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Abstract

Starting from the vector multipliers, the inner product, norm, distance, as well

as addition of two vectors of different dimensions are proposed, which makes the

spaces into a topological vector space, called the Euclidean space of different

dimension (ESDD). An equivalence is obtained via distance. As a quotient space

of ESDDs w.r.t. equivalence, the dimension-free Euclidean spaces (DFESs)

and dimension-free manifolds (DFMs) are obtained, which have bundled vector

spaces as its tangent space at each point. Using the natural projection from

a ESDD to a DFES, a fiber bundle structure is obtained, which has ESDD as

its total space and DFES as its base space. Classical objects in differential

geometry, such as smooth functions, (co-)vector fields, tensor fields, etc., have

been extended to the case of DFMs with the help of projections among different

dimensional Euclidean spaces. Then the dimension-varying dynamic systems

(DVDSs) and dimension-varying control systems (DVCSs) are presented, which

have DFM as their state space. The realization, which is a lifting of DVDSs or

DVCSs from DFMs into ESDDs, and the projection of DVDSs or DVCSs from

ESDDs onto DFMs are investigated.
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1. Introduction

Dimension-varying dynamic systems (DVDSs) and dimension-varying con-

trol systems (DVCSs) exist widely in nature and man-made equipments or en-

vironments. For instance, on the internet users are joining and withdrawing

frequently. In a biological system, cells are producing and dying from time to

time. Some man-made mechanical systems are also of varying dimensions. For

instance, the docking and undocking of spacecrafts [26, 17]; the connecting and

disconnecting of vehicle clutch systems while speed changes [9]. The DVDS

models are also used for specious population dynamics [25, 14].

Another interesting phenomenon which stimulates our interest is: a geo-

metrical object, or a complex system, may be described by models of different

dimensions. For instance, in power systems a single generator can be modeled

as a 2, 3, or 5, 6, or even 7-dimensional dynamic system [21]. In contemporary

physics, the sting theory assumes the dynamics of strings to be the model for

universe of time-space. But this model may have dimension 4 (special rela-

tivity), 5 (Kaluza-Klein theory), 10 (type 1 string), 11 (M-theory) or even 26

(Bosonic model) [19]. One observes from this phenomenon that two models with

different dimensions might be very similar or even equivalent. In other words,

dimension-varying model may be proper to describe such dynamics.

So far, a classical way to deal with DVDSs and DVCSs is switching [26]. This

approach ignores the dynamics of the system during the dimension-varying pro-

cess. In practice, the transient period may be long enough so that the dynamics

during this process is not ignorable. For instance, automobile clutch takes about

1 second to complete a connection or separation action; docking and undocking

of spacecrafts take even longer. Not to mention that some processes might be

continuously dimension-varying. In the latter cases, switching is almost mean-
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ingless.

To our best knowledge, there are few proper theories in existing mathematics

to model DVDSs and DVCSs. In ordinary or partial differential equations or

difference equations, only dynamic models of fixed dimensions can be treated.

To provide a proper model for formulating DVDSs and DVCSs, a new framework

should be created.

The purpose of this paper is twofold. One is to build the dimension-free Eu-

clidean spaces (DFESs) and dimension-free manifolds (DFMs), which provides

a mathematical framework for DVDSs or DVCSs. The DFM is a completely

new “manifold”, where each point has its own dimension. It is the base space of

DFES while the total space of DFES is considered as the tangent space of the

DFM. It makes the “state space” of the DVDSs or DVCSs a mathematically

well-posed geometrical object; The other issue is to use the geometric struc-

ture of DFMs to model, analyze and/or design controls for DVDSs and DVCSs,

either linear or nonlinear, are unambiguously defined.

This paper is a follow-up research of our previous works. In [6, 7] the

dimension-free matrix theory and mix-dimensional vector spaces have been pro-

posed and investigated. As an application of dimension-free matrix theory, the

dimension-varying linear (control) systems have been investigated [9]. The ba-

sic concept used there was the equivalence of vectors of different dimensions [8].

This idea is also one of the key techniques in this paper.

To build up a theory of dimension-free manifolds, the key issue is to construct

a connected topological space allowing the dimensions of the points in it to

vary. We first construct an equivalence relation on the ESDD V :=
⋃∞

n=1 V ,
(equivalently, R∞ :=

⋃∞
n=1 R

n) and take the quotient space Ω as the model

space, which is a topological vector space. it is called “dimension-free” Euclidean

space, which means each vector x̄ ∈ Ω has its dimension 1 ≤ dim(x̄) < ∞, but

this dimension varies from point to point. We refer to [6, 7] for details. Though

these results have been discussed before, they are re-organized systematically

in Section 2 here. Then the projection of a vector to a certain Euclidian space

is recalled, which was firstly proposed in [9] and was discussed in detail by [11,
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12, 27, 28]. Then the cross-dimensional linear control systems are investigated

as S-systems (semi-group systems).

For each point x̄ ∈ Ω a neighborhood coordinate bundle is proposed. Using

neighborhood coordinate bundles, differentiable structure is obtained. Unlike

the classical differential manifold, this differential structure poses on each point

a bundled Euclidean spaces of different dimensions as its “tangent space”. A

DFM is a fiber bundle locally homeomorphic to a coordinate neighborhood

bundle of a DFES.

Over a DFES (or DFM), the smooth (Cr) functions, vector fields, co-vector

fields, distributions, co-distributions, tensor fields, etc. are proposed. The in-

tegral curves of vector fields, or integral manifolds of distributions, are also

properly defined. In a word, a dimension-free differential geometric structure is

proposed for DFMs. Dimension-free tensor fields are also introduced, and us-

ing degree-2 covariant tensor fields, dimension-free Riemannian manifolds and

symplectic manifolds are also proposed.

With these geometric constructions, this paper attempts to explore the dy-

namics and control of DVDSs. The basic idea is as follows: Projection and lift

connect the DVDSs on DFMs (as the base space) with the DVDSs on DFESs

(as the total space): lifting the trajectory of a DVDS (or DVCS) to ESDD, a

set of trajectories over ESDD are obtained. Using them a dimension-varying

trajectory of the DVDS (or DVCS) can be constructed. Conversely, if a classical

dynamic (control) system is defined on a Euclidean space, it can also be pro-

jected to DFES via natural projection. Therefore, the fiber bundle (R∞,Pr,Ω)

provides the bearing state space for both DVDSs and DVCSs. In addition

to general DVDSs, particular attention has been paid to the dynamics of the

transient process of classical dimension-varying systems, which have invariant

dimensions except during the transient period.

The STP of matrices was proposed by the author and his colleagues [4, 5]. It

was the fundamental method in previous works [6, 7, 9] on DVDSs and DVCSs.

It is also a basic tool in this paper, where the default matrix product is assumed

to be STP. We refer to [4, 5] for notions and basic results.
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Before ending this section, lists of notations and abbreviations are provided

as follows.

(1) List of Notations:

• R: set of real numbers.

• Mm×n: set of m× n dimensional real matrices.

• a ∨ b: the least common multiple of two positive integers a and b.

• a ∧ b: the greatest common divisor of two positive integers a and b.

• ~± : (left) vector addition.

•
~⊢: (left) vector subtraction.

• 1n: [1, · · · , 1]
︸ ︷︷ ︸

n

T
; 1m×n: m× n matrices with all entries being 1.

• δik: The i-th column of identity matrix Ik. δ0k is for a zero vector of

dimension k.

• ↔: vector equivalence.

• Ω := R∞/↔.

(2) List of Abbreviations:

• ESDD: Euclidean space of different dimensions.

• DFES: dimension-free Euclidean space.

• DFM: dimension-free manifold.

• DFEB: dimension-free Euclidean bundle.

• DFRM: dimension-free Riemannian manifold.

• DVDS: dimension-varying dynamic system.
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• DVCS: dimension-varying control system.

The rest of this paper is organized as follows. The ESDDs are investigated

in Section 2. The inner product, norm, distance, topologies and equivalence re-

lations on them are introduced. In Section 3 a vector space structure is given to

ESDDs to form the DFESs using equivalence among vectors of different dimen-

sions. Using the natural projection from ESDDs to DFES, a fiber bundle struc-

ture is obtained. Section 4 considers the projections among Euclidian Spaces of

different dimensions. First, the projection of a vector onto another vector, which

may have different dimensions, is proposed. Using the coordinates from ESDD,

smooth functions over DFESs are constructed. Then the least square approx-

imation of a linear (control) system is considered. The DFMs are considered

in Section 5. After DFESs are endowed with a differential structure, the (co)-

vector fields, (co)-distributions, and the integral curses of vector fields over them

are proposed and investigated. In Section 6, the tensor fields over DFMs are

constructed first. Using proper symmetric and skew-symmetric covariant tensor

fields, the dimension-free Riemannian manifold and dimension-free symplectic

manifold are constructed respectively. As an application, Section 7 considers

DVDSs and DVCSs. First, the projection of a nonlinear (control) system on

an Euclidean space onto another Euclidean space of different dimension is pro-

posed. Then the nonlinear (control) systems over DFESs are considered, which

is then used to model dimension-varying nonlinear (control) systems over ES-

DDs. Finally, the control problems of dimension-varying linear and nonlinear

systems are considered in principle. Section 8 contains some concluding re-

marks. First, the construction of DFES (DFM) is summarized step by step.

Then the modeling and control design of DVDSs are also summarized. Finally,

a conjecture is presented, which claims that DFESs (DFMs) might be used as

the framework for string theory.
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2. Euclidean Space of Different Dimensions (ESDDs)

In this section we introduce the notion of ESDDs, which is constructed by

choosing {1n}n=1,2,··· as vector multipliers [8].

2.1. Mix-Dimensional Sets and Mix-Dimensional Vector Spaces

Consider an n dimensional real vector space, denoted by Vn. For simplicity,

one can take Vn = Rn. To construct mix-dimensional state space, the set of

mix-dimensional vectors, called ESDD, is defined as

V :=

∞⋃

n=1

Vn.

We may view V as R∞ :=
⋃∞

n=1 R
n since they are isomorphic.

First, we define “addition” and “scalar product” over V to turn it into a

pseudo vector space.

Definition 2.1. (i) Let x ∈ Vm ⊂ V, r ∈ R. Then the scalar product is

defined as follows:

r × x := rx ∈ Vm. (1)

(ii) Let x ∈ Vm, y ∈ Vn, and t = m ∨ n be the least common multiple of m

and n. Then the addition of x and y is defined as follows:

x ~

±

y := (x⊗ 1t/m) + (y ⊗ 1t/n) ∈ Vt. (2)

Correspondingly, the subtraction of y from x is defined as x~⊢y := x ~

±

(−y).

Proposition 2.2. Set V with scalar multiplication defined as in (1), addition

as in (2) is a pseudo-vector space [1], where the set of zero elements is

0 := {[0, 0, · · · , 0
︸ ︷︷ ︸

n

]T | n = 1, 2, · · · }.

Remark 2.3. For notational ease, when x ∈ Vn we assume −x ∈ Vn where −x
is the vector satisfying x + (−x) ∈ 0. Since such elements are not unique, this

−x is considered as a representative of the set of them.
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2.2. Norm and Distance on ESDDs

Definition 2.4. Let x ∈ Vm ⊂ V, y ∈ Vn ⊂ V, and t = m∨n. Then the inner

product of x and y is defined by

〈x , y〉V :=
1

t

〈
x⊗ 1t/m , y ⊗ 1t/n

〉
, (3)

where 〈· , ·〉 is the conventional inner product on Rt. That is, if x, y ∈ Rt,

then 〈x, y〉 =
t∑

i=1

xiyi. The inner product defined by (3) is called the weighted

inner product, because there is a weight coefficient 1/t.

Using inner product, the norm of x ∈ V can be defined.

Definition 2.5. The norm of x ∈ V is defined by

‖x‖V :=
√

〈x , x〉V . (4)

One sees easily that ‖·‖V defined by (4) satisfies linearity and triangle inequality,

however, ‖x‖ = 0 ⇒ x ∈ 0. It is also called a pseudo-norm.

Finally, we define the distance on V .

Definition 2.6. Let x, y ∈ V. The distance between x and y is defined by

dV(x, y) := ‖x~⊢y‖V . (5)

It is easily verified that dV satisfies symmetry and triangle inequality, how-

ever, dV(x, y) = 0 ⇒ x~⊢y ∈ 0. Hence, this distance is called a pseudo-distance.

Remark 2.7. The distance defined on a vector space is, in general, required to

be invariant under displacement. That is,

d(x+ z, y + z) = d(x, y), x, y, z ∈ X. (6)

It is easy to verify that the dV defined by (5) satisfies (6).
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2.3. Topology on ESDDs

This subsection considers the topology on V . We refer to any standard text-

book of topology for the basic topological concepts involved in this subsection,

for instance, [10, 20]. In the following some topologies are considered.

• Natural Topology:

Naturally, the topology on each Rn is considered as conventional topology.

Precisely speaking, the open balls in Rn with center at c = (c1, c2, · · · , cn), and
radius r > 0, are defined by

Bn
r (c) :=

{

(x1, · · · , xn) ∈ Rn
∣
∣
∣

√
n∑

i=1

(xi − ci)2 < r
}

.

Taking

Bn := {Bn
r (c) | c ∈ Rn, r > 0}

as topological basis, the topology on Rn generated by Bn is the conventional

topology on Rn.

Then each Rn, n = 1, 2 · · · , are considered as a set of clopen subsets in V .
Such a topology is called the natural topology on V , denoted by N.

The following properties are obvious.

Proposition 2.8. (i) Assume ∅ 6= On ∈ Rn is an open set, then it is also

open in (V ,N).

(ii) (V ,N) is a second countable Hausdorff space.

• Distance Topology:

Define open balls in V = R∞ by

Br(c) := {x ∈ R∞ | dV(x, c) < r}, c ∈ R∞.

Using B := {Br(c) | c ∈ R∞, r > 0} as a topological basis, the topology

generated by B is called the distance topology on R∞ deduced from dV , denoted

by D.
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Remark 2.9. (i) Assume ∅ 6= On ∈ Rn is an open set, it is not open under

distance-deduced topology, i.e., not open in (V ,D). This is because ∀x ∈
On there exists a point y = x⊗ 1s 6∈ On. But d(x, y) = 0, which means x

is not an interior point of On. Hence, On is not open in (V ,D).

(ii) (V ,D) is not a Hausdorff space. To see this, consider x and x⊗1s, s > 1,

which are two different points. But they are not separable in (V ,D). It is

clear that (V ,D) is not even T0.

(iii) It is easy to see that if O is open in (V ,D), then O is also open in (V ,N).

Hence D ⊂ N, that is, the distance-deduced topology D is rougher than

the natural topology N.

• Product Topology:

One way to understand V = R∞ is to consider R∞ =
∏∞

n=1 R
n, then the

product topology is generated by the topological basis

B =

{
∞∏

n=1

On

∣
∣
∣
∣
∣
On ⊂ Rn is open, and On = Rn except for finite n

}

.

The product topology is denoted by P. It is easy to see that P = N.

2.4. Equivalent vectors

Definition 2.10. (i) Let x, y ∈ V. x and y are said to be equivalent, denoted

by x↔ y, if there exist two one-vectors 1α and 1β, such that

x⊗ 1α = y ⊗ 1β. (7)

(ii) The equivalence class of x is denoted by x̄ :=
{
y
∣
∣ y ↔ x

}
.

Remark 2.11. Obviously ↔ is an equivalence relation. Assume x, y ∈ V.
Then x↔ y, if and only if x~⊢y ∈ 0.

For the equivalence we have the following properties.
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Theorem 2.12. (i) If x↔ y, then there exists a γ ∈ V such that

x = γ ⊗ 1β , y = γ ⊗ 1α. (8)

(ii) In each equivalence class x̄ there exists unique smallest element x1 ∈ x̄,

such that x̄ = {x1 ⊗ 1k | k = 1, 2, · · · }.

