
From Dirt to Shovels:
Fully Automatic Tool Generation from Ad Hoc Data

Kathleen Fisher
AT&T Labs Research

kfisher@research.att.com

David Walker Kenny Q. Zhu
Princeton University

dpw,kzhu@CS.Princeton.EDU

Peter White
Galois Connections

peter@galois.com

Abstract
An ad hoc data source is any semistructured data source for which
useful data analysis and transformation tools are not readily avail-
able. Such data must be queried, transformed and displayed by
systems administrators, computational biologists, financial analysts
and hosts of others on a regular basis. In this paper, we demon-
strate that it is possible to generate a suite of useful data process-
ing tools, including a semi-structured query engine, several for-
mat converters, a statistical analyzer and data visualization rou-
tines directly from the ad hoc data itself, without any human in-
tervention. The key technical contribution of the work is a multi-
phase algorithm that automatically infers the structure of an ad hoc
data source and produces a format specification in the PADS data
description language. Programmers wishing to implement custom
data analysis tools can use such descriptions to generate printing
and parsing libraries for the data. Alternatively, our software infras-
tructure will push these descriptions through the PADS compiler,
creating format-dependent modules that, when linked with format-
independent algorithms for analysis and transformation, result in
fully functional tools. We evaluate the performance of our inference
algorithm, showing it scales linearly in the size of the training data
— completing in seconds, as opposed to the hours or days it takes
to write a description by hand. We also evaluate the correctness of
the algorithm, demonstrating that generating accurate descriptions
often requires less than 5% of the available data.

1. Introduction
An ad hoc data source is any semistructured data source for which
useful data analysis and transformation tools are not readily avail-
able. XML, HTML and CSV are not ad hoc data sources as there
are numerous programming libraries, query languages, manuals
and other resources dedicated to helping analysts manipulate data
in these formats. However, despite the prevalence of standard for-
mats, massive quantities of legacy ad hoc data persist in fields rang-
ing from computational biology to finance to physics to networking
to health care and systems administration. Moreover, engineers and
scientists are continuously producing new ad hoc formats —despite
the presence of existing standards— because it is often expedient to
do so. Over time, these expedient formats become difficult to work
with because of missing documentation, a lack of tools, and cor-
ruption caused by repeated, poorly thought-through redesign, reuse
and extension.

The goal of the PADS project [5, 6, 14, 16] is to improve the
productivity of data analysts who need to cope with new and evolv-
ing ad hoc data sources on a daily basis. Our central technology
is a domain-specific language in which programmers can spec-
ify the structure and expected properties of ad hoc data sources,
whether they be ASCII, binary, Cobol or a mixture of formats.
These specifications, which resemble extended type declarations

from conventional programming languages, are compiled into a
suite of programming libraries, such as parsers and printers, which
are then linked to generic data processing tools including an XML-
translator, a query engine [4], a simple statistical analysis tool, and
others. Hence, the most important benefit of using PADS is that a
single declarative description may be used to generate many useful
end-to-end data processing tools completely automatically.

On the other hand, the most important impediment to using
PADS is the time and expertise needed to write a PADS description
for a new ad hoc data source. For data experts possessing clear,
unambiguous documentation about a simple data source, writing
a PADS description may take anywhere from a few minutes to a
few hours. However, it is relatively common to encounter ad hoc
data sources that contain valuable information, yet have little or
no documentation. Understanding the structure of the data and
creating descriptions for such sources can easily take days or weeks
depending upon the complexity and volume of the data in question.
In one specific example, Fisher spent approximately three weeks
(off and on) attempting to understand and describe an important
data source used internally at AT&T. One of the stumbling points in
this case was that the data source suddenly switched formats after
approximately 1.5 million entries. Of course, if dealing with the
vagaries of ad hoc data sources is time-consuming and error-prone
for experts, it is even worse for novice users.

To improve the productivity of experts and to make the PADS
toolkit accessible to new users with little time to learn the spec-
ification language, we have developed an automatic format infer-
ence engine. This format inference engine reads arbitrary ASCII
data sources and produces an accurate, human-readable PADS de-
scription of the source. These machine-produced descriptions give
experts a running start in any data analysis task as the libraries gen-
erated from these descriptions may be incorporated directly into
an ordinary C program. The inference engine is also directly con-
nected to the rest of the PADS infrastructure, making it possible for
first-time users, with no knowledge of the PADS domain-specific
language, to translate data into a form suitable for loading into a
relational database, to load it into an Excel spreadsheet, to convert
the data into XML, to query it in XQuery, to detect errors in ad-
ditional data from the same source, and to draw graphs of various
data components, all with just a “push of a button.”

To summarize, this paper makes three main contributions.

• We have developed a new, multi-phase algorithm that infers the
format of complex, ad hoc data sources, producing compact and
accurate PADS descriptions.

• We have incorporated the inference algorithm into a modular
software system that uses sample data to generate a toolkit
of useful data processing tools, without requiring any human
intervention.



• We have evaluated the correctness and performance of our sys-
tem on a range of ASCII data sources. For many data sources,
training on 5% or less of the data results in accuracy rates
greater than 95% (often perfect). In all cases, additional train-
ing data elevates accuracy rates above 95% and in no cases need
a user ever be unsure about the accuracy rate of generated de-
scriptions – the automatically generated accumulator tool mea-
sures both overall accuracy and field-by-field accuracy of the
description on any new data source. In all cases, after fixing
a data source, the inference algorithm scales linearly with the
quantity of data.

For readers interested in seeing our system operate live, we are
currently creating an online demo to illustrate its many features
(http://www.padsproj.org).

In the next section of this paper, we describe the internal rep-
resentation used during the course of the inference algorithm. For
those readers familiar with the PADS description language, this is
largely a review. Section 3 describes our format inference algorithm
in depth and illustrates its action on two sample data sources. Sec-
tion 4 evaluates the performance and correctness of our system on
15 different ad hoc data sources, drawn mostly from systems and
networking domains. Section 5 discusses how users can deal with
errors in generated descriptions and points out weaknesses we plan
to address in future work. Sections 6 and 7 present related work and
conclude respectively.

2. The Internal Format Description Language
Our format inference algorithm is implemented as a series of
phases that generate and transform an internal format description
language we refer to simply as the IR. The IR is very similar to the
IPADS language we developed and formalized in previous work [6].
Apart from syntax, the main differences are that the IR omits recur-
sion and function declarations; the former being beyond the scope
of our current inference techniques and the latter being unnecessary
during the course of the inference algorithm.

2.1 The Language
Like all languages in the PADS family, the IR is a collection of type
definitions. These “types” define both the external syntax of data
formatted on disk and the shape of the internal representations that
result from parsing. We rely upon both of these aspects of type
definitions to generate stand-alone tools automatically. Figure 1
summarizes the syntax of the IR and of the generated internal
representations.

