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1
Introduction

The vast availability of online information sources has essentially changed
the way users search for information. We like to point out 3 main changes:

(1) Information retrieval has become a ubiquitous requirement for modern
life. Looking for public transport connections, cultural activities, or
searching for reviews on goods we want to buy are just examples of such
often occurring search tasks in daily life. In contrast to the conventional
scenario of information retrieval, where a person is spending hours in a
library to find all information on a certain topic, we are often satisfied
with just some useful information, but it needs to be found immediately.

(2) In the same way, people often do not look anymore for entire books or
articles but for some specific information contained inside. Sometimes
the wanted information is captured in one single document, but the
user would need to find the right place; sometimes the necessary infor-
mation is even spread over several documents. In both cases, a user
would appreciate retrieval systems that arrange just the required bits
of information appropriately.

(3) Users want to search different types of documents. Apart from the
conventional sources of information, like books and articles, we also
want to search nowadays in webpages, emails, blogs, or simply within
a computer’s file system.

The changes on search behavior ask among others for research in the
following fields of information retrieval:

Performance Retrieval systems need to be able to come up with answers
within seconds – better even within fractions of seconds – independent of

1



2 CHAPTER 1. INTRODUCTION

the size of the collection. With text collections growing faster than hardware
performance is improving, this becomes a challenge for indices and scoring
algorithms. We will use the term performance here only with respect to the
execution time of a query, not – as often done otherwise – with respect to
the quality of retrieval.

Precision With growing text resources, precision becomes more important
than recall. Whereas still a large set of documents might contain a certain
query term, we are in general only interested in – or satisfied with – a tiny
subset. However, this subset has to contain the relevant information. Studies
on the search behavior of users show, that if relevant documents are not
found on top of the list, it is more likely that a user reformulates the query
than that she/he looks for relevant documents further down the retrieved
ranked list (Markey, 2007). Therefore, retrieval systems should provide a
query language that gives means to specify precise queries and furthermore
support the user reformulating the query. As a second consequence of the
preference of precision over recall, the evaluation of retrieval systems needs
to stress the importance of precision measures.

Structure Retrieval systems need to be aware of the structure of docu-
ments. When collections consist of heterogeneous types of documents, and/or
the documents themselves are structured – for instance distinguishing by
mark-up between representation code and content as in web pages – the in-
dices of retrieval systems need to capture structural information of documents
as well. We can also think of the aim to weigh query matches in the title or
abstract of a document higher than in other parts. Furthermore, when users
want to search explicitly for relevant parts within large documents, not only
the index but also the query language needs to be able to express structural
requirements.

This thesis combines research work that addresses the problems men-
tioned in the last three paragraphs. Improving precision as well as structural
retrieval will be discussed together with performance issues of the proposed
techniques.

1.1 From Document to Entity Retrieval

The user’s interest in highly focused retrieval results is a common assumption
in information retrieval. Instead of always getting entire documents, users
want to see directly the relevant parts of long articles. In compliance with
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this assumption, we will follow in this work a line from document, over XML,
towards entity retrieval. It is also a progression from retrieval as we know
it from the conventional library setting towards very focused retrieval of the
smallest meaningful units in the text.

In fact, user behavior studies are not that clear about the above made base
assumption (Malik et al., 2006; Larsen et al., 2006). When users were asked to
choose appropriate entry points for reading a retrieved part of a longer text,
they usually like to start at document level and not directly at the best ranked
paragraph or sentence. This observation, which looks at first contradicting to
the focused retrieval assumption, is in fact based on the users’ experience with
information retrieval systems returning irrelevant, inappropriate answers as
well. We all are trained by the common web search engines to always check
in the first place whether a given answer is indeed matching our information
need and a trustable source of information. Apparently, such a check is easier
when we are confronted with an entire web-page or document than with the
best matching paragraph- or sentence-level retrieval results. This does not
mean, however, that people are really interested in reading the whole article.
A good indication for that is, that users often like keyword highlighting in
the returned articles. Focused retrieval techniques are appreciated, but need
to be accompanied by other views of the entire document to give evidence of
the appropriateness of the found information. The problem will be discussed
in more detail at other places of this thesis, but the task of finding suitable
user interface designs will be left for research in the area of human computer
interaction.

On the background of such user studies, the title of this thesis should not
be misunderstood as a mission to “move” away from document retrieval. It is
not claiming an evolutionary development from document to entity retrieval,
but for diversification of retrieval techniques. Document retrieval will remain
as important as it always was, but apart from that, we need more focused
retrieval methods. In the same way, the chapters of this book do not outdate
each other, but discuss methods for high precision retrieval on all such levels
of text retrieval.

The call for focused retrieval techniques is not new, however. We will
shortly summarize and compare the main retrieval characteristics on the
different granularity levels of returned text units.

Document Retrieval Document retrieval regards each document as an
atomic unit of interest. It is not distinguished whether parts of a document
are relevant to an information need but others not. Looking at Figure 1.1,
the user of a document retrieval system will find a link to the entire outlined
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document if it was considered as relevant to her/his query. Also the relevance
estimation is based on the content of the entire document. If one chapter
of the visualized thesis is highly relevant, but the other chapters are not,
the final relevance estimation of the entire document is considerably lower
than those of short documents being exclusively about the topic of interest.
Single documents are either one-to-one identical with single files, or special
pre-defined (SGML or XML) markup is used, to determine the bounds of
single documents within large collection files. From an indexing perspective,
document retrieval allows the construction of efficient inverted document in-
dex structures. Neglecting special requests like the search for phrases, most
document retrieval models think of a document as a bag of words. It is then
not necessary to store the exact position of keywords within a document.

<document>

<title>From Document to Entity
Retrieval</title>
<author> Henning Rode </author>

<date> 27th June 2008 </date>

<content>

<introduction>

The vast availability of online
information sources has essentially
changed the way users search for
information. We want to point out
3 main changes:
...
<section no="1.1">

In fact, user behavior studies are
not that clear about the above
made base assumption ( Malik et

al., 2006 ; Larsen et al., 2006 ).
...
that can be displayed in response
to the selection of an entity.
</conclusions>

</content>

</document>

Figure 1.1: Elements of a Document

Passage Retrieval One of the early
approaches towards more focused re-
trieval results was the so-called passage
retrieval. “When the stored document
texts are long, the retrieval of complete
documents may not be in the users’ best
interest” (Salton et al., 1993). Passage
retrieval leaves it open to the retrieval
system to define the boundaries of an
appropriate passage. In fact, finding
the right cut-out of a text is seen as
the major challenge of the approach. A
passage retrieval system typically does
not take into account the structure of
a document as shown in Figure 1.1,
but returns arbitrary text fragments.
Typically text windows of a fixed num-
ber of words around the found key-
word mentions are returned. Retrieval
models are still applied on document
level to achieve a ranked document list
in a first step. Only thereafter docu-
ments are analyzed in order to return
the most suitable passage according to
the query. The spreading of matching keyword positions inside a document
is taken into account here combined with sentence and paragraph recogni-
tion to return useful units of text. Compared to document retrieval, the
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index of a passage retrieval system also needs to maintain word positions
inside documents, which typically doubles the size of the term posting lists.
Moreover, one should notice that the evaluation of passage retrieval systems
becomes more complicated. Apart from the fuzziness of relevance itself also
the boundaries of an appropriate text cut-out become a matter of subjective
preferences.

Fielded Search Often documents come with markup (e.g. HTML, XML, or
LATEX), describing their text structure in a machine readable form. Assuming
a homogeneous text collection, we might know in advance, which tagged
fields contain information a user will search. Fielded retrieval allows then
to constrain a query to a specific part of the text (e.g. title search) or to
exclude non-textual fields like visualization code of HTML-pages. In the
example document (Figure 1.1) the fields title, author, but also section

could be used to narrow down the search space. Some systems are also
able to combine scores of multiple fields to one final document score. In
contrast to passage retrieval, the different fields are usually treated as “mini
documents” for the applied retrieval models. Thus, statistics like document
sizes, or term likelihoods are calculated according to the fields itself rather
than the entire documents. On the other hand, it is typically not the aim
to retrieve the text of the fields only, but still entire documents scored by
their contained fields. The approach is consequently called “fielded search”
and not “field retrieval”. Early experiments in this area have been done by
Wilkinson (1994) showing how weighted fielded search can improve standard
document retrieval. Robertson et al. (2004) examined how common retrieval
models fit to fielded search and how the models should be adapted for this
purpose. Finally, there are many application areas for fielded search systems,
first of all in so-called “known item search”, where it is assumed that the user
is able to clearly constrain the search space (Dumais et al., 2003).

Also the index of such systems usually maintains fields in the same way
as documents. Hence, indexed fields have to be predefined by the user at
indexing time already. Compared to passage retrieval mentioned before,
fielded search is not trying to find the best text cut-out itself – the fields of
interest are explicitly stated in the user query.

XML Retrieval Sometimes systems that enable fielded search are regarded
as XML retrieval systems, since they allow to handle simple queries on con-
tent and structure. However, a fully-fledged XML retrieval system provides
a lot more flexibility and completeness with respect to the formulation and
execution of structural queries. Earlier approaches to structured retrieval
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by Burkowski (1992) and Navarro and Baeza-Yates (1995) already consid-
ered most of the functionality that is expected from current systems work-
ing with XML data. Structured retrieval enables to freely compose queries
with content and structure conditions. We can ask for instance for sections
about “XML retrieval” inside documents about “text retrieval”, assuming
that sections and documents are tagged in the collections as in the example
in Figure 1.1. In contrast to fielded search, which only allows to restrict
the term query to certain fields of a document, structured retrieval allows
to express any containment relation of structure elements and terms, like
the request of relevant sections being contained in certain documents. Fur-
thermore, the shown structured query also states directly the desired ranked
output element, here sections instead of documents.

With the omnipresence of XML data as the mark-up language for machine-
readable structure, “structured retrieval” became “XML retrieval” with spe-
cial query languages designed to express structural requests on XML like
XQuery Full-Text (Amer-Yahia et al., 2007) or NEXI (Trotman and Sig-
urbjörnsson, 2004). The latter is designed in close connection to ongoing
research efforts in the area of XML retrieval brought together by the INEX
evaluation initiative (Malik et al., 2007).

XML retrieval does not require the user to specify at indexing time fields
of interest, but allows to query the content of any tagged fragment of the
collection. These features asks for different index designs. When every pos-
sible tag can be queried, an inverted document index regarding each tag as
a single document becomes highly redundant. Each level of nesting causes
repetition of its content.

Entity Retrieval Entity retrieval sets the focus level of retrieval one more
step higher. It allows to search and rank named entities included in any
kind of text sources. We could ask such a system to list persons, dates
and/or locations with respect to a given query topic. An entity retrieval
request, looking for persons associated with user studies on XML retrieval
might return among others the gray-shaded person entities in Figure 1.1, if
the outlined document belongs to the considered text collection. Document
borders should not play any role here. Multiple mentions of a specific entity
can be extracted from multiple documents, but the same entity should be
listed only once in a ranked result list. Entity retrieval systems are useful to
provide a very condensed mind-map-like overview on a given topic. One could
also filter out a specific entity type to get a ranking on set of “candidate”
entities, like employees in expert search. The very focused entry level comes
with the disadvantage, that relevance is less clear to verify. A user cannot
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simply check the relevance of a returned entity without seeing the context
it is mentioned in. In the same way, retrieval systems cannot rank entities
directly, but have to rank text fragments and propagate their relevance ap-
propriately to the included entities. Entity retrieval also relies heavily on the
availability and accuracy of natural language processing (NLP) tools, needed
for the correct recognition and classification of named entities within the text
corpus. In the visualized example document (Figure 1.1), NLP tools are thus
responsible for the correct gray-shading of names and dates.

The notion of “entity retrieval” was introduced recently, however, earlier
work considers typical cases of entity ranking as for instance expert search
(Balog et al., 2006) or factoid and list queries in question answering (Voorhees
and Dang, 2005). Chakrabarti et al. (2006) already abstracts from a domain
specific solution and describes a system that can rank any type of entities by
proximity features. Also Hu et al. (2006) describes person and time search
as two instances of the more generic entity retrieval task.

Question Answering On the way towards focused retrieval answers, it is
important to mention question answering systems as well. However, they re-
main somewhat outside the presented line from document to entity retrieval,
since their emphasis lies on understanding the semantics of a (natural lan-
guage) query, rather than on the ranking task itself (Radev et al., 2002; Lin
and Katz, 2003). Still the connection of question answering to the other
introduced focused retrieval tasks is strong. Once a query is analyzed, the
system searches for sentences or parts of sentences that state the wanted an-
swers. Question answering could be seen as sentence retrieval in that case.
Whenever faced with a simple fact query, asking for example for a person
or location, systems might even use entity ranking techniques and output
the requested entity only. Most research on question answering systems was
driven by the corresponding track of the TREC evaluation initiative (Dang
et al., 2006; Hovy et al., 2000). Question answering further shares with en-
tity ranking the dependence on NLP tools. They are used here first of all on
the query to determine its target (fact, relation, etc.), but later also on the
retrieved sentences to select those stating an answer to the query. In fact,
question answering goes here a step further than other ranking tasks, since
it typically selects the best matching item only to present it as an answer to
the user.

This work picks out document, XML, and entity retrieval – thus 3 different
granularity levels – on which retrieval techniques are presented with respect
to effectiveness and/or efficiency. Others, like passage and fielded retrieval
are partly covered by XML retrieval methods as well, though it will not
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be explicitly mentioned in the respective places. Only question answering
remains out of scope, as far as it concerns the semantical analysis of the
query.

1.2 Adaptivity in Text Search

Information retrieval research tried over decades to improve search precision
by introducing new retrieval models and tuning the existing ones. Those
models applied to ad-hoc retrieval tasks rank a collection of documents given
a set of keyword terms. However, we can often observe that such simple key-
word queries are not appropriate to express real information needs. Whereas
some search tasks have characteristic and meaningful keywords, others can-
not be expressed that way, or at least the user is not aware of those keywords.
Precision gain is here easier to achieve by further adaptation of the search
process. Adaptation here simply means to influence the retrieval result by
other means than adding or removing single search keywords. The underlying
hypothesis is that users typically underspecify their information need while
formulating a search query. Next to the explicitly stated keywords users of-
ten have further constraints to their search. To take these constraints into
account, retrieval systems have to become adaptive to a set of user parame-
ters.

User Parameters in Information Retrieval Some introductory examples
will illustrate what kind of parameters adaptive text search has to consider:

• Instead of returning the lengthy text of the European “constitution”,
a citizen interested in the election of the European parliament might
be more satisfied by getting just a small relevant section about the
voting system. Thus the granularity of answers needs to be scalable.
Furthermore, depending on the level of expertise of the searcher, either
the original law text or a simplified better understandable version will
be highly appreciated here.

• Having a latex allergy and looking for information about these materials
on the web, a physician will not be pleased getting information about
excellent text-layout systems. In this case the topicality of the query is
not covered by the query words alone and needs the adaptivity of the
system.

• Searching for the best price of a new camera, we are not interested to
see, how much cheaper consumer electronics are in low-tax countries.
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Here, the locality of the query plays an important role. Furthermore,
we are definitely not interested to see outdated old price lists. So, also
the temporality constraints play a role here. In case we know more
about the structure of typical results, it might also be beneficial to
express a preference of table-like price lists over plain text.

• If the same person, on the other hand, wanted to compare product
reviews on certain cameras, she/he does not like to find only special
product offers in the ranked list. Here, the genre constraint is missing
in the query. It might help to add the word “review” to the set of
search terms, but in the same way it can cause other relevant pages
to disappear, since they do not mention the new keyword, but write
about the products.

The examples mention several dimensions of meta-constraints for the
search process, namely: (1) topicality, (2) genre, (3) temporality, (4) lo-
cality, (5) required level of expertise, (6) structure, and (7) the granularity
of the wanted results. The given list might not be complete, but it covers
many aspects that play a role in text search.

It is important to notice how the parameters differ in type. Whereas we
distinguish for topicality and genre usually a limited set of different topics
or genres, time is measured on a continuous scale and especially the locality
parameter often even needs to consider different levels of accuracy. Also the
documents themselves can often not be classified clearly to belong to one
or multiple topics, genres, or locations. It is more appropriate to speak of
a graded rather than a binary classification. Correspondingly, users might
want to express “hard” or “soft” search constraints. Either they want the
retrieval system to strictly filter the results or they only state a preference
for a certain class of documents.

Explicit vs. Implicit Adaptivity Another important question regarding adap-
tivity of retrieval is, whether the system automatically tries to detect the
user’s working context and adapt the search appropriately or whether the
user should state search constraints explicitly on his/her own. Both ap-
proaches come with advantages and disadvantages. Explicit feedback ap-
proaches ask for more input from the user, therefore they require more of the
user’s attention and time. Moreover, additional feedback often needs spe-
cial user interfaces to enable the user to express further search constraints.
Explicit adaptivity also assumes that users have the necessary knowledge of
their search topic to answer feedback questions appropriately. Implicit ap-
proaches, however, rise the question how the user’s context can be derived
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automatically. In general, this task is rather difficult and in many cases
even impossible. Automatic context detection is furthermore error-prone. It
might sense a situation incorrectly and filter out results someone wanted to
see. If a searcher is not aware of the applied (wrong) search adaptation, or
unable to correct constraints in the way wanted, she/he even feels loosing
control of the system.

Search Process Adaptivity Whereas all previously considered forms of
adaptivity still assumed a static search process, consisting of an initial query
and a certain number of refinement steps, we can also seek after adaptivity in
the interaction between user and system during the search. A system might
for instance react to a given user query by asking clarification questions if
necessary. The envisioned retrieval system would analyze a user query, rec-
ognize whether a query is still ambiguous, and knows how to ask for suitable
feedback. Such a form of adaptivity combines in a way the explicit and
implicit approaches. It proactively asks for clarification whenever a user
query remains ambiguous, it can even suggest probable and effective further
constraints, but it expects the user to give feedback and keeps her/him in
control.

This thesis is concerned with most of the introduced aspects of text search
adaptivity. With respect to the user parameters, the first chapter proposes
an open approach that allows to incorporate multiple different meta con-
straints to a given keyword query. It also suggests a new type of explicit
feedback. Further chapters concentrate on the case, when only parts of doc-
uments should be retrieved. In terms of adaptivity, XML and entity retrieval
allow to express constraints on structure and the granularity of retrieval. In
both cases, we consider only explicit forms of search constraints expressed
in the query language. However, this is not necessarily meant as a restric-
tion, but simply results from the fact, that prediction techniques for setting
appropriate structural and granularity constraints do not exist yet.

1.3 Research Objectives

The work presented in this thesis is driven by a number of quite different
research objectives. We will show connections between the different topics
the thesis deals with in the introductory sections of all chapters as well as in
the final review and outlook.

The first approached aim is the incorporation of user parameters into
the text retrieval process. Suppose we know more about the user’s working
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context, when she/he issues a search by a simple term query, we would like
to take this additional information into account for improving the retrieval
results. Since context information is a rather broad term, which can be
assigned to everything describing the situation of a user, it is interesting
to investigate which dimensions of context information are useful to achieve
more precise retrieval results. Several questions and tasks arise, along the
line of this aim. In order to make effective use of context information, it is
important

(A1) to model the information in an appropriate – preferably generic – way,
that allows to score documents against the context information,

(A2) and to examine how to combine the relevance evidence with respect to
the context model with the relevance based on the initial term query.

The mentioned research objectives assume knowledge about the search
context. However, gathering knowledge about the user’s working context is
a problem in itself. A typical approach to achieve context information is
the use of explicit or implicit feedback as described in the last section. The
arising question is then:

(A3) How can we automatically detect and suggest effective search con-
straints for feedback?

When the user is allowed to constrain a search also by structural features,
it is first of all important to find a suitable language to express queries on
content and structure. Existing languages are either rather complex and hard
to use and to implement or deliberately simplistic, limiting the expressive
power more than desirable. From a system’s point of view, we see several
further issues when performing structured retrieval:

(B1) Common inverted indices are not appropriate for structured retrieval
with a high level of nested elements. It is thus important to develop a
new type of index that overcomes the high redundancy.

(B2) The basic operations of structured retrieval – first of all the evaluation
of the containment condition – need not only support from the index,
but also efficient algorithms for their execution.

(B3) Structured retrieval opens new possibilities for query optimization,
which need to be analyzed.

Once having an efficient XML retrieval system and NLP taggers, that are
able to recognize and classify named entities as well as the basic syntax of
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sentences, we are able to work with text corpora coming with large amount
of structured annotation data. The question then arises what new type of
text search activities are possible using such a system and data. In other
words, can we develop a framework that is adaptive to new type of retrieval
tasks dealing with the search on entities, e.g. expert search, or the retrieval
of dates to construct chronological timelines of events or the biography of
a person. Such a framework needs mainly to address the question how we
can rank entities, preferably by a generic approach that can be applied to
different entity retrieval tasks. Since entities cannot be ranked directly by
their text content, it is important

(C1) to model the relation between entities and texts that mention the en-
tities,

(C2) and to develop and test relevance propagation models, that allow to
derive the relevance of entities from related texts.