The proofs follow similarly as in [8].

A partial order can be defined on V .

Definition 2.13. A partial order, denoted by ≺, is defined as follows: Let x, y ∈
V. If there exists a one-vector 1s such that x ⊗ 1s = y, then x ≺ y. For any

equivalence class x̄, x1 ∈ x̄ is called the smallest element of x̄, if ∀y ∈ x̄, y ≺ x1

implies y = x1.

Remark 2.14. (i) If x = y ⊗ 1s, then y is called a divisor vector of x, and

x is called a multiplier vector of y. This relation determines the order

y ≺ x.

(ii) If (8) holds, and α, β are co-prime, then the γ in Eq. (8) is called the

maximum common divisor vector of x and y, denoted by γ = gcd(x, y).

It is easy to prove that if z is also a common divisor vector of x and y,

then z ≺ γ. Moreover, the maximum common divisor vector is unique.

(iii) If (7) holds and α, β are co-prime, then ξ := x ⊗ 1α = y ⊗ 1β is called

the least common multiple vector of x and y, denoted by ξ = lcm(x, y). It

is also easy to prove that if z is also a common multiple vector of x and

y, then ξ ≺ z. Moreover, the least common multiple vector is also unique.

Proposition 2.15. (i) Assume x ∈ V, then (x̄,≺) is a lattice [8].

(ii) Assume x, y ∈ V, then (x̄,≺) ≅ (ȳ, ≺), where ≅ stands for lattice iso-

morphism. That is, any two equivalence classes as lattices are isomorphic.

Proof. It is straightforward verifiable that ∀u, v ∈ x̄, sup(u, v) = lcm(u, v);

inf(u, v) = gcd(u, v). Then the first part is obvious. Assume x̄ = {x1, x2, · · · }

11



and ȳ = {y1, y2, · · · }, where xi = x1 ⊗ 1i, i = 1, 2, · · · , etc. Define π : x̄ →
ȳ, π(xi) = yi, i = 1, 2, · · · , Then one sees easily that π is a lattice isomorphism.

✷

The above arguments can be considered as special cases of that in Section 7

of [8] by choosing the vector multiplier as {1n}.

3. Constructing DFESs From ESDDs

3.1. Quotient spaces as vector spaces

Definition 3.1. The quotient space of V = R∞ under equivalence relation ↔
defined on it by (7), denoted by Ω, is called the DFES. That is,

Ω := V/↔ . (9)

(i) Let x̄ ∈ Ω. The scalar product on Ω is defined by

ax̄ := ax, a ∈ R. (10)

(ii) Let x̄, ȳ ∈ Ω. Then the addition of x̄ and ȳ is defined by

x̄ ~

±

ȳ := x ~

±

y. (11)

Correspondingly, the subtraction is defined by x̄~⊢ȳ := x̄ ~

±

(−ȳ), where

−ȳ := −y.

It is easy to verify that the scalar product (10) and the addition (11) are

well defined, that is, if x ↔ x′ and y ↔ y′, then ax ↔ ax′, ∀a ∈ R, and

x ~

±

y ↔ x′ ~

±

y′. One may refer to [8] for proofs.

Theorem 3.2. Using the addition defined as in (11) and the scalar product as

in (10), Ω is a vector space.

Consider the subspaces of ESDD and the corresponding subspaces of DFES.

12



Definition 3.3. (i) Let p ∈ Z+ be a positive integer. Define the p-upper

truncated ESDD as

R[p,·] :=
⋃

{s
∣
∣ p|s}

Rs.

(ii) Define p-upper truncated DFES as

Ωp := R[p,·]/↔ =
{
x̄
∣
∣ x1 ∈ Rpr, r ≥ 1

}
.

(iii) Define p-lower truncated ESDD as

R[·,p] :=
⋃

{s
∣
∣ s|p}

Rs. (12)

(iv) Define p-lower truncated DFES as

Ωp := R[·,p]/↔ =
{
x̄
∣
∣ x1 ∈ Rs, s|p

}
.

The next proposition is an immediate consequence of the definition.

Proposition 3.4. (i) Ωp, and Ωp, p = 1, 2, · · · are subspaces of Ω;

(ii) If i|j, Then, Ωj is a subspace of Ωi, Ωi is a subspace of Ωj.

Example 3.5. The lattice structure on R∞ can be transferred to Ω:

(i) Define Ω(n) := Rn/ ↔, n = 1, 2, · · · . Then Ω =
⋃∞

n=1 Ω(n). Define

Ω(m) ≺ Ω(n) ⇔ Rm ≺ Rn, then it is obvious that (Ω,≺) is a lattice with

sup(Ω(p),Ω(q)) = Ω(p∨q), inf(Ω(p),Ω(q)) = Ω(p∧q).

(ii) Ωp is an ideal of Ω.

(iii) Ωp is a filter of Ω.

In fact, Ω has the same lattice structure as its filters.

Proposition 3.6. Let p > 1. The filter Ωp is lattice isomorphic to Ω.

Proof. Define a mapping ϕ : Ωp → Ω, ϕ(Ω(np)) := Ω(p). Then it is easy to

verify that ϕ is a lattice isomorphism. ✷
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3.2. Topology on DFESs

First, we extend the inner product over ESDD R∞ to DFES Ω.

Definition 3.7. Let x̄, ȳ ∈ Ω. Define their inner product as

〈x̄ , ȳ〉V := 〈x , y〉V , x ∈ x̄, y ∈ ȳ, (13)

where 〈·, ·〉V is defined as in (3).

The following proposition shows Definition 3.7 is well defined.

Proposition 3.8. (13) is properly defined. That is, it is independent of the

choice of representatives x and y.

Proof. Assume x1 ↔ x2 and y1 ↔ y2. According to Theorem 2.12, there exist

x0 ∈ Rs and y0 ∈ Rt, such that

x1 = x0 ⊗ 1α; x2 = x0 ⊗ 1β ,

y1 = y0 ⊗ 1p; y2 = y0 ⊗ 1q.

First, we prove two facts:

• Fact 1: Let s ∧ t = ξ, and s = aξ, t = bξ, where α ∧ b = 1. If f, g satisfy

sf = tg, then, afξ = bgξ, i.e., af = bg. Since a ∧ b = 1, there exists a c

such that f = cb, g = ca.

• Fact 2: 〈x, y〉V = 〈x⊗ 1s, y ⊗ 1s〉V .

These facts can be verified by definition directly.

Next, we consider

〈x1, y1〉V = 〈x0 ⊗ 1α, y0 ⊗ 1p〉V
=

〈

x0 ⊗ 1α ⊗ 1 sα∨tp
sα

, y0 ⊗ 1p ⊗ 1 sα∨tp
tp

〉

V

=
〈

x0 ⊗ 1 sα∨tp
s
, y0 ⊗ 1 sα∨tp

t

〉

V
.

Hence we have s sα∨tp
s = t sα∨tp

t . Using Fact 1, one sees that sα∨tp
s = cb; sα∨tp

t =

ca. Using Fact 2 yields

〈x1, y1〉V = 〈x0 ⊗ 1cb, y0 ⊗ 1ca〉V = 〈x0 ⊗ 1b, y0 ⊗ 1a〉V .
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Similarly, we have 〈x2, y2〉V = 〈x0 ⊗ 1b, y0 ⊗ 1a〉V . The conclusion follows. ✷

Since Ω is a vector space, (13) defines an inner product on Ω. This inner

product has the following properties.

Proposition 3.9. Ω with the inner product defined by (13) is an inner product

space. But it is not a Hilbert space.

Proof. Obviously Ω is an inner product space. To see that it is not a Hilbert

space, we construct a sequence as follows:

x1 = a ∈ R; xi+1 = xi ⊗ 12 +
1

2i+1

(
δ12i+1 − δ22i+1

)
, i = 1, 2, · · · .

It is obvious that this sequence is a Cauchy sequence. But it does not converge

to any point x ∈ V . Let x̄i := xi. According to Proposition 3.8, it is easy to

see that {x̄i} is also a Cauchy sequence in Ω, but it can not converge to any

point in Ω. ✷

∀x ∈ R∞, ϕx : y 7→ 〈x , y〉V gives a mapping ϕx : R∞ → R. Similarly, a

point x̄ ∈ Ω can be used to construct a mapping ϕx̄ : Ω → R, ȳ 7→ 〈x̄ , ȳ〉V .
Conversely, not every linear mapping ϕ : Σ → R can be expressed as a mapping

deduced by an element as ϕx̄. This is because Ω is an infinite dimensional vector

space, while each element x̄ ∈ Ω is a finite dimensional element.

Using the inner product defined by (13), the norm and distance on Ω are

also well defined.

Definition 3.10. (i) Let x̄ ∈ Ω. The norm of x̄ is defined by

‖x̄‖V := ‖x‖V . (14)

(ii) Let x̄, ȳ ∈ Ω. The distance between x̄ and ȳ is defined as

dV(x̄, ȳ) := dV(x, y). (15)

According to Proposition 3.8, (14)(15) are both well defined.

Finally, As a topological space, the topology on Ω is deduced by the distance.

This topology is equivalent to the quotient topology of (R∞,N) over equivalence.

That is, the glued topology inherited from (R∞,N).
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As a topological space, Ω has the following properties.

Proposition 3.11. Ω is a second countable Hausdorff space.

Proof. Since Rn is second countable, denote by {On
i | i = 1, 2, · · · } its countable

topological bases. Then
⋃∞

n=1

⋃∞
i=1O

n
i is a topological basis of R∞, which is

also countable. Hence, as its quotient space, Ω = V/↔ is also second countable.

Since Ω is a metric space, then x̄ 6= ȳ, if and only if, dV (x̄, ȳ) > 0. It is

obvious that this space is a Hausdorff space. (In fact, it is easy to see that this

space is T4.) ✷

Definition 3.12. Let x̄ ∈ Ω. The dimension of x̄, denoted by dim(x̄), is

the dimension of the smallest element in x̄. That is, dim(x̄) = dim(x1) =

minx∈x̄ dim(x).

Remark 3.13. (i) Note that x̄ = {x1 ⊗ 1n | n = 1, 2, · · · }, it is clear that

x̄ can be considered as x1 and the images of merging x1 ∈ Rs into Rns,

n = 2, 3, · · · . Hence x1 is the essential element in x̄, which determines x̄

completely. This fact shows that the Definition 3.12 is reasonable.

(ii) It is surprising that Ω is a topological vector space with each point x̄ ∈ Ω

having its own dimension 1 ≤ dim(x̄) <∞. Hence, the DFES (dimension-

free Euclidean space) is a totally new mathematical object.

3.3. Fiber bundle structure on ESDDs and DFESs

First, we recall the definition of a fibre bundle.

Definition 3.14. [15] Let T and B be two topological spaces, Pr : T → B is a

continuous surjective mapping. Then (T,Pr, B) is called a fiber bundle, where

T is the total space, B is the base space. ∀b ∈ B, Pr−1(b) is called the fiber at

b.

The following result comes from the definition immediately.

16



Proposition 3.15. Let T = (V ,N) be the total space, B = (Ω,D) be the base

space, and Pr : T → B be the natural projection, i.e., x 7→ x̄. Then (V ,N)
Pr−→

(Ω,D) is a fiber bundle, which is called the dimension-free Euclidean bundle

(DFEB).

The DFEB is said to be a discrete bundle, because the bundle at each point

x̄ is a discrete countable (topological) subspace of ESDD R∞.

Definition 3.16. (i) Two fiber bundles (Ti,Pri, Bi), i = 1, 2 are called ho-

momorphic, if there exist two continuous mappings π : T1 → T2 and

ϕ : B1 → B2, such that the diagram (16) is commutative. In addition,

if both π and ϕ are bijective, and π−1 : T2 → T1 and ϕ−1 : B2 → B1

are also making (16) commutative, (Ti, P ri, Bi), i = 1, 2 are said to be

isomorphic.

T1
π

//

Pr1

��

T2

Pr2

��

B1
ϕ

// B2

(16)

(ii) Two fiber bundles on B, denoted by (Ti,Pri, B), i = 1, 2, are called

homomorphic, if there exists a continuous mapping π : T1 → T2, such

that the diagram (17) is commutative. In addition, if π is bijective, and

π−1 : T2 → T1 making (17) commutative, (Ti,Pri, B), i = 1, 2 are said to

be isomorphic.

T1
π

//

Pr1

��

T2

Pr2
~~⑥⑥
⑥
⑥
⑥
⑥
⑥
⑥

B1

(17)

Example 3.17. Consider
(
R[p,·],Pr,Ω

)
and (R∞,Pr,Ω). Define π : R[p,·] →֒

R∞ as the including mapping. Then it is obvious that π is a fiber bundle homo-
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morphism, since the following diagram commutes.

R[p,·] π
//

Pr

��

R∞

Pr
||①①
①
①
①
①
①
①
①

Ω

3.4. Coordinate neighbourhoods

To establish a differential structure on DFES, we need a “local coordinate

neighborhood” for each point x̄ ∈ Ω. Since Ω is a dimension-free space, the co-

ordinate neighborhoods are not classical ones in standard differential manifold.

In fact, they are sub-bundles of DFEB.

Definition 3.18. Let x̄ ∈ Ω, and dim(x̄) = p. Assume Ox̄ is an open neigh-

borhood of x̄ ∈ Ω. That is, x̄ ∈ Ox̄, and Ox̄ ⊂ Ω is open. Then

VOx̄
:= Pr−1 (Ox̄)

⋂

R[p,·]

with R[p,·] defined as in (12), is called the set of coordinate charts of x̄, (VOx̄
,Pr, Ox̄)

is called the bundle of coordinate neighborhood of x̄.

Vr
Ox̄

:= Pr−1 (Ox̄)
⋂

Rrp, r = 1, 2, · · ·

is called a leaf of the bundle of coordinate neighborhood bundle of x̄.

An example is given in the following to depict the bundle of coordinate

neighborhood.

Example 3.19. Assume x = (α, α, β, β)T ∈ R4, then x̄ = {x1, x2, · · · }, where,
x1 = (α, β) ∈ R2. Hence dim(x̄) = 2. Consider Ox̄ = Br(x̄) ⊂ Ω, which is

an open ball neighborhood of x̄. Then the set of coordinate charts, deduced by

Ox̄, is VO = {Br1(x1), Br2(x2), · · · }, where rk = 1/
√
2k, xk = (α, β)T ⊗ 1k,

k = 1, 2, · · · . The bundle of coordinate neighborhood of x̄ is (VOx̄
,Pr, Ox̄).

Fig. 1 demonstrates the bundle of coordinate neighborhood of x̄.

Note that the set of coordinate charts VO does not include all the inverse

image of O, i.e., VO $ Pr−1(O). But it can provide coordinates for all points

within O. The following proposition shows this.
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❄

Pr

x1

x2

x3

x̄ ∈ Ox̄ ⊂ Ω

Figure 1: Bundle of coordinate neighborhood

Proposition 3.20. Assume ȳ ∈ O, then Pr−1(ȳ)
⋂VO 6= ∅.

Proof. Assume ȳ ∈ O, dim(x̄) = p, dim(ȳ) = q, r = p ∨ q, then yr/q ∈
Pr−1(O)

⋂
Rr ⊂ VO. ✷

Remark 3.21. Assume x̄ ∈ Ω with dim(x̄) = p. Then VΩx̄
:= Pr−1(Ω)

⋂
R[p,·] =

R[p,·] is a coordinate neighborhood of x̄, which is the largest coordinate neigh-

borhood of x̄. When the DFES is considered, we can simply use this coordinate

neighborhood, then the corresponding coordinates are called the global coordi-

nates. The general definition is mainly for DFM.