The building blocks of any IR data description are the base
types b, which may be parameterized by some number of argu-
ments p. Arguments may either be constants c, which include char-
acters a, integers i and strings s, or variables x bound earlier in
the description. These base types include a wide range of different
sorts of integers and strings. In its initial phases, the inference al-
gorithm uses general integer Pint, alphanumeric string Palpha
and punctuation character Pother(a) types. In later phases,
these coarse-grained base types are analyzed, merged and refined,
producing integers with ranges PintRanged(min,max), in-
tegers with known size Pint32 or Pint64, constant integers
(PintConst(i) for some integer i), or floating-point numbers
Pfloat. Likewise, later stages of our algorithm transform al-
phanumeric strings into arbitrary strings with terminating charac-
ters (Pstring(a) where a terminates the string), fixed width
strings (PstringFW(i) where i is the length of the string) or
string constants PstringConst(s). For brevity in our descrip-
tions, we normally just write the constant string s inline in a de-
scription instead of PstringConst(s).

c ::= a | i | s (constants)
x (variables)
p :: = c | x (parameters)

Base types b ::=
Pint (generic, unrefined integer)

| PintRanged (integer with min/max values)
| Pint32 (32-bit integer)
| Pint64 (64-bit integer)
| PintConst (constant integer)
| Pfloat (floating point number)
| Palpha (alpha-numeric string)
| Pstring (string; terminating character)
| PstringFW (string; fixed width)
| PstringConst (constant string)
| Pother (punctuation character)
| ComplexB (complex base type defined by regexp;

e.g. date, time, etc.)
| Pvoid (parses no characters; fails immediately)
| Pempty (parses no characters; succeeds immediately)

Types T ::=
b(p1,...,pk) (parameterized base type)

| x:b(p1,...,pk) (parameterized base type;
underlying value named x)

| struct {T1; ... Tk;} (fixed sequence of items)
| array {T ;} (array with unbounded repetitions)
| arrayFW {T ;}[p] (array; fixed length)
| arrayST {T ;}[sep,term] (array; separator and terminator)
| union {T1; ... Tk;} (alternatives)
| enum {c1; ... ck;} (enumeration of constants)
| x:enum {c1; ... ck;} (enumeration of constants;

underlying value named x)
| option {T ;} (type T or nothing)
| switch x of

{c1 => T1; . . . ck => Tk;} (dependent choice)

Representations of parsed data d ::=
c (constant)

| ini(d) (injection into the ith alternative of a union)
| (d1,. . .,dk) (sequence of data items)

Figure 1. Selected elements of the IR.

In addition to these simple base types, the IR includes a col-
lection of higher-level base types commonly found in ad hoc data,
specified generally in Figure 1 as ComplexB. For example, we
have implemented base types for IP addresses, email addresses,
URLs, XML tags, dates, times and a variety of others. Finally, the
types Pvoid and Pempty are two special base types that are in-
troduced at various points in the inference process. The first fails
immediately; the second succeeds immediately. Neither consumes
any characters while parsing.

Complex descriptions are built from simpler ones using a va-
riety of type constructors. Type constructors include basic struct
types struct{T1; ... Tk;}, which indicate a data source should
contain a sequence of items matching T1, ..., Tk, basic array types
array T , which indicate a data source should contain a sequence
of items of arbitrary length, each matching T , and union types
union {T1; ... Tk;}, which indicate a data source should match
one of T1, ..., Tk. Once again, initial phases of the inference al-
gorithm restrict themselves to one of these three sorts of type
constructors. However, later phases of the algorithm refine, merge
and process these simple types in a variety of ways. For example,
unions may be transformed into enumerations of constants enum
{c1; ... ck;} or options option {T ;}. In addition, later phases of
the algorithm bind variables to the results of parsing base types and
enums. For example, x:b(p1,...,pk) expresses the fact that variable
x is bound to the value parsed by base type b(p1,...,pk). These vari-
ables express dependencies between different parts of a descrip-



Crashreporter.log:
Sat Jun 24 06:38:46 2006 crashdump[2164]: Started writing crash report to: /Logs/Crash/Exit/ pro.crash.log
- crashreporterd[120]: mach_msg() reply failed: (ipc/send) invalid destination port

Sirius AT&T Phone Provisioning Data:
8152272|8152272|1|6505551212|6505551212|0|0||no_ii152272|EKRS_6|0|FRED1|DUO|10|1000295291
8152261|8152261|1|0|0|0|0||no_ii752261|EKRS_1|0|kfeosf2|DUO|EKRS_6|1001390400|EKRS_OS_10|1001476801

Figure 2. Example ad hoc data sources.

tion.1 For example, the length of a string PstringFW(p) or an ar-
ray ParrayFW(p) may depend upon either a constant or a variable
and likewise for any other parameterized base type. In addition,
unions may be refined into dependent switch statements switch
x of {c1 => T1; . . . ck => Tk;}, where the data is described by
T1, ..., or Tk depending on the value associated with x, be it c1, ...,
or ck.

The result of parsing according to a description is an internal
representation of the data. We let metavariable d range over such
data representations. For the purposes of this paper, a data repre-
sentation may be a constant c, an injection into the ith variant of a
union ini(d), or a sequence of data representations (d1, . . . , dk).
The injections are used as the representations of any sort of union
type, be it a union, an enumeration, an option or a switch. The
sequences are used as the representations of any sort of sequence
type, whether it be a struct or one of the array variants.

2.2 Running Examples
Figure 2 presents tiny fragments of two different ad hoc data
files on which we have trained our inference algorithm. The first,
Crashreporter.log, is a Macintosh system file that records informa-
tion concerning process crashes.2 The second, which we call Sirius,
is an internal AT&T format used to record phone call provisioning
information. We use the Crashreporter.log data source as our main
example throughout the paper; periodically we refer to the Sirius
data source to illustrate particular aspects of the inference algo-
rithm.

Figure 3 presents a hand-written description of the Crashre-
porter.log file in the IR syntax. This description is most easily read
from the bottom, starting with the definition of the source type.
This definition specifies that the data source is an array of structs
separated by newline characters and terminated by the end of file
marker. In other words, the data source is a sequence of lines, with
the struct in question appearing on each line. The struct itself in-
dicates each line is a sequence of dateoption, kind, dumpid
and report fields. The description also specifies that the delimiter
"[" appears between the kind and dumpid fields, and the delim-
iter "]: " appears between the dumpid and report fields.

Most of the variable names associated with fields (e.g. date,
dumpid, etc.) merely serve as documentation for the reader. How-
ever, the kind field is different – it is used later in the description
and hence illustrates a dependency. To be specific, the form of the
report field depends upon the contents of the kind field. If its
value is "crashdump", then the report is a dumpReport
type, while if the kind field is "crashreporterd", the
report is a reporterReport type.

1 For the purposes of inference, every bound variable is assumed to be
distinct from every other that appears in a description. Roughly speaking,
the scope of such variables extends as far as possible to the right through the
description. Understanding the fine details of the semantics is not important
for understanding the central material in this paper.
2 For expository purposes we have made a minor alteration to the Crashre-
porter.log format to allow us to explain more concepts with a single exam-
ple. The evaluation section reports results on both the completely unmodi-
fied Crashreporter.log and the modified version.

dumpReport =
union {

struct {
"Started writing crash report to: ";
file:Ppath;

};
...

};

reporterReport =
struct {

function: Ppath; " reply failed: ");
failuremsg: Pstring_(’\n’);

};

dateOption =
union {

"- ";
struct {

day: PDate; " ";
time: PTime; " ";
year: Pint32; " ";

};
};

source =
arrayST {

struct {
date: dateOption;
kind: enum {"crashdump";

"crashreporterd";}; "[";
dumpid: Pint32; "]: ";
report:

switch kind of {
"crashdump" => dumpReport
"crashreporterd" => reporterReport

};
}[’\n’,EOF];

Figure 3. Hand-written IR Crashreporter.log description.

Figure 3 contains three other definitions aside from source.
These definitions specify the structure of the dumpReport,
reporterReport and dateOption types.

