respective

sizes of the trees grew significantly as well,

which we took as evidence that the resolution

attributes are important for the classification

task. The strong dependence on the presence

of all relevant features is a facet of the

classification problem that makes it particular-

ly difficult for humans to solve: If one fails to

include one or two critical attributes, the

problem suddenly becomes impossible. How-

ever, a priori one has no idea which subset of

the attributes is the critical one for accurate

classification.

Verification of Results

As mentioned earlier, in addition to using the

CCD frames to derive training data for the

machine-learning algorithms, we also use

them to verify and estimate the performance

of our classification technique. Testing is per-

formed on data sets that are drawn indepen-

dently from the training data. An additional

source of internal consistency checks comes

from the fact that the plates, and the frames

within each plate, are partially overlapping.

Hence, objects inside the overlapping regions

will be classified in more than one context.

By measuring the rate of conflicting

classifications, we can obtain further esti-

mates of the statistical confidence in the

accuracy of our classifier. For the purposes of

the final catalog production, a method is

being designed for resolving conflicts on

objects within regions of overlap. We have

not yet collected reportable results on this

aspect of the problem. 

To demonstrate the difficulty and

significance of the classification results pre-

sented to this point, consider the example

shown in figure 6. This figure shows four

image patches, each centered about a faint

sky object that was classified by SKICAT. These

images were obtained from a plate that was

not provided to SKICAT in the training cycle,

and the objects are part of a region in the sky

containing the Abell 1551 cluster of galaxies

near the North Galactic Pole. SKICAT correctly

classified the top two objects as stars and the

bottom two as galaxies. According to

astronomers, the objects shown in figure 6

are too faint for reliable classification. As a

matter of fact, an astronomer visually

inspecting these images would be hard

pressed to decide whether the object in the

lower right-hand corner is a star or a galaxy.

The object in the upper right-hand corner

appears as a galaxy based on visual inspec-

tion. On retrieving the corresponding higher-

resolution CCD images of these objects, it
was clear that the SKICAT classification was
indeed correct. Note that SKICAT produced the
prediction based on the lower-resolution sur-
vey images (shown in figure 6). This example
illustrates how the SKICAT classifier can cor-
rectly classify the majority of faint objects
that even the astronomers cannot classify.
Indeed, the results indicate that SKICAT has a
better than 90-percent accuracy identifying
objects that are one full magnitude below the
comparable magnitude limit in previous
automated Schmidt plate surveys.

Unsupervised Learning and 
New Scientific Discoveries

An additional form of independent confirma-
tion of these results comes from the use of
the SKICAT catalog in deriving new science
results. For example, using the accurate clas-
sification of faint objects given by SKICAT, we
were able to help a group of astronomers
using SKICAT to discover 16 new high–red-shift
quasars in the universe (Kennefick et al.
1995).2 The search for quasars is an expensive
operation requiring many observations.
Because SKICAT provides accurate
classifications of faint stars, the astronomers
were able to use the classes to significantly
narrow the search. By combining classes and
information from various color attributes, the
new quasars were discovered using at least
one order of magnitude fewer observations
than were required by a comparable effort
conducted by Schmidt, Schneider, and Gunn
(1995). The accurate classes translated into a
small number of false alarms that
astronomers had to cope with. The results
after the first five quasars were discovered are
detailed in Kennefick et al. (1995). 

We have also begun exploring the applica-
tion and implementation of unsupervised
classification techniques such as AUTOCLASS, a
Bayesian clustering technique that models
the data using mixtures of Gaussians (Cheese-
man and Stutz 1996). Unlike the supervised
classification that we have described to this
point, where the algorithm learns how to dis-
tinguish user-specified classes within the
data, unsupervised classification consists of
identifying the statistically significant classes
within the data itself. For example, one could
use this type of method to try to systematical-
ly detect new classes of objects within astro-
nomical catalogs. 

Our own initial experiments in applying
AUTOCLASS to POSS-II appear to confirm the
validity and usefulness of this approach. After
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entirely of galaxies. Note that in its

classification, AUTOCLASS did not mix stars

with galaxies in this well-understood data set.

This result is significant considering that no

class information was given to the program. 

However, to achieve these results, we had to

bin the values of one of the parameters

(isophotal magnitude) before presenting AUTO-

CLASS with the data. Thus, we partitioned the

data by meaningful magnitude ranges before

running AUTOCLASS on each subset. We also

selected the eight-dimensional subspace by

hand. Nevertheless, AUTOCLASS’s success at dis-

tinguishing these apparently physically rele-

supplying AUTOCLASS with eight-dimensional

feature vectors from a sample of several hun-

dred objects from four fields, it analyzed the

distribution of the objects in this parameter

space and suggested four distinct classes with-

in the data. Representative objects from these

four classes are presented in figure 7. Visually,

the classes seem to divide into stellar objects,

stellarlike objects with a low–surface-bright-

ness halo, and diffuse or irregular objects

with and without a central core (DeCarvalho

et al. 1995). The two classes represented by

the top two rows are, in reality, stars. The bot-

tom two rows represent classes that consist
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Figure 6. An Illustrative Example: Four Faint Sky Objects.



vant classes based just on eight image parame-
ters suggests that far richer and innovative
results might be in store when one matches
multiple catalogs together, increasing the
informational dimensionality of the data set
manyfold. Problems of extending clustering
algorithms to high-dimensional spaces and
large data sets still need to be addressed. 

Concluding Remarks and 
Future Directions

With SKICAT, classification learning algorithms
proved to a be useful and powerful tool in the
automation of a significant scientific data
analysis task, producing tangible new scien-
tific results (Weir, Djorgovski, and Fayyad
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Figure 7. A Sampling of the Four Classes Found by AUTOCLASS.