4. Projections on ESDDs and Continuous Functions on DFESs

In this section we introduce the cross-dimensional projections on ESDD,

which is crucial for prolonging functions on a finite-dimensional Euclidean space

to construct continuous functions on DFES.
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4.1. Cross-dimensional projection of a vector

Definition 4.1. Assume ξ ∈ Vn. A cross-dimensional projection of ξ to Vm,

denoted by πn
m(ξ), is defined as follows:

πn
m(ξ) := argmin

x∈Vm

‖ξ − x‖V . (18)

Assume t = lcm(n,m) = t and denote α := t/n, β := t/m. Then the

distance between ξ and x ∈ V is ∆ := ‖ξ − x‖2V = 1
t ‖ξ ⊗ 1α − x⊗ 1β‖2.

Denote ξ⊗ 1α := (η1, η2, · · · , ηt)T , where ηj = ξi, (i− 1)α+1 ≤ j ≤ iα; i =

1, · · · , n. Then, ∆ = 1
t

m∑

i=1

β∑

j=1

(
η(i−1)β+j − xi

)2
. Setting ∂∆

∂xi
= 0, i = 1, · · · ,m

yields

xi =
1

m





β
∑

j=1

η(i−1)β+j



 , i = 1, · · · ,m. (19)

That is, πn
m(ξ) = x. Moreover, it is easy to verify the following orthogonality,

i.e.
〈

ξ~⊢x, x
〉

V
= 0. The above argument leads to the following conclusion:

Proposition 4.2. Let ξ ∈ Vn. Then the projection of ξ on Vm, say, x, can be

calculated by (19). Moreover, ξ~⊢x and x are orthogonal.

Example 4.3. Assume ξ = [1, 0,−1, 0, 1, 2,−2]T ∈ R7. Consider its projection

on R3, denoted by π7
3(ξ) := x. Then η = ξ ⊗ 13. Denote by x = [x1, x2, x3]

T ,

then

x1 =
1

7

7∑

j=1

ηj = 0.2857, x2 =
1

7

14∑

j=8

ηj = 0, x3 =
1

7

21∑

j=15

ηj = 0.1429.

Moreover,

ξ~⊢x = [0.7143, 0.7143, 0.7143,−0.2857,−0.2857,−0.2857,−1.2857,−1,−1,

0, 0, 0, 1, 1, 0.8571, 1.8571, 1.8571, 1.8571,−2.1429,−2.1429,−2.1429].

Since the projection of a vector to a space of different dimension πn
m is a

linear mapping, it can be expressed by a matrix. Assume there exists a matrix

Πn
m, such that the projection of ξ ∈ Rn to Rm can be expressed as

πn
m(ξ) = Πn

mξ, ξ ∈ Vn. (20)
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We try to figure out this matrix.

Let lcm(n,m) = t, α := t/n, and β := t/m. Then

η = ξ ⊗ 1α = (In ⊗ 1α) ξ, x =
1

β

(
Im ⊗ 1T

β

)
η =

1

β

(
Im ⊗ 1T

β

)
(In ⊗ 1α) ξ.

Hence we have

Πn
m =

1

β

(
Im ⊗ 1T

β

)
(In ⊗ 1α) . (21)

Using this structure, we have the following result.

Lemma 4.4. (i) Let n ≥ m. Then Πn
m is of full row rank. Hence, Πn

m(Πn
m)T

is invertible.

(ii) Let n ≤ m. Then Πn
m is of full column rank. Hence, (Πn

m)TΠn
m is invert-

ible.

Proof.

(i) Assume n ≥ m. When n = m, Πn
m(Πn

m)T is an identity matrix, the

conclusion is trivial. We, therefore, need only to consider the case when

n > m. According to the structure of Πn
m determined by (21), it is easy to

see that each row of Πn
m contains at least two non-zero elements. Moreover,

when j > i the column of non-zero element in row i is prior to the column

of non-zero element in row j, and only when j = i+1 there is an overlapped

column. This structure ensures the full row rank of Πn
m. Hence, Πn

m(Πn
m)T

is invertible.

(ii) According to (21), one sees easily that Πm
n = β

α (Πn
m)

T
, hence, the full

column rank of Πn
m comes from the full row rank of Πm

n .

✷

The following proposition shows that the projection from factor dimension

space to multiple dimension space does not lose information.

Proposition 4.5. Let X ∈ Rm. Project it to Rkm and then project the image

back to Rm, the vector X remains unchanged. That is,

Πkm
m Πm

km = Im. (22)
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Proof. Πkm
m Πm

km = 1
k

(
Im ⊗ 1T

k

)
(Im ⊗ 1k) =

1
k

(
Im ⊗ 1T

k 1k

)
= Im. ✷

4.2. Continuous functions on DFESs

Now we are ready to define continuous functions on Ω.

Definition 4.6. Let f : Ω → R be a real function on Ω.

(i) Define f : R∞ → R, x 7→ f(x̄).

(ii) If for each point x̄ ∈ Ω there exists a neighborhood Ox̄ of x̄ such that on

each leaf Vr
Ox̄

⊂ Rrp f ∈ C(Vr
Ox̄

), then f is called a continuous function

on Ω.

(iii) If on each leaf of the bundle of coordinate neighborhood f ∈ Cr(Vr
Ox̄

), then

f is called a Cr function on Ω, where r = 1, 2, · · · ,∞, ω, r = ω means f

is an analytic function.

Remark 4.7. In definition 3.18, the set of coordinate neighborhood is used. In

fact, up to now only global coordinates are used. So the definition can also use

global coordinates. That is, consider Rrp as each leaf of the bundle of coordinate

neighborhood.

Constructing a differentiable function on Ω directly is very difficult. Our

technique to construct such a function is to transfer a smooth function on R∞

to Ω. Note that Rn is a clopen subset of R∞. f : R∞ → R is continuous, if

and only if, fn := f |Rn , n = 1, 2, · · · , are continuous. Hence, it is reasonable to

transfer an f ∈ Cr(Rn) to Ω.

Definition 4.8. Let f ∈ Cr(Rn). Define f̄ : Ω → R as follows: Let x̄ ∈ Ω and

dim(x̄) = m. Then

f̄(x̄) := f(Πm
n (x1)), x̄ ∈ Ω, (23)

where x1 ∈ x̄ is the smallest element in x̄.

Proposition 4.9. Assume f ∈ Cr(Rn), then the function f̄ defined by (23) is

Cr, that is, f̄ ∈ Cr(Ω).
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Proof. Given x̄ ∈ Ω, where dim(x̄) = m. Consider a leaf of the bundle of

coordinate neighborhood Vr
Ox̄

of x̄. Assume y ∈ Vr
Ox̄

, consider the following two

cases:

• Case 1: y ∈ Rrm is the smallest element of ȳ. By definition,

f̄(y) = f(Πrm
m y). (24)

• Case 2: y1 ∈ ȳ is the smallest element of ȳ and dim(y1) = ξ. Then there

exists s such that y = y1⊗1s. Since y ∈ Rrm, then ξs = mr. By definition,

f̄(y) = f(ȳ) = f(Πξ
my1). (25)

Denote z0 := Πξ
my1 ∈ Rm. Then z0 is the point on Rm, which is closest

to y1. Since y ↔ y1, According to Proposition 3.8, we know dV(z, y) =

dV(z, y1), z ∈ Rm. Hence, z0 is also the point on Rm which is closest to

y. That is, Πmr
m y = z0 = Πξ

my1. Hence, (25) becomes (24). It is obvious

that f̄ is a Cr function on Vr
Ox̄

.

✷

The following is a simple example.

Example 4.10. Given

f(x1, x2, x3) = x1 + x22 − x3 ∈ Cω(R3). (26)

(i) Assume ȳ ∈ Ω, where y1 = (ξ1, ξ2, ξ3, ξ4, ξ5)
T ∈ R5. It is easy to calculate

that

Π5
3 =

1

5

(
I3 ⊗ 1T

5

)
(I5 ⊗ 13) =

1

5








3 2 0 0 0

0 1 3 1 0

0 0 0 2 3







.

Hence we have

f̄(ȳ) = f(Π5
3y1) =

1

5
(3ξ1 + 2ξ2) +

1

25
(ξ2 + 3ξ3 + ξ4)

2 − 1

5
(2ξ4 + 3ξ5).

(ii) Assume ȳ ∈ Ω, where y1 = (ξ1, ξ2) ∈ R2.
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Consider V1
O: since Π2

3 = 1
2








1 0

0.5 0.5

0 1







, we have f̄ |V1

O
= ξ1 + 1

4 (ξ1 +

ξ2)
2 − ξ2.

Consider V2
O: since Π4

3 = 1
4








3 1 0 0

0 2 2 0

0 0 1 2







, we have f̄ |V2

O
= 1

4 (3ξ1 + ξ2) +

1
16 (ξ2 + ξ3)

2 − 1
4 (ξ3 + 3ξ4).

4.3. Least square approximation of linear systems

Consider a linear system

ξ(t+ 1) = Aξ(t), ξ(t) ∈ Rn. (27)

Our goal is to find a matrix Aπ ∈ Mm×m, and construct a linear system on

Rm as

x(t+ 1) = Aπx(t), x(t) ∈ Rm. (28)

Then take (28) as the projected system of (27) on Rm.

We are mainly concerning about the trajectories. The trajectory of the idea

projected system should satisfy the same projection relation. That is,

x(t, π(ξ0)) = πn
m(ξ(t, ξ0)). (29)

Unfortunately, it is, in general, impossible to realize this. So we can only search

such a system that makes the error of (29) smallest. Then a practical way is

that we can search for the least square approximation.

Proposition 4.11. Let system (27) be approximated by system (28). Then the

least square approximation satisfies

Aπ =







Πn
mA(Π

n
m)T

(
Πn

m(Πn
m)T

)−1
n ≥ m

Πn
mA

(
(Πn

m)TΠn
m

)−1
(Πn

m)T n < m.

(30)
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Proof. From (29) we have x(t) = Πn
mξ(t), with x0 = Πn

mξ0. Plugging it into

(28) yields

Πn
mξ(t+ 1) = AπΠ

n
mξ(t). (31)

Using (27) and noting that ξ(t) is arbitrary, we have

Πn
mA = AπΠ

n
m. (32)

Assume n ≥ m, right multiplying both sides of (32) by (Πn
m)T

(
Πn

m(Πn
m)T

)−1

yields the first equality of (30).

Assume n < m, we search a solution of the following form: Aπ = Ã(Πn
m)T .

Then the least square solution Ã can be obtained as Ã = Πn
mA

(
(Πn

m)TΠn
m

)−1
.

Hence, we have Aπ = Πn
mA

(
(Πn

m)TΠn
m

)−1
(Πn

m)T , which is the second equality

of (30) ✷

Using a similar argument to continuous time linear system, we have the

following result:

Corollary 4.12. Consider a continuous time linear system

ξ̇(t) = Aξ(t), ξ(t) ∈ Rn. (33)

Its least square projected system on Rm is

ẋ(t) = Aπx(t), x(t) ∈ Rm, (34)

where, Aπ is the same as in (30).

As an application, assume n is very large, that is, system (27) is a large

scale one. Then we may project it onto a lower dimensional space Vm, where,

m << n. That is, we have a lower dimensional trajectory to approximate

the original one, which might reduce the computational complexity. In the

sequel one may see that the projection of lower dimensional system into a higher

dimensional vector space is sometimes also necessary.

Similarly, the projection of linear control systems can also be obtained.
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Corollary 4.13. (i) Consider a discrete-time linear control system






ξ(t+ 1) = Aξ(t) +Bu, ξ(t) ∈ Rn

y(t) = Cξ(t), y(t) ∈ Rp.

(35)

Its least square projected system on Rm is






x(t+ 1) = Aπx(t) + Πn
mBu, x(t) ∈ Rm

y(t) = Cπx(t),

(36)

where, Aπ is defined as in (30). Moreover,

Cπ =







C(Πn
m)T

(
Πn

m(Πn
m)T

)−1
, n ≥ p

C
(
(Πn

m)TΠn
m

)−1
(Πn

m)T , n < p.

(37)

(ii) Consider a continuous time linear control system






ξ̇(t) = Aξ(t) +Bu, ξ(t) ∈ Rn

y(t) = Cξ(t), y(t) ∈ Rp.

Its least square projected system on Rm is






ẋ(t) = Aπx(t) + Πn
mBu, x(t) ∈ Rm

y(t) = Cπx(t), y(t) ∈ Rp,

where Aπ is defined as in (30), Cπ as in (37).

4.4. Approximation of linear dimension-varying systems

Consider a discrete-time linear dimension-varying system

ξ(t+ 1) = A(t)ξ(t), (38)

where ξ(t) ∈ Rn(t), ξ(t+ 1) ∈ Rn(t+1), A(t) ∈ Mn(t+1)×n(t).

We search its least square projection on Rm as

x(t+ 1) = Aπx(t). (39)

Similarly to the constant dimensional case, the following result can be ob-

tained.
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Proposition 4.14. Let (39) be the least square projected system of (38) on Rm.

Then

Aπ =







Π
n(t+1)
m A(Π

n(t)
m )T

(

Π
n(t)
m (Π

n(t)
m )T

)−1

n(t) ≥ m

Π
n(t+1)
m A

(

(Π
n(t)
m )TΠ

n(t)
m

)−1

(Π
n(t)
m )T n(t) < m.

(40)

An obvious advantage of this projection is the projected system is of constant

dimension.

Consider a continuous-time linear dimension-varying system

ξ̇(t) = A(t)ξ(t), (41)

where ξ(t) ∈ Rn(t), ξ(t+ 1) ∈ Rn(t+1), A(t) ∈ Mn(k)×n(k), k ≤ t < k + 1.

We search its least square projection on Rm as

ẋ(t) = Aπx(t). (42)

To use the previous technique, we assume the dimension of x(t) is piecewise

constant. Precisely speaking, we assume:

dim(ξ(t)) = dim(ξ(n)), n ≤ t < n+ 1. (43)

Then the following result can be obtained.

Proposition 4.15. Let (42) be the lease square projected system of (41) on

Rm. Under the assumption that (43) holds, the Aπ is as in (40).

Next, we consider dimension-varying linear control systems. Using similar

technique, it is easy to obtain the following projected control systems:

Proposition 4.16. (i) Consider a discrete-time linear dimension-varying con-

trol system







ξ(t+ 1) = A(t)ξ(t) +B(t)u

y(t) = C(t)ξ(t),

(44)
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where ξ(t) ∈ Rn(t), A(t), B(t) ∈ Mn(t+1)×n(t), C(t) ∈ Mp×n(t). Then

its least square projected control system is







x(t+ 1) = Aπ(t)x(t) + Π
n(t+1)
m Bu, x(t) ∈ Rm

y(t) = Cπ(t)x(t), y(t) ∈ Rp,

(45)

where Aπ is defined as in (40). Moreover,

Cπ =







C(t)(Π
n(t)
m )T

(

Π
n(t)
m (Π

n(t)
m )T

)−1

, n(t) ≥ p

C(t)
(

(Π
n(t)
m )TΠ

n(t)
m

)−1

(Π
n(t)
m )T , n(t) < p.

(46)

(ii) Consider a continuous-time linear dimension-varying control system







ξ̇(t) = A(t)ξ(t) +B(t)u

y(t) = C(t)ξ(t),

(47)

where ξ(t) ∈ Rn(t), A(t), B(t) ∈ Mn(k)×n(k), k ≤ t < k + 1, C(t) ∈
Mp×n(t). Assume (43) holds, then its least square projected system is







ẋ(t) = Aπ(t)x(t) + Π
n(t+1)
m Bu, x(t) ∈ Rm

y(t) = Cπ(t)x(t), y(t) ∈ Rp,

(48)

where Aπ is defined as in (40), Cπ as in (46).