3. The Inference Algorithm
Figure 4 gives an overview of our automatic tool generation ar-
chitecture. The process begins with raw data, shown in blue (or
grey) at the top left, which we pipe into the format inference en-
gine (circumscribed by dotted lines in the picture). This engine pro-
duces a syntactically correct PADS description for the data through
a series of phases: chunking and tokenization, structure discovery,
information-theoretic scoring, and structure refinement. The sys-
tem then feeds the generated PADS description into the PADS com-
piler. The compiler generates libraries, which the system then links
to generic programs for various tasks including a data analysis tool
(a.k.a., the accumulator) and an ad-hoc-to-XML translator. At this
point, users can apply these generated tools to their original raw
data or to other data with the same format. The following subsec-
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Figure 4. Architecture of the automatic tool-generation engine

tions describe the main components of the inference algorithm in
more detail. We illustrate the effect of each phase on our running
examples and present the output of some of the generated tools.

3.1 Chunking and Tokenization
The learning system first divides the input data, which we refer to
as the training set, into chunks as specified by the user. Intuitively,
a chunk is a unit of repetition in the data source. It is primarily by
analyzing sequences of such chunks for commonalities that we are
able to infer data descriptions. Our tool currently supports chunking
on a line-by-line basis as well as on a file-by-file basis.

We use a lexer to break each chunk into a series of simple tokens,
which are intuitively atomic pieces of data such as numbers, dates,
times, alpha-strings, or punctuation symbols. Every simple token
has a corresponding base type in the IR, though the converse is not
true – there are base types that are not used as tokens. Nevertheless,
since simple tokens have a very close correspondence with base
types, we often use the word token interchangeably with base type.

Parenthetical syntax, including quotation marks, curly braces,
square brackets, parentheses and XML tags, often provides very
important hints about the structure of an ad hoc data file. There-
fore, whenever the lexer encounters such parentheses, it creates a
meta-token, which is a compound token that represents the pair of
parentheses and all the tokens within.3 For example, in Crashre-
porter.log, the syntax [2164] will yield the meta-token [*] in-
stead of the sequence of three simple tokens [, Pint, and ]. The
structure-discovery algorithm eliminates all meta-tokens during its
analysis; whenever it encounters a context consisting of matching
meta-tokens, it cracks open the meta-tokens so it can analyze the
underlying structure.

Our learning system has a default tokenization scheme skewed
toward systems data, but users may specify a different scheme for
their own domain through a configuration file. For example, com-
putational biologists may want to add DNA strings CATTGTT...
to the default tokenization scheme. The configuration file is essen-
tially a list of name, regular expressions pairs. The system uses the
configuration file to generate part of the system’s lexer, a collec-
tion of new IR base types, and a series of type definitions that are
incorporated into the final PADS specification.

3 If parenthetical elements are not well-nested, the meta-tokens are dis-
carded and replaced with ordinary sequences of simple tokens.

3.2 Structure Discovery
Given a collection of tokenized chunks, the goal of the structure-
discovery phase is to quickly find a candidate description “close”
to a good final solution. The rewriting phase then analyzes, refines
and transforms this candidate to produce the final description. The
high-level form of our structure-discovery algorithm was inspired
by the work of Arasu and Garcia-Molina on information extraction
from web pages [1]; however, the context, goals and algorithmic
details of our work are entirely different.

Structure Discovery Basics. Our algorithm operates by analyzing
the collection of tokenized chunks and guessing what the top-level
type constructor should be. Based on this guess, it partitions the
chunks and recursively analyze each partition to determine the best
description for that partition. Figure 5 outlines the overall proce-
dure in Pseudo-ML. The oracle function, whose implementation
we hide for now, does most of the hard work by conjuring one of
four different sorts of prophecies.

The BaseProphecy simply reports that the top-level type
constructor is a particular base type.

The StructProphecy specifies that the top-level description
is a struct with k fields. It also specifies a list, call it css, with k
elements. The ith element in css is the list of chunks correspond-
ing to the ith field of the struct. The oracle derives these chunk
lists from its original input. More specifically, if the oracle guesses
there will be k fields, then each original chunk is partitioned into k
pieces. The ith piece of each original chunk is used to recursively
infer the type of the ith field of the struct.

The ArrayProphecy specifies that the top-level structure in-
volves an array. However, predicting exactly where an array begins
and ends is difficult, even for the magical oracle. Consequently, the
algorithm actually generates a three-field struct, where the first field
allows for slop prior to the array, the middle field is the array itself,
and the last field allows for slop after the array. If the slop turns out
to be unnecessary, the rewriting rules will clean up the mess in the
next phase.

Finally, the UnionProphecy specifies that the top-level struc-
ture is a union type with k branches. Like a StructProphecy,
the UnionProphecy carries a chunks list, with one element for
each branch of the union. The algorithm uses each element to re-
cursively infer a description for the corresponding branch of the
union. Intuitively, the oracle produces the union chunks list by “hor-
izontally” partitioning the input chunks, whereas it partitions struct
chunks “vertically” along field boundaries.

As an example, recall the Crashreporter.log data from Figure 2.
Assuming a chunk is a line of data, the two chunks in the example
consist of the token sequences (recall [*] and (*) are meta-
tokens):

Pdate ’ ’ Ptime ’ ’ Pint ’ ’ Palpha [*] ’:’ ...
’-’ ’ ’ Palpha [*] ’:’ ’ ’ Palpha (*) ’ ’ ...

Given these token sequences, the oracle will predict that the top-
level type constructor is a struct with three fields: one for the tokens
before the token [*], one for the [*] tokens themselves, and
one for the tokens after the token [*]. We explain how the oracle
makes this prediction in the next section. The oracle then divides
the original chunks into three sets as follows.

Pdate ’ ’ Ptime ’ ’ Pint ’ ’ Palpha (set 1)
’-’ ’ ’ Palpha

[*] (set 2)
[*]

’:’ ... (set 3)
’:’ ’ ’ Palpha (*) ’ ’ ...



On recursive analysis of set 1, the oracle again suggests a struct is
the top-level type, generating two more sets of chunks:

Pdate ’ ’ Ptime ’ ’ Pint ’ ’ (set 4)
’-’ ’ ’

Palpha (set 5)
Palpha

Now, since every chunk in set 5 contains exactly one base type
token, the recursion bottoms out with the oracle claiming it has
found the base type Palpha. When analyzing set 4, the ora-
cle detects insufficient commonality between chunks and decides
the top-most type constructor is a union. It partitions set 4 into
two more sets, with each group containing only 1 chunk (either
{Pdate ’ ’ ...} or {’-’ ’ ’}). The algorithm analyzes
the first set to determine the type of the first branch of the union
and the second set to determine the second branch of the union.
With no variation in either branch, the algorithm quickly discovers
an accurate type for each.

Having completely discovered the type of the data in set 1, we
turn our attention to set 2. To analyze this set, the algorithm cracks
open the [*] meta-tokens to recursively analyze the underlying
data, a process which yields struct {’[’; Pint; ’]’;}.
Analysis of Set 3 proceeds in a similar fashion.

As a second example, consider the Sirius data from Figure 2.
Here the chunks have the following structure:

Pint ’|’ Pint ’|’ ... ’|’ Pint ’|’ Pint
Pint ’|’ Pint ’|’ ... ’|’ Palpha Pint ’|’ Pint

The oracle prophecies that the top-level structure involves an array
and partitions the data into sets of chunks for the array preamble,
the array itself, and the array postamble. It does this partitioning
to cope with “fence-post” problems in which the first or the last
entry in an array may have slightly different structure. In this case,
the preamble chunks all have the form {Pint ’|’} while the
postamble chunks all have the form {Pint}, so the algorithm
easily determines their types. The algorithm discovers the type of
the array elements by analyzing the residual list of chunks

Pint ’|’
...
Pint ’|’
Pint ’|’
...
Palpha Pint ’|’

The oracle constructs this chunk list by removing the preamble
and postamble tokens from all input chunks, concatenating the
remaining tokens, and then splitting the resulting list into one chunk
per array element. It does this splitting by assuming that the chunk
for each array element ends with a ’|’ token.