Discoveries section. This involves overcoming

two challenges: (1) developing efficient clus-

tering algorithms that can process millions to

hundreds of millions of data points efficiently

and (2) developing algorithms than can

search for very–low-probability classes in data

rather than treating such occurrences as noise

or negligible outliers.

The second point is particularly important

because new discoveries in astronomy are

likely to be rare objects. For example,

high–red-shift quasars occur with a frequency

of 1 every 10 million. Classical approaches to

clustering would ignore such minority class-

es. Random sampling would completely miss

them. We are pursuing directions along the

lines of specialized iterative sampling

schemes for homing in on a sample that is

likely to contain objects that are different

than the rest of the data. 

The second front of future research is to

pursue tools for searching large image collec-

tions where the user only labels examples.

Unlike the case of SKICAT, where astronomers

provided a rich set of attributes to measure,

we would like to address problems where no

such knowledge is available. An example is

the Jet Propulsion Laboratory (JPL) adaptive

recognition tool (JARTOOL) (Fayyad et al. 1996;

Burl et al. 1994) being developed to catalog

an estimated 1 million small volcanoes in

30,000 synthetic aperture radar images of the

surface of Venus. This image set collected by

the Magellan spacecraft represents a situation

that is becoming commonplace in science

and many other fields. The data are simply

too large to examine manually, and the user

cannot invest resources to develop a recogni-

tion system to automate the task. Our long-

term goal is to develop a tool that can be

trained by example to perform object recog-

nition in large image libraries. Because the

user might not know all the details of the

data, we cannot expect the system to be giv-

en much background knowledge about the

data (for example, in SKICAT in the form of

pixel-to-feature transformations). Other

applications at JPL involve earthquake

measurement, atmospheric modeling,

sunspot classification, and time-seris data

analysis. Information can be obtained by vis-

iting the World Wide Web URL: http://www-

aig.jpl.nasa.gov/mls, the home page of the

Machine-Learning Systems Group at JPL. 

Should the training-by-example approach

advocated in this article prove to be success-

ful and general, the applications would be

truly wide ranging. Finding objects of interest

in large digital-image libraries can range from

1995; Weir, Fayyad, and Djorgovski 1995).

SKICAT can catalog and classify objects that are

at least one magnitude fainter than objects

cataloged in previous surveys. We exceeded

our initial accuracy target of 90 percent. This

level of accuracy is required for the data to be

useful in testing or refuting theories on the

formation of a large structure in the universe

and on other phenomena of interest to

astronomers. The SKICAT tool is now being

used to both process and analyze the survey

images as they arrive from the digitization

instrument. 

By effectively defining robust features, we

were able to derive classifiers with an accura-

cy exceeding that of humans for faint objects.

Because faint objects constitute the majority

of objects on any plate, the number of clas-

sified objects available for further scientific

analysis is dramatically increased. In effect,

the pixels contained important information

that was difficult for the human visual system

to extract. Projection of the high-dimensional

pixel space onto a suitable lower-dimensional

feature space allowed us to transform the

problem into one solvable by a supervised

learning algorithm. By defining additional

normalized image-independent attributes, we

were able to obtain high-accuracy classifiers

within and across photographic plates. 

The implications of a tool such as SKICAT for

astronomy might indeed be profound. One

could reclassify any portion of the survey

using alternative criteria better suited to a

particular scientific goal (for example, star

catalogs versus galaxy catalogs). The catalogs

will also accommodate additional attribute

entries in the event that other pixel-based

measurements are deemed necessary. The cat-

alog generated by SKICAT will eventually con-

tain about two billion entries, representing

hundreds of millions of sky objects. Unlike

the traditional notion of a static printed cata-

log, our target is the development of a new

generation of scientific analysis tools that

render it possible to have a constantly evolv-

ing, improving, and growing catalog. With-

out the availability of these tools for the first

survey (POSS-I) conducted over four decades

ago, no objective and comprehensive analysis

of the data was possible. In contrast, we are

targeting a comprehensive sky catalog that

will be available online for use by the scien-

tific community. 

Future directions for this work are being

pursued along two fronts: The first targets the

automated scientific discovery problem using

clustering techniques, as described in the

Unsupervised Learning and New Scientific

The catalog
generated by

SKICAT will
eventually

contain about
two billion

entries, 
representing
hundreds of
millions of
sky objects. 
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finding a family member in a digital photo

album to searching video libraries for a partic-

ular target to inspecting manufacturing,

surveillance, and remote sensing applica-

tions. In medicine, with the proliferation of

digital medical imagers and digitized histori-

cal image libraries, many opportunities exist,

for example, if a medical researcher notices a

new pattern and would like the libraries of

several hospitals searched for the new pattern

and results correlated with treatments and

outcomes. A tool that can be trained by

example would make such an operation prac-

tical and convenient to execute. Of course,

we remain far from this long-term goal. We

hope the directions we are pursuing will take

us closer to such general adaptive search and

information-gathering tools. This, of course,

is the tempting promise of the new field of

data mining and knowledge discovery in

databases.
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Notes

1. This is a standard astronomical magnitude scale

for measuring relative brightness of astronomical

sources. It is logarithmic, with 1 mag = –4 db; the

brightest stars visible with a naked eye are first

magnitude. Magnitudes are usually defined in a

particular band pass, given by a combination of a

filter and a detector, for example, the blue (B) band.

2. At the time this article was written, only 5

objects had been found. As of April 1996, the count

stood at 20.
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