While the incorporation of context parameters in document retrieval mod-
els deals highly with score combination, the retrieval tasks on finer result
granularity are more concerned with score propagation. Especially for entity
retrieval we need to study models of score propagation in order to transfer
the relevance evidence of different pieces of text towards the mentioned enti-
ties, since they cannot be scored directly. In this respect, XML retrieval stays
right in the middle of the other two. It makes use of both score combination
and propagation as its basic operators.

Thesis Outline The structure of this thesis directly follows the title “from
document to entity retrieval” and divides the research work into three main
chapters that examine text search on different levels of retrieval granularity:

(1) document retrieval,

(2) XML retrieval,

(3) entity retrieval.

The first chapter examines the refinement of document retrieval by con-
text information. It thereby addresses the research questions (A1)-(A3).
The following chapter on XML retrieval is more concerned with the systems
efficiency as mentioned by the issues (B1)-(B3). Finally, the last chapter
presents a framework for graph-based entity ranking that is mainly driven
by the research goals (C1) and (C2).



2
Context Refined

Document Retrieval

Noticing that humans are thinking about, searching for, and working with
information highly depending on their current (working) context, leads di-
rectly to the hypothesis that retrieval systems could improve their quality by
taking this contextual information into account.

A user’s information need is only vaguely described by the typical short
query, that the user expresses him/herself to the system. There are at least
two reasons for this lack of input precision. First of all, users who search for a
certain piece of information have incomplete knowledge about it themselves.
The difficulty to describe it is thus an immanent problem of any information
need and hardly to overcome. A second reason for insufficient query input,
however, touches the area of context information and might in principle be
easier to address. Although a human’s search context provides a lot of in-
formation about his/her specific information need, a searcher is often not
able and not used to explicitly mention it to a system. When asking another
human instead of a system, the counterpart would be able to derive implicit
contextual information him/herself.

We first address the question how the already available information about
the user’s context can be employed effectively to gain highly precise search
results. This part is based on earlier published work (Rode and Hiemstra,
2004). Later we show how such meta-information about the search context
can be gathered. The latter is presented also in the two articles (Rode et al.,
2005; Rode and Hiemstra, 2006).

13
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(a) User-Dependent Models (b) User-Independent Models

Figure 2.1: Context Modeling: User vs. Category Models

2.1 Context Modeling for Information Retrieval

Aiming at a context-aware text retrieval system, we first have to investi-
gate how context can be modeled appropriately so that an IR system can
take advantage of this information. One of the first upcoming matters will
probably be described by the following question: Should we try to build a
model for each individual user or should we classify the user with respect
to user-independent predefined context-categories? Both kind of systems are
outlined in Figure 2.1. We will choose the latter option, but first discuss the
advantages and disadvantages of both by pointing to some related research
in the respective areas.

User-Dependent Models A first and typical example for this approach
is shown by Diaz and Allan (2003). The authors suggested to build a user
preference language model from documents taken out of the browsing history.
Since the model reflects the browsing behavior of each individual user, it
describes his/her preferences in a very specific way.

However, humans work and search for information often in multitasking
environments (Spink et al., 2006). Thus, their information need changes
frequently, often without overlaps between different tasks. A static profile of
each user is not appropriate to take into account rapid contextual changes.
For this reason, Diaz and Allan (2003) also tested the more dynamic version
of session models derived from the most recent visited documents only. With
the same intention, Bauer and Leake (2001) introduced a genetic “sieve”
algorithm, that filters out temporally frequent words occurring in a stream
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of documents, whereas it stays unaffected by longterm front-runners like stop
words. The system is thus aware of sudden contextual changes, but cannot
come up directly with balanced models describing the new situation.

Summarizing the observations, individual user models enable a more user
specific search, but either lack a balanced and complete modeling of the users
interests or remain unaware of alternating contexts.

User-Independent Models Although context itself is by definition user-
dependent, it is possible to approximately describe a specific situation by
selecting best-matching pre-defined concepts, that are themselves indepen-
dent of any specific user. A concept in this respect might range from a
subject description (e.g. “Music”) to geographical and temporal information
(e.g. “the Netherlands”, “16th century”). To introduce a clear terminology,
each concept belongs to a context dimension, like subject, genre, or location,
and characterizes a category of documents.

The evaluation initiative TREC (Text REtrieval Conference) had a special
track that addresses user feedback and contextual meta-data. The setting
of the so-called HARD track (High Accuracy Retrieval from Documents)
is typical for this type of user-independent context modeling (Allan, 2003,
2004). Along with the query, a set of meta-data concepts characterize the
context of each specific information need. The HARD track considers thereby
the context dimensions: familiarity, genre, subject, geography, and related
documents. Apart from the related documents, all dimensions come with a
predefined set of concepts. It is then suggesting to build models that classify
documents according to each of these concepts.

Following this approach of context modeling, it needs to be explained
where the additional context meta-data comes from. Whereas Belkin et al.
(2003) preferred to think of it as derived by automatic context-detection
from the users’ behavior, He and Demner-Fushman (2003) described the
collecting of contextual information in a framework of explicit negotiation
between the search system and the user. Further experiments in this area are
presented by Sieg et al. (2004a). The authors tried to employ a conceptual
hierarchy of subjects, as established by the “Open Directory Project”1 or
“Yahoo”2, as contextual models. In a first experiment, queries were compared
to these concepts and the best-matching subjects were displayed to the user
for explicit selection. In order to avoid this negotiation process, long-term
user profiles were introduced for automatic derivation of matching subjects,
which cluster the former interests of the user in suitable groups. However,

1see http://www.dmoz.org
2see http://dir.yahoo.com
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these user-dependent models suffer from the same limitations as mentioned
before.

Although automatic context detection is problematic, user-independent
context modeling comes up with a number of advantages:

• Whereas user modeling suffers often from sparse data, conceptual mod-
els are trained by all users of the systems and therefore will become
more balanced and complete.

• Conceptual models do not counteract the search on topics entirely new
to the user. A user dependent model is always based on the search
history and therefore supports the retrieval of related items, but coun-
teracts the search on new topics.

• Assuming a perfect context detection unit, the search system can react
more flexible with respect to a changing context of a user.

• New users can search efficiently without the need to train their user
preference models in advance.

• It is theoretically possible to switch back anytime from automatic con-
text detection to a negotiation mode, which enables the user to control
the system effectively.

Taking a closer look on conceptual context modeling, the first task will
be to identify appropriate categories of the users situation with respect to
the retrieval task. Whereas we can call almost everything surrounding the
user as context, we only need those data that allows to further refine the
information need of the user. The context dimensions and concepts used by
the HARD track obviously allow to refine the search space, but they are not
the only appropriate ones. We can easily extend this set by other dimensions
like language or time/date.

One might notice that the dimensions suggested so far originate more
from a document than from a user centered view. Since we want to fine-tune
the retrieval process, it is handy to have categories that directly support
the document search. However, starting from the users context, this already
requires a first translation from context description to document categories.
For instance, the situation of a biology scientist sitting at his work might be
translated to the following context description: familiarity with search-topic:
“high”, search genre: “scientific articles”, general subject: “biology”. The
translation of the user’s situation into the desired context categorization is,
of course, an error-prone process. Thus, the possibility to allow the user
to explicitly change the automatically performed categorization of his/her
context will be an important issue.
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2.1.1 Conceptual Language Models

The retrieval process itself is enhanced by multiple text-categorizations based
on the selected concepts that match the users’ situation. Thus, the retrieval
system needs to maintain models for each context concept that can be used
as classifiers, e.g. a model for scientific articles should be applicable to filter
out scientific articles from an arbitrary set of documents.

Looking at the HARD track experiments of other groups, e.g. at the work
of Belkin et al. (2003) or Jaleel et al. (2003), every context dimension is
handled with different techniques ranging from a set of simple heuristic rules
as used for classifying the genre to applying algorithms like Gunnings “Fog
Index” measure (Gunning, 1968) to rate the readability. The techniques
might enable an IR system to utilize the specific given meta-data, but the
approaches lack a uniform framework that enables extending the system to
work with other meta-data categories as well.

Instead of introducing another set of new techniques, we suggest to ap-
ply statistical language models as a universal representation for all context
categories that are not directly supported by existing document meta-data
(documents in the HARD collection contain publishing dates for instance).
Obviously, language models can be utilized effectively as subject classifiers,
but we think, it is also possible to use them to judge about the genre or
readability of a document. In the latter case, we can for instance assume
that easily readable articles will probably consist of common rather than
of special terms. For geography models, on the other hand, we would ex-
pect a higher probability to see certain city names and persons, whereas
genre models might contain often occurring verbs or a differing number of
adjectives. Unfortunately, the envisioned uniform handling of all context di-
mensions could not be tested sufficiently with the given collection, query set,
and meta-data of the HARD track. The provided query meta-data specifies
one of the predefined concepts for each context dimension, or leaves a con-
text dimension unrestricted without specification. The latter happened more
often when a context dimension was considered as not helpful on the collec-
tion. The used corpus of newspaper data for instance does not show enough
heterogeneity for distinguishing genre or readability and the two considered
location concepts “US” and “non-US” have been too broad for suitable query
restriction. Still, the uniform classification approach forms the background
of our following considerations.

In order to enable context-aware query refinement, it is therefore suffi-
cient to enhance the retrieval system by a set of language model classifiers for
each context category. The remaining task to perform all document classifi-
cations and to combine them for a final ranking according to the entire search
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Figure 2.2: Context Modeling with Conceptual Language Models

topic will be addressed in the next section. Figure 2.2 sketches roughly the
described system.

Learning Application An IR system working with conceptual models will
profit from being a self-learning application. While it is necessary to start
the system with basic models for each concept, it is beneficial to have the
system training its models by the feedback of the user in the later phase of
use.

Anytime a user indicates (explictly or observed by her/his browsing be-
havior) that a certain document matches her/his information need, we can
assume that it also matches the selected conceptual models. Therefore, the
content of such a document can be used to train the context models. In
the setting of the HARD track we can use the relevance assessments of the
training topics to improve our models in the same way.

2.2 Ranking Query and Meta-query

If concept language models are available that describe the user’s context,
further on called meta-query models Mi, we are able to classify the documents
according to each single context dimension, but we need to come up with a
single final ranking including every single source of relevance evidence. There
are basically three options to perform this task:

• Query Expansion in order to build one large final query that considers
the initial query as well as all meta-query models,
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• filtering of the results according to each classifier,

• score combination in order to aggregate the scores of single classifica-
tions.

Using query expansion techniques would lead to the difficult task to select
a certain number of representative terms from each model. Since the query
and “meta-query” models differ highly in length, we cannot simply unite
all terms to one combined query. Filtering, on the other hand, only allows
black-and-white decisions for or against a document. However, thinking of a
query refinement on several context dimensions, it is likely that a document
is judged relevant by a user even if it does not match all of the associated
classifiers. Therefore, we opt here for a combined ranking or re-ranking
solution, which allows to consider each context-classification step adequately.

2.2.1 Combined Ranking of Query and Meta-Query

For discussing the ranking of documents according to the query and meta-
query we first introduce some common notation. Let the random variables
Q, D denote the choice of a query, respectively document, and r/r̄ mark the
event, that D is regarded as relevant/not relevant. Further, M represents
in our case the meta-query, consisting of several single models Mi for each
context concept involved :

M = {M1, M2, . . . , Mn}.

Using the odds of relevance as a basis, we can deduce it to probabilities that
we are able to estimate. Q and M are assumed to be independent given D
and r:

P (r|Q,M,D)

P (r̄|Q,M,D)
=

P (Q,M,D|r)P (r)

P (Q,M,D|r̄)P (r̄)
=

P (Q,M |D, r)P (D|r)P (r)

P (Q,M |D, r̄)P (D|r̄)P (r̄)

=
P (Q,M |D, r)P (r|D)

P (Q,M |D, r̄)P (r̄|D)
=

P (Q|D, r)P (M |D, r)P (r|D)

P (Q|D, r̄)P (M |D, r̄)P (r̄|D)

∝
P (Q|D, r)

P (Q|D, r̄)

P (M |D, r)

P (M |D, r̄)
∝ log

(

P (Q|D, r)

P (Q|D, r̄)

)

+ log

(

P (M |D, r)

P (M |D, r̄)

)

.

The prior document relevance P (r|D)/P (r̄|D) is dropped from the equation
in the third row. We assume that there is no a-priori reason that a user
would like one document over another, effectively making the prior document
relevance constant in this case.

The simple derivation now allows to handle query and meta-query sepa-
rately but in a similar manner. In terms of the user’s information need we can
regard Q and M as alternative incomplete and noisy query representations.
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Combining the resulting document rankings from both queries gathers dif-
ferent pieces of evidence about relevance and thus helps to improve retrieval
effectiveness (see e.g. Croft, 2002).

The remaining probabilities can be estimated following the language mod-
eling approach. In particular, we will use a language modeling variant shown
by Kraaij (2004), which directly estimates the above required logarithmic
likelihood ratio LLR(Q|D):

LLR(Q|D) = log

(

P (Q|D, r)

P (Q|D, r̄)

)

=
∑

t∈Q

|t in Q| ∗ log

(

(1− λ)P (t|D) + λP (t|C)

P (t|C)

)

.

The probability of a term given an irrelevant document P (t|D, r̄) is esti-
mated here by the collection likelihood of the term P (t|C). The smoothing
factor λ interpolate document and collection likelihood.

Since we want to relate the scores of the query and meta-query to each
other, we have to ensure that their probability estimates deliver “compat-
ible” values (Croft, 2002). Especially query length normalization plays a
crucial role in this case. Notice, that Q and M differ widely with respect
to their length. Thus, a simple LLR-ranking would produce by far higher
values when it is applied to the meta-query. Using NLLR instead, a query
length normalized variant of the above measurement, helps to avoid score
incompatibilities:

NLLR(Q|D) =
∑

t∈Q

P (t|Q) ∗ log

(

(1− λ)P (t|D) + λP (t|C)

P (t|C)

)

.

A slightly modified but order preserving version comes with the desirable
property to assign zero scores to all irrelevant documents and positive scores
to all documents that contain at least one of the query terms:

NLLR(Q|D) ∝
∑

t∈Q

P (t|Q) ∗ log

(

(1− λ)P (t|D) + λP (t|C)

λP (t|C)

)

=
∑

t∈Q

P (t|Q) ∗ log

(

(1− λ)P (t|D)

λP (t|C)
+ 1

)

.

Whenever we refer in the following to the NLLR for experiments, we mean
in fact this modified calculation.
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Ranking according to the Meta-Query As mentioned above, we would
like to rank documents according to query and meta-query in the same way.
However, since M consists of several single language models M1, . . . , Mn we
need to take a closer look to this matter as well.

If M is substituted by M1, . . . , Mn, the resulting equation can be factor-
ized, given the independence of M1, . . . , Mn:

log

(

P (M1, . . . ,Mn|D, r)

P (M1, . . . ,Mn|D, r̄)

)

= log

(

P (M1|D, r)

P (M1|D, r̄)
∗ . . . ∗

P (Mn|D, r)

P (Mn|D, r̄)

)

≃
1

n

n
∑

i=1

NLLR(Mi|D).

Using the length-normalized NLLR, the second line of the equation is strictly
speaking not proportional to the first one, however we argued before why the
length normalization is necessary here. The second line of the equation also
introduces a second type of normalization. The factor 1

n
is used to ensure

that the final score of the meta-query does not outweigh the score of the
initial query. Especially if the number n of context dimensions is growing,
not only the overall score of the documents would increase, but also the entire
meta-query would get a higher weight than the initial term query.

A last remark concerns the choice of the smoothing factor λ. In contrast
to typical short queries, the role of smoothing is less important here, since we
can assume that the model is a good representation of relevant documents
and therefore contains most of their words itself. We thus argue to use
a smaller value for λ here than in case of the query ranking to stress the
selectivity of the models.

2.3 Experiments

The experiments in this section test the usage of context meta-data on the
retrieval quality applying the proposed score combination approach.

As mentioned already, we experimented in the setting of TREC’s HARD
track, in this case with the collection and topic set from 2004. The collection
consists of 1.5 GB of news papers data including articles from 8 different
news papers from the year 2003. The query set contained 50 topics described
by title, description, and narrative as standard for most TREC evaluations.
Furthermore, each topic comes with a set of associated meta-data concepts
considering the dimensions familiarity, genre, subject, geography, and related
documents. The judgments from the assessors consider 3 different cases. In
contrast to the binary relevance decision the assessors could mark whether a
document is relevant to the topic only or relevant with respect to topic and
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query meta-data. Correspondingly, the evaluation distinguishes so-called soft
and hard relevance. The first considering both types of relevance, the later
more strict evaluation regards only those documents as relevant that match
topic and meta-query.

Collecting Data for the Models We have used only a part of the meta-data
that came along with the queries, namely the subject, geography and related
text sections. Having appropriate models at hand is a crucial requirement
for any kind of experiments and the need to construct them ourselves has led
to this limitation.

The subject data was chosen, because it was considered to work best with
respect to the purpose to classify texts. It is probably easier to identify
sport articles by their typical vocabulary then to distinguish between genres.
Geography data, on the contrary, can be regarded as a less typical domain
for applying language model classifiers. And finally related text documents
were used to demonstrate their straightforward integration in the proposed
context modeling framework. We built a unified language model from all
related text sources and used it simply as another meta-query model Mi in
the scoring procedure.

In order to construct language models for subject classification, we used
three different sources of data:

• manual annotation,

• APE keywords (see explanation below),

• and the training data.

Firstly, we manually annotated 500 documents for each chosen subject
among the queries, e.g. sports, health and technology. The 500 documents
have been preselected by a simple query containing the subject term and
additional terms found in a thesaurus. The aim of this step was to detect
150-200 relevant documents as a basic model representing its subject. For
construction of a language model all terms occurring in those documents were
simply united to build one large “vocabulary” and probability distribution.

Although the number of documents might look appropriate for building
a basic text classifier, the way we gathered the documents cannot ensure the
models to be unbiased. In order to further improve the models, we used the
keyword annotation coming along with the documents. During the manual
classification process we observed that the keyword section of documents
from the Associated Press Newswire (APE) provide very useful hints and
in many cases HARD subjects can easily be assigned to APE keywords. It
seemed admissible from research perspective to exploit this information as
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title only title + desc all

Base Meta Base Meta Base Meta

soft
MAP 0.177 0.214 0.219 0.303 0.271 0.361
R-Prec 0.211 0.255 0.245 0.335 0.308 0.374

hard
MAP 0.192 0.226 0.220 0.302 0.269 0.346
R-Prec 0.206 0.244 0.214 0.298 0.294 0.349

Table 2.1: MAP and R-Precision for Baseline and Meta-data Runs

long as we restrict it to a small part of the corpus, in this case APE news
only. However, since HARD subjects cannot be mapped one-to-one to APE
keywords, our subject models differed considerably afterwards in length and
quality. For the geography models, the link between query meta-data and
document keywords was easier to establish. Therefore, the geography models
highly benefit from using the keywords.

In a last step, we automatically enhanced the models by data obtained
from the annotated training topics as mentioned above (see Section 2.1.1).
If any document was judged as relevant to a specific training query, this
also means that the document matches all the meta-data constraints of that
query. Thus, all relevant documents belonging to a query asking e.g. for
sport articles, apparently are sport articles themselves, and can therefore be
used to enrich the sport articles model.

Baseline Runs Every HARD track topic is specified by a title, descrip-
tion and topic-narrative section, which could be used for the baseline runs.
The most realistic scenario would be to use only the short title queries,
since users – at least on the web – express their information needs typically
by a few keywords only. In order to examine the influence of the initial
query length to improvements made by context meta-data, we also compute
runs based on the union of terms in the title and description fields, respec-
tively using the terms from all 3 fields (see Table 2.1). The expectation here
would be that meta-data especially helps short user queries, rather than well-
described information needs. All three baseline runs were ranked according
to NLLR(Q|D).

Meta-data Runs Corresponding to the baseline runs, three further runs
were calculated that make use of several dimensions of meta-data. The
scores of the initial query and meta-query were combined here as shown
in the Section 2.2. We took here the following meta-data dimensions into
account: subject, geography, and related texts as M1 . . .M3. Table 2.1 gives
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Figure 2.3: Comparing Precision/Recall for each single Meta-data Category

an overview on the achieved mean average precision (MAP) and the average
R-Precision of all runs, the latter being the official measure in the HARD
track evaluation. The result overview shows first of all that our approach for
handling contextual data is able to improve retrieval results, for soft as well
as for hard relevance. We expected higher relative improvements when using
context information together with short user queries, however, our results
show that long queries still can profit in the same way from contextual data.
Furthermore, evaluation against hard or soft relevance shows nearly the same
improvements. The interpretation here is less obvious. We might have ex-
pected improvements mainly for the evaluation against hard relevance, since
it considers only documents matching the meta-query requirements. Instead,
the evaluation with respect to soft relevance holds the same improvements.
The outcome indicates that query and meta-query are less independent than
assumed by the ranking model. Both are not orthogonal constraints of the
underlying information need, but the meta-query supports and refines the
initial term query.