So far so good, but how does the guessing work? Why does the
algorithm decide the Sirius data is basically an array but Crashre-
porter.log is a struct? After all, the Sirius chunks all have a Pint,
just as all the Crashreporter.log chunks have a bracket meta-token
[*]. Likewise, Crashreporter.log contains many occurrences of the
’ ’ token, which might serve as an array separator as the ’|’ to-
ken does in the Sirius data.

The Magic. To generate the required prophecy for a given list
of chunks, the oracle computes a histogram of the frequencies of
all tokens appearing the input. More specifically, the histogram
for token t plots the number of chunks (on the y-axis) having a
certain number of occurrences of the token (on the x-axis). Figure 6
presents a number of histograms computed during analysis of the
Crashreporter.log and Sirius chunk lists.

type description (* an IR description *)
type chunk (* a tokenized chunk *)
type chunks = chunk list

(* A top-level description guess *)
datatype prophecy =

BaseProphecy of description
| StructProphecy of chunks list
| ArrayProphecy of chunks * chunks * chunks
| UnionProphecy of chunks list

(* Guesses the best top-level description *)
fun oracle : chunks -> prophecy

(* Implements a generic inference algorithm *)
fun discover (cs:chunks) : description =
case (oracle cs) of
BaseProphecy b => b

| StructProphecy css =>
let Ts = map discover css in
struct { Ts }

| ArrayProphecy (csfirst,csbody,cslast) =>
let Tfirst = discover csfirst in
let Tbody = discover csbody in
let Tlast = discover cslast in
struct { Tfirst; array { Tbody }; Tlast; }

| UnionProphecy css =>
let Ts = map discover css in
union { Ts }

Figure 5. A generic structure-discovery algorithm in Pseudo-ML.

Intuitively, tokens associated with histograms with high cover-
age, meaning the token appears in almost every chunk, and narrow
distribution, meaning the variation in the number of times a token
appears in different chunks is low, are good candidates for defining
structs. Similarly, histograms with high coverage and wide distri-
bution are good candidates for defining arrays. Finally, histograms
with low coverage or intermediate width represent tokens that form
part of a union.

Concretely, consider histogram (a) from Figure 6. It is a per-
fect struct candidate– it has a single column that covers 100% of
the records. Indeed, this histogram corresponds to the [*] token in
Crashreporter.log. Whenever the oracle detects such a histogram, it
will always prophecy a struct and partition the input chunks accord-
ing to the associated token. All of the other top-level histograms for
Crashreporter.log contain variation and hence are less certain indi-
cators of data source structure.

As a second example, consider the top-level histograms (f), (b)
and (g) for tokens Palpha, Pint and Pwhite, respectively, and
compare them with the corresponding histograms (h), (i) and (j)
computed for the same tokens from chunk set 1, defined in the
previous subsection. The histograms for chunk set 1 have far less
variation than the corresponding top-level histograms. In particular,
notice that histogram (h) for token Palpha is a perfect struct his-
togram whereas histogram (f) for token Palpha contains a great
deal of variation. This example illustrates the source of the power of
our divide-and-conquer algorithm– if the oracle can identify even
one token at a given level as defining a good partition for the data,
the histograms for the next level down become substantially sharper
and more amenable to analysis.

As a third example, consider histogram (k). This histogram
illustrates the classic pattern for tokens involved in arrays– it has
a very long tail. And indeed, the | token in the Sirius data does act
like a separator for fields of an array.
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Figure 6. Histograms (a), (b), (c), (d), (e), (f) and (g) are generated from top-level analysis of Crashreporter.log tokens. The corresponding
tokens are (a) [*], (b) Pint, (c) PDate, (d) PTime, (e) -, (f) Palpha and (g) Pwhite. Histograms (h) Palpha, (i) Pint, and (j)
Pwhite are generated from analysis of Crashreporter.log from set 1 (the second level of recursion). Histogram (k) is generated from top-
level analysis of the | token from the Sirius data. Note that several of these histograms have many bars of very small height, including (f)
with 7, (g) with 8, and (k) with 17.

To make the intuitions discussed above precise, we must define
a number of properties of histograms. First, a histogram h for a
token t is a list of pairs of natural numbers (x, y) where x denotes
the token frequency and y denotes the number of chunks with that
frequency. All first elements of pairs in the list must be unique.
The width of a histogram (width(h)) is the number of elements in
the list excluding the zero-column (i.e. excluding element (0, y)).
A histogram h̄ is in our normal form when the first element of the
list is the zero column and all subsequent elements are sorted in
descending order by the y component. For example, if h1 is the
histogram [(0, 5), (1, 10), (2, 25), (3, 15)] then width(h1) is 3 and
its normal form h̄1 is [(0, 5), (2, 25), (3, 15), (1, 10)].

We often refer to y as the mass of the element (x, y), and given
a histogram h, we refer to the mass of the ith element of the list
using the notation h[i]. For instance, h1[3] = 15 and h̄1[3] = 10.
The residual mass (rm) of a column i in a normalized histogram h
is the mass of all the columns to the right of i plus the mass of the
zero-column. Mathematically, rm(h̄, i) = h̄[0] +

P

width(h̄)
j=i+1 h̄[j].

For example, rm(h̄1, 1) = 5 + 15 + 10 = 30. The residual mass
characterizes the “narrowness” of a histogram. Those histograms
with low residual mass of the first column (i.e., rm(h̄1, 1) is small)
are good candidates for structs because the corresponding tokens
occur exactly the same number of times in almost all records.

To distinguish between structs, arrays and unions, we also need
to define the coverage of a histogram, which intuitively is the
number of chunks containing the corresponding token. Mathemat-
ically, it is simply the sum of the non-zero histogram elements:
coverage(h̄) =

P

width(h̄)
j=1 h̄[j].

Finally, our algorithm works better when the oracle consid-
ers groups of tokens with similar distributions together because
with very high probability such tokens form part of the same type
constructor. To determine when two histograms are similar, we
use a symmetric form of relative entropy [13]. The (plain) rel-
ative entropy of two normalized histograms h̄1 and h̄2, written
R(h̄1 || h̄2), is defined as follows.

R(h̄1 || h̄2) =

width(h̄1)
X

j=1

h̄1[j] ∗ log(h̄1[j]/h̄2 [j])

To create a symmetric form, we first find the average of the two his-
tograms in question (written h1 ⊕ h2) by summing corresponding
columns and dividing by two. This technique prevents the denom-
inator from being zero in the final relative entropy computation.
Using this definition, the symmetric relative entropy is:

S(h̄1 || h̄2) =
1

2
R(h̄1 || h̄1 ⊕ h̄2) +

1

2
R(h̄2 || h̄1 ⊕ h̄2)

Now that we have defined the relevant properties of histograms,
we can explain how the oracle prophecies given a list of chunks.

1. Prophecy a base type when each chunk contains the same
simple token. If each chunk contains the same meta-token,
prophecy a struct with three fields: one for the left paren, one
for the body, and one for the right paren.

2. Otherwise, compute normalized histograms for the input and
group related ones into clusters using agglomerative cluster-
ing: A histogram h1 belongs to group G provided there ex-
ists another histogram h2 in G such that S(h̄1 || h̄2) <
ClusterTolerance. where ClusterTolerance is a parameter of
the algorithm. We do not require all histograms in a cluster to
have precisely the same histogram to allow for errors in the data.
A histogram dissimilar to all others will form its own group. We
have found a ClusterTolerance of 0.01 is effective.