Later on, it will be seen that the fixed-dimensional projected system is a

very useful realization of dimension-varying systems.

In the following an example is presented to depict projected system.

Example 4.17. Consider a dimension-varying system







ξ(t+ 1) = A(t)ξ(t) +B(t)u

y(t) = C(t)ξ(t),

(49)

where

ξ(t) ∈







R5, t is even,

R4, t is odd.
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A(t) =



















































































































A1 =





















1 0 −1 2 1

2 −2 1 1 −1

1 2 −1 −2 0

0 1 0 −1 2





















, t is even,

A2 =





























0 −1 2 1

2 1 1 −1

1 2 −1 0

0 1 0 −1

1 −1 0 1





























, t is odd.

, B(t) =



















































































































B1 =





















2 1

2 −1

1 2

0 −1





















, t is even,

B2 =





























2 1

1 −1

2 −1

0 −1

1 0





























, t is odd.

C(t) =







































C1 =







−1 2 1 1 −1

2 −1 −2 −1 2






, t is even,

C2 =







2 1 2 −1

0 1 0 −2






, t is odd.

A straightforward computation shows that

Π4
3 = (I3 ⊗ 1T

4 )(I4 ⊗ 13)/3 =








1 1/3 0 0

0 2/3 2/3 0

0 0 1/3 1







.

Π5
3 = (I3 ⊗ 1T

5 )(I5 ⊗ 13)/3 =








1 2/3 0 0 0

0 1/3 1 1/3 0

0 0 0 2/3 1







.

Then the projected system becomes







x(t+ 1) = Aπ(t)x(t) +Bπ(t)u

y(t) = Cπ(t)x(t),

(50)

where,

A(t) = Ã1; B(t) = B̃1; C(t) = C̃1 t is even,

A(t) = Ã2; B(t) = B̃2; C(t) = C̃2 t is odd,
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where

Ã1 = Π4
3A1(Π

5
3)

T
(
Π5

3(Π
5
3)

T
)−1

=








0.9316 −0.5556 1.6239

1.4325 −0.3111 −0.7214

1.0923 −0.6000 0.7077







;

Ã2 = Π5
3A2(Π

4
3)

T
(
Π4

3(Π
4
3)

T
)−1

=








0.8333 1.3333 0.8333

2.0500 1.2500 −1.0500

0.9167 −0.5833 0.4167







;

B̃1 = Π4
3B1 =








2.6667 1.3333

2.0000 2.0000

0.3333 −0.3333







; B̃2 = Π5

3B2 =








2.6667 0.3333

2.3333 −1.6667

1.0000 −0.6667







;

C̃1 = C1(Π
5
3)

T
(
Π5

3(Π
5
3)

T
)−1

=




−0.0359 1.7333 −0.4974

1.3333 −2.6667 1.3333



 ;

C̃2 = C2(Π
4
3)

T
(
Π4

3(Π
4
3)

T
)−1

=




1.7000 2.0000 −0.7000

0.0500 1.2500 −2.0500



 .

5. Differential Structures on DFMs

With the notion of continuous functions over DFESs, we proceed to endow

differential structures to a DFES, generalizing it to a dimension-free manifold.

5.1. From DFESs to DFMs

Definition 5.1. Given a fiber bundle (T, π,B).

(i) Let ∅ 6= O ⊂ B be an open set of B. Then (π−1(O), π, O) is called the

open sub-bundle (over O).

(ii) Let Oλ, λ ∈ Λ be an open cover of B, that is,
⋃

λ∈ΛOλ = B, then
{(
π−1(Oλ), π, Oλ

)}

λ∈Λ
is called an open cover of the fiber bundle (T, π,B).

Definition 5.2. Assume (T, π,B) is a fiber bundle, where both T and B are

second countable Hausdorff spaces. (T, π,B) is called a Cr DFEB with B as a

Cr DFM, if the following conditions are satisfied.
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(i) There is an open cover {(Wλ, π, Bλ)}λ∈Λ of (T, π,B).

(ii) For each (Wλ, π, Bλ) there exists an open sub-bundle
(
Pr−1(Oλ),Pr, Oλ

)

of (R∞,Pr,Ω) with two bijective mappings

Ψλ :Wλ → Pr−1(Oλ), ϕλ : Bλ → Oλ,

such that (Wλ, π, Bλ) and (Pr−1(Oλ),Pr, Oλ) are fiber bundle isomorphic,

that is, diagram (51) commutes.

Wλ
Ψλ

//

Pr

��

Pr−1(Oλ)

π

��

Bλ
ϕλ

// Oλ

(51)

(iii) Assume Bλ1

⋂
Bλ2 6= ∅. Then ϕ2 ◦ϕ−1

1 : ϕ1(Bλ1

⋂
Bλ2) → ϕ2(Bλ1

⋂
Bλ2)

is Cr.

The following proposition comes from definition immediately.

Proposition 5.3. Let T
π−→ B be a Cr DFEB. Set Mn :=

⋃

λ∈ΛΨ−1
λ (On

λ),

then Mn is an n-dimensional Cr manifold. Moreover, M =
⋃∞

n=1Mn.

The following example provides a DFM.

Example 5.4. Consider S∞ :=
⋃∞

n=1 Sn, where Sn is the n-dimensional unit

sphere in Rn+1, n = 1, 2, · · · . Denote by Pn = (0, · · · , 0
︸ ︷︷ ︸

n

,−1) and Qn =

(0, · · · , 0
︸ ︷︷ ︸

n

, 1) the north and south poles of the n-dimensional sphere respectively.

(i) Set Mn := Sn\Pn, and define a mapping Ψn : Mn → Rn by ξi =

xi

1+xn+1
, i = 1, 2, · · · , n.

DefineM =
⋃∞

n=1Mn, and using the inherent topology from Rn+1 for Mn,

and assume Mn are clopen in M . Then the mapping Ψ : M → R∞ is a

topological isomorphism.
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To see this, we have only to show that Ψ is bijective and Ψ−1 is also

continuous. It is clear from definition that

(ξ21 + · · ·+ ξ2n)(1 + xn+1)
2 =

n∑

i=1

x2i .

Then we have

‖ξ‖2(1 + xn+1)
2 + x2n+1 = 1. (52)

Solving Equation (52) and noting that xn+1 6= −1 yield

xn+1 =
1− ‖ξ‖2
1 + ‖ξ‖2 , (53)

and

xi = (1 + xn+1)ξi, i ∈ [1, n]. (54)

(53)-(54) show that Ψ−1 is also continuous.

Next, for a, b ∈M we define

a ∼M b⇔ Ψ(a) ↔ Ψ(b). (55)

Then we can define a mapping ψ :M/ ∼M→ Ω by

Ψ(a) = x⇒ ψ(ā) := x̄. (56)

Because of (55), (56) is properly defined.

Finally, we define π1 : M → M/ ∼M as π1 = ψ−1 ◦ Pr ◦Ψ. Then it is

ready to verify that (M,π1,M/ ∼M ) is a DFEB and M/ ∼S is a DFM.

(ii) Set Nn := Sn\Qn, and define a mapping Φn : Nn → Rn by

ηi =
xi

1− xn+1
, i = 1, 2, · · · , n. (57)

Similarly to case (i), from definition (57) we have

(η21 + · · ·+ η2n)(1− xn+1)
2 =

n∑

i=1

x2i .
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Then we have

‖η‖2(1 − xn+1)
2 + x2n+1 = 1. (58)

Solving Equation (58) and noting that xn+1 6= 1 yield

xn+1 =
‖η‖2 − 1

1 + ‖η‖2 , (59)

and

xi = (1 − xn+1)ηi, i ∈ [1, n]. (60)

(59)(60) show that Φ−1 is also continuous.

Next, for x, y ∈ N we define

x ∼N y ⇔ Φ(x) ↔ Φ(y),

and π2 : N → N/ ∼N as π2 = φ−1 ◦ Pr ◦Φ, where φ can be constructed

similarly as for ψ. Then (N, π2, N/ ∼N) is a DFEB and N/ ∼N is a

DFM.

(iii) Consider

S∞ =

∞⋃

n=1

Sn =M
⋃

N.

It is clear that {M,N} is an open cover of S∞. Consider (x1, · · · , xn+1) ∈
M

⋂
Sn. From (53)(54) we can solve x1, · · · , xn+1 out as xi(ξ), i ∈ [1, n+

1]. Similarly, for (x1, · · · , xn+1) ∈ N
⋂
Sn, using (59)(60) we can also

express x1, · · · , xn+1 as xi(η), i = 1, · · · , n+ 1.

Now, assume ξ̄ ∈ M/ ∼M and η̄ ∈ N/ ∼N , dim(ξ̄) = dim(η̄), and the

smallest elements in ξ̄ and η̄ are ξ1 and η1 respectively. Let dim(ξ1) =

dim(η1) = n. Then ξ̄ is said to be equivalent to η̄, denoted by ξ̄ ⇌ η̄, if

xi(ξ1) = xi(η1), ∀i = 1, · · · , n+ 1.

It is easy to see that ⇌ is an equivalence relation. Then we define

B :=
(

M/ ∼M

⋃

N/ ∼N

)

/⇌ . (61)
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Define

B1 := (M/ ∼M ) /⇌,

B2 := (N/ ∼N) /⇌ .

Then it is easy to verify that {B1, B2} is an open cover of B. Moreover,

it is ready to see that π1 : M → B1, π2 : N → B2 are consistent. Hence

π : S∞ → B can be defined as

π(x) :=







π1(x), x ∈M,

π2(x), x ∈ N.

(62)

We conclude that (S∞, π, B) is a DFEB with B a DFM.

Remark 5.5. Hereafter, to avoid notational mess, we consider only DFES. In

fact, all the following arguments can easily be extended to DFM. Hence in the

following the DFES can be considered as a bundle of coordinate chart, which

has a set of fixed coordinate frames on each leaves.

5.2. Vector fields on DFESs

First, we define the tangent space of Ω.

Definition 5.6. Let x̄ ∈ Ω and dim(x̄) = m. Then the tangent space of x̄,

called the tangent bundle at x̄ and denoted by Tx̄(Ω), is defined by

Tx̄(Ω) := R[m,·]. (63)

Remark 5.7. (i) When Ω is replaced by a DFM, Definition 5.6 can only be

considered as for a given fixed set of coordinate charts.

(ii) Consider Ω. Then we assume on each leaf of Tx̄(Ω), say Rs, where s =

km, the coordinate frame is fixed as (x1, x2, · · · , xs). Then the basis of

the leaf is { ∂
∂x1

, ∂
∂x2

, · · · , ∂
∂xs

}. Hence each vector at Tx̄(Ω), denoted be

(a1, a2, · · · , as), is an operator
s∑

i=1

ai
∂

∂xi
. Of course, this operator can be

extended to coordinate-free form for DFM. But restricting on Ω can avoid

the complexity of expression.
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x̄

x3 T 3
x̄

M

Figure 2: Tangent Bundle on Dimension-Free Manifold

Recall the definition of bundle of coordinate neighborhood of DFES. (refer

to Figure 1), it is easily seen that for each x̄ ∈ Ω the bundle of coordinate

neighborhood coincides with its tangent bundle.

When a DFM M is considered, Let x̄ ∈ M and dim(x̄) = m, then the

tangent bundle Tx̄(M) is depicted at Figure 2, where T i
x̄ = Rim, i = 1, 2, · · · .

That is, Tx̄(M) = R[m,.].

If we consider the tangent space over whole Ω, that is,

T (Ω) :=
⋃

x̄∈Ω

Tx̄,

Then it is obvious that T (Ω) = R∞.

Next, we define vector fields on Ω. The following definition is also available

for DFMs.

Definition 5.8. X̄ is called a Cr vector field on Ω, denoted by X̄ ∈ V r(Ω), if

it satisfies the following condition:

(i) At each point x̄ ∈ Ω, there exists p = px̄ = µx̄ dim(x̄), called the dimension

of the vector field X̄ at x̄ and denoted by dim(X̄x̄), such that X̄ assigns
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to the bundle of coordinate neighborhood at x̄ a p sub-lattice, V [p,·]
O =

{Op, O2p, · · · }, then at each leaf of this sub-lattice the vector field assigns

a vector Xj ∈ Txjµ
(Ojp), j = 1, 2, · · · .

(ii) {Xj | j = 1, 2, · · · } satisfy consistence condition, that is, Xj = X1 ⊗
1j , j = 1, 2, · · · .

(iii) At each leaf Ojp ⊂ Rjµ dim(x̄),

X̄|Ojp ∈ V r(Ojp). (64)

Definition 5.9. A vector field X̄ ∈ V r(Ω) is said to be dimension bounded, if

max
x̄∈Ω

dim(X̄x̄) <∞.

In the following a method is presented to construct a Cr vector field on Ω.

The method is similar to the construction of continuous functions. It is first

built on Vm = Rm, and then extended to T (Ω) = R∞.

Algorithm 5.10. • Step 1: Assume there exists a smallest dimension m >

0, such that X̄ is defined over whole Rm. That is,

X̄ |Rm := X ∈ V r(Rm). (65)

From the constructing point of view: A vector field X ∈ V r(Rm) is firstly

given, such that the value of X̄ at leaf Rm is uniquely determined by (65).

• Step 2: Extend X to Tȳ. Assume dim(ȳ) = s, denote m∨ s = t, t/m = α,

t/s = β. Then dim(Tȳ) = t. Let y ∈ ȳ
⋂
R[t,·], and dim(y) = kt,

k = 1, 2, · · · . Define

X̄(y) := Πm
ktX(Πkt

my), k = 1, 2, · · · . (66)

Theorem 5.11. (i) The X̄ generated by Algorithm 5.10 is a Cr vector field,

that is, X̄ ∈ V r(Ω).

(ii) If X̄ ∈ V r(Ω) is dimension bounded, then X̄ can be generated by Algorithm

5.10.
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Proof.

(i) By definition, for any ȳ ∈ Ω and assume dim(ȳ) = s, then on a sub-lattice

R[t,·] of the bundle of coordinate neighborhood of ȳ (Since only the DFES

is considered now, each leaf of the bundle of coordinate neighborhood can

be whole Euclidean space.) a vector X̄y is assigned. In the following we

prove that the set of such vectors are consistent. Assume dim(y) = kt =

kβm, when k = 1, y = yβ, then

X̄(yβ) = Πm
βmX(Πβm

m yβ)

= (Iβm ⊗ 1T
1 )(Im ⊗ 1β)X(Πβm

m yβ)

= (Im ⊗ 1β)X(Πβm
m yβ)

= X(Πβm
m yβ)⊗ Iβ .

Similar calculation shows that

X̄(ykβ) = X(Πkβm
m ykβ)⊗ Ikβ .

Since yβ ↔ ykβ , then Πkβm
m ykβ = Πβm

m yβ . Hence,

X̄(ykβ) = X̄(yβ)⊗ 1k.

The consistence is proved.

Finally, we show (64) holds. That is, to show that on leaf Rjp, X̄ is a Cr

vector field. Since on a leaf all the points are of the same dimension, then

the construction (66) ensures X̄|Rjp is a Cr vector field.

(ii) Assume X̄ is dimension bounded, set

m := lcm
{
dim(X̄x̄) | x̄ ∈ Ω

}
.

Then it is clear that X := X̄ |Rm ∈ Cr(Rm). Moreover, since X̄ satisfies

Definition 5.8, then starting from this X , the vector field constructed by

(66) coincides with X̄.

✷
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Hereafter, we consider only dimension bounded vector fields. This is because

note only they are easily constructible, but also they are practically useful in

modeling dynamic systems.

We construct an example.

Example 5.12. Let X = (x1 + x2, x
2
2)

T ∈ Cω(R2). Assume X̄ ∈ Cω(Ω) is

generated by X.