We performed further experiments to find out if the given context dimen-
sions are equally useful for improving the system performance. Figure 2.3
presents the resulting precision-recall graph if the queries are associated with
only one dimension of meta-data. It considers title and description queries
and hard relevance only. In order to get comparable results for all dimen-
sions, we needed to restrict the evaluation to a small subset of 11 topics that
came with geographical and subject requirements we could support with ap-
propriate models. For instance, we dropped topics asking for the subject
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society, since the associated classifier was considered rather weak – based on
a considerable fewer number of documents – compared to others. Such a re-
striction is admissible, since we were interested in the retrieval improvements
in the case appropriate models are available, however, the remaining topic
set was unfortunately a relative small base for drawing strong conclusions.

The graph suggests that the utilization of geography and subject prefer-
ences allow small improvements whereas related texts considerably increase
the retrieval quality. In fact, using related text information alone shows even
better results than its combination with other meta-data. As a conclusion,
it might be interesting to test in further experiments if a more parameteri-
zable approach that can assign different weights to each context dimensions
is able to prevent such negative combination effects. However, a large set of
parameters that needs training to be set appropriately should be avoided in
principle. The displayed graph shows further that the usage of contextual
information especially enhances the precision at small levels of recall, which
meets perfectly the “high accuracy” aim of the approach.

2.4 Interactive Retrieval

When information retrieval left the library setting, where a user ideally could
discuss her/his information need with a search specialist at the help-desk,
many ideas came up how to imitate such interactive search scenario within
retrieval systems. Belkin (1993), among others, broadly sketches the system’s
tasks and requirements for interactive information seeking. We do not want
to further roll up the history of interactive information retrieval here, but to
remind briefly its main aims.

In order to formulate clear queries, resulting in a set of useful, relevant
answers, the user of a standard information retrieval system needs knowledge
about the collection, its index, the query language and last but not least a
good mental model of the searched object. Since it is unrealistic to expect
such knowledge from a non-expert user, the system can assist the search
process in a dialogue like manner. Two main types of interactive methods
try to bridge the gap between a vague information need and a precise query
formulation:

Relevance Feedback Giving feedback helps the user to refine the query
without requiring sophisticated usage of the system’s query language. Query
terms are added or re-weighted automatically by using the relevant examples
selected by the user (Salton and Buckley, 1990; Harman, 1992). The exam-
ples shown to the user for judgment can either be documents, sentences out
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of those documents or even a loosely bundle of terms representing a cluster
of documents. Experiments within TREC’s interactive HARD track showed
many variants of such techniques (Allan, 2003, 2004). By presenting exam-
ple answers to the user, relevance feedback can also refine the user’s mental
image of the searched object.

Browsing Techniques subsumed by the keyword “browsing” provide an
overview on the existing document collection and its categorization as for
instance in the “Open Directory Project”3, or visualize the relation among
documents (Godin et al., 1989). The user can restrict the search to certain
categories. This can also be regarded as a query refinement strategy. It is es-
pecially helpful, when the selected categorical restriction cannot be expressed
easily by a few query terms.

The query clarification technique, we are proposing in the following, be-
longs mainly to the first type, the relevance feedback methods. However, it
combines the approach with summarization and overview techniques from
the browsing domain. This way it tries not only to assist formulating the
query, but also provides information about the collection in a query specific
preview, the so-called query profile. Following an idea of Diaz and Jones
(2004) to predict the precision of queries by using their temporal profiles,
we analyzed the application of different query profiles as an instrument of
relevance feedback. The main aim of the profiles is to detect and visualize
query ambiguity and to ask the user for clarification if necessary. We hope to
enable the user to give better feedback by showing him/her this summarized
information about the expected query outcome.

2.4.1 Related Approaches

In order to distinguish our approach from similar ones, we take a look at two
comparable methods. The first one is a search interface based on clustering
suggested by Palmer et al. (2001)4. It summarizes results aiming at query
disambiguation, but instead of using predefined concepts as we suggest for
our topical profiles, it groups the documents using an unspecified clustering
algorithm. Whereas the clustering technique shows more topical adaptive-
ness, our static categories are always based on a meaningful concept and
ensure a useful grouping.

3see http://www.dmoz.org
4The one-page paper briefly explains the concept also known from the Clusty web

search engine (http://clusty.com) coming from the same authors.
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Another search interface proposed by Sieg et al. (2004b) assists the user
directly in the query formulation process. The system compares the initial
query with a static topic hierarchy and presents the best matching concepts
to the user for selecting preferences. The chosen concepts are then used for
query expansion. In contrast, our query profiles are not based on the few
given query terms directly but on the results of an initial search. This way,
we get a larger base for suggesting appropriate concepts and we involve the
collection in the query refinement process.

The mentioned approaches exclusively consider the topical dimension of
the query. We will further discuss the usage and combination of query profiles
on other document dimensions, in this case temporal query profiles.

2.5 Query-Profiles

Looking from the system’s perspective, the set of relevant answers to a given
query is the set of the top ranked documents. This set can unfortunately
differ greatly from the set of documents relevant to the user. The basic idea
of query profiles is to summarize information about the system’s answer set
in a suitable way to make such differences obvious.

A query profile is the distribution of the top ranked documents in the
result set along a certain property dimension, like time, topic, location, or
genre. E.g. a temporal query profile shows the result distribution along the
time dimension, a topical profile along the dimension of predefined topics the
documents belong to.

The underlying assumption of the profile analysis is that clear queries re-
sult either in a profile with one distinctive peak or show little variance in case
the property dimension is not important for the query. In contrast, we ex-
pect ambiguous queries to have query profiles with more than one distinctive
peak.

Whereas the general ideas stay the same for all kinds of query profiles,
there are several domain specific issues to consider. We will thus take a closer
look on generating temporal and topical profiles, the two types used in the
later experimental study.

2.5.1 Generating Temporal Profiles

Having a date-tagged corpus, a basic temporal profile for a given query is
simple to compute. We treat the 100 top ranked documents Dj from the
baseline run as the set of relevant answers and aggregate a histogram with
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monthly time steps Hi:

Hi = |{Dj|month(Dj) = i}|.

The decision for the granularity of one month is based on the overall time
span of the test corpus and the timeliness of news events. Other granularities,
however, could be considered as well.

As a next step, we perform a time normalization on the profile. Knowing
that the corpus articles are not evenly distributed over the total time span,
the time profile should display the relative monthly frequency of articles
relevant to the given topic rather than absolute numbers. Therefore, the
frequency of each monthly partition Hi is divided by the total number of
corpus articles Ci originating from month i. In order to avoid exceptionally
small numbers, the averaged monthly corpus frequency avg(C) is used as a
constant factor:

H∗
i =

Hi

Ci

∗ avg(C).

Furthermore, we perform moving average smoothing on the histogram, a
technique used for trend analysis on time series data (Chatfiled, 1984). It
replaces the monthly frequencies of the profile by the average frequencies of
a small time window around the particular month. We used here a window
size of 3 months:

H∗∗
i =

H∗
i−1 + H∗

i + H∗
i+1

3
.

The graph in Figure 2.4 shows an example of a resulting temporal profile.
There are two reasons for using such a smoothing technique. First, the time-
line the search topic is discussed in the news will often overlap with our casual
monthly partitioning. Second, although we want to spot peaks in the profile,
we are not interested in identifying a high number of splintered bursts. If
two smaller peaks are lying in a near timely neighborhood they should be
recognized as one.

Finally, we want to determine the number, bounds, and the importance of
peaks in the temporal profile. Diaz and Jones (2004) tried several techniques
for this purpose and decided to employ the so-called burst model from Klein-
berg (2003). It assumes a hidden state machine behind the random events
of emitting the specific word in certain frequencies. The assumed machine
changes over time between its norm and peak state, corresponding to phases
with normal and high emission of the word respectively. The aim is then to
find the unknown state sequence with the highest probability to cause the
observed random events of the time profile. Kleinberg employs for this task
the Viterbi algorithm.
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Figure 2.4: Temporal Profile of Topic 363: Transportation Tunnel Disasters

We have used for the generation of temporal profiles a two state automa-
ton B2

1.5,0.02. The work of Kleinberg (2003) gives a detailed description of the
automaton and its parameters. The considerably different setting of param-
eters – especially the very low value of γ = 0.02 – compared to Kleinberg’s
experiments can be explained by the fact that we analyzed profiles of word
frequencies which are already averaged on the level of months. Hence bursts
will remain smaller and less distinctive.

When we also want to compute a measure for the importance of the found
peaks Pj , the corresponding frequency values of the temporal profile can
simply be summed up. A further division by the average of such frequency
sums avg(P ) leads to a value for peak intensity better comparable among
different temporal profiles:

Pj =
∑

i∈ range(Pj)

H∗∗
i , intensity(Pj) =

Pj

avg(P )
.

2.5.2 Generating Topical Profiles

Generating topical profiles faces different issues than the ones explained for
the temporal dimension. First and most important, the corpus is not topic-
tagged. A topic classification is therefore required. Secondly, the topical
dimension is not continuous but divided in a discrete set of previously defined
concepts. In principle, topics could have a hierarchical relation but there is
no natural definition of an order. So the identification of peak bounds as in
the temporal dimension ceases to apply here.
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Figure 2.5: Subject Profile of Topic 363: Transportation Tunnel Disasters

For the topic classification we need to build abstract models for all dif-
ferent concepts, which the classification should take into account. Language
models can be applied as classifiers for this purpose as shown in Section 2.1.1.
In order to demonstrate the idea, we used the 12 different topical models from
the before presented HARD track experiments (Section 2.3), that correspond
roughly to the main sections of common newspapers, like politics or sports.

The required text classification for computing a topical profile differs
slightly from the typical categorization task described by Sebastiani (2005).
We do not need to assign binary labels whether a document belongs to a
certain category or not. A similarity measure showing to which extend an
article belongs to a given category is already sufficient. As before we use here
the normalized logarithmic likelihood ratio NLLR(Mi|D), where Mi is the
language model of the given topical concept. In order to speed up the com-
putation of topical profiles as well as the later ranking procedure the score
computation is performed off-line. For each classifier in the set of topical
concepts a score vector is maintained, holding the individual scores for all
documents within the collection. An example topical profile is displayed in
Figure 2.5.

After the classification task is done, topical profiles can be computed in
the following way. Similar to temporal profiles explained previously, the set
of the 100 top ranked documents given the query is determined. The score
for a specific topic concept Mi is then defined by the sum of all document
scores from D for this concept. The intensity value, as introduced in the
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previous section, is computed accordingly:

Mi =
∑

Dj

NLLR(Mi|Dj), intensity(Mi) =
Mi

avg(M)
.

2.5.3 The Clarification Interface

After generating and analyzing the query profiles, we discuss in this section
how the gained information can be presented to the user for query clarifica-
tion. The user interface thereby has to fulfill two functions:

• It needs to present all necessary information to the user that allows
her/him to take a decision.

• It should provide simple but powerful means to adapt the query in the
intended way.

The second point needs further explanation. Not all search topics are easily
expressed by a few query terms. Although several articles contain the same
keywords, their specific view on the topic or genre might not match the
type of documents the user had in mind. If we allow the user to refine the
query not only by further keywords but by selecting preferences to more
abstract concepts or to restrict the search space to a certain location or
time, the difficulty of expressing such context information accurately can be
reduced. However, confronting a user in an advanced search interface with
all possible combinations of restrictions and preferences to an in general
unlimited number of concepts, dates, or locations, would overextend the
searcher. Maybe he/she does not even know the correct query meta-data,
e.g. the date or location of the event he/she is looking for. Query profiles can
help here, since they allow to automatically find the most important meta-
data concepts given the initial query terms. This way it is possible to provide
the user with the necessary information to set preferences or restrictions and
to limit the search dialog to the most interesting options.

Compared to the profiles shown in the last section (Figure 2.4 and Fig-
ure 2.5) a user does not need to see the whole spectrum of the profile. Instead
it seems sufficient to cut out the most relevant part of it, which means the
highest temporal or topical peaks. For the experiments, we just displayed
the 5 top ranked topical concepts, but all identified temporal peaks. In prac-
tice their number never exceeds 4. In order to demonstrate the usefulness of
the profile information and to explain why we restrict the output to the top
ranked parts of the profiles, let us distinguish three possible cases:
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Figure 2.6: Experimental Clarification Form of Topic 363: Transportation Tunnel

Disasters

(1) In case the initial query was clearly formulated, the user gets a positive
confirmation by seeing the expected topic or time partition on top of
the ranked profile list, succeeded by close related ones. The absence
of non-matching topics will be enough information for the user here.
He/she does not need to see a long list of minor ranking topics.

(2) In case the query was ambiguous unwanted topics or time partitions
will populate the top of the ranked query profiles. In order to get an
unambiguous output, it is now important to refine the query in a way
that it excludes most of the unwanted answers, but keeps the relevant
ones. Again, the end of the ranked profile list is less interesting, since
the topics there are already efficiently excluded by the query.

(3) In case the user does not even find the relevant topics or time partitions
among the top part of the query profile, it will not help to just refine
the query. Either the query needs to be reformulated entirely or the
corpus does not include the documents the user is searching for.

The second case is the most interesting one since it requests appropriate query
refinement strategies. Whereas a time restriction based on the profile can
be expressed relatively easy, it is in general difficult for a user to find on his
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own additional keywords that allow to distinguish between the wanted and
unwanted topics of the profiles. However, the system has already abstract
classifiers at hand to perform such filtering. The simplest way to refine the
query is thus to express preferences directly on the profile itself. For this
reason we made our query profiles interactive by adding prefer and dislike
buttons to the topic profiles and restrict to fields to the temporal profiles,
refining the query in the obvious way. Their exact influence on the final
ranking is discussed in the next section.

Automatic Preselection We also looked, whether it is possible to make an
automatic suggestion of an appropriate selection in the profiles. Obviously,
the most highly ranked topics or temporal peaks are good candidates, espe-
cially if they distinctively stand off from the lower ranked ones. The intensity
measure defined in the last section explicitly addresses these characteristics.
Using an intensity threshold, we can preselect all topics and temporal peaks
above. For the later experiments an intensity threshold of 1.2 was used for
the topical profiles, respectively 1.5 for the temporal profiles. These values
have been shown high enough to assure the selection of only distinctive peaks
of the profile. An example clarification form with preselected items is shown
in Figure 2.6.

Automatic preselection is especially helpful in the first of the three sce-
narios above where the query is unambiguous. In such a case user feedback
is not necessary and the query refinement could be performed as a sort of
“blind feedback” procedure to sharpen the topical or temporal focus.

2.5.4 Score Combination and Normalization

In this section we adapt the previously introduced score combination ap-
proach (see Section 2.2.1). The focus lies thereby on the issues of score
normalization. When multiple preferences or dislikes have to be handled
the logarithmic scores of their corresponding models Mi are simply added,
respectively subtracted for disliked models:

score(D|M) =
∑

Mi∈P+

NLLR(Mi|D)−
∑

Mi∈P−

NLLR(Mi|D).

The set P+ denotes all preferred concepts, respectively P− all disliked.
The final combination of the relevance evidence coming from the initial

query score(D|Q) and the meta-query score(D|M) requires further consider-
ation. We have to ensure that the scores on both sides deliver “compatible”
values. More precisely, the score of the initial term query should still be dom-
inant in the final result. The introduction of dislike statements might cause
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the score of a document to fall below zero. We performed therefore a so-called
minimum-maximum normalization, among others described by Croft (2002).
It shifts the minimum of a score range min s = min{score(D∗)|D∗ ∈ C} to
zero and its maximum to 1. We further stressed the importance of the initial
query by doubling its score value in the final ranking:

norm(score(D)) =
score(D)−min s

max s−min s
,

final-score(D) = 2 ∗ norm(score(D|Q)) + norm(score(D|M)).

Since the collection data is date-tagged, the date of a document can be
determined without uncertainty. Restrictions on the temporal dimension are
treated therefore by binary filtering, removing all documents from the final
ranking that do not match the restricted time spans.

2.6 Experiments

Relevance feedback based on query profiles is evaluated in the setting of the
HARD track 2005 (Allan, 2004). A set of 50 queries which were regarded
as difficult – the query set was taken from the Robust track that tries to
tackle selected difficult queries in an ad-hoc retrieval setting – is evaluated
on a 2 GB newspaper corpus, the Aquaint corpus. The track set-up allows
one-step user interaction with so-called clarification forms that have to fit
one screen and have to be filled out in less than 3 minutes. In the original
TREC setting the sent-in clarification forms were filled out by the same
person who later does the relevance assessments for the specific query. We
repeated the experiment ourselves, asking different users to state preferences
or restrictions in the clarification forms after reading the query description
and query narrative coming with the TREC search topics. This way, we
inevitably lose the consistency between clarification and relevance assessment
ensured by the HARD setting. However, we could study differences in the
user behavior and their results.

The 4 test users – 1 female and 3 male students – were shortly introduced
to their task by demonstrating one randomly picked out example clarification
form. They needed on average 35 minutes to accomplish the task of clarifying
all 50 queries. Most of the time was in fact necessary to study the respective
query topic. The preference selection itself was done within seconds. We
want to remark here, that the number of test users was rather low. Thus the
conducted experiments cannot be regarded as a fully qualified user study, but
aim at gathering first indication whether the proposed feedback technique is
able to improve retrieval.
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base auto user1 user2 user2 ∗

MAP 0.151 0.187 0.204 0.187 0.201
R-Prec 0.214 0.252 0.268 0.255 0.265
P@10 0.286 0.380 0.396 0.354 0.402

Table 2.2: Result Overview

In order to compare the improvements, we performed a baseline run using
just the up to 3 words from the query title, further one run with the auto-
matically derived preferences only as explained in Section 2.5.3, referred to
as automatic run. From the 4 evaluated user runs, we present here the two
most different to keep the figures clear. Whereas user1 selected almost no
topic dislikes, user2 had the highest fraction of dislike statements among his
topic preferences. For comparison, we generated the artificial user2 ∗ from
the preferences of user2, but ignoring all his dislikes.

A closer look at the set of the 50 search topics revealed, that they have
not been distinctive with respect to their temporal profile. In fact, there was
almost no case where the user wanted to restrict the query to a certain time
span. Therefore, we restricted our analysis to the improvements by topical
query refinement and ignored the few stated temporal restrictions.

Results Table 2.2 presents an overview on the main evaluation measures
computed for all presented runs. At a first glance it is obvious that the re-
fined queries, even in our non-optimal evaluation setting, show a considerable
improvement over the baseline run. The precision gain is most visible at the
P@10 measures. Since we were mainly aiming at precision gain at the top
of the retrieved list, this outcome is quite encouraging. The precision recall
graph (Figure 2.7) confirms the observation made with the P@10 values.
Also here we observe the highest precision gain at the top of the ranked list.
On the right side, the runs with query refinement slowly converge to the base-
line, but always stay on top of it. The results of the other two non-displayed
users remained always in the middle of the two shown here.

The special run ignoring the topic dislikes of user2 has a better general
performance than its counterpart. Although it is not shown in the table,
this observation holds for all four tested users. It indicates that topic dis-
like statements bear the risk to weaken the result precision in our current
implementation.

Surprisingly, the values show also that the automatic run can compete
with the user performed clarification. We cannot entirely explain this phe-
nomenon, but can make two remarks on its interpretation. First, the query
set has not been designed to test disambiguation. If a query asking for “Java”
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Figure 2.7: Precision Recall Graph
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expects documents about the programming language, automatic topic feed-
back will work perfectly. However, it fails if in fact the island was meant.
Examples of the second type are necessary to compare user and automatic
feedback, but are not found in the test set. A further reason for the good
performance of the automatic run might simply be the fact that it does not
contain dislike statements.

For a more detailed view on the results, Figure 2.8 presents the evalua-
tion of all single queries sorted by increasing MAP value of the baseline run.
Thus, the graphic shows the worst performing queries on the left, continued
by a section with still relatively low quality response in the middle, up to
acceptable or even good queries on the right. Although the improvement per
query is not stable, it seldom happens that the user feedback deteriorates the
results. The one extreme case on the right side of the figure is again caused
by dislike statements. If we consider the relative improvement, the queries
in the middle part of the figure apparently gain the most from query refine-
ment. Within the distinction of query types from Section 2.5.3 these queries
probably fall under the ambiguous category 2. The fact that we encounter
the highest improvement in this area nicely demonstrates the usefulness of
our method.

2.7 Summary and Conclusions

This chapter was aiming at retrieval refinement by making use of features
of the query context. We first discussed an appropriate modeling of the
query context, with the conclusion that user-independent concept models
come with considerable advantages compared to direct models of the user.
Furthermore, we pointed out that language models are suitable as a uniform
representation of concept models and allow to build a uniform approach for
context scoring.

We also developed a framework for score combination that allows to com-
bine individual relevance estimations of all involved concept models as well
as the relevance to the initial term query. Initial tests on the HARD track
query set and collection showed indeed clear improvements using our context
modeling and combined ranking approach. However, the score combination
was not yet capable of handling “dislike” statements appropriately, that re-
sult from user feedback on the query profiles. Further analysis is needed
of how to make use of topical dislike statements in a way that they do not
harm the results, but also contribute to the query refinement. Incorporating
negative user feedback correctly is in fact a known problem in information
retrieval (Ruthven and Lalmas, 2003). Moreover, both experimental evalua-
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tions on the HARD track data of 2004 and 2005 had to limit the considered
context dimensions, since no concept models were available or the query set
was not sensible to some of the context dimensions. Hence, the experiments
never used a larger set of query dimensions and cannot show how the score
combination approach would work in scenario of rich query meta-data.