3. Determine if a struct exists by first ranking the groups by the
minimum residual mass of all the histograms in each group.
Find the first group in this ordering with histograms h satisfying
the following criteria:
• rm(h) < MaxMass
• coverage(h) > MinCoverage

where constants MaxMass and MinCoverage are parameters
of the algorithm. This process favors groups of histograms with
high coverage and narrow distribution. If histograms h1, . . . , hn

from group G satisfy the struct criteria, the oracle will prophecy
some form of struct. It uses the histograms h1, . . . , hn and
the associated tokens t1, . . . , tn to calculate the number of
fields and the corresponding chunk lists. We call t1, . . . , tn the
identified tokens for the input. Intuitively, for each input chunk,
the oracle puts all tokens up to but not including the first token
t from the set of identified tokens into the chunk list for the
first field. It puts t in the chunk list for the second field. It puts
all tokens up to the next identified token into the chunk list for
the third field and so on. Of course, the identified tokens need
not appear in the same order in all input chunks, nor in fact must
they all appear at all. To handle this variation when it occurs, the
oracle prophecies a union instead of a struct, with one branch
per token ordering and one branch for all input chunks that do
not have the full set of identified tokens.

4. Identify an array by sorting all groups in descending order by
coverage of the highest coverage histogram in the group. Find
the first group in this ordering with any histograms that satisfy
the following minimum criteria:
• width(h) > 3
• coverage(h) > MinCoverage

This process favors histograms with wide distribution and high
coverage. If histograms h1, . . . , hn with corresponding tokens
t1, . . . , tn satisfy the array criteria, the oracle will prophecy
an array. It will partition each input chunk into (1) a preamble
subsequence that contains the first occurrence of each identi-



fied token, (2) a set of element subsequences, with each subse-
quence containing one occurrence of the identified tokens, and
(3) a postamble subsequence that contains any remaining tokens
from the input chunk.

5. If no other prophecy applies, identify a union. Partition the input
chunks according to the first token in each chunk.

3.3 Information-Theoretic Scoring
We use an information theoretic scoring function to assess the
quality of our inferred descriptions and to decide whether to apply
rewriting rules to refine candidate descriptions. Intuitively, a good
description is one that is both compact and precise. There are
trivial descriptions of any data source that are highly compact (e.g.,
the description that says the data source is a string terminated
by end of file) or perfectly precise (e.g., the data itself abstracts
nothing and therefore serves as its own description). A good scoring
function balances these opposing goals. As is common in machine
learning, we have defined a scoring function based on the Minimum
Description Length Principle (MDL), which states that a good
description is one that minimizes the cost (in bits) of transmitting
the data [8]. Mathematically, if T is a description and d1, . . . , dk

are representations of the k chunks in our training set, parsed
according to T , then the total cost in bits is:

COST(T, d1, . . . , dk) = CT(T ) + CD(d1, . . . , dk | T )

where CT(T ) is the number of bits to transmit the description and
CD(d1, . . . , dk | T ) is the number of bits to transmit the data given
the description.

Intuitively, the cost in bits of transmitting a description is
the cost of transmitting the sort of description (i.e., struct,
union, enum, etc.) plus the cost of transmitting all of its sub-
components. For example, the cost of transmitting a struct type
CT(struct{T1; . . . ; Tk; }) is CARD +

Pk

i=1 CT(Ti) where
CARD is the log of the number of different sorts of type construc-
tors (24 of them in the IR presented in this paper). We have defined
the recursive cost function mathematically in full, but space limita-
tions preclude giving that definition here.

The cost of encoding data relative to selected types is shown in
Figure 7. The top of the figure defines the cost of encoding all data
chunks relative to the type T ; it is simply the sum of encoding each
individual chunk relative to T .

In the middle of the figure, we define the cost of encoding a
chunk relative to one of the integer base types; other base types
are handled similarly. Notice that the cost of encoding an inte-
ger relative to the constant type PintConst is zero because the
type itself contains all information necessary to reconstruct the
integer– no data need be transmitted. The cost of encoding data
relative to Pint32 or Pint64 types is simply 32 or 64 bits,
respectively. Finally, we artificially set the cost of ranged types
PintRanged(pmin, pmax) to be infinity because our experi-
ments reveal that attempting to define integer types with minimum
and maximum values usually leads to overfitting of the data.4

The last section of Figure 7 presents the cost of encoding
data relative to selected type constructors. The cost of encoding
a struct is the sum of the costs of encoding its component parts.
The cost of encoding a union is the cost of encoding the branch
number (log(k) if the union has k branches) plus the cost of en-
coding the branch itself. The cost of encoding an enum is the cost

4 We nevertheless retain PintRanged types in our IR to encode the range
of values found during the value-space analysis. During the rewriting phase,
we use this range information to rewrite PintRanged into other integer
types. Since the cost of encoding PintRanged is so high, the appropriate
rewriting is guaranteed to be applied. In the future, we may emit this range
information as comments in the generated descriptions.

Cost of encoding all training data relative to a type:

CD(d1 , . . . , dk | T ) =
Pk

i=1 CD’(di | T )

Cost of encoding a single chunk relative to selected base types:
CD’(i | PintConst(p)) = 0
CD’(i | Pint32) = 32
CD’(i | Pint64) = 64
CD’(i | PintRanged(pmin, pmax)) = ∞

Cost of encoding a single chunk relative to selected types:

CD’((d1 , . . . , dk) | struct{T1; . . . Tk ; })

=
Pk

i=1 CD’(di | Ti)

CD’(ini(d) | union{T1; . . . Tk ; })
= log(k) + CD’(d | Ti)

CD’(ini(c) | enum{c1; . . . ck; })
= log(k)

CD’(ini(d) | switch x of{c1=>T1; . . . ck=>Tk; })
= CD’(d | Ti)

Figure 7. Cost of transmitting data relative to a type, selected rules

of encoding its tag only – given the tag, the underlying data is de-
termined by the type. The cost of encoding a switch is the cost
of encoding the branch only – the tag need not be encoded because
it is determined by the type and earlier data.

3.4 Structure Refinement
The goal of the structure-refinement phase is to improve the struc-
ture produced by the structure-discovery phase. We formulate the
structure-refinement problem as a generalized search through the
description space starting with the candidate produced by structure
discovery. The objective of the search is to find the description that
minimizes the information-theoretic scoring function.

Rewriting rules. To move around in the description space, we
define a number of rewriting rules, the general form of which is

T ⇒ T ′, if some constraint p(T ) is satisfied,

where T is a type in the candidate description and T ′ is its re-
placement after the rewriting. Some rules are unconditional and
thus free of constraints. There are two kinds of rewriting rules: (1)
data-independent rules which transform a type based exclusively on
the syntax of the description; and (2) data-dependent rules which
transform a type based both on the syntax of the description and
on properties of the training data parsed by type T . In general, the
data-independent rules try to rearrange and merge portions of the
description while the data dependent rules seek to identify con-
stant fields and enumerations, and to establish data dependencies
between different parts of the description.

Figure 8 presents a selection of the rewriting rules used in the
refinement phase. We have omitted many rules and have simplified
others for succinctness. When T [[X]] appears in a pattern on the
left-hand side of a rewriting rule, X is bound to the set of data
representations resulting from using T to parse the appropriate part
of each chunk from the training set. Furthermore, let card(X) be
the cardinality of the set X , and let X(i) be the data representation
resulting from parsing the ith chunk in the training set. Finally,
given a union value inj(v), we define tag(inj(v)) to be j.