(i) Consider ȳ ∈ Ω, dim(ȳ) = 3, Denote y1 = (ξ1, ξ2, ξ3)
T ∈ R3. Since

2 ∧ 3 = 6, X̄ at

ȳ
⋂

R6k = {y2, y4, y6, · · · }

is well defined.

Now consider y2.

X̄(y2) = Π2
6X(Π6

2(y2)) = (I2⊗13)X

(
1

3
(I2 ⊗ 1T

3 )(y1 ⊗ 12)

)

=

















2
3 (ξ1 + ξ2 + ξ3)

2
3 (ξ1 + ξ2 + ξ3)

2
3 (ξ1 + ξ2 + ξ3)

1
9 (ξ2 + 2ξ3)

2

1
9 (ξ2 + 2ξ3)

2

1
9 (ξ2 + 2ξ3)

2

















Consider y4, similar calculation shows that

X̄(y4) = Π2
12X(Π12

2 (y4)) = X̄(y2)⊗ 12.

In fact, we have

X̄(y2k) = X̄(y2)⊗ 1k, k = 1, 2, · · · .

(ii) Consider X̄|R6 :
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Assume z = (z1, z2, z3, z4, z5, z6)
T ∈ R6. Then

X6 := X̄z = Π2
6X(Π6

2z) =

















1
3 (z1 + z2 + z3 + z4 + z5 + z6)

1
3 (z1 + z2 + z3 + z4 + z5 + z6)

1
3 (z1 + z2 + z3 + z4 + z5 + z6)

1
9 (z4 + z5 + z6)

2

1
9 (z4 + z5 + z6)

2

1
9 (z4 + z5 + z6)

2

















. (67)

X6 ∈ V ω(R6) is a standard vector field.

Next, we consider the integral curve of a vector field on Ω.

Definition 5.13. Assume X̄ ∈ Cr(Ω), X ∈ Cr(Rn) is its generator, if X =

X̄|Rn . The generator of smallest dimension is called the minimum generator.

The following result is an immediate consequence of the definition and The-

orem 5.11.

Proposition 5.14. Assume X̄ ∈ V r(Ω).

(i) If X ∈ V r(Rn) is its generator, then X ⊗ 1s ∈ V r(Rsn) is also its

generator.

(ii) If X ∈ V r(Rn) is its generator, Y ∈ V r(Rm), m < n is also its generator,

then m|n, and X = Y ⊗ 1n/m.

(iii) Assume X̄ ∈ V r(Ω) is dimension bounded, then it has at least one gener-

ator, and hence has a minimum generator.

Definition 5.15. Let X̄ ∈ Cr(Ω). x̄(t, x̄0) is called the integral curve of X̄

with initial value x̄0, denoted by x̄(t, x̄0) = ΦX̄
t (x̄0), if for each initial value

x0 ∈ x̄0
⋂
Rn, and each generator of X̄, denoted by X = X̄|Rn , the following

condition holds:

ΦX̄
t (x̄0)|Rn = ΦX

t (x0), t ≥ 0. (68)
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Next, we consider the existence and the properties of integral curve. First,

assume X = X̄|Rn is the smallest generator of X̄. Then, all the generators of X̄

are Xk = X̄ |Rkn , k = 1, 2, · · · . Now assume x̄0 ∈ Ω, dim(x̄0) = j, and j∨n = s,

then,

x̄
⋂

Rℓ 6= ∅,

if and only if, ℓ = ks, k = 1, 2, · · · . Denote xs0 = x̄0
⋂
Rs, then

ΦXs

t (xs0) = ΦX̄
t (x̄0)|Rs .

Moreover,

ΦX̄
t (x̄0)|Rks = ΦXks

t (xks0 ) = ΦXs

t (xs0)⊗ 1k.

Hence, the integral curve of X̄ with initial value x̄0 is a set of integral curves

defined on the sublattice bundle R[s,·] = {Rks | k = 1, 2, · · · }, and they are all

equivalent. That is, for any 0 ≤ k, k′ <∞

ΦXks

t (xks0 ) ↔ Φ
Xk′s

t (xk
′s

0 ), ∀t ≥ 0.

Example 5.16. Recall Example 5.12 Let X̄ ∈ Ω be generated by X = (x1 +

x2, x
2
2)

T ∈ Cω(R2), and assume the initial value is x̄0 ∈ Ω, dim(x̄0) = 3, i.e.,

x1 = (ξ1, ξ2, ξ3)
T . Find the integral curve of X̄ initiated at x̄0.

Since 2 ∨ 3 = 6, the integral curve is a set of equivalent curves defined on

R6k, k = 1, 2, · · · . We can first calculate the one defined on R6, X|R6 := X6, it

is calculated by (67). Note that x02 := x̄0
⋂
R6, then x02 = (ξ1, ξ1, ξ2, ξ2, ξ3, ξ3)

T .

Hence the integral curve is ΦX6

t (x02). It follows that

ΦX̄
t (x̄0) =

{

ΦX6

t (x02)⊗ 1k | k = 1, 2, · · ·
}

. (69)

5.3. Distributions on DFESs

Definition 5.17. A distribution D̄ on Ω is a rule, which assigns at each point

x̄ ∈ Ω a sub-lattice of its bundle of coordinate neighborhood Ox̄, denoted by

Oj = Ox̄ ∩ Rjrs, r ∈ Z+, s = dim(x̄), j = 1, 2, · · · , and on the tangent space

of xjr ∈ Ojr, Txjr
(Rjrs), a subspace Dj(xrj) ⊂ Txrj

(Rrjs). Moreover, this set

of subspaces satisfies the consistence condition, i.e.,

Dj(xrj) = D1(xr)⊗ 1j, j = 1, 2, · · · . (70)
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Similarly to vector fields, a distribution can be construct as follows: First, a

distribution can be defined on a leaf Vm = Rm, then it is extended to T (Ω) =

R∞.

Algorithm 5.18. • Step 1: Assume m is the smallest one, such that D̄ is

defined on leaf Rm. That is,

D̄|Rm := D(x) ⊂ T r(Rm). (71)

• Step 2: Extend D(x) to Tȳ(Ω). Let dim(ȳ) = s, and m ∨ s = t, t/m = α,

t/s = β. Then dim(Tȳ) = t. Assume y ∈ ȳ
⋂
R[t,·], and dim(y) = kt,

k = 1, 2, · · · . Define

D(y) := Πm
ktD(Πkt

my), k = 1, 2, · · · . (72)

Similarly to vector fields, the following result can be obtained.

Theorem 5.19. The D̄ constructed by Algorithm 5.18 is a distribution on Ω.

That is, D̄(x̄) ⊂ Tx̄(Ω), ∀x̄ ∈ Ω.

The most commonly used distributions are expanded by a set of vector fields.

Definition 5.20. Assume X̄i ∈ V r(Ω) and dim(X̄i) = mi, i ∈ [1, n], and m =

lcm{mi | i ∈ [1, n]}. Moreover, let X̄i|Rm = Xi, and Dm(x) ⊂ T (Rm) be the

distributions generated by the expansions of Xi, i ∈ [1, n]. Then the distribution

D̄ ⊂ T (Ω) constructed by Dm(x)s, s = 1, 2, · · · is called the distribution spanned

by X̄i, i ∈ [1,m].

Definition 5.21. Assume X̄i ∈ V∞(Ω), dim(X̄i) = mi, i = 1, 2, and m =

m1 ∨m2. Then the Lie bracket of X̄1 and X̄2 is defined by

[X̄1, X̄2] := X̄ ∈ V∞(Ω) (73)

where X̄ is the vector field determined by generator X, and

X = [X̄1

∣
∣
Rm , X̄2

∣
∣
Rm ].
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Example 5.22. Assume X̄, Ȳ ∈ V∞(Ω), X̄ and Ȳ are generated by X0 ∈
V∞(R2) and Y0 ∈ V∞(R3), where

X0(x) = [x1 + x2, x
2
2]

T ,

Y0(y) = [y21 , 0, y2 + y3]
T .

(74)

Then m = 2 ∨ 3 = 6. On leaf R6, we have

X(z) := Π2
6X0(Π

6
2z) = [α, α, α, β, β, β]T ,

where,

α =
1

3
(z1 + z2 + z3 + z4 + z5 + z6), β =

1

9
(z4 + z5 + z6).

Y (z) := Π3
6Y0(Π

6
3z) = [γ, γ, 0, 0, µ, µ]T ,

where,

γ =
1

4
(z1 + z2)

2, µ =
1

2
(z3 + z4 + z5 + z6).

Then Z̄ := [X̄, Ȳ ], which is generated by Z0 ∈ V∞(R6), and

Z0 = [X,Y ] = ∂Y
∂z X − ∂X

∂z Y

= [a, a, b, c, d, d]T .

where

a = 1
3 (z1 + z2)(z1 + z2 + z3 + z4 + z5 + z6)− 1

6 (z1 + z2)
2 − 1

3 (z3 + z4 + z5 + z6)

b = − 1
6 (z1 + z2)

2 − 1
3 (z3 + z4 + z5 + z6)

c = − 2
9 (z4 + z5 + z6)(z3 + z4 + z5 + z6)

d = 1
6 (z1 + z2 + z3 + z4 + z5 + z6) +

1
6 (z4 + z5 + z6)

2

− 2
9 (z4 + z5 + z6)(z3 + z4 + z5 + z6)

Definition 5.23. (i) Distribution D̄(x̄) ⊂ Tx̄(Ω), x̄ ∈ Ω is called an involu-

tive distribution, if any two vector fields X̄, Ȳ ∈ D̄ satisfy [X̄, Ȳ ] ∈ D̄.

(ii) Let X̄i, i ∈ [1, n] be given. The involutive distribution generated by

{X̄i | i ∈ [1, n]}, or equivalently, the smallest involutive distribution con-

taining {X̄i | i ∈ [1, n]}, is called the Lie algebra generated by {X̄i | i ∈
[1, n]}, denoted by

〈
X̄i | i ∈ [1, n]

〉

LA
.
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6. Dimension-free Riemannian Manifolds

Parallel to the previous discussions, this section introduce the tensor fields

and co-distributions on a DFES, and use them to define the Riemannian and

symplectic structure over DFESs.

6.1. Co-vector fields and co-distributions on DFESs

First, we define the cotangent space on DFES Ω.

Definition 6.1. Let x̄ ∈ Ω and dim(x̄) = m. Then the cotangent space at x̄,

called the cotangent bundle at x̄ and denoted by T ∗
x̄ (Ω), is defined by

T ∗
x̄ (Ω) := V∗[m,·]. (75)

Remark 6.2. When Ω is replaced by DFM, Definition 6.1 remains available.

Similarly to tangent bundle, for a given x̄ ∈ Ω, each leaf of its cotangent

bundle is an Euclidean space. Moreover, the cotangent bundle at each point

is a sub-lattice of R∞. If Ω is replaced by a DFM, then the cotangent bundle

is similar to tangent bundle. Hence, the Figure 2 may also be considered as a

description of cotangent bundle of DFM.

Next, we define co-vector field on Ω. The following definition is also appli-

cable to DFM.

Definition 6.3. ω̄ is called a Cr co-vector field on Ω, denoted by ω̄ ∈ V ∗r(Ω),

if it satisfies the following conditions:

(i) At each point x̄ ∈ Ω, there exists a p = px̄ = µx̄ dim(x̄), called the di-

mension of co-vector field ω̄ at x̄, denoted by dim(ω̄x̄), such that ω̄ as-

signs a p-upper sub-lattice of the bundle of coordinate neighborhood at x̄

as V [p,·]
O = {Op, O2p, · · · }, and then a set of co-vectors ωj ∈ T ∗

xjµ
(Ojp),

j = 1, 2, · · · .

(ii) {ωj | j = 1, 2, · · · } satisfy consistent condition, that is,

ωj = ω1 ⊗ 1

j
1T
j , j = 1, 2, · · · . (76)
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(iii) On each leaf Ojp ⊂ Rjµ dim(x̄),

ω̄|Ojp ∈ V ∗r(Ojp). (77)

Definition 6.4. ω̄ ∈ V ∗r(Ω) is said to be dimension bounded, if

max
x̄∈Ω

dim(ω̄x̄) <∞. (78)

Similarly to the vector field, the co-vector field can be constructed as follows:

First, define it on a leaf Vm = Rm, then extend it to T ∗(Ω) = R∞.

Algorithm 6.5. • Step 1: Assume there exists a smallest m, such that ω̄

is defined on Rm. That is

ω̄|Rm := ω ∈ V ∗r(Rm). (79)

From constructing point of view, assume ω ∈ V ∗r(Rm), then ω̄ is defined

on Rm as in (79).

• Step 2: Extend ω to T ∗
ȳ . Assume dim(ȳ) = s, m∨s = t, t/m = α, t/s = β,

and then dim(Tȳ) = t. Let y ∈ ȳ
⋂
R[t,·], and dim(y) = kt, k = 1, 2, · · · .

Define

ω̄(y) := ω(Πkt
my)Π

kt
m , k = 1, 2, · · · . (80)

Similarly to the case of vector fields, we can prove the following theorem:

Theorem 6.6. (i) The ω̄ constructed by Algorithm 6.5 is a Cr co-vector field,

that is, ω̄ ∈ V ∗r(Ω).

(ii) If ω̄ ∈ V ∗r(Ω) is dimension bounded, then any ω̄ can be constructed

through Algorithm 6.5.

Similarly to vector fields, hereafter we consider only dimension bounded co-

vector fields.

Similarly to vector fields, co-vector fields are defined on a sub-lattice of the

bundle of coordinate neighborhood of a point x̄ ∈ Ω. Assume ω = ω̄|Rn is
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the smallest generator of ω̄. Then, all the generators of ω̄ are ωk = ω̄|Rkn ,

k = 1, 2, · · · . Now assume x̄0 ∈ Ω and dim(x̄0) = j. Denote j ∨ n = s, then,

x̄
⋂

Rℓ 6= ∅,

if and only if, ℓ = ks, k = 1, 2, · · · .
In fact, a co-vector field can also be considered as a function of vector field.

Hence, the consistence of co-vector fields and vector fields is important. The

following proposition shows this consistence.

Proposition 6.7. Let X̄ ∈ V r(Ω), ω̄ ∈ V ∗r(Ω), and dim(X̄) = dim(ω̄). Then

at any point x̄ ∈ Ω and the sub-lattice of the bundle of coordinate neighborhood

of x̄ where both X̄ and ω̄ are well defined, the action of ω̄ on X̄, denoted by

ω̄(X̄), is uniquely defined. That is, on xk = x̄
⋂
Rkp, k = 1, 2, · · · ,

ω̄(X̄)|xk
= const., k = 1, 2, · · · . (81)

Proof. Denote dim x = s, dim(X̄) = dim(ω̄) = m. According to the previous

argument, it is clear that the sub-lattice, where both X̄ and ω̄ are defined, is

{xp, x2p, · · · }, where, p = s ∨m. To prove (81), it is enough to show that

ω̄(X̄)|xk
= ω̄(X̄)|x1 , k = 1, 2, · · · . (82)

Assume p = rm, then

ω1 = ω (Πrm
m (xp)) Π

rm
m , ωk = ω

(
Πrkm

m (xkp)
)
Πrkm

m ,

X1 = Πm
rmX (Πrm

m (xp)) , Xk = Πm
rkmX

(
Πrkm

m (xkp)
)
,

Using which we have

ω1(X1) = ω (Πrm
m (xp))Π

rm
m Πm

rmX (Πrm
m (xp))

ωk(Xk) = ω
(
Πrkm

m (xkp)
)
Πrkm

m Πm
rkmX

(
Πrkm

m (xkp)
) (83)

Since xp ↔ xkp, then Πrm
m (xp) = Πrkm

m (xkp). Hence, to prove (83) it is enough

to show

Πrm
m Πm

rm = Πrkm
m Πm

rkm.
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A straightforward computation shows

Πrm
m Πm

rm = Πrkm
m Πm

rkm = 1.