When using query meta-data for improving the retrieval precision, we had
to explain where such meta-data might be taken from. We developed there-
fore a new type of feedback approach, that gathers query meta-data in an
interactive retrieval session without asking the user unnecessary questions.
The proposed approach employs so-called query profiles and has been intro-
duced in comparison to other existing feedback methods. We also explained
how query profiles can be computed and analyzed for exceptional peaks, that
play an important role in query refinement.

The results show promising improvements for all runs that make use of
query profiles even in our preliminary experimental study. With a query set
designed to test how retrieval systems cope with ambiguity, we would prob-
ably be able to show even higher improvements using our feedback method.
The same applies for queries that reward temporal restrictions. The lack-
ing of a testset with more ambigious queries and corresponding relevance
assessments is a known problem (Spärck-Jones et al., 2007).

A finer grained topical “resolution” potentially in form of a topic hier-
archy, could lead to more focused query profiles on the topic dimension.
Furthermore, we need to examine query profiles on other context dimen-
sions. The temporal profiles remained untested by the current HARD track
query set, but also geographical or genre profiles - to name just two possible
other parameters - might enable similar improvements as the topical query
refinement.

The automatic feedback method turned out to be an interesting side prod-
uct of the work with query profiles. It performed almost as good as the user
feedback. It raises the question to which extend the system can decide based
on query profile statistics, whether automatic feedback is reliable enough in a
certain case to omit user interaction. Especially when several context dimen-
sions are involved in the analysis, the user should not be delayed by a multiple
number of feedback questions. Instead an intelligent retrieval system might
be able to select the most helpful dimension for explicit user feedback itself.



3
Structured Retrieval on XML

Whereas most common retrieval models regard a document as a simple “bag
of words”, humans see far more when they look at a document. Even a short
glimpse is sometimes enough to judge a document as irrelevant without even
reading the content properly. Such fast judgment is mainly helped by the
structure of the document. Layout, titles, paragraph-lengths and many more
features contain valuable information about the genre and content of the
document. Still, such features are completely neglected in the bag-of-word
model, and therefore cannot be exploited by most IR systems.

So-called mark-up languages such as SGML or XML are widely used
nowadays to annotate text structure in a machine readable form. It is hence
a straightforward aim to exploit such mark-up for retrieval. Research in the
field of structured retrieval has therefore focused on working with XML data
in the last years, mostly driven by the INEX evaluation initiative (Fuhr et al.,
2005). This chapter will touch several aspects of XML retrieval research.
In particular, how to design a query language for addressing structural con-
straints and how to perform efficient evaluation of typical structured retrieval
tasks. The presented research stays in close connection to the development
of our open source XML retrieval system PF/Tijah (Hiemstra et al., 2006),
which is integrated as a module in the XQuery compiler Pathfinder (Boncz
et al., 2005) and executed on the main-memory database back-end MonetDB
(Boncz, 2002). The introductory section on structured query languages is
partly based on previous work (Hiemstra et al., 2006).

3.1 Query Languages for Structured Retrieval

Whereas users in general know how to express content-related queries by
keywords they do not know how to express structural constraints. Structure
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is easy to recognize, but often hard to describe. Structure is also never the
primary aim of a search. Instead, queries on content are refined by structural
constraints. Pure structural search is in fact more common in the domain of
“database queries”, for instance with the aim to filter out a certain type of
elements. However, such queries do not ask for a ranking of the results.

3.1.1 Structural Features of XML

When designing query languages for the expression of structural search prop-
erties, there are two main points to consider. On the one side, it is important
to analyze the structure of the XML data, on the other side, we have to take
into account what structural features are helpful and desirable for search.

We will start here by looking at the actual structure of common XML col-
lections. XML data is typically categorized as either data-centric or document-
centric (Fuhr and Groβjohann, 2004). The distinction relates to the homo-
geneity of the structural annotation and to the content of each element. An
address-book with all its optional fields for each entry would be a typical
instance of data-centric XML. The XML tagging is used here to split data
entries into their respective fields. The structure is highly homogenous. Even
with optional address fields, it is usually defined which elements are allowed
in a given context. Furthermore, the content of such fields is typically short
and of a certain type, e.g. postal code, date, or names. In contrast, the often
seen XML version of the plays of Shakespeare can be regarded as typical
document-centric mark-up. The structural tagging is used here to divide a
large amount of text into a hierarchy of meaningful units, being an act, a
scene or just the phrase of a specific speaker. We can observe for both types of
XML that the hierarchical order of tags is more consistent than the arrange-
ment of tags in reading order, so-called document order in XML. If a DTD
or XML schema is available, the patterns most often describe parent/child
relations between two tags, e.g. <TD> being allowed only inside <TR>. In
contrast, the sibling order of elements is rarely defined in a DTD.

In the context of text search, the document-centric type of XML markup
will play a dominant role. Data-centric XML is queried as well, but more
by database-style selections rather than by vague ranking criteria as used in
information retrieval (Fuhr and Groβjohann, 2004). The typically short con-
tent of elements in data-centric XML is less suitable for queries that involve
the ranking of results. Since XML emphasizes the hierarchical structure more
than the document order, we will also find querying hierarchical properties
more important than document order features.

Looking more from a user perspective, a major problem of structured
XML retrieval is the lack of standardization in the usage of structural an-
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notation, especially in heterogenous collections. Different tag names might
be used to mark equivalent units of text, e.g. <HEADLINE> vs. <TITLE>, and
even the existence of a structural mark-up cannot taken as guaranteed for all
elements. XML retrieval systems, in consequence, often interpret structural
constraints vaguely, regarding them as hints rather than as requirements.
They try to prevent this way the unwanted exclusion of possible relevant
answers that had been annotated differently (Fuhr and Groβjohann, 2004).

Kamps et al. (2006) categorized structural queries as used in the INEX
evaluation initiative in order to analyze what kind of structural properties
users want to express in their queries. The underlying assumption of the
study is that INEX queries are typical for structured user queries. This is
in fact questionable, since the queries had to be expressed within in the lim-
its of a certain query language (NEXI) and they are written by researchers
with the primary aim to evaluate their systems. Nevertheless, the outcome
and classification of the queries is of interest here. Queries are divided in
using so-called hierarchical and/or context properties. Note that the notion
of hierarchical queries differs from how it was used in this section before.
The requested output elements are taken as a reference point for the distinc-
tion. Hierarchical features refer to descendent elements of the final output
element, like searching for sections on “XML retrieval” having subsections
about “databases”. In contrast, context features describe the neighboring el-
ements, not included in the output itself, e.g. used when looking for sections
on “XML retrieval” in articles with “databases” standing in the title. Inter-
estingly, the later category of queries was found clearly more often within
the INEX queries. This observation is encouraging for structured retrieval,
since those queries differ entirely from simple fielded queries and require more
flexibility from the query language and the retrieval system.

3.1.2 General Query Language Requirements

In order to enable the formulation of contextual (and also hierarchical)
queries, the desired query language should provide a certain set of functions
on XML element nodes. Mihajlovic (2006, Chapter 3.1) presents a minimal
list of functional requirements for structured retrieval:

element selection: Selecting element nodes of a specified tag-name, or the
set of elements of different given tag-names.

element scoring: Scoring any node set by the estimated relevance to a
given text query.
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containment evaluation: Given two node sets of ancestor, respectively de-
scendant candidates, evaluate which node pairs fulfill the containment
condition. The evaluation also needs to propagate existing scores to-
wards contained/containing nodes.

score combination: Combine different scores of the same nodes.

We renamed the score propagation function mentioned by Mihajlovic in order
to stress the containment evaluation aspect. Although the attendant score
propagation plays an important role, we regard it more as a side effect of the
containment evaluation looking from the perspective of a query language.

The first two requirements allows simple fielded search (see Section 1.1),
e.g. document retrieval on title words only. Especially for heterogenous col-
lections with changing structure, it is important that the user is free to rank
elements of any given tag-name. The containment evaluation further enables
to ask for the hierarchical relation of nodes. We argued above (see 3.1.1)
why hierarchical features are more important in XML retrieval than doc-
ument order features. For a minimal list of requirements the containment
relation seems sufficient. It allows to express conditions on contained ele-
ments as well as on containing ones. The score propagation and combination
together enable to combine the rankings of contained and containing nodes.

In the following, we examine two different structured query languages
that have gained attention in the research community. The languages are
shortly introduced and compared to the above requirements.

3.1.3 NEXI

The NEXI query language (Narrowed Extended XPath I: Trotman and Sig-
urbjörnsson 2004) was designed with the needs of the INEX community in
mind. It should remain as simple as possible – for users as well as for system
developers, not bound to a specific approach, but at the same time capable
to experiment with querying content and structure. The syntax is based on
the navigational XPath language being a W3C recommendation.1

O’Keefe and Trotman (2003) explain why and in which way XPath was
restricted and extended to better meet the needs of the INEX community.
One of the main changes concerns NEXI’s restriction of the navigational axis
steps. NEXI knows only two of the 13 XPath axes, namely the descendant

and attribute axes, in case of the attribute axis even with slightly differ-
ent semantics. The restriction was introduced after observing a high number
of incorrectly formulated queries leading to unexpected empty results. Due

1http://www.w3.org/TR/xpath
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to misconceptions of the document structure, users were for instance ask-
ing for child steps where the wanted element nodes stood in fact only in
ancestor/descendant relation. The language restriction thus simply avoids
common errors that are even common with expert users, as represented by
the group of INEX researchers. Notice that NEXI still satisfies the claim for
containment evaluation in the above listed requirements for structured query
languages.

NEXI also extends XPath to enable querying the element content. A
special about-function is introduced to filter and rank a set of element nodes
according to their text content. As an example, consider a query looking
for paragraphs about XQuery in html documents about information retrieval
and databases. The corresponding NEXI query would look like the following,
assuming the evaluation to start at the collection root:

//html[about(., ir db)]//p[about(., xquery)]

Although the about-functions are used here inside predicates evaluating to
boolean type, the NEXI semantics require implicit score propagation and
combination. Hence, the final ranked list is influenced here by both document
and the paragraph scores. With the about-syntax and the implicit score
combination and propagation NEXI also fulfills the other requirements of
structured query languages.

Furthermore, NEXI introduces a shorthand writing to express element
name-filtering on a set of tagnames, like //html//(title|headline) in
place of the longer: (//html//title|//html//headline). The abbrevi-
ated syntax is meanwhile also allowed in the XPath standard. It addresses
the mentioned problem of heterogenous collections, where different tagnames
were used as mark-up for semantically equivalent structure. In conclusion,
NEXI indeed meets its design goal of addressing the minimal needs of a query
language for both structure and content, without introducing expressional
power that might cause unaware misuse.

3.1.4 XQuery Full Text

XQuery is a functional database query language developed by the W3C to
become the standard for querying XML data, much like SQL is for relational
data.2 XQuery comes with a clear data-centric view of XML. It combines
powerful selection expressions on existing data with the possibility to com-
pose the results in any XML format by creating arbitrary new elements.
However, XQuery itself does not have any text retrieval features to support

2http://www.w3.org/TR/xquery
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IR-style ranking queries. To overcome this shortcoming, XQuery FT (full
text) is designed as an extension to XQuery introducing full text search func-
tionality into the query language (Amer-Yahia et al., 2007). As a language
extension, the XQuery FT expressions have to satisfy several additional re-
quirements, like being side effect free, fully composable with XQuery and
using the same data model. Rys (2003) lists all those requirements and
explains the decisions of the language design.

The above introduced example query would be expressed in XQuery FT
like:

let $c := doc("mydata.xml")

for $res score $s in

$c//html[. ftcontains ("ir","db")]//p[. ftcontains "xquery"]

order by $s descending

return $res

Unlike NEXI, XQuery returns result sequences usually in document order.
Therefore results have to be ordered by score explicitly to achieve a ranked
list output. The special score syntax in the for-loop binds the scores of the
corresponding expression to a variable, which can later be used to express for
instance a score threshold or an ordering on scores like in the example. The
syntax extension of the language became necessary, since score expressions
are inherently second order functions, taking another expression as their
argument (Rys, 2003).

XQuery FT also gives the users by far more expressive power than NEXI.
In contrast to the semantically “safe” restriction to the descendant axis, it
allows to use all XPath axes. The language thus assumes an expert user,
who knows the structure of the queried data. Moreover, XQuery FT implic-
itly performs score propagations among all axis steps and combines scores of
different subexpressions. It satisfies thus all four requirements for structural
query languages, however, especially those implementation defined implicit
score propagations and combinations make it difficult to design a sound scor-
ing framework. A user would for instance expect the following query to be
semantically equivalent to the above shown3:

let $c := doc("mydata.xml")

3The equivalence results here from:

//a[. ftcontains x]//b[. ftcontains y]

⇔ //b[ancestor::a ftcontains x][. ftcontains y]

⇔ //b[ancestor::a ftcontains x and . ftcontains y]
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for $res score $s in

$c//p[./ancestor::html ftcontains ("ir" && "db")

and . ftcontains "xquery"]

order by $s descending

return $res

Since the retrieval model and score propagation are not defined by the
query language but left to the implementation of the system, it is also in the
responsibility of the retrieval system to take care of such semantic equiva-
lences. In fact, we found that many common retrieval models and propaga-
tion approaches do not return an equivalent scoring in the above case.

XQuery FT comes furthermore with a set of additional functions for ex-
plicitly performing proximity, thesaurus, or wildcard queries and to express
further retrieval options like stemming. Those functions challenge the per-
formance of retrieval systems that rely on the existence of pre-computed in
index structures. An index build on a stemmed term vocabulary, will not be
able to answer queries that explicitly asks for the use of unstemmed forms.
Hence, retrieval indices will have to be highly redundant to fulfill all possi-
bilities of XQueryFT. For the work presented in this thesis, the support of
these additional language features is lying out of the scope, though the later
proposed index structure is able to deal with a number of them.

3.1.5 NEXI Embedding in XQuery

When Rys (2003) explains the integration of text retrieval features in the
XQuery language, he distinguishes three principally different possibilities,
namely a (1) sublanguage, a (2) functional, or a (3) syntactical approach. A
functional approach does not need any language adaptation, but introduces
a large set of highly parameterized functions for each required text search
feature, resulting in long and unreadable queries. Also the sublanguage ap-
proach was undesirable for the design of XQuery FT. It integrates an inde-
pendent sublanguage for querying and scoring via a minimal set of functions
into the existing XQuery language. The embedded sublanguage query, how-
ever, remains here a simple “black box” string inside XQuery, which restrains
its parameterization and compositionality with XQuery. The syntactical ap-
proach differs from the other two in that it requires an extension of the query
language with new keywords and grammar rules, but provides the most flex-
ible and expressive integration. XQuery FT has chosen the last option with
the introduction of the score construct and the ftcontains expression with
all its optional syntax for e.g. stemming or proximity.

Despite the mentioned disadvantages, we chose the sublanguage approach
when designing the first query language for our own research search system
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PF/Tijah (Hiemstra et al., 2006). It integrates NEXI as a text search sub-
language into a standard XQuery system. In the following, the advantages
and problems of the language embedding will be shown and discussed.

Starting with an example, the above presented search task is expressed
in PF/Tijah by the following query:

let $c := doc("mydata.xml")

return tijah:query($c,

"//html[about(., ir db)]//p[about(., xquery)]")

The newly defined function tijah:query takes as its arguments a sequence
of so-called start nodes, often the document root, and a NEXI query string,
returning a resulting node sequence in decreasing order of relevance. The
query evaluation is rooted at the start nodes sequence. The embedded NEXI
expressions become compositional this way with the surrounding XQuery.

The sublanguage embedding brings together the strong aspects of both
XQuery and NEXI. The PF/Tijah approach is able to combine in one query
the expressive power of XQuery for selections on data-centric XML with text
search features formulated within the semantical “safe” restrictions of NEXI.
We can for instance filter the resulting ranked node sequence by an XQuery
expression selecting those paragraphs written by a given author. Unlike
NEXI, XQuery also allows the user to specify the output presentation of a
query by generating arbitrary new XML elements. It is simple to create
for instance a list of author and title elements instead of the corresponding
ranked articles. Finally, the self-defined tijah:query function already re-
turns a sequence in descending ranked order, which is in most cases handier
than the output of the XQuery FT functions sorted by document order.

As already mentioned, the sublanguage approach also comes with disad-
vantages. The following complex example query demonstrates several diffi-
culties. Consider running a TREC style evaluation, which executes 50 queries
found in a separate topics file. The following simplified code shows a solution
that performs the entire evaluation at once:

let $c := doc("mydata.xml")

for $q in doc("topics.xml")//top

let $num := $q/num/text()

let $query := concat("//DOC[about(.,", $q/title/text(), ")];")

let $id := tijah:query-id($c, $query)

for $doc at $rank in tijah:nodes($id)

where $rank < 1000

return string-join(

($num, $doc/DOCNO/text(), $rank, tijah:score($id, $doc)), " ")
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Without the syntactical score construct of XQuery FT, a query identifier is
necessary here as an indirection to return later the nodes as well as the cor-
responding scores as a second order aspect of the sublanguage query. Three
function calls are required in this case for one single query. Another difficulty
concerns the query parameterization. Since the NEXI query remains a black
box string for the XQuery system, the query can only be modified by less
elegant string concatenation as done in line 4 of the example above.

If we look more from the systems point of view, the sublanguage approach
comes with the disadvantage that it does not allow static code checking or
query compilation. The interpretation of the sublanguage query can only be
done at runtime, when the actual query string is evaluated. However, the self-
contained sub-queries allow a system design, where the NEXI subsystem and
the surrounding XQuery engine remain independent to a large extend. For
our own research system PF/Tijah this last point became the major decisive
factor for the sublanguage approach, since it simplified the integration of two
existing predecessor systems.

3.2 Indexing XML Structure and Content

After discussing query languages that enable the user to search collections
with respect to structure and content, we can now proceed by addressing the
question how to evaluate such queries efficiently. Once the typical query exe-
cution patterns are known, we can study their data access and try to enhance
the data access by building indices. In fact, the actual data access highly
depends on query plans and employed low level algorithms, both discussed in
section 3.3. Still it seems appropriate to first introduce indexing techniques
in general, and the PF/Tijah index in particular.

3.2.1 Data Access Patterns

Structured queries, as expressable in the introduced languages, can be sup-
ported for efficient evaluation by indices. However, in order to create the ap-
propriate indices, we need to know the data access patterns of such queries.
The simplest – and probably most often occurring – structure and content
query asks element nodes of a certain type (e1) with text content on a key-
word (t1 . . . tn) defined topic. In NEXI syntax:

//e1[about(., t1 ... tn)].

In order to evaluate such a query on a given text corpus, the retrieval
systems needs to
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(1) find all element nodes with the specified tagname (e1) and all term
occurrences of the keywords (t1 . . . tn),

(2) evaluate the containment of term occurrences and element nodes, thus
finding all tuples (e,t) of a keyword occurrence t in the extent of an
element node e,

(3) access further scoring model dependent data: e.g. element sizes, or
collection-wide term-counts. Retrieval models often compare local (doc-
ument specific) and global (collection specific) probability distributions
of term occurrences. The global statistics are usually pre-computed and
have to be accessed as well.

In place of the simple fielded search above, we will also find more complex
structural expressions: like

//e1//e2[about(., t1 t2)]//e3[about(., t3)].

However, with respect to the necessary data access, the complex query does
not show new access patterns. The rooted path expression //e1//e2 and the
trailing e3[about(., t3)] only require to evaluate the containment relation
of element nodes. In all cases, containment is interpreted here as following
the descendant axis, thus including children as well as indirect descendants.
This applies also for text nodes being contained in all their ancestors.

3.2.2 Indices for Content and/or Structure

The following short overview on content and structure indices will introduce
and examine existing indices and says whether they support the above listed
operations.

Inverted Document Indices Retrieval systems most commonly make use
of inverted document indices to efficiently access all occurrences of a given
term in a collection.

term postings
...
information 2, 10, 23, 117, 118
retrieval 23, 64
...

Figure 3.1: Inverted Document Index

Such indices maintain a posting
list per term containing all docu-
ment identifiers of documents that
mention the term. Several tech-
niques have been developed to fur-
ther improve the index performance,
e.g. by compression techniques or
pruning of probably unimportant
postings. Zobel and Moffat (2006)
give a good overview on the issues around inverted document indices.
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In the context of XML, however, the well-proven index structure fails due
to the changing notion of documents. All element nodes can theoretically
be regarded as documents. Hence documents might be highly nested. In
consequence, a posting list would not contain exactly one but multiple entries
for each occurrence of the given term for all surrounding element nodes. The
overall index size would grow roughly by the factor of the average tree depth,
and thus become highly inefficient. The problem can be solved partly by
listing only the direct parent element of a term occurrence in the inverted
index and not all its ancestors. This way, each term occurrence is again
mentioned exactly once. Still, such an inverted parent index comes with
major differences compared to the conventional document index. Asking
for term occurrences within an arbitrary set of elements, the listed parent
nodes are not the final answer. An additional structural containment join is
necessary to decide which of the indexed nodes are contained in this set of
elements.