The Search. The core of the rewriting system is a recursive,
depth-first, greedy search procedure. By “depth-first,” we mean
the algorithm considers the children of each structured type before
considering the structure itself. When refining a type, the algorithm
selects the rule that would minimize the information-theoretic score
of the resulting type and applies this rule. This process repeats until



Data independent rules
1. Singleton structs and unions

struct{T} ⇒ T union{T} ⇒ T

struct{} ⇒ Pempty union{} ⇒ Pvoid

2. Struct and union clean-up
struct{pre types; Pvoid; post types} ⇒ Pvoid

struct{pre types; Pempty; post types} ⇒
struct{pre types; post types}

union{pre types; Pvoid; post types} ⇒
union{pre types; post types}

3. Uniform struct to fixed-length array
struct{T1; . . . ; Tn} ⇒ arrayFW{T1}[n]
if n ≥ 3 and ∀i ∈ [1, n], j ∈ [1, n] : Ti = Tj .

4. Common postfix in union branches
union{struct{pre types1; T};

struct{pre types2;T}} ⇒
struct{union{struct{pre types1};

struct{pre types2}}; T}

union{struct{pre types;T};T} ⇒
struct{option{struct{pre types}}; T}

5. Combine adjacent constant strings
struct{pre types; PstringConst(c1 );

PstringConst(c2 ); post types} ⇒
struct{pre types; PstringConst(c1@c2); post types}

Data dependent rules
1. Base type with unique values to constant

Pint[[X]] ⇒ PintConst(c)
if ∀x ∈ X : x = c.

Palpha[[X]] ⇒ PstringConst(c)
if ∀x ∈ X : x = c.

Pstring[[X]] ⇒ PstringConst(c)
if ∀x ∈ X : x = c.

Pother[[X]] ⇒ PstringConst(c)
if ∀x ∈ X : x = c.

2. Refine enums and ranges
Pstring[[X]] ⇒ enum{s1; . . . ; sk}
if ∀x ∈ X : x ∈ {s1, . . . , sk}.

Pint[[X]] ⇒ Pint32

if ∀x ∈ X : 0 ≤ x < 232 .
3. Union to switch

struct{pre types; enum{c1; . . . ; cn}[[X]]; mid types;
union{T1; . . . ; Tn}[[Y ]]; post types}

⇒
struct{pre types, z : enum{c1; . . . ; cn}; mid types;

switch(z){c1 ⇒ TΠ(1); . . . ; cn ⇒ TΠ(n)}; post types}
where z is a fresh variable, and there exists a permutation Π, s.t.
∀i ∈ [1, card(X)], Π(tag(X(i))) = tag(Y (i)).

Figure 8. Selected and simplified rewriting rules

(* rewriting rules *)
type rule : description -> description
val rules : rule list

(* measure the score for a type *)
fun score : description -> float

(* find the type with best score from a list *)
fun best: description list -> description

(* improve the given type by one rewriting rule *)
fun oneStep (T:description) : description =
let all = map (fn rule => rule T) rules in
let top = best all in
if (score top) < (score T) then oneStep top
else T

(* main function to refine an IR description *)
fun refine (T:description) : description =

let T’ = case T of
base b => b

| struct { Ts } => struct { map refine Ts }
| union { Ts } => union { map refine Ts }
| switch x of { vTs } =>

switch x of
{ map (fn (v, t) => (v, refine t)) vTs }

| array { T } =>
array { refine T }

| option { T } => option { refine T } in
oneStep T’

Figure 9. Generic local optimization algorithm in Pseudo-ML

no further reduction in the score is possible, at which point we say
the resulting type T is stable.

The rewriting phase applies the algorithm given in Figure 9
three times in succession. The first time, the algorithm quickly sim-
plifies the initial candidate description using only data-independent
rules. The second time, it uses the data-dependent rules to refine

base types to constant values and enumerations, etc., and to intro-
duce dependencies such as switched unions. This stage requires
the value-space analysis described next. The third time, the algo-
rithm re-applies the data-independent rules because some stage two
rewritings (such as converting a base type to a constant) enable fur-
ther data-independent rewritings.

Value-space analysis. We perform a value-space analysis prior
to applying the data-dependent rules. This analysis first generates
a set of relational tables from the input data. Each row in a table
corresponds to an input chunk and each column corresponds to
either a particular base type from the inferred description, or to
a piece of meta-data from the description. Examples of meta-data
include the tag number from union branches and the length of
arrays. We generate a set of relational tables as opposed to a single
table as the elements of each array occupy their own separate table
(a description with no arrays will have only one associated table).

We analyze every column of every table to determine properties
of the data in that column such as constancy and value range. To
find inter-column properties, we have implemented a simplified
variant of the TANE algorithm [11], which identifies functional
dependencies between columns in relational data. Because full
TANE is too expensive (possibly exponential in the number of
columns), and produces many false positives when invoked with
insufficient data, our simplified algorithm computes only binary
dependencies. We use the result of this dependency analysis to
identify switched unions and fixed-size arrays.

Running example. To illustrate the refinement process, we walk
through a few of the steps taken to rewrite the Crashreporter.log
description. The first part of the candidate description generated by
the structure-discovery algorithm appears below.

struct {
union {

struct {
Pdate; Pwhite; Ptime; Pwhite; Pint;



Pwhite; (*)
};
struct {

"-";
Pwhite; (*)

};
}
Palpha; "["; Pint; "]";
union { ... };

};

In the first data-independent stage of rewriting, the common trailing
white space marked (*) is pulled out of the union branches into
the surrounding struct using the “common postfix in union” rule.
This transformation leaves behind the single-element struct marked
(**) in the result below; rewriting rules in stage three will trans-
form this verbose form into the more compact constant string "-".
This first rewriting stage also pulls colon and whitespace characters
out of the trailing union (not shown in the candidate description).

struct {
union {
struct { Pdate; Pwhite; Ptime; Pwhite; Pint; };
struct { "-" }; (**)

}
Pwhite; (*)
Palpha; "["; Pint; "]"; ":"; Pwhite;
union { ... };

};

In the second rewriting stage, data-dependent rules 1 and 2
convert appropriate base types into constants and enums. Moreover,
TANE discovers a data dependency between the newly introduced
enumeration involving "crashdump" and "mach msg", and
the structure of the following message. Hence, we introduce a
switched union. Notice that the switched union branches on a
different enum than the hand-written IR in Figure 3 because the
inference algorithm found a different way of structuring the data.
Nonetheless, both of these descriptions are accurate.

struct {
union {
struct { Pdate; " "; Ptime; " "; 2006; };
struct { "-" };

};
" "; enum {"crashreporterd", "crashdump"};
"["; PintRanged [120...29874]; "]"; ":"; " ";
x19:enum {"crashdump", "mach_msg", "Finished",

"Started", "Unable", "Failed"};
switch x19 of { ... };

};

In the third and final stage, data independent rule 5 combines
constants and rule 1 flattens the singleton struct, resulting in the
final IR description:

struct {
union {
struct { Pdate; " "; Ptime; " "; 2006; };
"-";

};
" "; enum {"crashreporterd", "crashdump"};
"["; Pint32; "]: ";
x19:enum {"crashdump", "mach_msg", "Finished",

"Started", "Unable", "Failed"};
switch x19 of { ... };
};

};

The information-theoretic complexity of the final description
relative to the data in our training set is 304538 bits. The candi-
date description produced by the structure-discovery phase had a

Tiny fragment of XML output from crashreporter.log:

<Struct_114>
<var_7>

<var_6>
<var_0><val>Sat Jun 24</val></var_0>
<var_2><val>06:38:46</val></var_2>
<var_4><val>2006</val></var_4>

</var_6>
</var_7>
<var_11><val>crashdump</val></var_11>
<var_14><val>2164</val></var_14>

...