✷

Co-vector field is also called one-form. Assume f̄ ∈ Cr(Ω), then on each leaf

Rm fm := f̄ |Rm has its differential

dfm = (
∂fm

∂x1
,
∂fm

∂x2
, · · · , ∂f

m

∂xm
). (84)

Then one sees easily that

Proposition 6.8. (84) generates a co-vector field.

Proof. Taking dfm as the smallest generator of a co-vector field. Consider

the differential of f̄ on Rkm. Assume y ∈ Rkm, consider f(Πkm
m y). A simple

computation shows that

df(Πkm
m y) =

(
∂fm

∂x1
|Πkm

m y, · · · ,
∂fm

∂xm
|Πkm

m y

)

Πkm
m = df(Πkm

m y)Πkm
m y. (85)

This fact shows that the differential of f̄ on leaf Rkm is exactly the co-vector

field deduced by dfm. ✷

Definition 6.9. A co-distribution D̄∗ on Ω is a rule, which assigns at each

point x̄ ∈ Ω a sub-lattice Oj = Ox̄ ∩ Rjrs, r ∈ Z+, s = dim(x̄), j =

1, 2, · · · , of its bundle of coordinate neighborhood Ox̄, and a sub-space D∗
j (xrj) ⊂

T ∗
xrj

(Rrjs) at xjr ∈ Ojr. Moreover, this set of sub-spaces of T ∗
xjr

(Rjrs) satisfy

the consistence condition, i.e.,

D∗
j (xrj) = D∗

1(xr)⊗ 1T
j , j = 1, 2, · · · . (86)

Similarly to distribution, a Cr co-distribution on Ω can be constructed as

follows:

Algorithm 6.10. • Step 1: Assume m is the smallest one, such that D̄∗ is

defined on Rm. That is,

D̄∗|Rm := D∗(x) ⊂ T ∗r(Rm).
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• Step 2: Extend D∗(x) to T ∗
ȳ (Ω). Assume dim(ȳ) = s, m∨s = t, t/m = α,

t/s = β, and dim(T ∗
ȳ ) = t. Let y ∈ ȳ

⋂
R[t,·], and dim(y) = kt, k =

1, 2, · · · . Define

D∗(y) := D∗(Πkt
my)Π

kt
m , k = 1, 2, · · · .

Similarly to distributions, the most important co-distributions are generated

by a set of co-vector fields.

6.2. Tensor fields on quotient spaces

Let

φ : V (Rm)× · × V (Rm)
︸ ︷︷ ︸

r

×V ∗(Rm)× · × V ∗(Rm)
︸ ︷︷ ︸

s

→ R

be an (r, s) th order tensor field on Rm, where r is the covariant order and s is

the contro-variant order. The set of (r, s) th order tensor fields is denoted by

T r
s (R

m). Let {e1, e2, · · · , em} be a basis of V (Rm), and {d1, d2, · · · , dm} be a

basis of V ∗(Rm). Then

γi1,i2,··· ,irj1,j2,··· ,js
:= φ (ei1 , ei2 , · · · , eir , dj1 , dj2 , · · · , djs) ,

1 ≤ i1, · · · , ir ≤ m, 1 ≤ j1, · · · , js ≤ m,
(87)

are called the structure parameters of φ. Using structure parameters, the struc-
ture matrix is constructed as follows:

Γφ :=

















































γ11···1
11···1 · · · γ11···m

11···1 · · · γmm···1
11···1 · · · γmm···m

11···1

.

.

. · · ·

.

.

. · · ·

.

.

. · · ·

.

.

.

γ11···1
11···m · · · γ11···m

11···m · · · γmm···1
11···m · · · γmm···m

11···m

.

.

. · · ·

.

.

. · · ·

.

.

. · · ·

.

.

.

γ11···1
mm···1 · · · γ11···m

mm···1 · · · γmm···1
mm···1 · · · γmm···m

mm···1

.

.

. · · ·

.

.

. · · ·

.

.

. · · ·

.

.

.

γ11···1
mm···m · · · γ11···m

mm···m · · · γmm···1
mm···m · · · γmm···m

mm···m

















































(88)

Using this structure matrix, we have the evaluation formula for φ as

φ(X1, · · · , Xr, ω1, · · · , ωs) = ωs · · ·ω1ΓφX1 · · ·Xr. (89)

In the following we construct a tensor field on Ω, denoted by Ξ̄ ∈ T r
s (Ω).

Assume Ξ ∈ T r
s (R

m) is the smallest generator of Ξ̄ ∈ T r
s (Ω), and denote

Ξ̄|Rkm := Ξk.

47



Then it is enough to construct the structure matrix Ξk, k = 1, 2, · · · .
It is clear that Ξk should satisfy the following requirement: for anyX1, · · · , Xr ∈

V r(Rm) and ω1, · · · , ωs ∈ V ∗r(Rm), their tensor value of Ξ should be the same

as the value of Ξk with its arguments as the projected vectors and co-vectors to

Rkm. That is,

Ξ(x)(X1(x), · · · , Xr(x), ω1(x), · · · , ωs(x))

= Ξk(y)(π
k
km(X1(x(y)), · · · , πk

km(Xr(x(y)), π
k
km(ω1(x(y)), · · · , πk

km(ωs(x(y))),

(90)

where y = Πm
km(x), x(y) = Πkm

m (y).

Let Γ(x) be the structure matrix of Ξ and Γk(y) be the structure matrix

ofΞk. Then (90) can be expressed as

ωs(x) · · ·ω1(s)Γ(x)X1(x) · · ·Xr(x)

= ωs(Π
km
m y)Πkm

m · · ·ω1(Π
km
m y)Πkm

m Γk(y)Π
m
kmX1(Π

km
m (y)) · · ·Πm

kmXr(Π
km
m (y))

= ωs(x) · · ·ω1(x)
(
I(s−1)m ⊗Πkm

m

)
· · ·

(
Im ⊗Πkm

m

)
Πkm

m Γk(y)Π
m
km (Im ⊗Πm

km) · · ·
(
I(r−1)m ⊗Πm

km

)
X1(x) · · ·Xr(x).

Hence we have

Γ(x) =
(
I(s−1)m ⊗Πkm

m

)
· · ·

(
Im ⊗Πkm

m

)
Πkm

m Γk(y)P
m
km (Im ⊗Πm

km) · · ·
(
I(r−1)m ⊗Πm

km

)
.

(91)

It follows immediately that

Γk(y) := Πm
km (Im ⊗Πm

km) · · ·
(
I(s−1)m ⊗Πm

km

)
Γ(Πkm

m (y))
(
I(r−1)m ⊗Πkm

m

)

· · ·
(
Im ⊗Πkm

m

)
Πkm

m .

(92)

A straightforward verification shows that the Γk defined by (92) satisfies

(91).

Next, set x̄ ∈ Ω, dim(x̄) = s, s ∨m = p, and let p = µs = λm. Then, Ξ̄ is
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defined at x̄
⋂
Rkp, k = 1, 2, · · · . Denote xk = x̄

⋂
Rkp, then

Γ̄(xk) := Πm
kλm (Im ⊗Πm

kλm) · · ·
(
I(s−1)m ⊗Πm

kλm

)
Γ(Πkλm

m (xk))
(
I(r−1)m ⊗Πkλm

m

)
· · ·

(
Im ⊗Πkλm

m

)
Πkλm

m .

(93)

Example 6.11. Assume Ξ̄ ∈ T 2
1 (Ω), and its smallest generator is Ξ ∈ T 2

1 (R
2),

which has its structure matrix as

Γ(x) =




0 sin(x1 + x2) 0 cos(x1 + x2)

− cos(x1 + x2) 0,∼ (x1 + x2) 0



 (94)

(i) Find the structure matrix of Ξ̄|R4 .

Using formula (92), we have

Ξ̄|R4 = Π2
4Γ(Π

4
2(y))

(
I2 ⊗Π4

2

)
Π4

2

= Π2
4Γ([

y1+y2

2 , y3+y4

2 ])
(
I2 ⊗Π4

2

)
Π4

2

= 1
4




0 S 0 S 0 C 0 C

−C 0 −C 0 S 0 S 0



 ,

where

0 =







0 0

0 0







S =







sin
(
y1+y2+y3+y4

2

)
sin

(
y1+y2+y3+y4

2

)

sin
(
y1+y2+y3+y4

2

)
sin

(
y1+y2+y3+y4

2

)







C =







cos
(
y1+y2+y3+y4

2

)
cos

(
y1+y2+y3+y4

2

)

cos
(
y1+y2+y3+y4

2

)
cos

(
y1+y2+y3+y4

2

)







(ii) Assume x̄ ∈ Ω and dim(z̄) = 3. Then Ξ̄ is defined only on zkp, p = 2∨3 =

6, k = 1, 2, · · · . Using formula (93), we have

Ξ̄|z2 = Π2
6Γ(Π

6
2(z2))

(
I2 ⊗Π6

2

)
Π6

2

= Π2
6Γ([

2z1+z2
3 , z+2z3

3 ])
(
I2 ⊗Π6

2

)
Π6

2

= 1
9 [A,A,A,B,B,B] ⊗ 13×3,
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where

A =







0 sin
(

2(z1+z2+z3)
3

)

cos
(

2(z1+z2+z3)
3

)

0







B =







0 cos
(

2(z1+z2+z3)
3

)

sin
(

2(z1+z2+z3)
3

)

0







Remark 6.12. (i) The above constructing technique is applicable to tensor

fields on DFMs. Hence, we assume tensor fields on DFMs are also properly

defined.

(ii) A tensor field T 0
s is called a covariant tensor field. A tensor field T r

0 is

also called an r-form.

6.3. Dimension-free Riemannian manifolds and dimension-free symplectic man-

ifolds

Definition 6.13. Let Ξ ∈ T r
0 (Ω) be an r th order covariant tensor field.

(i) Ξ is said to be symmetric, if

Ξ(X1, · · · , Xr) = Ξ(Xσ(1), · · · , Xσ(r)), σ ∈ Sr. (95)

(ii) Ξ is said to be skew-symmetric, if

Ξ(X1, · · · , Xr) = sign(σ)Ξ(Xσ(1), · · · , Xσ(r)), σ ∈ Sr. (96)

Second order covariant tensor fields (or 2-forms) are of special importance.

Their structure matrices can also be expressed into a quadratic form as

MΞ =











γ11 γ12 · · · γ1n

γ21 γ22 · · · γ2n

...

γn1 γn2 · · · γnn











(97)

Using this structure matrix, the tensor field can be the expressed into a

classical quadratic form as

Ξ(X1, X2) = XT
1 MΞX2. (98)
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Then we have

Proposition 6.14. Ξ̄ ∈ T 2(Ω) is symmetric (skew-symmetric), if and only

if, its smallest generator Ξ is symmetric (skew-symmetric). That is, it has a

symmetric (skew-symmetric) structure matrix.

Definition 6.15. Consider Ω. Assume there is an order 2 covariant tensor

field Ξ̄ ∈ T 2(Ω).

(i) (Ω, Ξ̄) is called a dimension-free Riemannian manifold, if Ξ̄ is generated

by Ξn = Ξ̄|Rn and (Rn,Ξn) is a Riemannian manifold. That is, Ξn :=

Ξ̄|Rn ∈ T 2(Rn) has a symmetric positive definite structure matrix MΞn
.

(ii) (Ω, Ξ̄) is called a dimension-free symplectic manifold, if Ξ̄ is generated by

Ξn = Ξ̄|Rn , where n = 2m is even, and (Rn,Ξn) is a symplectic manifold.

That is, Ξ2m := Ξ̄|R2m ∈ T 2(R2m) has a skew-symmetric, non-singular

structure matrix MΞ2m , and Ξ is closed.

Remark 6.16. An r form Ξ is closed if dΞ = 0 [2]. Let Ξ ∈ T 2(Rn). Ξ is

closed, if and only if, its structure coefficients satisfy[13]

∂

∂xi
(γjk) +

∂

∂xj
(γki) +

∂

∂xk
(γij) = 0, 1 ≤ i, j, k ≤ n. (99)

Definition 6.17. (i) A DFM M with a two-form Θ̄ is called a dimension-

free Riemannian manifold, if there exists an open sub-bundle cover of M

such that each open sub-bundle is bundle isomorphic to an open sub-bundle

of a Riemannian manifold of Ω with Riemannian two-form Ξ̄. Moreover,

Θ̄ is isomorphic consistently to Ξ̄.

(ii) A DFM M with a two-form Θ̄ is called a dimension-free symplectic man-

ifold, if there exists an open sub-bundle cover of M such that each open

sub-bundle is bundle isomorphic to an open sub-bundle of a symplectic

manifold of Ω with symplectic two-form Ξ̄. Moreover, Θ̄ is isomorphic

consistently to Ξ̄.

51



Remark 6.18. Let M1 and M2 be two DFMs, and Ψ : M1 → M2 be an iso-

morphism. Ξ̄i ∈ T r
s (Mi), i = 1, 2 are said to be isomorphic consistently, if

Ξ̄1(X1, · · · , Xr;ω1, · · · , ωs)

= Ξ̄2(Ψ∗(X1), · · · ,Ψ∗(Xr),Ψ
−1∗(ω1), · · · ,Ψ−1∗(ωs)),

X1, · · · , Xr ∈ V (M1), ω1, · · · , ωs ∈ V ∗(M1).

(100)

Example 6.19. Consider DEES Ω.

(i) Assume Ω has a two form σ̄ ∈ T 2(Ω) with its generator σ ∈ T 2(R2), and

the structure matrix of σ is Mσ =




0 −1

1 0



. Since Mσ is a symplectic

matrix, it is clear that (Ω, σ̄) is a dimension-free symplectic manifold.

Assume x̄ ∈ Ω and dim(x̄) = 2. Then σ̄ is defined on Tx̄ = {R2k | k =

1, 2, · · · }. Moreover, the structure matrix of σ̄(xk) is

Mk :=M |xk
= Π2

2kMσΠ
2k
2 =Mσ ⊗ Ik.

Assume ȳ ∈ Ω and dim(ȳ) = 3. Then σ̄ is defined on Tȳ = {R6k | k =

1, 2, · · · }. Moreover, the structure matrix of σ̄(y2k) is

Mk :=M |y2k
= Π2

6kMσΠ
6k
2 =Mσ ⊗ I3k.

(ii) Assume Ω has a two form ω̄ ∈ T 2(Ω), where ω is deduced from part of

sphere S2\P2. We refer to Example 5.4 for notations. Assume S2 has the

standard distance inherited from R3. Then the structure matrix of ω is

Mω = (
∂x

∂ξ
)T I3(

∂x

∂ξ
) =






∥
∥
∥

∂x
∂ξ1

∥
∥
∥

2 〈
∂x
∂ξ1

, ∂x
∂ξ2

〉

〈
∂x
∂ξ1

, ∂x
∂ξ2

〉 ∥
∥
∥

∂x
∂ξ2

∥
∥
∥

2




 ,

where ∥
∥
∥

∂x
∂ξ1

∥
∥
∥

2

=
(

∂x1

∂ξ1

)2

+
(

∂x2

∂ξ1

)2

+
(

∂x3

∂ξ1

)2

〈
∂x1

∂ξ ,
∂x2

∂ξ

〉

= ∂x1

∂ξ1
∂x1

∂ξ2
+ ∂x2

∂ξ1
∂x2

∂ξ2
+ ∂x3

∂ξ1
∂x3

∂ξ2
∥
∥
∥

∂x
∂ξ2

∥
∥
∥

2

=
(

∂x1

∂ξ2

)2

+
(

∂x2

∂ξ2

)2

+
(

∂x3

∂ξ2

)2

,
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and
∂x1

∂ξ1
=

2−2ξ21+2ξ22
(1+ξ21+ξ22)

2 ,
∂x1

∂ξ2
= −4ξ1ξ2

(1+ξ21+ξ22)
2

∂x2

∂ξ1
= −4ξ1ξ2

(1+ξ21+ξ22)
2 ,

∂x2

∂ξ2
=

2+2ξ21−2ξ22
(1+ξ21+ξ22)

2

∂x3

∂ξ1
= −4ξ1

(1+ξ21+ξ22)
2 ,

∂x3

∂ξ2
= −4ξ2

(1+ξ21+ξ22)
2

Hence, (Ω, ω̄) is a dimension-free Riemannian Manifold (DFRM).