Relational Tree Encodings The immediately following question is, how in-
dex structures can support the containment join between two sets of nodes.
The structure of XML documents can be represented by a tree, where el-
ement nodes are mapped to vertices and the parent-child relation of two
nodes is shown by directed edges between the corresponding vertices. The
containment of two nodes can be evaluated by searching for a path in the
tree between the two nodes. However, neither can the entire tree be held in
memory for large XML documents, nor is it possible to efficiently check the
indirect containment relation between two nodes.

<a>

<b/>

<c>

<d/>

<e/>

</c>

</a>

pre post tag

1 5 a
2 1 b
3 4 c
4 2 d
5 3 e

Figure 3.2: Document and Pre-Post Index

Relational tree encodings have
been designed in the database com-
munity to tackle the problem. On
the one hand, Dewey-based encod-
ings assign labels to each node that
capture the complete rooted path
to the node, similar to the typ-
ical section/subsection numbering
of larger documents (O’Neil et al.,
2004; Tatarinov et al., 2002). On the other hand, region encodings simply
enumerate the XML nodes in document order of their start and end tags, as-
signing so-called pre and post-order values (Grust et al., 2004; Li and Moon,
2001; Zhang et al., 2001).

Those two values are enough to perform containment checks between a
pair of nodes x, y:
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x contains y ≡ pre(x) < pre(y) ∧ post(x) > post(y).

Dewey-based encodings are theoretically better in handling updates of the
index than region encodings – an index property not discussed here so far.
Changes only influence the local numbering of the corresponding subtree,
whereas in the region encoding all globally following nodes needs to get as-
signed new numbers. The main disadvantage of Dewey encodings, however,
is the length of the assigned labels. Notice that they require to maintain
a number for each level of tree depth of a node, whereas region encodings
just need integer values. Especially when handling containment joins of large
node sets, the simpler integer comparisons are performed more efficiently.

Zhang et al. (2001) showed that it is possible to efficiently store XML data
and to process structural queries by the combination of an inverted text node
index together with a region index. The later presented PF/Tijah index in
fact most resembles this approach.

Further Indices for Content and/or Structure So-called DataGuides sum-
marize the hierarchical structure of the XML tree (Goldman and Widom,
1997). The index tree contains all distinct labeled rooted paths. Each index
node describes thus a distinct class of element nodes. A complete rooted path
query is then evaluated first on the considerably smaller index tree. In a sec-
ond step, all instances of the query satisfying index nodes are fetched to be
returned as the final answer. Notice that DataGuides show their biggest ad-
vantage, when evaluating path queries consisting of long rows of child steps,
e.g. /a/b/a/c. Such queries lead to exactly one qualifying index node and
all instances can be fetched directly without overhead. Whenever the path
query contains descendant steps – the only allowed axis step in NEXI – the
evaluation on the index tree yields multiple possible answers and requires to
fetch the instances of several index nodes. However, when the path query
contains predicates, it is impossible to evaluate the query based purely on
such a DataGuide index.

Ramı́rez and de Vries (2004) suggests to maintain a DataGuide in addi-
tion to the relational tree encoding. A query optimizer can then decide by
simple heuristics to use the DataGuides for appropriate parts of the query.
Weigel et al. (2004) and Kaushik et al. (2004) designed a more content-aware
DataGuide4. They couple the inverted lists tighter to the DataGuide by
maintaining for each term posting also the DataGuide node corresponding to
the direct ancestor element of the term occurrence. When term postings are

4Kaushik et al. (2004) actually uses a different terminology. DataGuides are just called
structure indices here.
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fetched from the inverted list, it is then possible to select only those occurring
under a specific rooted path, which saves the loading of non-matching term
occurrences. The later query evaluation strategy differs slightly, but both
show how even branching path expressions including predicates can make
best use of the DataGuide. The disadvantages of the approach are lying in
the more complex index structure and, more important, in the fact that they
support direct containment queries better than indirect ones. When several
DataGuide nodes are matched by the path query, the inverted lists of all
these nodes have to be loaded and merged causing new evaluation overhead.
Furthermore, it is in such case impossible to return the matching tuples of
elements and contained term occurrences without performing at least one fi-
nal containment join on the instances of those two lists. Recall that indirect
(term) containment is by far more seen than direct containment in structural
queries.

3.2.3 The PF/Tijah Index

The PF/Tijah index is designed to support the evaluation of NEXI queries
but at the same time remaining a simple and space efficient data structure.
It should be possible to entirely (re-)build the full-text index of a collection
of text documents as fast as possible. With respect to query evaluation, we
consider the support of often occurring query patterns, like simple fielded
queries, more important than specialized complex path queries.

Having these design goals in mind, we abandoned the use of DataGuides.
Instead a simple region encoding combined with inverted indices to look up
term and tag occurrences is employed. In relational terms, we store for each
element node e the tuple:

< tag(e), pre(e), size(e) > .

And similarly for each term occurrence t:

< term(t), pre(t) > .

The pre/size encoding is equivalent to the before mentioned pre/post repre-
sentation. The value size(e) denotes the number of descendants of element e.
In contrast to the XQuery data model (Fernández et al., 2007), we tokenize
the character content of an element node into separate terms represented by
adjacent text nodes. Those text nodes are also assigned their own pre-order
identifier, as shown in Figure 3.3.

The advantage of this numbering is twofold. Firstly, the region encoding
allows the employment of efficient structural join algorithms to evaluate the
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A (1,10)

B (2,3)
hhhhhhhhhh

XQuery3
qqqq

and4 FT5
MMM

M
B (6,5)

VVVVVVVVV

C (7,1)
qqqq

XPath8

and9 D (10,1)
MMMM

NEXI11

Figure 3.3: XML Tree with word enumerating pre/size encoding

containment of term occurrences. Secondly, the element sizes maintained in
the table estimate the number of terms found in their extend. This number
represents a feature of many scoring models. Using the element size instead
of the exact term counts assumes that the number of descendant elements is
neglectable in comparison to the number of terms. In fact, we have seen in
pre-tests that the retrieval quality is not suffering from the overestimation.
Furthermore, the enumeration of words enables to ask for phrase or proximity
features, an additional useful feature not discussed so far, since it is not
bound to structured queries. The pre-order values are used in that case as a
positional index, showing the exact order of terms.

Using MonetDB The PF/Tijah system is operating on the main-memory
database back-end called MonetDB (Boncz, 2002). The backend comes with
a couple of features, that further influence the actual index design. Most
importantly, it requires full vertical fragmentation of relational tables, so
that – at least on the physical level – all maintained tables are two-column
BATs (Binary Association Tables). Whenever one column of a BAT stores
a dense ordered sequence of unique identifiers, it gets the special data type
void. Instead of maintaining all identifiers, only the offset is kept and the
two-column BAT is stored in a one-dimensional array. Boncz (2002) describes
these system features in more detail.

In case of the inverted term/tag index, the physical concepts of the DBMS
changes the index in the following way. Figure 3.4 visualizes the physical stor-
age schema of the relation <term(t), pre(t)>. The exactly same structure
is used again to maintain the tuples <tag(e), pre(e)>. The missing column
size(e) has to be stored in separate BAT. Instead of repeating the string
representation for all term/tag occurrences, the first of the three presented
BATs serves as a dictionary table, that assigns identifiers to all unique terms,
respectively tag-names. The actual inverted lists are maintained in two void-
column BATs, where the second (the most right in the figure) holds all term
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term tid

string oid
...
information 11
informed 12
...

tid id(t) offset

void oid
...
11 118
12 121
...

〈

id(t) pre(t)

void oid
...
118 14
119 103
120 110
...

Dictionary Offset table Occurrences

Figure 3.4: Inverted Index in MonetDB, gray-shaded columns are not stored physically

pre(e/t) size(e/t)

void int

1 213
2 0
3 0
...
(a) Index schema I

id(e) size(e)

void int

1 213
2 164
3 420
...

(b) Index schema II

Figure 3.5: Two variants for the physical storage of size information

occurrences sorted by term, and the first keeps for each term an offset point-
ing to the first term occurrence of a given term. The pre-order positions of
any term can be sliced out of the second array after looking up the corre-
sponding offsets in the first table.

Two variants have been tested to store the size information (see Fig-
ure 3.5). The first possibility (index schema I) is to maintain a pre/size BAT
with void-column pre-order keys. Such BAT allows direct positional access
to the size value of any given node pre(v). Therefore, it supports contain-
ment joins of arbitrary node sets. However, it comes with the disadvantage
of also maintaining unnecessary size values of all term nodes, in order to keep
the pre-order -column dense numbered. An alternative that still allows direct
positional access to the node sizes, but does not require the redundant storage
of all zero-sized text nodes, is to maintain a void-column size BAT aligned
to the inverted tag index. This option will be referred to as index schema II.
Whenever the node positions are fetched of a given tag name, the according
sizes can be attached from the aligned size BAT. Notice, that the pre-order
values are not used any longer as the key to access the sizes. Instead, the
enumeration in the occurrence array (the rightmost BAT in Figure 3.4) de-
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dict. size #elements #terms XML size schema I schema II
Shakespeare 17× 103 179× 103 395× 103 7.9 MB 4.7 MB 3.2 MB
Aquaint 0.8× 106 21× 106 253× 106 3.0 GB 2.1 GB 1.1 GB
Wikipedia 2.2× 106 53× 106 151× 106 4.5 GB 1.5 GB 1.0 GB

Table 3.1: Overview on Index Sizes

fines an element’s identity id(e). Due to the alignment with the occurrence
BAT, the node sizes are grouped by their corresponding tag-name. Apart
from the smaller index size, the grouped storage of node sizes utilizes the
systems cache lines better, since most queries score all nodes of a certain tag
name. However, as we will see in the next section, efficient containment join
algorithms require pre-order -sortedness of their operands. It is possible to
keep also in index schema II the pre-order -sortedness within each tag-name
group. The disadvantage of the tag-aligned size index, lies in its inflexibility,
when queries do not score all elements of a single tag-name. Queries asking
to score all element nodes independent of their name, or queries that require
to score arbitrary sets of nodes, cause random jumps during the containment
join evaluation.

3.2.4 Experiments

The experiments in this section demonstrate the effects of the index design
on the space and performance dimension. We will especially compare the
two proposals (index schema I and II) for maintaining the sizes of element
nodes.

Index Size The PF/Tijah index compresses the information hold in an
XML document that is necessary to answer structure and content queries.
We will report here the actual index sizes for 3 selected example collections:
(1) the XML collection of all plays of Shakespeare5, (2) the Aquaint news-
paper corpus6 used in several TREC tracks, (3) and the INEX wikipedia
collection. Whereas (1) is a small, very homogenous collection with the vo-
cabulary of just one author, the other two represent larger collections consist-
ing of meta-data enriched news data (2), respectively structured hyperlinked
encyclopedia texts (3).

Table 3.1 shows the number of unique terms after porter-stemming, the
number of element/term occurrences in the collection, and the actual sizes of

5downloaded from http://www.ibiblio.org/bosak.
6the original SGML version is converted to XML with the least possible changes.
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the original XML files vs. the index files. Schema I and II refer to the entire
index sizes including the size BAT as described in two proposals. It must
be remarked, that the reported index sizes still remain in the same range
as the sizes of the original XML text files. The large index sizes are mainly
caused by storing all entries in arrays of fixed-length 4 byte integers. Further
light-weight compression techniques would obviously be able to decrease the
index sizes, but have not been employed so far.

Performance In order to test the performance of the two index schemes in
a realistic scenario, a text collection was indexed, and the execution times
where measured while running a set of keyword queries of the form:

//e[about(., t1 ... tn)].

The simple query form includes already all operations involved in the eval-
uation of structured queries. More complex queries are typically composed
of patterns of this simple type. The used text collection in this case was the
Aquaint corpus (see Table 3.1). As a set of typical keyword queries, TREC’s
2005 robust track queries have been chosen. The query set consists of 50
topics, described first by a few keywords, the so-called query title, and later
in a more verbose query narrative. We will analyse in this chapter both the
performance of short title-only queries as well as long queries created by the
concatenation of title and narrative field. After stop word removal the set of
short queries contains 2.5 words on average, respectively 27.4 words in case
of the long queries. In contrast to the original queries that always ask for a
document ranking, we varied the requested scored element set among the 50
queries, asking alternately to score paragraphs, documents, the documents
text body, or the documents title. This way, we tried to create a realistic
scenario to measure the performance of different query plans for scoring ar-
bitrary element sets. For the actual score computation, the NLLR retrieval
model (see Section 2.2.1) was employed which represents a typical log-based
scoring method following the language modeling approach. The test system
used for all time measurements in this thesis was an AMD Opteron 64 bit
machine running on 2.0 Ghz with 16 GB main memory. The index struc-
tures could hence be hold in memory, but not in the considerably smaller
CPU caches. The entire set of 50 queries were evaluated 5 times and we
report the fastest out of 5 runs. The observed deviation between the 5 runs
varies only minimal in all observed cases.

Table 3.2 shows the execution times of running the entire query set using
either index schema I or II. The evaluation used query plan P2, which will
be explained in Section 3.3.3. Apparently, index schema II does not only
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short queries long queries
schema I 17.6 s 80.2 s
schema II 7.5 s 66.5 s

Table 3.2: Overview on Index Performance

show less space requirements but also a clearly better query performance
in general. The difference between the two indexing schemes is higher for
the short queries than for the long ones. When executing the queries, the
elements have to be accessed once independent of the size of the query. The
higher number of query terms only increases the probability that elements
contain at least one of the terms which requires their size values to be fetched
during the evaluation.

3.3 Scoring XML Elements

After introduction of the index structure, this section will go into detail with
the efficient scoring of XML elements. Assuming that a set of element nodes
E is selected – E resembles the document set in common retrieval models –
and a query Q is given as a set of terms, the scoring of XML elements can
be described as a 4 step procedure:

(1) selection of query term occurrences T = {t|term(t) ∈ Q} in the collec-
tion,

(2) containment join E ✶ T resulting in tuples (e, t) where e contains t,

(3) calculation of the score contribution per tuple (e, t),

(4) score aggregation per element.

Step (1) does not need further discussion since it represents a standard
database operation supported by the introduced index structure. Calculat-
ing the score contribution of each element-term tuple (3) depends on the
employed retrieval model. Apart from fetching element and term statistics,
this step involves only standard arithmetic functions. Step (4) represents a
typical aggregation operation. Its execution can become rather costly when
the query size increases. Techniques have been developed in the field of
document retrieval to optimize the aggregation costs in such cases (see e.g.
Anh and Moffat, 2006). Most specific for XML retrieval and influential on
the overall performance remains the execution of the containment join (2),
which is studied in the following. Notice, furthermore, that the outlined
scoring procedure is not entirely fixed with respect to the order of steps. We
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will see later (Section 3.3.3) that different query plans can be considered for
their execution.

3.3.1 Containment Joins

Every relational database system can evaluate the containment relation of
the two node sets E, T by employing a standard join algorithm under the
join condition: pre(e) < pre(t) ≤ pre(e) + size(e). However, even if both
operands E, T are sorted on pre-order, the inequality condition does not allow
to employ standard merge-join algorithms. Instead the join evaluation will be
performed in nested-loop fashion, which requires O(|E| × |T |) comparisons,
with |E|, |T | denoting the cardinalities of the respective sets.

Special Containment Join Algorithms Several special containment join al-
gorithms have been developed to overcome the problem. The multi-predicate
merge join (MPMGJN), proposed by Zhang et al. (2001), advances cursors on
the sorted input relations like a merge join. The cursors are used to tighten
the inner loop with the aim to avoid unnecessary value comparisons. Grust
and van Keulen (2003) showed further possibilities of pruning and skipping
by exploiting tree properties of the pre-post relation. Their Staircase join
algorithm ensures to read both input relations in single sequential scans.
However, the Staircase join does not target the same operation as other
containment joins. Instead of joining two arbitrary input node sets A, B re-
sulting in a tuple set {(a, b)|a contains b}, the Staircase join is designed to
perform axis steps from a context set C resulting in all descendant nodes
{d ∈ N |∃c∈C c contains d}. Thus, the Staircase join in its initial form always
uses the entire node set N as its second operand. Moreover, it performs
duplicate elimination on the fly. If two nodes c1, c2 ∈ C contain the same
descendant d, it will get listed once in the result. Other containment joins
output both tuples (c1, d), (c2, d) instead. Whereas this behavior is desirable
to execute axis step operations, it is not applicable in a scoring procedure,
when elements and term occurrences need to be associated with respect to
their containment relation.

Al-Khalifa et al. (2003) proposed two stack-based containment join algo-
rithms that also ensure single sequential scans, but output all ancestor/de-
scendant tuples either in sorted descendant or ancestor order. Algorithm 1
shows their so-called Stack-Tree-Desc join, though it is presented here differ-
ently. While again cursors move over both input operands as in merge joins,
an additional stack keeps all ancestor candidates as long as further contained
descendants can be found. In other words, every ancestor candidate is put
on the stack when the cursor on the descendant list enters its region and
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lives there until the cursor leaves its scope again. Hence, all nodes remaining
on the stack are ancestors of the current descendant candidate. Notice, that
all nodes on the stack stay at any time in ancestor/descendant relation to
each other. Thus, the tree depth of the XML collection limits the size of the
stack, which remains rather small for common XML data. The stack-based
containment join has a time complexity of O(|E| + |T | + |R|) for reading
both operands and writing the resulting tuple-set R. While the outer loop
iterates over the term occurrence set T , the total number of stack accesses
lies in O(|E|+ |R|) for |E| push/pop operations and |R| read accesses.

Algorithm 1: Stack-based containment join algorithm
Stack-Tree-Desc(ancestor list A, descendant list D) ≡

begin

initialize empty Stack and empty result list R
t← points (always) to node on Stack top
a← first node in A
foreach d ∈ D do

while t 6= nil and pre(d) > (pre(t) + size(t)) do

pop Stack

while a 6= nil and pre(a) < pre(d) do

if pre(d) < (pre(a) + size(a)) then

push a on Stack

a← next node in A
foreach s on Stack do

append (s, d) to R

return R
end

Retrieval-Aware Implementation Al-Khalifa et al. (2003) also showed on
a set of simple and more complex path queries that their stack-based algo-
rithm performs better then specialized merge joins, like e.g. the MPMGJN
algorithm. When the containment join is employed, however, in a scoring
procedure, the conditions change in some important aspects. Most often
we want to score a large collection of documents or paragraphs by selective
keywords. If the keywords would occur in too many documents they have
stopword characteristics and do not contribute to the ranking. Therefore, we
can expect in general that the cardinality of the element set outnumbers the
term occurrences: |E| ≫ |T |.

It is thus essential to skip unmatched elements as fast as possible. Notice,
that the Stack-Tree-Desc join (Al-Khalifa et al., 2003) can be implemented in
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two ways, traversing the ancestor and descendant candidate set in either outer
or inner loop. The here presented version (Algorithm 1) exactly shows the
wanted behavior by traversing the large element set E in the tight inner loop,
which reduces the total number of value comparisons during the execution
of the algorithm.

Simplifications for Unnested Ancestor Sets As mentioned already, at
any time in the execution of Algorithm 1 all nodes on the stack stay in
ancestor/descendant relation to each other. For unnested ancestor sets, the
stack thus never holds more than one element and the algorithm could be
simplified. Looking at typical structured queries, this case happens by far
more often than containment joins with nested ancestor sets. The scoring
of a node set follows in most cases a tag-name selection and nodes of the
same tag-name are seldom nested in practice. Based on this argumentation,
it seems worthwhile to especially recognize and support the case of unnested
ancestor sets.

When the stack can be abandoned, the containment join falls back to a
procedure resembling a merge join. Algorithm 2 shows the simplified pro-
cedure, further on called Unnested-Tree-Desc join. The inner loop forwards
now the cursor on the ancestor list towards the element with the highest
pre-order value pre(e) < pre(d) without even fetching the corresponding size
values.

Algorithm 2: Simplified containment join for unnested ancestor set
Unnested-Tree-Desc(ancestor list A, descendant list D) ≡

begin

initialize empty result list R
a← first node in A
a∗ ← next node in A
foreach d ∈ D do

while a∗ 6= nil and pre(a∗) < pre(d) do

a← a∗

a∗ ← next node in A

if pre(d) < (pre(a) + size(a)) then

append (a, d) to R

return R
end

Skipping by Binary Search Instead of moving the cursor from node to node
as shown here, it is possible to forward the cursor by binary search, in order
to skip large sequences of un-matching elements. Notice that this change
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influences the time requirement of the algorithm. Whereas Algorithm 2 in
the presented form has a data bound time complexity of O(|E| + |T |), the
binary search changes it to O(log(|E|)× |T |), which means an improvement
in case |E| > log(|E|)×|T |. In fact, the binary search can be implemented as
a pure forward search with logarithmically decreasing steps over the element
set E. In that case, our algorithm will never fall back behind the previous
O(|E| + |T |) even if the relation of |E| and |T | does not hold the above
condition. Notice that |R| is not mentioned anymore in the time complexity
of the algorithm, since we know for unnested element sets that |R| ≤ |T |.

Recognizing Unnested Sets The question remains how to recognize unnested
element sets in advance. We cannot check all elements on a given node set
whether they contain other nodes of the same set. However, by maintaining
simple collection statistics and attaching nestedness as a property to the each
node set, we can try to propagate the property by a few simple rules:

• Without further knowledge a node set is marked as nested.