Graph generated from ai.3000 web transaction volume at different
times of the day (00:00-8:55 and 19:00-24:00):
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Figure 10. End products of automatically generated tools.

complexity of 416156 bits. The absolute values of these quantities
are relatively unimportant, but the fact that the final complexity is
substantially smaller than the original suggests that our search pro-
cedure optimized the description effectively.

3.5 End Products
The previous subsections outline the central technical elements
of our algorithms. The main tasks remaining include converting
the internal representation into a syntactically correct PADS de-
scription, feeding the generated description to the PADS compiler
and producing a collection of scripts that conveniently package
the freshly-generated libraries with the PADS run-time system and
tools. At the end of this process, users have a number of program-
ming libraries and many powerful tools at their disposal. Perhaps
the most powerful tools are the PADX query engine [4] and the XML
converter, which allow users to write arbitrary XQueries over the
data source or to convert the data to XML for use by other software.
Other useful tools include the accumulator tool, mentioned earlier,
converters to translate data into a form suitable for loading into a re-
lational database or Excel spreadsheet, and a custom graphing tool
that pushes data into gnuplot for data visualization. Figure 10
gives snapshots of the output of a couple of these tools.

4. Experimental Evaluation
We conducted a series of experiments to study the correctness and
performance of our format inference algorithm. Table 1 lists the
data sources we used in the experiments; they range from system
logs to application outputs to government statistics. Except for sir-
ius.1000, which is a proprietary format, the files are all available
from www.padsproj.org/learning.html. The size of the
benchmarks varies from a few thousand lines to just a few dozen.



Data source KB/Chunks Description
1967Transactions.short 70/999 transaction records
MER T01 01.cvs 22/491 comma-sep records
ai.3000 293/3000 webserver log
asl.log 279/1500 log file of Mac ASL
boot.log 16/262 Mac OS boot log
crashreporter.log 50/441 original crash log
crashreporter.log.mod 49/441 modified crash log
sirius.1000 142/999 AT&T phone

provision data
ls-l.txt 2/35 Stdout from Unix

command ls -l
netstat-an 14/202 output from netstat
page log 28/354 printer logs
quarterlypersonalincome 10/62 spread sheet
railroad.txt 6/67 US rail road info
scrollkeeper.log 66/671 application log
windowserver last.log 52/680 log from

LoginWindow
server on Mac

yum.txt 18/328 log from pkg install

Table 1. Benchmark profile including filename, size in KB, num-
ber of chunks and brief description.

Data source SD(s) Ref(s) Tot(s) HW(h)
1967Transactions.short 0.20 2.32 2.56 4.0
MER T01 01.csv 0.11 2.80 2.92 0.5
ai.3000 1.97 26.35 28.64 1.0
asl.log 2.90 52.07 55.26 1.0
boot.log 0.11 2.40 2.53 1.0
crashreport.log 0.12 3.58 3.73 2.0
crashreport.log.mod 0.15 3.83 4.00 2.0
sirius.1000 2.24 5.69 8.00 1.5
ls-l.txt 0.01 0.10 0.11 1.0
netstat-an 0.07 0.74 0.82 1.0
page log 0.08 0.55 0.65 0.5
quarterlypersonalincome 0.07 5.11 5.18 48
railroad.txt 0.06 2.69 2.76 2.0
scrollkeeper.log 0.13 3.24 3.40 1.0
windowserver last.log 0.37 9.65 10.07 1.5
yum.txt 0.11 1.91 2.03 5.0

Table 2. Execution times. SD: time for structure-discovery phase;
Ref: time for scoring and refinement; Tot: end-to-end time for
complete inference algorithm; HW: time taken in hours to hand-
write the corresponding description.

Most of the data files are “line based,” meaning that every line be-
comes a chunk for the purposes of learning the format. One ex-
ception is netstat-an, in which chunks comprise multiple lines. We
include two versions of crashreporter.log: the original “crashre-
porter.log” and the slightly modified “crashreporter.log.mod” that
we used as an example in this paper. We include both to demon-
strate that our minor modifications were simply for expository pur-
poses.

Performance. Our first set of experiments measures the time re-
quired to infer a description from example data. In all our experi-
ments, we used an Apple PowerBook G4 with a 1.67 GHz Proces-
sor and 512 MB DDR RAM running on Mac OSX 10.4 Tiger. Ta-
ble 2 presents the execution times for the structure-discovery phase
(SD), the refinement phase (Ref) and the total (Tot) end-to-end time
of the algorithm including printing PADS descriptions and other
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Figure 11. Execution times of training sets

overhead, all measured in seconds. For accurate timing measure-
ments, we ran the algorithm 10 times, and found the average after
removing the best and the worst times.

There are two main lessons to take away from this initial set of
benchmarks. First, the overall time to infer the structure of any our
example files was less than a minute, and was less than 10 seconds
except on a couple of the larger files. Hence, although we have
spent very little time optimizing our algorithm, it already appears
perfectly capable of being used in real time by a programmer
wishing to understand and process small ad hoc data files. Second,
discovery of an initial format is usually very fast, taking less than
3 seconds in all cases. Most of the algorithm’s time is spent in
format rewriting, which often takes a factor of 10 or more time than
structure discovery. Moreover, most of the rewriting time is taken
in the data analysis phase (numbers not shown). Consequently, if
format rewriting (particularly the data analysis phase) is taking
too long, the user may abort it to produce a slightly less refined
description that may nevertheless be perfectly sufficient.

To give a very rough idea of how using the inference system
compares with programming descriptions by hand, we also mea-
sured the time it took for a person to write descriptions of all of the
data sources (See Table 2 again). Initially, our programmer (a Ph.D.
in computer science) knew very little about how the PADS system
worked in practice, having only read a few of our conference pa-
pers. Consequently, writing the first description took a long time,
approximately 48 hours (two days of working at an “ordinary”
pace) for quarterlypersonalincome. While different people with dif-
ferent backgrounds will clearly learn at different rates, there is little
doubt that the format inference algorithm is a tremendous benefit to
novices, particularly to those data analysts without a Ph.D. in com-
puter science, who could not care less about learning some new
data description language. After some practice, our programmer
was able to write most descriptions in 1 to 2 hours, so generating
descriptions in a few seconds still has great benefit, even to experts.

To understand the scaling behavior of our algorithm, we ran-
domly selected 5%, 10%, 15%, ..., 80% of the chunks in every data
source and measured the performance of the algorithm on each sub-
set of the data that was selected. Figure 11 plots the execution time
against the percentage of each data source selected. These exper-
iments suggest that once a format is fixed, the cost of inference
grows linearly with the amount of data. However, it is also clear
that the raw size of the data is not the only factor determining per-
formance. The nature and complexity of the format is also a signifi-
cant factor. For instance, widowserver last.log is only one third the
size of sirius.1000, but takes substantially longer for the inference
algorithm to process.
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Figure 12. Success rates of training sets

Correctness. To evaluate the correctness of our algorithm, we
again selected random subsets of each data source, trained our algo-
rithm on those subsets and measured the error rate of the inferred
parser on the remaining data. Figure 12 graphs the percentage of
successfully parsed records versus the percentage of the data used
in training. Note that accuracy does not uniformly improve. This
variation is caused by the randomness in our data selection and the
fact that in some cases, we have very small absolute quantities of
data relative to the underlying complexity of the formats. For in-
stance, at 5% training size, ls-l.txt is just one line of data.