Assume Θ has a two form θ̄ ∈ T 2(Θ), where θ is deduced from part of

sphere S2\Q2. Assume S2 has the standard distance inherited from R3.

Then the structure matrix of Θ is

Mθ = (
∂x

∂η
)T I3(

∂x

∂η
) =






∥
∥
∥

∂x
∂η1

∥
∥
∥

2 〈
∂x
∂η1

, ∂x
∂η2

〉

〈
∂x
∂η1

, ∂x
∂η2

〉 ∥
∥
∥

∂x
∂η2

∥
∥
∥

2




 ,

where ∥
∥
∥

∂x
∂η1

∥
∥
∥

2

=
(

∂x1

∂η1

)2

+
(

∂x2

∂η1

)2

+
(

∂x3

∂η1

)2

〈
∂x1

∂η ,
∂x2

∂η

〉

= ∂x1

∂η1

∂x1

∂η2
+ ∂x2

∂η1

∂x2

∂η2
+ ∂x3

∂η1

∂x3

∂η2
∥
∥
∥

∂x
∂η2

∥
∥
∥

2

=
(

∂x1

∂η2

)2

+
(

∂x2

∂η2

)2

+
(

∂x3

∂η2

)2

,

and
∂x1

∂η1
=

2−2η2
1+2η2

2

(1+η2
1+η2

2)
2 ,

∂x1

∂η2
= −4η1η2

(1+η2
1+η2

2)
2

∂x2

∂η1
= −4η1η2

(1+η2
1+η2

2)
2 ,

∂x2

∂η2
=

2+2η2
1−2η2

2

(1+η2
1+η2

2)
2

∂x3

∂η1
= −4η1

(1+η2
1+η2

2)
2 ,

∂x3

∂η2
= −4η2

(1+η2
1+η2

2)
2

Hence, (Θ, θ̄) is also a DFRM.

Combining Ω with Θ, one sees that S∞ is a DFRM too.

7. Dimension-Varying Dynamic (Control) Systems

7.1. Dynamic (control) systems over DFMs

7.1.1. Projection of dynamic (control) systems

Consider a dynamic system over Rp, described as

Σ : ẋ = F (x), x ∈ Rp. (101)
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Definition 7.1. Consider dynamic system (101). Its projection onto Rq is a

dynamic system over Rq, described as

πp
q (Σ) : ż = F̃ (z), z ∈ Rq, (102)

where

F̃ (z) = Πp
qF (Π

q
p(z)). (103)

Consider a control system

ΣC : ẋ = F (x, u), x ∈ Rp, u ∈ Rr. (104)

Definition 7.2. Consider control system (104). The u = u1, · · · , ur can be

considered as parameters. Then its projection to Rq can still be considered as a

projection of vector field as

πp
q (Σ

C) : ż = F̃ (z, u), z ∈ Rq, u ∈ Rr, (105)

where

F̃ (z, u) = Πp
qF (Π

q
p(z), u). (106)

Remark 7.3. The projection from Rp to Rq can be extended to a projection

from p dimensional manifold to q dimensional manifold. Then the above de-

scriptions can be considered as the expression over local coordinate charts.

The following is an example.

Example 7.4. Consider the following control system Σ:






ẋ1 = u1 sin(x1 + x2),

ẋ2 = u2 cos(x1 + x2).

(107)

(i) Project (107) onto R3. It is ready to calculate that

Π3
2 =

1

3




2 1 0

0 1 2



 , Π2
3 =

1

2








2 0

1 1

1 2







.
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Then the projected system π2
3(Σ) is calculated as







ż1 = u1 sin(
2
3 (z1 + z2 + z3)),

ż2 = 1
2

(
u1 sin(

2
3 (z1 + z2 + z3)) + u2 cos(

2
3 (z1 + z2 + z3))

)
,

ż3 = u2 cos(
2
3 (z1 + z2 + z3)).

(108)

(ii) Project (107) onto R4. We have

Π4
2 =

1

2




1 1 0 0

0 0 1 1



 , Π2
4 =











1 0

1 0

0 1

0 1











.

Then the projected system π2
4(Σ) is easily obtained as







ż1 = u1 sin(
1
2 (z1 + z2 + z3 + z4)),

ż2 = u1 sin(
1
2 (z1 + z2 + z3 + z4)),

ż3 = u2 cos(
1
2 (z1 + z2 + z3 + z4)),

ż4 = u2 cos(
1
2 (z1 + z2 + z3 + z4)).

(109)

(iii) Project (108) (i.e., π2
3(Σ)) back to R2, we have







ẋ1 = 1
6 (5u1 sin(x1 + x2) + cos(x1 + x2)) ,

ẋ2 = 1
6 (u1 sin(x1 + x2) + 5 cos(x1 + x2)) .

(110)

System (110) differs from the original system, which means the transfer

loses information.

(iii) Project (109) (i.e., π2
4(Σ)) back to R2, we have Σ, which means the transfer

is lossless.

Motivated by the above example, we can prove the following result.

Proposition 7.5. Let f(x) ∈ V∞(Rp) and q = kp. Then

πq
p ◦ πp

q (f(x)) = f(x). (111)
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Proof. First, a straightforward computation can prove the following equality:

Πkp
p Πp

kp = Ip. (112)

Using it, we have that

f(x)
πp

kp−−→ Πp
kpf

(
Πkp

p z
)

πkp
p−−→ Πkp

p Πp
kpf

(

Πkp
p Πp

kpx
)

= f(x).

✷

Remark 7.6. (i) Proposition 7.5 shows that when a vector field is projected

onto its multiple-dimension Euclidean space there is no information los-

ing. This is essential for constructing a control system on dimension-free

manifolds.

(ii) In previous sections, according to the definition of a vector field on R∞,

for a vector field on Rp only its integral curves over Rkp are considered.

That means only the projection of the vector field to Rkp are considered.

In current definition, the projection to ant Rs is allowed. In fact, only

when s = kp, the extension is lossless. When s 6= kp, the projected system

can only be considered as an approximated system of the original one. Its

integral curve can not be considered as the integral curve of the original

system, but only an approximation too.

7.1.2. Nonlinear control systems over Ω

To avoid counting the degrees of differentiability, the functions, vector fields,

etc. are assumed to be of C∞.

Definition 7.7. (i) A nonlinear control system over Ω, denoted by Σ̄, is

described by







˙̄x = F (x̄, u)

ȳs = h̄s(x̄), s ∈ [1, p],

(113)

56



where F (x̄, u) ∈ V∞(Ω), h̄s ∈ C∞(Ω), s ∈ [1, p] , u = (u1, u2, · · · , um)

are controls, which can be considered as parameters in F . ȳs, s ∈ [1,m]

are outputs.

(ii) Let f̄ , ḡj , j ∈ [1,m] ∈ V∞(Ω),







F (x̄, u) = f̄(x̄) +
m∑

j=1

ḡj(x̄)uj ,

ȳs = h̄s(x̄), s ∈ [1, p].

(114)

Then (114) is called an affine nonlinear control system over Ω.

(iii) Assume

q := lcm
(
dim(F (u)), dim(h̄s), s ∈ [1, p]

)
.

Then Σ̄|Rq := Σ is called the minimum generator of Σ̄, denoted by







ẋ = F (x, u), x ∈ Rq

ys = hs(x), s ∈ [1, p].

(115)

(iv) Σ̄ is said to be completely controllable (observable), if Σ is completely

controllable (observable).

Remark 7.8. (i) If the state space of minimum generator is on Rq, then, Σ̄

is well posed on Rkq, k = 1, 2, · · · . They will be called the realizations

of F (u). Unfortunately, the control properties, such as controllability,

observability, etc., of the realizations with different dimensions are not

the same. Hence the controllability and observability of Σ̄ are defined by

corresponding properties of its minimum generator.

(ii) Hereafter all the control properties of Σ̄ are referred to the corresponding

properties of its minimum generator.

7.2. Linear systems over DFMs

• Linear vector fields
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Let X̄ ∈ V∞(Ω) be a linear vector field and dim(X̄) = m. Then there exists

A ∈ Mm×m such that X := X̄|Rm = Ax. Consider X̄|Rkm : Let y ∈ Rkm. Then

Xk := X̄(y) = Πm
km(X

(
Πkm

m (y)
)
) = Πm

kmAΠ
km
m y := Aky, (116)

where,

Ak = Πm
kmAΠ

km
m =

1

k
(Im ⊗ 1k)A

(
Im ⊗ 1T

k

)
. (117)

Then we consider the integral curve of X̄ .

Assume X̄ ∈ V∞(Ω) is a linear vector field and dim(X̄) = m. X := X̄|Rm =

Ax. Consider x̄0 ∈ Ω.

Case 1: Assume dim(x̄0) = m. Then the integral curve of X̄ with initial

value x̄0 is defined only on a filter of the tangent bundle

Tx̄0

⋂

Rkm, k = 1, 2, · · · .

On Tx̄0

⋂
Rkm, at x0k = x01 ⊗ 1k, the vector field is determined by (117).

Then the integral curve becomes

xk(t, x
0
k) = eXktx0k

=
(
Ikm + t(Im ⊗ 1k)A(Im ⊗ 1T

k )+

t2

2!
(Im ⊗ 1k)A

2(Im ⊗ 1T
k ) + · · ·

)

(x01 ⊗ 1k)

=
1

k
(Im ⊗ 1k)e

At(Im ⊗ 1T
k )(x

0
1 ⊗ 1k)

= (Im ⊗ 1k)e
Atx0

= eAtx0 ⊗ 1k.

Case 2: Assume dim(x̄0) = s, m ∨ s = p = km = rs. Then the integral

curve of X̄ with initial value x̄0 is defined on a filter of its tangent bundle

Tx̄0)

⋂

Rjp, j = 1, 2, · · · .

On leaf Tz̄0

⋂
Rp, the initial value z0r = z01 ⊗ 1r, where z01 ∈ z̄0 is its

smallest element. The vector field is Akz, where Ak is determined by
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(117). Hence, the integral curve is

zr(t, z
0
r ) = eXktz0r =

1

k
(Im ⊗ 1k)e

At(Im ⊗ JT
k )(z

0
1 ⊗ 1r).

On leaf Tz̄0

⋂
Rjp, the integral curve with initial value z0jr = z01 ⊗ 1jr is

zjr(t, z
0
jr) = eXjktz0jr =

1

k
(Im ⊗ 1k)e

At(Im ⊗ JT
k )(z

0
1 ⊗ 1jr).

Summarizing the above argument, we have the following result.

Proposition 7.9. Let X̄ ∈ V∞(Ω) be a linear vector field, and dim(X̄) = m.

X := X̄|Rm = Ax. Assume x̄0 ∈ Ω, dim(x̄0) = s.

(i) If s = m, then the integral curve of X̄|Rm is

ΦX
t (x01) = eXtx01.

Hence, the integral curve of X̄ |Rrm becomes

ΦXr

t (x0r) =
[
eXtx01

]
⊗ 1r.

Finally the integral curve of X̄ with initial value x̄0 is ΦX
t (x01) ⊂ Ω.

(ii) If s = km, then the integral curve of X̄|Rkm is

ΦXk

t (x01) = eXktx01,

where , Xk is determined by (116). Hence the integral curve of X̄ with

initial value x̄0 is ΦXk

t (x01) ⊂ Ω.

(iii) If m ∨ s = p = km = rs, then the integral curve of X̄|Rp is

ΦXk

t (x0r) = eXkt(x01 ⊗ Is).

Hence, the integral curve of X̄ with initial value x̄0 is ΦXk

t (x01 ⊗ Is) ⊂ Ω.

• Linear control systems

First, we consider the relationship among equivalent matrices, equivalent

vectors, and linear vector fields.
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Definition 7.10. Let A, B ∈ M.

(i) The matrices A and B are said to be type 1 left equivalent, denoted by

A ∼ B, if there exist Iα and Iβ, such that A⊗Iα = B⊗Iβ. The equivalence
class of A is denoted by 〈A〉ℓ.

(iii) The matrices A and B are said to be type 2 left equivalent, denoted by

A ≈ B, if there exist Jα and Jβ, such that A ⊗ Jα = B ⊗ Jβ, where

Ji :=
1
i 1i×i, i = 1, · · · . The equivalence class of A is denoted by 〈〈A〉〉ℓ.

More general notions on matrix equivalence can be found in [8]. With these

concepts we can define the linear vector fields over Ω.

Proposition 7.11. Let X̄ ∈ V∞(Ω) be a linear vector field and dim(X̄) = m.

X := X̄|Rm = Ax. Assume x̄0 ∈ Ω, dim(x̄0) = s. m ∨ s = p = km = rs. Then

X̄ is defined only on the filter of its tangent bundle

x0jr = Tx̄0

⋂

Rjp, j = 1, 2, · · · .

Moreover, on the leaf containing x0r it is X̄(x0r) = Akx
0
r, where Ak is determined

by (116). On the leaf containing x0jr it is X̄(x0r) = Ajkx
0
jr , j = 1, 2, · · · , where

the two sets of consistent matrices are

Ajk = Ak ⊗ Ij ∼ Ak, (118)

Ajk = Ak ⊗ Jj ≈ Ak, (119)

respectively. The available variables are

x0jr = x0r ⊗ 1j ↔ x0r . (120)

Proof. In fact, what do we need to show is that the tangent vectors on the

bundle leaves are consistent. That is,

X̄(x0jr) = X̄(x0r)⊗ 1j , j = 1, 2, · · · . (121)

It is obvious that (118) together with (120), or (119) together with (120) can

ensure (121) to be true. ✷
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Next, we consider the linear control system on Ω. Recall a classical linear

system [18]







ẋ = Ax+
m∑

i=1

biui,

y = Cx, x ∈ Rn, y ∈ Rp.

(122)

One sees that a classical linear control system consists of three ingredients:

linear vector field Ax, a set of constant vector fields B = {b1, · · · , bm}, and
linear function Cx. To extend a classical linear control system to Ω, it is

enough to create these three kind of objects to Ω. The key of this extension is

to make them consistent at each x̄ ∈ Ω.

(i) Linear Vector Field: Assume the smallest generator of linear vector field

X̄ is X = Ax ∈ V∞(Rm). dim(x̄0) = s, m ∨ s = p = µm = rs. Then

according to the argument in previous subsection, we know

X̄
⋂

Tx̄0 = {X̄(xjr) | j = 1, 2, · · · }. (123)

Moreover,

X̄(xjr) = Ajµxjr , j = 1, 2, · · · , (124)

where, Ajµ is defined by (117) with k = jµ.

(ii) Constant Vector Field: Assume the smallest generator of the constant

vector field X̄ is X = b ∈ V∞(Rm), where dim(x̄0) = s, m ∨ s = p =

µm = rs, that is, (123) holds, and

X̄(xjr) = Πm
jµmX(Πjµm

m xjr) = Πm
jµmb = b⊗ 1jµ.

(iii) Linear Function: Let h̄ ∈ C∞(Ω). dim(x̄0) = m, h̄ is expressed at x01 as

hx = cmx, where c
T
m ∈ Rm. Let z̄ ∈ Ω, dim(z̄) = s, m∨ s = p = rs = µm.