• A node set passing a name test is marked unnested, if nodes of that tag
name never occur nested in the collection.

• Child steps, parent steps, or filter predicates do not change the unnest-
edness of a node set.

Following these rules, we can sufficiently recognize a large extend of unnested
sets, which allows to employ the above shown algorithm for a wide range of
queries.

3.3.2 Experiments

In order to test the performance of the algorithms in a realistic scenario, the
same corpus, query set and experimental setting was used as for the indexing
tests (see Section 3.2.4) apart from a few changes mentioned in the following.
Since the query length does not play a role here, only the short title-only
queries were considered. The operand sizes, however, probably have a high
impact on the containment join performance. So it is necessary to control
their sizes. Instead of varying the tagname of the requested elements among
the 50 queries, the element set was kept fixed here. In a second experiment
special single term queries were executed, to also control the size of the
term occurrence set. Index schema I (see Section 3.2.3) was employed in all
tests since the Staircase join would not work on the other and we wanted
to show its timings as a reference to non-retrieval-aware containment join
implementations.
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Figure 3.6: Performance depending on the size of the element set

The Staircase join was used here in a special loop-lifted variant (Boncz
et al., 2006), which allows to return ancestor/descendant tuples by using the
iteration column for listing all ancestor candidates.

Size of the Element Set In a first experiment, the influence of the element
set size was tested. The system had to score 3 different element sets on all
50 queries: (1) a randomly sampled subset documents tagged DOC – 0.1×106

nodes, (2) the set of all documents – 1×106 nodes, (3) the set of all paragraphs
tagged P – 13×106 nodes. All three sets represent typical retrieval tasks. The
smallest set (1) demonstrates the case, where a node set is coming from a pre-
selection, e.g. the scoring of all documents having a certain date. The other
two sets represent a typical document (2), respectively paragraph ranking
(3) task.

The applied query plan P1 (see Section 3.3.3) executes one containment
join for the occurrences of each single query term. Therefore, 132 contain-
ment joins are performed in total for executing all 50 multi-term queries. The
average execution time of one containment join is shown in the log-scale his-
togram (see Figure 3.6). Obviously, the more retrieval-aware implementation
of our Stack-Tree-Desc join shows already a high performance improvement
over the Staircase join. In all 3 cases it needs at most 50% of the execu-
tion time compared to the Staircase join. Since all tested element sets are
unnested, also the special Unnested-Tree-Desc join can be employed. Here
we observe again a performance win by an order of magnitude for large ele-
ment sets. In case of the smallest element set, the timings have to be taken
with care. Firstly, the timings fall below the measurable units, and sec-
ondly, we probably observe here caching effects of previous operations. Still,
the outcome for all three element sets confirms nicely the theoretically ex-
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pected linear dependence between element set size and execution time. Only
the Unnested-Tree-Desc join with binary search shows a different behavior.
Whereas it suffers from the search overhead on the smallest set, its execution
time grows only sub-linear with the size of the element set.

Size of the Term Occurrence Set The second experiment kept the element
set fixed while varying the size of the term occurrence set in a controlled way.
The set of all documents (2) was used as the element set. In order to choose
realistic query terms from varying selectivity, all tested terms were taken
from the query set starting with the one having the highest number of term
occurrences and ending with the most selective term. In increasing order
of selectivity, the following 4 terms got selected: (1) American – 370 × 103

occurrences, (2) storms – 37 × 103 occurrences, (3) extinction – 3.7 × 103

occurrences, (4) WTC – 12 occurrences.

Figure 3.7 shows the corresponding execution times. Obviously, both
stack-based joins are less influenced by the size of the term occurrence set.
The way larger element set clearly dominates here the execution time. The
Unnested-Tree-Desc join, on the other hand, shows a clear benefit of smaller
term occurrence sets. Already the version without binary search brings its
execution time for the smallest set down to 20% of the time required for
the largest term occurrence set. The difference to the Stack-Tree-Desc join
can be explained by the less look-ups for element sizes. Employing binary
search, the size of the term occurrence set even becomes the determinant
factor of the execution time. The experiments confirm also the theoretically
deduced turning point where binary search becomes less efficient. For the
largest term set, the condition |E| > log(|E|) × |T | does not hold anymore
and in fact we observe the algorithm without binary search to show a slightly
better performance in this case.

3.3.3 Query Plans

Database systems process queries on different layers (see e.g. Elmasri et al.,
1999, Chapter18). A query is transformed into an algebraic expression on
the logical layer and later mapped to the best available operator implemen-
tation on the physical layer. Typically, query optimization takes place on all
these layers considering alternative but semantically equivalent query plans,
that define the order of operations. Query optimization uses either simple
heuristics or applies cost models to estimate which plan executes the query
most efficiently. We will take in the following a look at the translation of the
scoring procedure into an efficient sequence of database operations. From
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Figure 3.7: Performance depending size on size of the term occurrence set

the point of view of our XML retrieval system, which uses the DBMS only as
an execution back-end, the considerations take place on the physical level.

Although the containment join evaluation plays a major role in the pro-
cedure of scoring of elements, other operations – as listed in the beginning
of this section (3.3) – have to be considered as well when we try to optimize
the system’s performance. In contrast to the containment join, the term
selection, score calculation and aggregation are, however, well supported by
standard database operations and the index. Thus, we are left with the
remaining task to investigate efficient query plans.

Figure 3.8 shows the alternative plans that will be discussed in this sec-
tion. Before we actually compare the different plans, some notations need
to be introduced. All plans start with node selections for terms σTi

and el-
ements σE . In fact, we only show plans for a scoring procedure with two
query terms selecting the sets T1, T2. It is, however, easy to imagine how
the plans would look like for n terms. The selections are followed in all
three cases by a containment join ✶(contm). The join outputs all (e, t) tuples,
but for the later score calculation the number of occurrences of all different
unique tuples has to be aggregated {cnt}(e,t). In case that the sub-branch
of the query plan ensures that only tuples of a certain term t are expected,
the aggregation algorithm can be simplified to {cnt}e. The same holds for
the following arithmetic operations [*/] to calculate the score portions for
each unique tuple (e, t). The actual arithmetic operations are determined
by the employed retrieval model. Different retrieval models do not only in-
volve varying arithmetic operations, but also require different element and
term statistics. The execution times will therefore vary depending on the
employed model. The final score aggregation per element is denoted here
by {+}e, since for many retrieval model log-based partitial scores have to be
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Figure 3.8: Alternative Query Plans

summed up.
It should also be remarked in this context, that our database back-end

MonetDB does not make use of so-called pipelining techniques, but follows a
bulk processing approach (Boncz, 2002). Hence, each operation is executed
completely materializing its intermediary result in memory before the next
operation starts processing the data.

As we see in the 3 suggested plans, the order of operations stays constant
in all three cases. Although changes would be possible here, it is easy to
argue why improvements cannot be expected by order changes. It is always
preferable to start with the selections on terms and elements, instead of
performing the containment join on the entire node set. The subsequent tuple
count and arithmetic operations require the result of the containment join. It
is not strictly necessary to perform the aggregation {cnt} before starting the
retrieval model dependent score calculation [*/], but it is advisable to reduce
the intermediary result set as soon as possible. The score aggregation, finally,
cannot be pushed down since it again requires partial scores to be calculated.

Looking at the differences, the first plan P1 executes ✶(contm), {cnt}, and
[*/] in an independent branch for each query term, while the third plan P3
employs single operations for all steps. Obviously, the number of involved
operations for P1 is considerable higher, especially for a growing number of
query terms. On the contrary, the operations involved in P3 have to work
on unique (e, t) tuples rather than performing {cnt} and [*/] on unique
elements only. This little difference makes the employed algorithms more
complex and expensive. Moreover, working with an DBMS with full vertical
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fragmentation like MonetDB becomes a disadvantage here. Aggregation on
unique tuples involves assigning them to single identifiers and several map-
ping joins. The same problem arises for the calculation of partial scores
thereafter. In consequence, the advantage of the lower number of operations
might disappear by the increased complexity of the remaining ones. Plan
P2 should be seen as an intermediary solution. The containment join is exe-
cuted once only, but the branches are still split thereafter to enable the less
complex score calculation per query term.

Theoretically, we can also imagine a query plan with separate operator
branches for each element that has to be scored, similar to the splitting on
query terms. The complexity reduction would be the same and the final ag-
gregation could be simplified as well, however, due to generally large number
of elements, the total number of operations becomes unacceptably high.

3.3.4 Experiments

The above discussion showed already some advantages and disadvantages of
the proposed 3 query plans, however, it requires empirical testing to achieve
a clear comparison of their performance. As before, the Aquaint corpus and
the 2005 Robust Track query set were used for testing. The further test setup
has been described in detail in Section 3.2.4. Instead of reporting only total
execution times for the different query plans, the measurements were split
over the involved operations. For those operations the times were summed
up during the 50 queries and later reported as averages for the evaluation
of a single query. If a certain operation is performed in several branches of
the query plan, the shown execution time is related to the total time for
executing the operation in all branches.

Performance on Short Queries Figure 3.9 compares the query plans when
evaluating the 50 short title-only queries. The plans P1a and P1b are both
instances of the above presented query plan P1, but differ in the employed
aggregation method as described later. It will become clear then why both
versions are shown here.

We can first of all see that plan P1a and P2 are almost equally efficient and
clearly outperform the other two. The stacked histogram also shows how the
execution time is divided over the involved operations. In fact, the distinction
is not in all cases as clear as one might expect. The operations often involve
sub-operations that could be assigned to several parts. For instance, the
containment join requires both operand sets to be pre-order sorted. The
term selection of P1a/b directly returns the terms pre-order sorted from the
index. However, when selecting at once the term occurrences of all query
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Figure 3.9: Performance depending on the used query plan for short queries

terms as in P2/3, a sort operation is required on the unified set. The time of
the additional sort operation could be assigned to the term selection part with
the argument that all selections should satisfy the same output properties,
but we could also assign the sorting time to the containment join that requires
the sortedness of its input. We decided here for the first option, which can
be seen in the considerably higher selection times for plan P2/3.

Looking at the containment join part, we can first observe that the em-
ployed tree-merge join for unnested element sets (Algorithm 4 of section 3.3.1)
is not causing a high overhead in the entire scoring procedure. If a Staircase
join is employed here instead, the containment join part would clearly dom-
inate the overall execution time. Furthermore, the comparison of the plans
P1a/b and P2/3 shows that for short queries the multiple execution of the
join for each single query term is only little slower than the joined execution.

The first aggregation for counting the occurrences of all unique (e, t) tu-
ples is neglectable in all plans apart from P3. The complexity overhead of
the joined computation clearly becomes a disadvantage. The same observa-
tion holds for the score computation part of the plans. As an example of
the more complex calculation, we can think of the simple multiplication with
terms collection likelihood. While this value is a constant factor for all tuples
in single branch of P1/2, the multiplication in P3 has to perform an implicit
join on the terms t to use the right factor for each (e, t) tuple.

Finally, the score aggregation part shows different timings in all 4 plans
though the differences are not apparent in the plans themselves. The reason
lies again in the different physical operators employed by the plans. In P3
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Figure 3.10: Performance depending on the used query plan for long queries

we do not need to gather partial results and can directly employ a standard
database aggregation operator. For all other plans, scores are directly ac-
cumulated when joining the results of two branches. We can either create
an accumulator BAT for all elements beforehand where the partial score val-
ues are added to (P1b and P2) or we execute a union and aggregation for
each branch (P1a). In the later case, each union operator requires to copy
all values to a new result BAT. In the first case, however, the accumulator
BAT have to keep a score slot for all elements, also those that have not been
assigned a partial score, yet. Here, plan P2 has an important advantage
over P1b, since it is known after the single containment join which elements
contain at least one of the keywords and thus really require a score slot in
the accumulator BAT. In plan P1b, this information is not available and the
accumulator BAT has to stay considerably larger. The performance impact
of these differences is clearly visible in Figure 3.9. At least for short queries,
it plainly suggests not to use the accumulator BAT in plan P1.

Performance on Long Queries Although typical user queries rarely con-
tain a large number of keywords, experimental setups more often require to
rank element sets by longer queries. It is interesting here to see how the
different query plans react in the later case. Obviously, the branching factor
of P1 and P2 gets considerably higher here. The above experiment was re-
peated but instead of using the topic title, its longer narrative field was used
to construct the 50 queries. The results are shown in Figure 3.10.

Looking at the total times, plan P2 is slightly ahead all others now, and
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plan P1b and P1a have changed places. When we might have reckoned that
a higher branching factor have a highly negative performance impact, this
expectation is met only partly. Plan P3 is still considerably slower then the
best performing ones. The ratio of execution times between the operators
inside the plans roughly stayed the same as before. Only the containment
join fraction is diminished in P2/3. The other operators apparently are not
negatively influenced by the branching. These two observations explain the
slight advantage of plan P2. It combines the single containment join execu-
tion with the faster branched score computation. Both favorable concepts
brought together even compensates here for the additional term selection
time when splitting the results of the containment join again.

The figure also shows why plan P1 is shown with both different score
aggregation methods. Although the plan has the potential to compete with
best performing P2, the union and aggregation becomes the major issue
here. Both tested physical operators fail to give a fast response time for
either short queries as shown in Figure 3.9, or for long queries as shown in
Figure 3.10. Hence, for working with P1 it is necessary to either develop
a new aggregation method not suffering from the seen shortcomings, or to
use dynamic optimization techniques to choose in each case the best physical
operator for score aggregation.

3.4 Efficiency/Effectiveness Tradeoffs for Com-

plex Queries

In this last section we want to move from the evaluation of simple queries to
more complex ones. Looking back at one of the initial examples for structured
querying, we can find the following NEXI query:

//html[about(., ir db)]//p[about(., xquery)]

The query consists of two simple sub-queries, e1[q1] and e2[q2], which
can be evaluated using the techniques introduced in the last sections. How-
ever, the example query here requires more than the subquery evaluation.
It asks for paragraph elements p whose relevance is determined by the com-
bined evidence of containing the term “XQuery” and being included in html

elements about “DB” and “IR”. Hence the scores of the first subquery need
to propagated to the level of the contained p elements and finally the scores
of both subqueries need to be combined.

All involved operations can be formalized in an algebra of scored elements,
called score region algebra (Mihajlovic et al., 2005). We will not formally
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introduce the algebra here, but remark that the steps in the above described
evaluation schema directly correspond to operators of this algebra, namely

(1) a selection operator for elements given a tag-name,

(2) a scoring operator to score elements by a term query,

(3) and a propagation operator to propagate scores down to included ele-
ments.

All those operators work on scored element sets. They always return scored
element sets and apart from the selection operator they also take scored
element sets as their input operands. If an operator assigns new scores to a
scored element set, the old scores are combined with the new ones. Mihajlovic
et al. (2005) show that their algebra consisting of a few more operators than
the three here shown is able to express arbitrary complex NEXI queries.

Strict vs. Vague Query Semantics Thinking in terms of XPath, the base
of the NEXI language, the scoring clause is always embedded in a predicate
[about(., t1 ... tn)]. A predicate is evaluated to a boolean value for
each element in a given node sequence, causing those elements to pass the
filter that satisfy the predicate. Consequently, the scoring clause has to be
evaluated to a boolean value as well. If we want to abuse the predicate for
the pure side effect of assigning scores to the elements, the effective boolean
value of the scoring function should be set to true in all cases. This is clearly
not the only possible query interpretation. We can require that an element
has to reach a certain score threshold in order to satisfy the predicate con-
dition. The least strict setting of such a threshold would be to filter out
all zero scored elements. In other words, the about function would assign a
true value to all elements that contain at least one of the query terms. The
example query helps to demonstrate the consequences of the different query
semantics. Whereas the vague interpretation allows to return paragraphs
that are highly relevant to “XQuery” even when the surrounding html docu-
ments does not contain the terms “DB” or “IR”, the same paragraph would
not qualify according to the strict interpretation. With respect to the re-
trieval quality, we can expect the vague interpretation to work more recall
oriented. It delivers a larger result set and thus increases the chance to find
relevant documents among those not returned using strict semantics. If the
score propagation and combination is modelled appropriately, the retrieval
precision of both semantics should roughly stay the same, since we expect the
top scoring elements to satisfy both constraints. The advantage of the strict
interpretation lies mainly in query performance. Whereas simple queries
are not affected, complex queries highly profit from the filtering effect, that
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Figure 3.11: Different Plans for a Complex Query

significantly reduces intermediary result sizes.

Query Plans for Complex Queries Once having a query expressed in al-
gebraic form, a query optimizer can consider different execution plans. Fig-
ure 3.11 shows 3 different options to evaluate a query of the form shown in
the example. Compared to the query plans considered in the previous sec-
tion, the optimization in this case is situated on the logical layer. We used
here NEXI syntax describing the outcome of a certain operator to avoid the
introduction of an algebraic notation.

Plan C1 executes the two simple queries isolated from each other and later
propagates and combines the scores at the requiered output level. Plan C2
and C3 first evaluate one of the simple queries, propagate the results to the
second element set, and finally rescore this set according to the term query
and combine both scores. Plan C2 and C3 seem completely symmetric in the
presented form, however, the execution of C3 is in fact more sophisticated.
Notice that the query defines a final output target, here the set of paragraph
elements. In order to express plan C3 as close as possible in score region
algebra we would need to propagate the scores first up to the level of html
documents and later down again to satisfy the output requirements.

Considering alternative execution plans is beneficial only, if one plan is
expected to outperform the other. In general we will prefer plans that pro-
duce smaller intermediary results, especially as the input of costly operators.
In this case, the up/down propagation of scores is almost as costly as the
scoring operator. The propagation also involves a containment join and score
aggregation. On this background, we cannot apply heuristics to push down
the cheaper operator in the query plan. However, we show that for the given
query pattern even a simplistic cost modeling is sufficient to find the better
plan in most of the cases.
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Simple Cost Modeling We want to demonstrate here shortly the effect of
query optimization for complex queries. The cost modeling introduced in
the following is neither meant as a generic approach nor trying to capture all
cases and effects. However, it shows on the analyzed example query pattern
how to find with simple means the best query plan.

The analysis of the scoring operator has shown that the performance was
mainly influenced by the two operand sizes, namely the cardinality of the
element set and the term occurrence set (see Section 3.3.3). Similarly, the
performance of score propagation operator is determined to a large extend
by the sizes of both input element sets. We will thus model propagation and
scoring times T by:

T (E[Q]) = µ1|E|+ µ2|Q|,

T (E1//E2) = ν1|E1|+ ν2|E2|.

The set Q denotes the union of all query term occurrences. E1, E2 represent
the operand sets of the score propagation, both being element sets with
the respective tag-names e1 and e2. Notice, that the operand sets do not
necessarily contain all nodes of the given tag-names, especially not when the
operator occurs further up in the query plan. The parameters µ, ν model
the influence of the operand sizes on the execution time of the respective
operator.

Cost modeling for complex queries also requires the estimation of inter-
mediary result sizes. In case of the scoring operator it depends first of all on
the applied query semantics. When using a vague query interpretation, the
result size is equal to the size of the element set that is getting scored. In
case of the strict interpretation, we know that the result size can at most be
as large as the number of term occurrences if no element contains more than
one term. Assuming that this number is clearly lower than the element set
size, we use it as the best possible approximation: |E[Q]| = |Q|.

In case of the score propagation E1//E2, the result size would be equal to
the number of elements E2, if all elements from E2 are contained by elements
from E1. Assuming that the user roughly knows the schema of documents in
the collection, we expect all nodes with tag-name e2 to occur inside nodes
with tag-name e1. Based on this simplifying assumption, the result size of
the down propagation operator is smaller than |E2|, only if the first operand
E1 does not contain all nodes of its tag-name, thus if E1 is only a fraction of
the complete tag-name set //e1:

|(e1//e2)| = |E2|
|E1|

|//e1|
.
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Figure 3.12: Cost Modeling of C1 and C2 for strict query semantics

The simple cost modeling shows immediately that the plans C1 and C2 are
equally efficient, when using vague semantics. Our model assigns the same
operand sizes to all the corresponding operators in this case. The picture
changes, when using strict query semantics. Figure 3.12 shows the applica-
tion of our cost models to the plans C1 and C2. The element sets E1, E2

equal the full tag-name sets //e1, respectively //e2. In Plan C2 the result
size of the first scoring operator is estimated by |Q1|. The following down
propagation thus returns only a fraction of the full set |E2|, approximated

by |Q1|
|E1|

.
Summing up the costs of all operations, our estimation shows that C1

performs faster than C2, if

µ1|E2|+ ν2|Q2| < µ1
|Q1|

|E1|
|E2|+ ν2|E2|

⇔
|Q2|

|E2|
<

µ1

ν2

|Q1|

|E1|
−

µ1

ν2
+ 1.

Since we expect that the parameters µ1 and ν2 not to differ highly in practice,
the estimation might even be simplyfied to |Q2|

|E2|
< |Q1|

|E1|
, which provides an easy

to calculate preference indicator.
Plan C3 is not considered in this context, since it cannot be translated

to the introduced operators in a straighforward way. If an additional up and
down propagation of the scores has to take place, the plan will not reach the
efficiency of the other two.