To understand the correctness properties of our algorithm from
a different angle, we record the minimum training sizes in percent-
ages required to achieve 90% and 95% accuracy for all the bench-
marks in Table 3. This table also reports the normalized cost of a
description (NCT), which we compute by dividing the first compo-
nent of the information-theoretic score in Section 3.3 by the number
of bits in the data. NCT gives a rough indication of the complexity
of the data source. The higher the normalized score, the more com-
plicated the data, and the greater the fraction of data is needed to
learn an accurate description. The rows of of Table 3 are sorted in
ascending NS score. From the table, one can see that ls-l.txt and
railroad.txt have high NS scores. This is because they are quite
small data sources (2KB and 6KB respectively), yet have relatively
complicated formats. Consequently, it takes a substantial portion
of the data to learn an accurate parser. For most of the other data
sources, a substantially smaller percentage of the data is required to
achieve high accuracy. Overall, for 11 of 16 benchmarks, less than
15% of the data is needed to achieve 95% accuracy or more.

5. Discussion
Dealing with errors. In 1967, Gold [7] proved that learning a
grammar for any remotely sophisticated class of languages, such
as the regular languages, is impossible if one is only given positive
example data.5 Given this negative theoretical result, and the prac-
tical fact that it is hard to be sure that training data is sufficiently
rich to witness all possible variation in the data, errors in inference
are inevitable. Fortunately, however, detecting and recovering from

5 A positive example is a data source known to be in the grammar to be
learned. A negative example is one known not to be in the target grammar.
Learning with positive examples and negative examples is possible. Unfor-
tunately, given that data analysts are unlikely to have access to ad hoc data
that they know does not satisfy the format they are interested in learning,
we are forced to tackle the more difficult problem of learning from positive
examples only.

Data source NCT 90% 95%
sirius.1000 0.0001 5 10
1967Transactions.short 0.0003 5 5
ai.3000 0.0004 5 10
asl.log 0.0012 5 10
scrollkeeper.log 0.0020 5 5
page log 0.0032 5 5
MER T01 01.csv 0.0037 5 5
crashreporter.log 0.0052 10 15
crashreporter.log.mod 0.0053 5 15
windowserver last.log 0.0084 5 15
netstat-an 0.0118 25 35
yum.txt 0.0124 30 45
quarterlypersonalincome 0.0170 10 10
boot.log 0.0213 45 60
ls-l.txt 0.0461 50 65
railroad.txt 0.0485 60 75

Table 3. Correctness measures. NCT: normalized cost of descrip-
tion; Min Training size (%) to obtain required accuracy

errors in ad hoc data is one of the primary strengths of the PADS
system.

To determine exactly how accurate an inferred description is on
any new data source, a user may run the accumulator tool. This tool
catalogs exactly how many deviations from the description there
were overall in the data source as well as the error rate in every
individual field. Hence, using this tool, a programmer can immedi-
ately and reliably determine the effectiveness of inference for their
data. If there is a serious problem, the user can easily edit the gen-
erated description by hand – identification of a problem field, a
minor edit and recompilation of tools might just take 5 minutes.
Hence, even imperfectly-generated descriptions have great value in
terms of improving programmer productivity. Moreover, all PADS-
generated parsers and tools have error detection, representation and
recovery techniques. For instance, when converting data to XML,
errors encountered are represented explicitly in the XML document,
allowing users to query the data for errors if they choose. Before
graphing ad hoc data, an analyst may use the accumulator tool to
check if any errors occur in the fields to be graphed. If not, there is
no reason to edit the description at all – graphing the correct fields
may proceed immediately.

Future work. Perhaps the most significant weakness of our cur-
rent system is that its relative effectiveness is somewhat brittle with
respect to exactly how we perform token processing. Discovering
tokens like “IP address” and “date” is highly beneficial as they act
as compact, highly descriptive abstractions, but unfortunately, they
are also often mutually ambiguous. For instance, an IP address, a
file name, a floating point number, the version number for a soft-
ware product, and a phone number can all be represented as some
number of digits separated by periods. At the moment, we disam-
biguate between them in the same way that lex does, by taking the
first, longest match. To improve tokenization in the future, we plan
to look at learning probabilistic models of a broad range of token
types. We also intend to explore finding new tokens from the data
itself, possibly by identifying abrupt changes in entropy [12].

6. Related Work
Researchers have been studying grammar induction, the process
of learning the structure of a data source, since the 1960s; De La
Higuera surveys some recent trends [9]. However, our system is
unique in two important ways. First, our inference algorithm does
not stand alone; it is part of the more general PADS programming



environment. The fusion of the PADS system, including its auto-
matic data representation generation, its error detection facilities,
its generic programming environment, and its powerful tool suite,
together with grammar induction is one of our key contributions.
Second, many researchers have focused either on grammar induc-
tion for natural language processing or for information extraction
from XML or HTML documents. In contrast, we focus on ad hoc data
sources such as system logs and scientific data sets. Ad hoc data is
substantially less structured syntactically than XML, and yet, unlike
natural language, it is possible to assign our data sources accurate,
compact descriptions. After searching the literature and consulting
with experts in grammar induction at the CAGI 2007 workshop,
where we presented a two page overview of our system [2], we
could find no existing work comparable to ours.

Perhaps the most closely related work is from Arasu and Garcia-
Molina [1], who developed an information extraction system for
sets of similar web pages. Arasu uses a top-down grammar induc-
tion algorithm somewhat similar to our rough structure-inference
phase (though it does not use histograms), but has no description
rewriting engine. This algorithm exploits the hierarchical nesting
structure of XML documents in essential ways and so cannot be
applied directly to ad hoc data.

The TSIMMIS project [3] aims to allow users to manage and
query collections of heterogeneous, ad hoc data sources. TSIMMIS
sits on top of the Rufus system [18], which supports automatic
classification of data sources based on features such as the presence
of certain keywords, magic numbers appearing at the beginning of
files and file type. This sort of classification is materially different
from the syntactic analysis we have developed.

Potter’s Wheel [17] is a system that attempts to help users find
and purge errors from relational data sources. It does so through
the use of a spread-sheet style interface, but in the background,
a grammar inference algorithm infers the structure of the input
data, which may be “ad hoc,” somewhat like ours. This inference
algorithm operates by enumerating all possible sequences of base
types that appear in the training data. Since Potter’s Wheel is aimed
at processing relational data, they only infer struct types as
opposed to enumerations, arrays, switches or unions.

Other researchers have defined grammar induction algorithms
that use bottom-up rewriting to search through description space
for an optimal description. Many of these techniques, such as
RPNI [15] require the availability of both positive and negative
examples. In our context, negative examples never exist, making
such techniques inapplicable. However, others, such as Stolcke and
Omohundro [19] and Hong [10], do not assume the existence of
negative examples. These and a number of other systems search
through solution space using state-merging rewriting rules. One
disadvantage of such techniques is that the initial state is large
(representing the entire training data set explicitly) and the search
space is enormous. Nevertheless, bottom-up state-merging is often
used because it has been difficult to find an effective state-splitting
algorithm. Our histogram-based structure-discovery procedure is a
new state-splitting algorithm that appears to work well on ad hoc
data when coupled with bottom-up rewriting.

7. Conclusions
Managing ad hoc data is a tedious, error-prone and costly enter-
prise. By augmenting the PADS data processing language and sys-
tem with an efficient format inference engine, we have effectively
cut the generation time for useful data analysis and transformation
tools from hours or days to seconds. Now, within moments of re-
ceiving a new ad hoc data source, programmers can write complex
semi-structured queries to extract information, produce informative
graphs of key statistics, convert the data into a format amenable
to easy loading into Excel or translate to XML for processing with

other standard programming libraries and systems. Systems admin-
istrators, computational scientists, financial analysts, industrial data
management teams and everyday programmers will all benefit sub-
stantially from this new capability to translate dirt into useful shov-
els for ad hoc data processing.
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