Then h̄ is expressed at z1 as

h̄(z1) = h̄(Πs
mz1) =

1

µ
cm

(
Im ⊗ 1T

µ

)
(Is ⊗ 1r) z1
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Hence h̄ can be expressed on leaf Rs as

h̄|Rs = csz,

where cs =
1
µcm

(
Im ⊗ 1T

µ

)
(Is ⊗ 1r).

Particularly, when s = km, we have ckm = 1
kcm

(
Im ⊗ 1T

k

)
.

Definition 7.12. Assume f̄(x) is a linear vector field, B̄ = [b̄1, · · · , b̄m] is a

set of constant vector fields, C̄ = [c̄1, · · · , c̄p]T is a set of linear functions, then







˙̄x = f̄(x) + B̄u,

ȳ = C̄x̄,

is a linear control system over Ω.

Example 7.13. Consider a linear control system Σ̄ over Ω, which has its dy-

namic equation as (114), where the smallest generator of f̄ is f(x) = 2[x1 +

x2, x2]
T ∈ V∞(R2), m = 2, the smallest generators of ḡ1 and ḡ2 are g1 =

[1, 0, 0, 1]T ∈ V∞(R4), g2 = [0, 1, 0, 0]T ∈ V∞(R4) respectively. p = 1, h̄|R2 =

x2 − x1.

Then, q = 4.

f̄ |R4 = Π2
4f

(
Π4

2[z1, z2, z3, z4]
T
)
=











z1 + z2 + z3 + z4

z1 + z2 + z3 + z4

z3 + z4

z3 + z4











:= Az,

where,

A =











1 1 1 1

1 1 1 1

0 0 1 1

0 0 1 1











.

h̄|R4 = h(Π4
2z) = h(z1 + z2, z3 + z4) = z1 + z2 − z3 − z4 := Cz,

where C = [1, 1,−1,−1].
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Then the smallest generator of system Σ̄, denoted by Σ := Σ̄|R4 , is






ż = Az +Bu,

y = Cz.

It is easy to calculate that the controllability matrix of Σ is

C =











1 0 2 1 6 2 16 4

0 1 2 1 6 2 16 4

0 0 1 0 2 0 4 0

1 0 1 0 2 0 4 0











.

Since rank(C) = 4, Σ is completely controllable. By definition, Σ̄ is completely

controllable.

The observability matrix of Σ is

O =











1 1 −1 −1

2 2 0 0

4 4 4 4

8 8 16 16











Since rank(O) = 2 < 4, Σ is not completely observable, and so is Σ̄.

7.3. Dimension-varying dynamic (control) systems

Consider a continuous time dynamic system

ẋ = F (x), x ∈ X , (125)

where F is considered as a vector field on a manifold X . Then the solution

(integral curve) is expressed as x(t, x0) = ΦF
t (x0). It is well known that if (125)

is a dynamic system, then x(t, x0) must be continuous with respect to t [22].

Hence a continuous time dimension-varying dynamic system can not be defined

on ESDD R∞. It can only be defined on DFES Ω (or in general, DFM).

Definition 7.14. Consider a dynamic system

˙̄x = F̄ (x̄), x̄ ∈ Ω. (126)
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ẋ = F (x), x ∈ Rn ⊂ R∞, (127)

is called a realization (or a lifting) of (126), if for each x̄ there exists x ∈ x̄,

such that the corresponding vector field F (x) ∈ F̄ (x̄). Meanwhile, system (126)

is called the project system of (127).

The following result is an immediate consequence of the definition.

Proposition 7.15. x̄(t) = x̄(t, x̄0) is the solution of (126), if and only if,

x(t) = x(t, x0) is the solution of (127), where x(t) ∈ x̄(t), t ∈ [0,∞).

It is obvious that the lifting system of (126) is not unique. Assume at

t ∈ [0, T ) the system (126) is lifted to Rn and at t ∈ [T,∞) the system is lifted

to Rm (m 6= n), then the overall lifting system becomes a dimension-varying

system.

Definition 7.16. System (127) is called a dimension-varying system, if there

are at least two points x1, x2 such that F (x1) ∈ V (Rd1), F (x2) ∈ V (Rd2) and

d1 6= d2.

Remark 7.17. The Definitions 7.14 and 7.16 can easily be extended to corre-

sponding control systems in a natural way. The Proposition 7.15 has also its

corresponding version for control systems.

In the following we consider how to construct dimension-varying control

systems. We consider two cases.

• Case 1: switching dimension-varying control systems

Assume the original control system is

ẋ = F (x, u), x ∈ Rm, u ∈ Rp. (128)

The target system is

ż = G(z, v), z ∈ Rn, v ∈ Rq. (129)
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Our purpose is to switch system (128) to system (129) at time t = T . To

get a continuous trajectory over Ω, the following condition is necessary:

x̄(T ) = z̄(T ) ∈ Ω. (130)

Proposition 7.18. Assume (130) is satisfied, and assume system (128) is con-

trollable. Then the dynamic switching from system (128) to system (129) at time

t = T is realizable.

Proof. We construct the following system over Ω:

˙̄ξ =







F̄ (ξ̄, u), t < T,

Ḡ(ξ̄, v), t > T.

(131)

Since system (128) is controllable, there exists u(t), t < T , such that (131) is

controllable to ξ̄(T ) = x̄(T ) = z̄(T ), where dim(ξ̄) = p ∧ q.
Then the minimum realization of (131) becomes the required dimension-

varying system. ✷

Example 7.19. Consider two systems

Σ1 : ẋ =




0 1

0 0



x+




0

1



 , x ∈ R2, x(0) = (0, 0)T ,

Σ2 : ż = Az +Bv, z ∈ R3.

Design a control such that Σ1 is switched to Σ2 at T = 1.

Since Σ1 is completely controllable, and 2 ∧ 3 = 1, so we have to design a

control which can drive the system from x(0) to x(T ) with dim(x̄(T )) = 1. We

may choose x(T ) = (1, 1)T . Then it is easy to calculate that the controllability

Gramian matrix is

WC(t) =

∫ t

0

e−AτBBT e−AT τdτ =
1

6




2t3 −3t2

−3t2 t



 .

Then the control is

u(t) = −BT e−AT tW−1
C (T )

(
x(0)− e−ATx(T )

)
= −6t.

Using this control, the system can be switched from Σ1 to Σ2 at T = 1.
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Figure 3: Lift and projection of integral curves

• Case 2: continuous dimension-varying control systems

In this case we require the designed dimansion-varying system has continuous

F̄ (x̄, u). For instance, in a docking/undocking process, we want the dimension-

transient process to be as smooth as possible.

First, let us see what a dimension-varying system with “continuous” vector

field means.

Let v̄0 and v̄2 be two vector fields on Ω. Our purpose is to design a new

vector field which continuously transfer from v̄0 to v̄2. Define

v̄ :=







v̄0, t ∈ [t0, 0, t1),

v̄1 = (1− λ)v̄0 + λv̄2, t ∈ (t1, t2),

v̄2, t ∈ (t2,∞),

where λ = t−t1
t2−t1

.

Assume the minimum realization of v̄0 is v0 ∈ V r(Rp), the minimum realiza-

tion of v̄2 is ∨2 ∈ V r(Rq). Then the minimum realization of v̄1 is v1 ∈ V r(Rp∨q).

Then the integral curve of v̄ can be lifted as shown in Fig 3.

• Docking:

66



Assume there are two original control systems as

Σ1 : ẋ = F (x, u), x ∈ Rm, u ∈ Rp; (132)

Σ2 : ż = G(z, v), z ∈ Rn, u ∈ Rq. (133)

They will be docked into the target system Ω as

ξ̇ = H(ξ, w), ξ ∈ Rs, w ∈ Rℓ. (134)

It is required that the docking happens during a transient period [T0, T1],

and the process is smooth.

Definition 7.20. System (132) and system (133) are said to be docked into

(134) smoothly during the transient period [T0, T1]. If the following requirements

are satisfied.

(i) There exists a smooth monotonically non-decreasing function λ(t), t ∈
[T0, T1], such that

λ(t) =







0, t = T0,

1, t = T1.

(ii) There exists a control deformation function w = ϕ(u, v), and using it a

control system over Ω, called a transient system, is constructed as

˙̄ξ = (1 − λ(t))




F̄ (x̄, u)

Ḡ(z̄, v)



+ λ(t)H̄(ξ̄, w) + Ψ(x̄, z̄, ξ̄, u, v), t ∈ [T0, T1].

(135)

(iii) The transient system is controllable to




x̄(T1)

z̄(T1)



 = ξ̄(T1),

with dim( ¯ξ(T1)) = p ∧ q ∧ s.
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Remark 7.21. In (135) Ψ(x̄, z̄, ξ̄, u, v) is a (fictitious) virtual force, caused by

the interaction of docking objects, satisfying

Ψ(x̄, z̄, ξ̄, u, v) = 0, if




x̄

z̄



 ~⊢ξ̄ = 0.

In control of Clutch System the virtual force is chosen as [23, 24]

τc = FcRaψ(ωi, ω0).

Particularly, it was chosen as [9]: τc = sign(ωi − ω0)F .

• Undocking:

Assume there is an original system Σ1 as:

ξ̇ = H(ξ, w), ξ ∈ Rs, w ∈ Rℓ. (136)

It will be undocked into two systems as

Σ2 : ẋ = F (x, u), x ∈ Rm, u ∈ Rp; (137)

Σ3 : ż = G(z, v), z ∈ Rn, u ∈ Rq. (138)

It is required that the docking happens during a transient period [T0, T1], and

the process is smooth.

Definition 7.22. System (136) is said to be un-docked into (137) and (138)

smoothly during the transient period [T0, T1]. If the follow requirements are

satisfied.

(i) There exists a smooth monotonically non-decreasing function λ(t), t ∈
[T0, T1], such that

λ(t) =







0, t = T0,

1, t = T1.
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(ii) There exist two control deformation functions u = ϕ(w), v = ϕ(w), and

using them a control system over Ω, called a transient system, is con-

structed as

˙̄ξ = (1− λ(t))H̄(ξ̄, w)

+λ(t)




F̄ (x̄, u)

Ḡ(̄(z), v)



+Ψ(x̄, z̄, ξ̄, w), t ∈ [T0, T1].
(139)

(iii) The transient system is controllable to ξ̄(T1) =




x̄(T1)

z̄(T1)



, with dim( ¯ξ(T1)) =

p ∧ q ∧ s.

Remark 7.23. In (139) F (x̄, z̄, ξ̄, w) is a virtual force, caused by the interaction

of docking objects, satisfying

Ψ(x̄, z̄, ξ̄, w) = 0, if




x̄

z̄



 ~⊢ξ̄ = 0.

8. Concluding Remarks

The main purpose of this paper is to construct a new geometric object called

the DFES (or DFM), which provides a framework (i.e., the state space) for

DVDS. We briefly summarize the results.

The DFES is constructed as follows:

• Step 1: Define an inner product for two vectors of different dimensions.

It turns the ESDD V = R∞ =
⋃∞

n=1 R
n into a distance space.

• Step 2: Two vectors x, y ∈ R∞ are said to be equivalent, denoted by

x ↔ y, if their distance is zero. The quotient space Ω = R∞/↔ is called

the DFES. In fact, dV(x, y) = 0, if and only if, there exist 1α and 1β such

that x ⊗ 1α = y ⊗ 1β . It is clear that two vectors are equivalent if they

contain the same information. In other words, vector form is a way for a

set of data to express itself. It may be expressed as vectors of different

dimensions, but from information point of view, they are equivalent.
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• Step 3: By posing scalar multiplication and addition Ω becomes a topo-

logical real vector space. Let Pr : R∞ → Ω be the natural projection.

Then (R∞,Pr,Ω) becomes a fiber bundle.

• Step 4. Using the fiber bundle structure of (R∞,Pr,Ω), each x̄ ∈ Ω has

a coordinate neighborhood, which is a set of coordinate charts of various

dimensions. It is called a bundle of coordinate charts. Hence Ω is called

a DFES.

• Step 5. Using the bundles of coordinate charts, a differentiable structure

can be posed on Ω, making it a DFM. Then the continuous functions,

(co)-vector fields, (co)-distributions, and tensor fields can be built for Ω.

Eventually, the dimension-free Riemannian manifolds and dimension-free

symplectic manifolds can be properly constructed.

Note that the gluing topology on the DFES Ω = R∞/↔makes it a path-wise

connected topological space. Therefore, intuitively, the trajectories of dynamic

systems over Ω can continuously move “across” Euclidian spaces of different

dimensions. This is the main idea for using DFM to design DVDS and DVCS.

Lifting the trajectory of a dynamic system over Ω to a leaf (a Euclidian space

of fixed dimension) is called a realization. As a dynamic system over Ω is lifted

onto leafs of different dimensions, a dimension-varying realization is obtained.

Conversely, we can also project the trajectory of a dynamic system on a Euclid-

ian space of fixed dimension onto Ω.

The design of dimension-varying dynamic (control) systems can be described

as follows:

• Step 1: Project a dimension-varying dynamic system, which has broken

vector fields over Euclidian spaces of different dimensions, onto Ω to form

a dynamic system over Ω, which consists of several (finite number) of

vector fields.

• Step 2: Lifting the dynamic system on Ω to a Euclidian space of proper
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dimension, where all the vector fields involved by the dynamic system on

Ω can be properly lifted into this Euclidian space.

• Step 3: All the analysis and control design can be done in conventional

way for this lifting system on its Euclidian space.

• Step 4: Project the resulting manipulated system back to Ω and then lift-

ing it into several original Euclidean spaces, where the original dimension-

varying system lies on.

Finally, we would like to present a conjecture: The DFM might provide

a framework (i.e., the state space) for string theory in physics. The idea is

sketched as follows:

Consider a subspace of DFM as Ω3 := {x̄ ∈ Ω | dim(x̄) ≤ 3}. We choose 3

because it is the dimension of real physical world.

Now (R∞, P r,Ω3) is a sub-bundle of the fiber-bundle (R∞,Pr,Ω). If we

consider all possible realization of dynamic systems over Ω3, then the minimum

total subspace which allow all possible realizations is R[·,6]. Hence, if we desire

a space which is of minimum dimension and contains all moves (or dynamic

systems), then it is B := (R[·,6] → Ω3). Since this manifold is of dimension 9,

plus a dimension for t, a manifold of dimension 10 is reasonable for describing

state-motion-time. This might be the string space.

Some further arguments are the following:

(i) It is well known in classical differential geometry that an n-dimension

manifold M has an n-dimensional tangent space at each point. Hence, if

taking both M and T (M) into consideration, an n-dimensional manifold

with its tangent bundle is a 2n dimensional manifold, which is a well known

fact. So consider the bundle B as a 9-dimensional manifold is reasonable.

(ii) It seems that there is no static particle in the world. That is, particles are

always joined with their moves. Moves can be described by vector fields.

So to describe a particle, a position plus a vector field on its tangent space
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may be reasonable to describe it, as the particle is small and its movement

is very fast. Using string to describe a particle might essentially be a

description for both the position and the trajectory of a particle.

(iii) Now taking the position and moving trajectory into consideration. We

may consider the extra 6 dimensions being used to describe open string

(or open movement of a particle). In addition, we need SU(3) to describe

the gauge group and SU(1) for rotation. Then we have B + SU(3) +

SU(1) + time, which is of dimension 26. This manifold might be proper

for Bosonic super-sting model.

In brief, DFM could provide a framework for systems with arbitrary dimen-

sions. DFM with a Reimannian structure becomes a DFRM. The investigation

of DFRM in this paper is very elementary. A continuous study is necessary.

It is promising that DFRM might overcome the crisis of classical Riemannian

geometry [29].
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