3.4.1 Experiments

In contrast to the other experiments in this chapter, it is necessary to test the
performance of complex queries. Moreover, we need to evaluate the retrieval
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quality going along with the usage of strict or vague query semantics. The
INEX Wikipedia collection and Adhoc task provides both, a large enough
number of complex user queries and associated relevance assessments to mea-
sure the retrieval quality.

The Wikipedia collection was already used in this chapter for indexing ex-
periments (see Section 3.2.4). The collection consists of encyclopedia entries,
whose original web wiki mark-up is mapped to XML tagging, resulting in
large corpus of neatly structured articles. The Adhoc task 2006 comes with
a total number of 125 query topics, all of them expressed both in natural
language and by a NEXI query. Since we were interested in complex queries
only, we first selected those queries including at least two scoring predicates
with an about function on different element sets. The task definition regards
the NEXI query as an approximation of the intended user interest. It there-
fore allows the assessors process to mark elements as relevant to the topic
that cannot be selected by the corresponding NEXI query. We found a high
number of elements marked as relevant that do not match the tag-name of
the required target element in the corresponding NEXI query. Although it
is interesting to study the users ability to express an intended information
need appropriately in the NEXI language, such unreachable but relevant ele-
ments would only reduce the recall measures of tested XML retrieval system.
We therefore filtered out all assessments of elements that do not match the
query target. Consequently, a few further queries were disselected, since they
had no relevant answer any more. After that filtering process, we were still
left with a number of 50 complex queries, which were used to compare the
retrieval quality in our experiments.

For the performance measurements, we selected 25 queries that directly
match the analyzed query pattern: e1[q1]//e2[q2]. We further tried to
achieve a variance on selected tag-names among the queries, to avoid caching
effects and to test the cost models in different situations. Since most of the
queries select article and section elements, we preferably picked queries
asking for others tag-names and mixed them in a way that consequtive queries
do not select both times the same element sets.

Retrieval Quality We used PF/Tijah to find the 1500 most relevant an-
swers to each of the 50 selected queries. The system was set to employ the
NLLR retrieval model. Unlike the INEX community, we used mean average
precision (MAP) and precision at 5 or 10 retrieved elements (P@5/10) as
the main quality measurements, since they were also used at other places in
this thesis and represent established retrieval quality indicators. An external
comparison of our results with other INEX participants is anyway not in the
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Figure 3.13: Precision/recall graph when applying different query semantics

interest of this particular evaluation. Looking at the retrieval quality, it is
not necessary to compare the different query plans, since they deliver the
exact same results.

Vague Strict

MAP 0.146 0.115
P@5 0.364 0.392
P@10 0.320 0.336

Table 3.3: Main Quality
Measures

Table 3.3 shows the influence of the chosen
query semantics on the retrieval performance. The
MAP values demonstrate the expected advantage
of the vague interpretation with respect to recall.
The retrieval precision, on the other hand, does
not suffer at all from the early filtering. In fact,
the strict interpretation even beats the vague one
on both early precision values. The precision ad-

vantage, however, remains small which is better visualized in a complete
precision/recall graph as presented in Figure 3.13.

Performance PF/Tijah does not allow to influence the query plan genera-
tion. Therefore the plans for the 25 test queries had to be generated manually
to test the performance differences between plan C1 and C2.

Table 3.4 gives a first overview on the average query performance for
both tested plans and query interpreations. Evidently, the application of
strict query semantics leads to a better query performance. The average
total execution is more than 4 times faster than in the case of a vague in-
terpretation. The different query plans, on the other hand, do not show a
clear advantage of the one or the other when looking at their average tim-
ings. On the level of involved operations, the expected differences are clearly
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Vague Strict

C1 C2 C1 C2

e1[q1] + e2[q2] 178.4 ms 228.7 ms 90.3 ms 67.8 ms
e1//e2 250.0 ms 198.0 ms 6.5 ms 33.8 ms

total 429.0 ms 427.3 ms 96.9 ms 102.0 ms

Table 3.4: Performance of C1 and C2
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visable. The score propagation in C1 either suffers from the large element
sets in the vague case or profits from the largely filtered input in the strict
case compared to C2. The total timing, however, stays for both plans the
same.

The picture changes if we take a look at the individual query timings using
strict semantics (see Figure 3.14). Here we see not only a high variation on
the execution time per query, but also clear plan specific differences for a
number of queries. Plan C1 and C2 alternately beat each other. Hence,
none of the plans should be preferred in general. The figure also displays the
outcome of our cost modeling. Since we are interested in a binary decision
for either C1 or C2, the difference |Q2|

|E2|
− |Q1|

|E1|
is calculated. A positive outcome

means that C1 should be preferred, and vice versa for a negative difference.
Although it is hard to see in the graph, our simple query optimizer fails only
in 4 cases, where the differences between both plans remain small anyway.
In order to demonstrate the estimation quality, we overlayed the estimation
by the down-scaled real time difference between the execution of C1 and C2.
The factor γ is only used to display both differences in the same scale. The
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overlay shows that our cost modeling is quite accurate. When the real time
differences are high, we also see a higher indication for the respective better
plan in the estimation.

strict

C1 96.9 ms
C2 102.0 ms
optimized 82.2 ms

Table 3.5: Optimized vs.
non-optimized execution

Finally, it is interesting to calculate the profit
of query optimization. If we neglect the short run-
time of an optimizer itself, the time gain can be
simulated by adding up the timings of those plans
indicated as less costly. The calculated average ex-
ecution of an optimized system time significantly
beats a system using always one of the suggested
plans only (see Table 3.5).

3.5 Summary and Conclusions

We opened this chapter by taking a look at the use of structural features
in text retrieval and extracted a list of minimal requirements for query lan-
guages that allow to query content and structure. On this background, we
compared the two most popular query languages for structured retrieval on
XML, namely NEXI and XQuery FT. Both followed different design goals
and consequently show a number of differences mainly with respect to ex-
pressiveness and simplicity of use. The advantages and disadvantages of both
languages have been discussed leading to the proposal of an intermediary ap-
proach that suggests a NEXI embedding in XQuery, extending the database-
style query language by full-text search functionality. The proposed language
embedding combines a number of advantages from both base languages. It
extends the expressiveness considerably by enabling the free composition with
XQuery statements, while still keeping the text search functionality as sim-
ple and semantically “safe” as in the pure NEXI language. Unfortunately,
the proposed language embedding leads to overlapping expressiveness and
disables static query compilation.

In the remainder of the chapter, we focussed on performance issues inves-
tigating three aspects of the execution of structured queries, namely index
support, efficient algorithms, and query optimization. After identifying the
basic operations involved in the execution of structured queries, we first ad-
dressed the design of an index structure that maintains all necessary infor-
mation and supports the efficient execution of the basic operators. Inverted
indices known from document retrieval are not appropriate for structured
retrieval due to high redundancy when listing term occurrences of nested el-
ements. Our index structure overcomes the redundancy problem by making
use of a pre/size encoding that captures the XML structure. In particular,
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we showed how such an encoding can be maintained in a database system
and proposed two variants for the physical storage of the size information.
Both variants have been tested with respect to space and performance ef-
ficiency, demonstrating the clear advantage of the second proposal for the
most common type of keyword queries on a tag-name specified element set.
For further improvements in the indexing domain, it would be necessary to
employ and test light-weight compression techniques to further reduce the
amount of stored data and enable faster access.

The execution of the often occurring base operations also asks for effi-
cient algorithms. Apart from the containment join, most other operations are
supported efficiently by the database system. Hence, we examined different
recently proposed containment join algorithms and introduced adaptations
for a more retrieval-aware implementation with the intention to tighten the
loop traversing the large element set. Especially, we simplified the algorithm
for the common case that the set of elements is not nested itself. The simpli-
fied version also allowed to employ binary search when traversing the often
large element set. All considered versions of the containment join operation
have been tested with respect to their performance, showing that the simpli-
fied algorithms achieve high performance improvements, whenever they are
applicable. The version employing binary search has to be used carefully.
Though it reduces the execution time considerably on small term occurrence
sets, the binary search causes overhead when the size of the term occurrence
comes close to size of the element set.

We also examined query plan optimization on two different levels. First,
we focussed on query plans for the execution of term queries on a given
element set, consisting of basic database operations. Thereafter, we also
examined more complex queries that combine the results of several simple
term queries on different element sets. Query optimization on this higher
level was only touched on by analyzing optimization on a specific complex
query pattern. A more complete study is still required but out of the scope of
this work. Testing the different plans on low-level optimization showed first of
all the cost ratio of all involved base operations. Especially score aggregation
can easily predominate the total execution time, when the wrong aggregation
method is chosen. The tests further showed that the number of query terms
had a clear impact on the choice of the best query plan. Although no single
query plan was better than the others in all given situations, one of them
showed a more robust high performance. Another one can be excluded, since
it never came close to the best execution times.

In case of the higher level query optimization, both considered plans
showed a similar average performance but differed in their execution costs
when looking at the individual queries. We showed on the analyzed example
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query pattern that a simple cost model allows to find the better plan in most
cases. Hence, a dynamic optimization strategy could considerably cut down
the execution costs. In order to use query optimization on a wider range of
complex queries, we would need to extend the cost modeling framework.

Finally, we analyzed a strict and vague query interpretation with respect
to their retrieval quality. The two different query semantics also showed
a considerable impact on the execution time. We could demonstrate that
the strict interpretation does not only improve the performance due to early
filtering, but also keeps an equally good or even higher precision on the top of
the result list. The vague interpretation only showed a better recall. Hence,
if the application of the search system allows to sacrifice a high recall, the
user profits from the strict interpretation due to its faster execution while
the first result page still shows items of the same quality.

The fact, that finding the most appropriate query semantics is still an
issue of research, shows also how far the current query languages for struc-
tured retrieval are away from being used as an intuitive query language for
the end-user. If we aim at retrieval systems for non-expert users that allow
to incorporate structural features in the search specification, more end-user
oriented languages or user interfaces have to be developed. Moreover, the re-
trieval systems have to learn more about the semantics of structure. An XML
retrieval system does not make a principal difference between the markup of a
title or footnote, though the later provides in general less relevance evidence.



4
Entity Retrieval

When people use retrieval systems, they are often not searching for docu-
ments or text passages in the first place, but for some information contained
inside. Many information needs can be described by one of the two following
patterns:

(1) The information seeker knows of the existence of a certain person, or-
ganization, place – in general entity – and wants to gather any kind
of information about it. For instance, someone is searching for more
information about a special sickness.

(2) The searcher wants to find existing persons, organizations, places –
entities – of a certain type, e.g. looking for hairdressers in his/her
home town.

Combinations of both types are common as well. We can think here again of
a person looking for hairdressers, but also for their location and for a rough
impression of their typical customers.

The two general patterns are not given here with the aim to define a new
taxonomy of information needs like the well-known categorization of web
search tasks by Broder (2002), but to motivate the need of entity retrieval.
In fact, the term “entity” is used here in the description of both patterns.
However, in the first case the entity is known already and only information
about it is searched, whereas in the second case the entities are unknown
and have to be retrieved. While queries of the first type are appropriately
addressed by keyword queries in standard retrieval systems, queries of the
second type should be handled in a different way, as we will show in this
chapter.

The chapter is structured in the following way. We first define and de-
scribe entities and the respective retrieval tasks, then take a look at existing
approaches in general terms. Entity Containment Graphs will be introduced

79
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as a suitable way to model relationships between entities and text units. The
graphs are used later to propagate relevance between its vertices. This part
is based on earlier published work (Rode et al., 2007; Tsikrika et al., 2008;
Rode et al., 2008). Finally, we investigate special issues around ranking en-
tities of different types, presented also in our recent article (Zaragoza et al.,
2007b).

4.1 Entity Retrieval Tasks

When speaking about entity retrieval, which is a relatively new field of re-
trieval research, we first need to define the task more clearly. According to
the corresponding Wikipedia entry, “an entity is something that has a dis-
tinct, separate existence, though it need not be a material existence.”1 We
further require here that those existences are given a name. Hence, we are
interested here in so-called named entities. Named entities can be catego-
rized by their type. Some examples of such types have been given in the
introduction, like persons, organizations, and locations. The set of types is
theoretically unlimited, but in most practical cases bound to a predefined
set that can be automatically recognized by the available tools (e.g. named
entity taggers) or limited to those types that are of interest to a certain ap-
plication. When working with rich fine-grained type sets, we will often use
a hierarchical organization of types. In that case, entities have one or more
types and subtypes, e.g. an “apple tree” being of type plant, tree, and
garden plant.

Each entity has its own identity. Unfortunately, neither names are unique
nor the combination of both name and type. Everyone knows different en-
tities of type person having the same name. The problem gets worse when
we think of the work of automatic taggers that have to recognize named en-
tities by various mentions, like abbreviations, nicknames, spelling variations
in different languages, or by pronoun references (coreference resolution). An
overview on such information extraction tasks and the respective problems
is given by Cunningham (2005). Amongst others, Chen and Martin (2007)
present a recent approach towards name disambiguation of entities. The pa-
per also shows the syntactical and semantic features used for this task. In
order to assign appropriate fine-grained types to the entities, Kazama and
Torisawa (2007) demonstrate how external knowledge like the Wikipedia cor-
pus can be employed to improve the type labeling. Though named entity
recognition is an important requirement for entity retrieval as we discuss it

1see http://en.wikipedia.org/wiki/Entity as of 2.12.2007
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in the following, it will not be studied in this work. We simply assume the
availability of automatic or manual entity tagging on the text corpus, and
leave the research in this field to the information extraction (IE) community.

Having defined what we mean by entities, entity retrieval is regarded here
as the task to retrieve and rank entities according to their relevance to given
query. As we show later, we can distinguish several subtasks in the domain
of entity retrieval, but all can be addressed by the same general approach.

Entity vs. Structured Retrieval Coming from structured retrieval it is im-
portant to point out the differences and similarities. The following NEXI
query also returns a ranked list of entities assuming that it is rooted on an
entity tagged text corpus:

//DOC[about(., Pablo Picasso)]//entity[.//@type = "location"].

However, the query will return the same entity multiple times in case it is
mentioned more than once in the retrieved documents. Structured retrieval
misses the concept of item identity other than defined by the location in the
document structure. The above query retrieves documents about the Span-
ish painter and propagates the relevance scores down to the included entity
mentions. A score aggregation per entity does not take place. XQuery prin-
cipally enables the user to formulate the wanted score aggregation explicitly,
but such queries get complex, require from the user to define the aggregation
method manually, and are often inefficiently executed when the underlying
join schema is not recognized. The following example shows such a query,
where the user has chosen to sum up the document scores for each mention
of an entity:

let $qid := tijah:queryall-id("//DOC[about(., Pablo Picasso)]")

let $mentions := tijah:nodes($qid)//entity[@type = "location"]

for $eid in distinct-values($mentions//@id)

let $scores := for $mention in $mentions

where $mention/@id = $eid

return tijah:score($qid, exactly-one($mention/ancestor::DOC))

return <entity id="{$eid}" score="{sum($scores)}"/>

Notice that the up and down propagation of scores in structured retrieval
performs a quite similar type of operation as required for entity retrieval and
explicitly formulated in the above query. In this sense, structured retrieval
only misses the necessary language concepts to be used for entity retrieval.

Entity Retrieval vs. Question Answering As mentioned in the introduc-
tion (see Sec. 1.1), entity retrieval and question answering have several over-
lapping interests. We consider here the tasks used in the corresponding TREC
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evaluation as typical for question answering (Voorhees and Dang, 2005; Dang
et al., 2006). A wide range of these assignments request the system to return
so-called factoids. According to Voorhees and Dang (2005) factoid queries
are asking for fact-based short answers. Though factoids are not clearly de-
fined as “pure” entities, they contain entities in most cases. The track task
even specifies the target type as either person, organization, or thing.
Furthermore, question answering is not always about finding a single best
matching answer. The TREC evaluation also knows “list” questions that
ask for several instances of a given target type. Though the terminology dif-
fers slightly, this last described category of question answering tasks exactly
meets the goal of entity ranking.

In general, question answering spans a wider range of issues and has
a different focus than what we describe here as the entity ranking prob-
lem. Question answering starts already with the analysis of the (natural
language) question, where the target answer type needs to be derived first
(see e.g. Schlobach et al., 2007). Moreover, it is concerned with the extraction
of appropriate answers from the text content of highly ranked passages or
documents (see e.g. Lin, 2007). Both problems are lying outside the scope of
the entity ranking task, since entity occurrences are recognized and tagged
beforehand and requests on the answer type are assumed to be given ex-
plicitly. When studying entity ranking, the focus will lie on deriving entity
relevance from the estimated relevance of text fragments, that contain occur-
rences of the entities. The problem can be regarded as a subtask of question
answering, but seems not to be in the center of focus of the research in this
field.

Different Tasks We can distinguish a few slightly different entity retrieval
tasks, depending on how the search topic is expressed and which entity types
are requested:

(1) creating a mixed-typed topic overview,

(2) type-dependent search of entities,

(3) completing a list of entities.

The first case is the most open task where the user only specifies the
topic by a free keyword query. It will often be used for creating general
topic overviews. Entities of all types are of interest here, but the user might
appreciate if the system can detect and favor the most interesting types for
a given topic. In case (2) not only the topic, but also the type is explicitly
specified. We regard this as the most common entity retrieval task. List
completion (3) refers to the case where the user knows a few entities fitting
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topic and type and wants to find more of those. The assumption here is,
that the user finds it easier to specify a few known relevant instances than
to describe the topic of his/her interest and the type of entities he/she is
looking for. To answer list completion queries a system has to derive the
searched entity type automatically and has to find means to estimate the
topical closeness of entities.

We find entity ranking also in specialized domains such as expert finding
or timeline generation. In the first case entities of type expert have to be
ranked according to their expertise on a given topic. The second example
requires date entities to be ranked by their importance with respect to the
topic of the timeline.

Supporting Text Since retrieval systems can only estimate relevance, users
always have to verify whether returned results are indeed relevant answers to
their request. Although entity ranking frees the user from the extra work of
extracting the needed information from relevant text fragments, the “pure”
entity names are often not enough to verify the relevance of a returned item.
In this case supporting text snippets have to be found. However, we do not
want to present all retrieved texts to the user – staying in direct conflict with
the idea of entity retrieval – but the most supporting sentences only.

The problem of finding appropriate support sentences can be regarded as
a task of its own, but it is highly linked to the problem of entity ranking. The
collocation of the entity with topical relevant terms or other relevant entities
might be a good indication that a text fragment supports the relevance of
the entity.

4.2 Ranking Approaches for Entities

Whereas document, passage or XML retrieval employ standard retrieval mod-
els – passages or XML elements are regarded as small documents in that case
– the same models would fail for entity ranking. The simple reason is that
query words in general do not occur as a part of a named entity. Therefore,
entity ranking is always based on the association between entities and doc-
uments. In general we will speak of text fragments instead of documents to
capture also approaches that perform sentence or text window based entity
ranking. Those text fragments are ranked first according to the query topic
and their estimated relevance is propagated in a suitable way to the included
entities of interest. This relevance propagation step will be the main issue
for the rest of this chapter.
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Related Approaches in Question Answering and Expert Finding As men-
tioned above, entity ranking is part of several question answering tasks and
is also applied in the special domain of expert finding. We will thus take a
look at related work first with the focus on the involved ranking of entities.

Many ranking methods in question answering are surprisingly unaware of
the identity of answer candidates. We find query similarity scores of docu-
ments, passages, and sentences used as ranking features as well as linguistic
part-of-speech patterns to filter out the most promising answer candidates
(see e.g. Radev et al., 2002), but other mentions of the same answer do not
influence its relevance. However, there are also methods that rank answers
purely on their redundancy in a given set of relevant text fragments (Dumais
et al., 2002; Clarke et al., 2001). Hence, they rank entities directly by their
number of mentions. Others sum up the relevance scores of text fragments
that contain string-identical answer candidates (Lin, 2007). Another recent
study addresses the issue of answer identity in more detail by incorporating
similarity scores between candidate answers in the calculation of the indi-
vidual answer scores. Ko et al. (2007) suggest to employ a graphical model
which effectively boosts candidate answers having many similar mentions,
but at the same time avoids similar answers in the returned ranked set. The
approach is thus aware of answer identity and tries to avoid duplicate men-
tions of identical answers in the result list, but it still does not rank entities
but answer candidates.

Expert finding is an even younger field of information retrieval research.
It has become popular after the upcoming of TREC’s enterprise search task
(Craswell et al., 2005). Early approaches build query-independent profiles
for each candidate expert by merging all documents related to the candidate
into one expert model. Experts are ranked then by measuring the similarity
of their profile to the query (Liu et al., 2005). However, the most effective
approaches on the TREC task measure instead the similarity between query
and documents, and infer thereafter an expert ranking from the top retrieved
documents. The former type of approaches is called candidate-centric, the
latter document-centric (Balog et al., 2006). Also combinations of both ap-
proaches are existing (Serdyukov and Hiemstra, 2008).

When inferring expert ranks from related documents in the document-
centric approach, we see again different strategies used. Algorithms of the
one kind rank candidates by the aggregated relevance of all related top doc-
uments (Balog et al., 2006; Macdonald and Ounis, 2006). Other proposed
methods build query dependent social networks from the top retrieved doc-
uments (Campbell et al., 2003; Chen et al., 2006). More precisely, so-called
bibliographic coupling graphs are generated by modeling related documents
as links between persons (for instance by utilizing the from and to fields
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in emails). Candidates are ranked then on such social networks by popular
centrality measures, such as Kleinbergs HITS algorithm (Kleinberg, 1998).
However, these centrality based approaches have failed so far to show similar
performance as the simpler aggregation methods. Both aggregated relevance
and centrality based methods still ignore some properties of the data. Meth-
ods using aggregated relevance do not reflect the relation between experts,
whereas the centrality measures on the coupling graph simply model docu-
ments as unweighted links between candidates, neglecting their relevance to
the query. We will show later in this chapter that graph-based approaches
are able to incorporate both kinds of information.

Learning from Graph-Based Retrieval We have seen in related work on
expert finding that graphs are used to model the relation between entities.
Although the existing graph models for expert finding still fail to model
all available information, they show several advantages compared to non-
graph-based approaches. Firstly, graphs make the propagation process more
transparent. It becomes easy to describe and to visualize. Secondly, graphs
allow to discover and use indirect connections. They show relations between
entities that are never mentioned together, but often in the neighborhood
of a common third entity. Finally, we show that even non-graph-based ap-
proaches for entity ranking can often be interpreted in terms of a graph-based
equivalent.

Graph-based ranking methods are first of all known from web retrieval.
Among them, Pagerank (Page et al., 1999) and HITS (Kleinberg, 1998) are
probably the most popular, and their usage is widely studied in the field of
hypertext retrieval. Similar to our work here, more recent graph-based ap-
proaches try to incorporate as much information into the graph as possible.
Pagerank can be regarded as a Markov process, or a random walk on the
web graph (Henzinger et al., 1999). Several attempts have been made in the
last years to make such a walk query and content dependent. The intelligent
surfer walks to linked pages biased by their relevance to the query (Richard-
son and Domingos, 2001). The surfer model proposed by Shakery and Zhai
(2006) uses a similar, but bi-directional walk considering both out-links and
in-links of a node.

Graph-based ranking methods often find applications beyond the bounds
of hyperlinked corpora. We can find them used among others for spam de-
tection (Chirita et al., 2005) and blog search (Kritikopoulos et al., 2006).
Kurland and Lee (2005, 2006) experimented with structural re-ranking for
ad-hoc retrieval, first using Pagerank and later HITS in bipartite graphs of
documents and topical clusters. Erkan and Radev (2004) used implicit links
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between similar sentences to compute their centrality for text summariza-
tion. More close to our work, Zhang et al. (2007) studied query-independent
link analysis in post-reply networks for expert detection comparing Pagerank
and HITS centralities.

The various applications of graph-based ranking strategies show that
graph-based centrality features are not only suitable for ranking in hyper-
linked web corpora, but can be applied in a more generic way to ranking
problems where links between items mean that they support each others rel-
evance. Agarwal et al. (2006) and Chakrabarti (2007) show such a generic
framework for graph-based entity ranking in their recent work. They gen-
eralize completely from the application and even use a broader notion of
entities which includes the documents themselves. Agarwal et al. examine
ways to learn an edge weighting function for a Markov walk from relevance
assessments, while Chakrabarti focuses mainly on performance issues for the
computation of personalized Pagerank vectors. Both studies still do not test
the precision on entity ranking tasks paired with user relevance judgments.

Processing Model Graph-based entity retrieval includes the following pro-
cessing steps. While the named entity recognition can take place beforehand,
the query dependent processing is divided in three consecutive steps:

(1) Initial retrieval and scoring of text fragments,

(2) Building of an entity containment graph,

(3) Relevance propagation within the graph.

(4) Filtering out entities of the requested answer type.

The first step remains a standard retrieval task on the entire text collec-
tion, which selects the most relevant text fragments according to the query
topic. Those are used in the second step for building a graph that models
the containment of entities within retrieved text fragments (Section 4.3). In
the third step we exploit the graph structure in order to rank the entities,
respectively, to propagate the relevance information (Section 4.4) within the
graph. Finally, the result has to be filtered if the query asked for a specific
entity type, but other entities were included in the entity containment graph
as well.

The first step allows to apply any kind of retrieval model known from
document retrieval, but some of the later relevance propagation models re-
quire all scores to be probabilistic. The size of the requested text fragments
– entire documents, passages, or sentences – remains an interesting parame-
ter for testing. List completion tasks require a different processing, starting
from a seed set of entities rather than from an initial query. However the
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d1

<e id="1">S. Miller</e> will speak about

sustainable energy together with <e id="2">E.

Sunny</e>.

d2
<e id="2">Sunny</e> demonstrates the future

importance of solar energy.

d3

Whereas <e id="1">Miller</e> analyzes

household consumption, <e id="3">Makros</e>

is more concerned with industrial energy

needs.

(a) Tagged text fragments (b) Corresponding graph

Figure 4.1: Expertise Graphs

specialized task will not be discussed further or analyses in this study.

4.3 Entity Containment Graphs

This section proposes and discusses the modeling of appropriate graphs that
represent the association between entities and documents. We will further
on call them entity containment graphs.

Suppose we have a set of documents D, in general text fragments, with
relevance scores from an initial retrieval run and a set of entities E, that
finally should get ranked according to the given query q. Furthermore, we
know the containment relation of text fragments and entities, i.e. for each
text fragment which entities are occurring inside. This relation can be rep-
resented in a graph, where both text fragments and entities become vertices
and directed edges symbolize the containment condition. Such a basic entity
containment graph is always bipartite, since all edges connect text fragments
with entity vertices (see Figure 4.1). Entity containment graphs have been
used also for co-ranking of authors and documents (Zhou et al., 2007).

Figure 4.2 shows typical entity containment graphs computed for two ex-
pert search queries from the TREC 2007 enterprise track. As we see in the
example figures, entity containment graphs often consist of one main compo-
nent connecting most of the vertices and several smaller other ones. The size
and number of these smaller components changes from query to query. The
graph representation provides several useful features of the included entities.
It shows in how many different text fragments they are occurring, and also,
whether they are connected over common text fragments with other entities,
or remain uncoupled (like vertices in the lower part of the figure). Behind
the last feature stays the hypothesis that entities mentioned in the same text
fragment also have a stronger relation to each other than those which never
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(a) CE-002: “hairpin RNAi gene silencing” (b) CE-006: “sustainable ecosystems”

Figure 4.2: Entity containment graphs computed for TREC expert search topics, white
vertices mark entities, black documents

appear together. Notice that in contrast to the bibliographic coupling graph,
which models documents as edges between entities, such a bipartite graph of
text and entity vertices captures both the direct containment relation as well
as the indirect 2nd-degree (in general n-degree) neighborhood of entities to
each other.

4.3.1 Modeling Options

In the following we show several modeling options and parameters to further
improve the density of the graph. Since we are interested in the propagation
of relevance through the graph network, it is important to exploit all known
connections between the entities of the graph.

Modeling Text Fragment Scores The initial retrieval run does not only
return a ranked list of text fragments, but also their corresponding relevance
score according to the given query. A simple way to incorporate such prior
knowledge into the graph model is to add a further “virtual” query vertex q
to the graph, which is connected to all text fragments. We can then define
an edge weight function w(d, q) which assigns probabilities to all new edges
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(a) Query Weights (b) Association Weights

Figure 4.3: Modeling query and association weights

(see Figure 4.3(a)):

w(d, q) = P (d|q) =
score(d|q)

∑

d′ score(d
′|q)

.

The additional query node is represented here as an additional “entity”
contained in all documents. In order to motivate this modeling, one should
think of the query as a set of terms, which is indeed contained in those
documents to a certain degree, corresponding to the initial score.

Association Weights between Documents and Entities The graph con-
tains a directed edge from the document to each included entity. However,
it does not provide so far any information about the strength of this associa-
tion, in other words, how important the entity is for the document. Another
edge weight function w(d, e) can be defined to capture this information (see
Figure 4.3(b)). Without any further domain knowledge, all occurrences of
an entity should be treated equally. In a better known domain, like the ex-
pert finding task, occurrences of an expert in a document might be weighted
differently. If an expert is the author of an email, she/he is probably more
influential on the content than another expert who is just mentioned some-
where in the text.

Modeling Overlapping Text Fragments Choosing the right text fragment
size is not an easy decision. Smaller text windows provide stronger evidence
of the semantic connection of their contained entities and also ensure a clear
connection to the query topic. Larger text windows, on the other hand, come
with a higher chance to find entity cooccurrences, which are the basis of the
later described relevance propagation step. Related work on expert finding
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(a) Further text fragments (b) Further entity types

Figure 4.4: Modeling additional information

shows that proximity features help to further improve the retrieval quality.
Proximity features have been integrated either in the relevance estimation
model itself (Petkova and Croft, 2007), or by tightening the initially ranked
text fragments (Zhu et al., 2006). A graph model is able to include both,
the small sized paragraphs and the larger documents (see Figure 4.4(a)).
This way it keeps the connectivity of the larger sized text fragments, but
emphasizes the connections of higher evidence. We have shown in the figure
only edges from documents or paragraphs to entities. One could also include
edges between documents to paragraphs to visualize the containment rela-
tion. Such expansion, however, would break with the bipartite property of
the graph.

Including Further Entity Types For typed entity ranking tasks (see Sec-
tion 4.1 task type 2) the focus of interest will lie on a certain entity type.
Although a task like expert finding is only concerned with retrieving expert
entities, it might still be useful to include nodes of other entity types into the
graph (see Figure 4.4(b)). The motivation behind such a graph expansion
would be to show the connection between entities of different types and to
increase the relevance propagation between them. If one would search for
instance for important dates in the life of the painter Pablo Picasso, it is
probably useful to add more than date entities to the graph. In this case,
further person or location entities might reveal important connections as well.

Including Further Edges The suggested entity containment graph only
models the relation of documents and included entities. One modification
could be to include further document to document or entity to entity edges
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(see Figure 4.5). The first ones for links between documents, the second ones
if the found entities are standing in a known relation to each other. We think
here for instance of exploiting known hierarchical ontologies, like Cape Town
is part of South Africa, or 21 April 2006 and 2006 are date entities supporting
each other. In case of expert finding, enterprises will often have a hierarchical
organization overview of its personnel. By including such additional edges,
the graph gains a higher density and enables more relevance propagation,
but it looses its strict bipartite property.

Figure 4.5: Modeling direct connec-
tions between entities or documents

Controlling Graph Size and Topical
Focus Apart from the graph modeling
itself, the most influential parameter on
the graph size and density is the number
of top ranked documents taken into ac-
count while building the graph. Notice
that for the unweighted graph only the
restriction to the top ranked documents
makes the graph model query depen-
dent. Hence, by including more lower
ranked documents more included enti-
ties are found and usually the graph’s
density increases with the drawback of

loosing the topical focus of the graph.

4.4 Relevance Propagation

Once having an entity containment graph, there are several relevance prop-
agation models that can be used for the ranking of entity vertices. The
underlying assumption is that the connectivity of an entity within the graph
shows its importance to the given query topic. Graph theory has developed
the concept of centrality. It is defined there as a structural index (Koschützki
et al., 2004a), with the implication that vertices are assigned values according
to their structural importance and structural equivalent nodes are assigned
the same centrality value. Notice that a structural index in graph theory
is completely different from structural indices as discussed in the previous
chapter. Various centrality indices have been designed in the last decade us-
ing vertex features like degree, or distance in the graph, or even recursively
defined features as the centrality of neighboring nodes. Graph-based ranking
approaches often make use of such centralities, especially the most known
ones, HITS (Kleinberg, 1998) and Pagerank (Page et al., 1999), are applied
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to many different tasks (see Section 4.2). Instead of using “pure” structural
graph features, node weights of prior document retrieval are incorporated
to achieve query dependent centrality measures. However, such a centrality
concept moves away from original definition being a solely structural index.
We will therefore speak of relevance propagation in graphs, which describes
the aim of distributing relevance from initial sources – the pre-scored text
fragments in this case – throughout the graph network and especially towards
the entities of interest. All propagation methods introduced in this section
incorporate the initial query scores. An unweighted counterpart can always
be obtained by simply setting all weights to 1. We will later compare the
retrieval performance of the unweighted variants, depending purely on the
structure of the graph with the weighted models that propagate the initial
document weights through the graph network.

For abbreviation, the set Γ(v) denotes all vertices adjacent to vertex v.
Furthermore, we use different letters to distinguish between a document ver-
tex d and an entity vertex e.

Relevance of Text Fragments Before starting a graph-based relevance
propagation, we need to score all vertices in the containment graph whose
relevance can be estimated directly, namely all text fragments. Since some of
the propagation models that will be introduced in this section follow a prob-
abilistic approach, it is necessary to employ a probabilistic score function.

Unless mentioned otherwise, we determined the relevance of text frag-
ments following the language modeling approach (Hiemstra and Kraaij, 1998;
Miller et al., 1999). A simple Jelinek-Mercer smoothed scoring estimates the
probability of the query q generated by a given text fragment d within the
collection C:

P (q|d) =
∏

t∈q

(1− λ)P (t|d) + λP (t|C).

Compared to the NLLR (see Section 2.2) which is used in many other cases
throughout this thesis, the above equation does not produce scores in log-
space.

Following the Bayes’ theorem, P (d|q) = P (q|d)P (d)/P (q), the probabil-
ity P (q|d) is turned into a relevance estimation of the text fragment d. When
building the entity containment graph from the top ranked text fragments
only, we assume that the probability of a user visiting a lower ranked text
fragment equals zero. Consequently, we normalize the probability distribu-
tion within the set of top ranked text fragments R. The prior probability
P (d) is assumed to be distributed uniformly, since we have no other evidence
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of relevance in this case than the query itself:

P (d|q) =
P (q|d)P (d)/P (q)

∑

d′∈R P (q|d′)P (d′)/P (q)
=

P (q|d)
∑

d′∈R P (q|d′)
.

For comparable results, the weighting function used in non-probabilistic
propagation models is set accordingly: w(d, q) = P (d|q).

Association Weights vs. Transition Probabilities As explained in the pre-
vious section, association weights between entities and text fragments are set
uniformly to 1, if we do not have any domain knowledge that gives reason
to prefer certain connections over others. Probabilistic propagation models,
however, require edge transition probabilities instead of association weights.
Such transition probabilities P (d|e) and P (e|d) can be derived by normaliz-
ing the association weights of outgoing edges (corresponding to Balog et al.,
2006):

P (e|d) = w(d, e)/
∑

e′∈Γ(d)

w(d, e′),

P (d|e) = w(d, e)/
∑

d′∈Γ(e)

w(d′, e).

Notice that the probabilistic transition model looses the symmetry of the
edge weighting function: P (e|d) 6= P (d|e). A vertex with a high number
of outgoing edges assigns lower transition probabilities to each single outgo-
ing edge than another vertex having less outgoing edges. A uniform edge
weighting is therefore not leading to uniform transition probabilities.

4.4.1 One-Step Propagation

One-step propagation models correspond to degree centralities that only take
into account directly adjacent vertices.

Maximal Retrieval Score The simplest model of entity ranking can be de-
scribed by the following process. Walking down the ranked list of documents,
we add all included entities that have not been encountered before in that
order to the final ranked list. The equivalent propagation model on the en-
tity containment graph assigns to each entity vertex the weight of the highest
ranked linked document node:

wMAX(e) = max
d∈Γ(e)

w(d, e) w(d, q).
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We also take the association weights w(d, e) between documents and entities
into account. If the weights are set uniformly to 1, the equation indeed models
the described simple selection process. Although the model is formalized
within the graph-based framework, it ignores most of the features provided
by the entity containment graph. We will refer to it later as a baseline
ranking model in order to compare it to other relevance propagation models
that consider more graph features.

Weighted Indegree When the maximum in the above propagation model
is replaced by the sum of adjacent vertices, the model rewards often occurring
entities:

wIDG(e) =
∑

d∈Γ(e)

w(d, e) w(d, q).

We name this propagation model weighted indegree wIDG(e), since it corre-
sponds in its unweighted version with an indegree centrality.

The propagation model corresponds to other approaches not explained in
terms of graphs. The theoretically most sound methods for expert finding
proposed by Balog et al. (2006) and Macdonald and Ounis (2006) can be
expressed as an expertise inference on a linear Bayesian network q → d→ e:

P (e|q) =
∑

d∈D

P (e|d) P (d|q).

It uses the query to find relevant documents and then candidate experts oc-
curring in these documents. The higher the number of relevant documents
mentioning a candidate expert, the higher its probability of being an expert.
The initial document scores are aggregated with respect to the related candi-
dates. It is easy to see that this model is equivalent to the above introduced
weighted indegree wIDG(e), if weights are distributed as probabilities. It is
important in this case to point out the consequences of using a probabilistic
model, compared to association weights w(d, e) that do not have to satisfy
the condition

∑

e′ w(d, e′) = 1. A highly relevant text fragment containing
many entities has to distribute its relevance in the Bayesian network over
all entities. Hence, its relevance contribution to the individual entity might
remain small. When using a uniform edge weight function in the weighted
indegree model, which sets all w(d, q) to 1, the same highly relevant text
fragment propagates its relevance undivided to all included entities.

4.4.2 Multi-Step Propagation

One-step propagation models calculate the relevance of an entity by looking
only at the query dependent relevance of the text fragments it occurs in.
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Other features, like the co-occurrence with other entities are not taken into
account so far.

If a user manually tries to find and rank entities, the process would proba-
bly look different than the one described by the one-step propagation models.
Starting with a relevant document she might discover a few entity candidates.
In order to estimate their relevance she might look up in which other doc-
uments the entities are mentioned and furthermore which other entities are
mentioned there as well. After a few steps from documents to entities and
back, she will return to the initial retrieved list of documents and restart the
process from another document.

Such a search behavior is modeled by random walk on the entity con-
tainment graph. The user “moves” constantly over the edges of the entity
containment graph and we model the probability that the user is stationed
at any time at a certain vertex. The stationary probabilities of an infinite
random walk, would be completely independent of the initial vertex weight-
ing. However, a slightly changed random walk model enables to retain the
influence of the initial query weighting also for infinite processes. It is just
necessary to consider that the modeled user will once in a while return to the
initial retrieved list of documents to ensure that the found entities are close
enough to the topic of interest. Such a behavior can be modeled by introduc-
ing the possibility of a weighted random jump to the walk model. The jump
allows to reach a document vertex from any other vertex in the graph. Since
it is more likely that a user returns to a higher ranked document, we bias
the probability to reach a document vertex via random jump by its initial
probability of relevance. Such a query-dependent random walk model is also
called a personalized centrality index (Koschützki et al., 2004b):

P (e) =
∑

d∈Γ(e)

P (e|d)P (d),

P (d) = λP (d|q) + (1− λ)
∑

e∈Γ(d)

P (d|e)P (e).

The damping factor λ specifies the probability of either following an edge of
the graph or jumping randomly to one of the retrieved documents. Our model
does not contain a probability to jump to an arbitrary entity at any time.
A random picking of an entity is not clearly motivated by the underlying
process model of user searching for entities. Since we have no prior evidence
of the entities’ relevance, such a jump towards entities would be unweighted,
thus having uniform probabilities to reach any entity. Notice also that the
random jump towards documents already allows to reach all components of
the graph and thus indirectly connects all entities. Therefore, we abandoned
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a random jump towards entities.
In order to compute the stationary probabilities of the above defined walk,

a step-wise calculation of probabilities is executed until the values converge.
In general, walks – especially on bipartite graphs – are not guaranteed to
converge. If we consider for instance a walk without jumps that initially
assign zero probabilities to all entity vertices, we can observe that such a
model alternately assigns zero probabilities to either documents or entities
and never converges. Our infinite walk model, however, overcomes the prob-
lem by the introduction of the random jump. It allows to reach document
vertices in any step and therefore opens up the strict mutual walk model
from documents to entities and back.

Despite of the distinction between entity and document vertices, the de-
scribed infinite walk model is equivalent to the definition of the personalized
Pagerank (Page et al., 1999).

Comparison with HITS The distinction of the vertices into two classes –
text fragments and entities – reminds of the HITS algorithm. HITS was
originally used to characterize a hyperlinked network of web-pages consisting
of portal pages with a high number of outgoing links, so-called hubs, on the
one hand, and cited content bearing pages with a higher number of in-links on
the other hand, so-called authorities. HITS does not require two distinct sets
of vertices as in our case, but classifies the vertices itself according to their
properties. It is based on directed graphs in contrast to our undirected entity
containment graph. However, we can easily transfer the algorithm to our
bipartite entity containment graphs with text fragments (hubs) pointing to
entities (authorities). Instead of directing all edges from documents towards
entities, we define equivalently that documents get hub scores and entities
get authority scores only. Furthermore, also HITS can get “personalized” by
introducing a weighted random jump:

Auth(e) =
∑

d∈Γ(e)

w(e, d) Hub(d),

Hub(d) = λ w(d, q) + (1− λ)
∑

e∈Γ(d)

w(e, d) Auth(e).

The here presented model resembles the randomized HITS of Ng et al. (2001),
apart from limiting the random jump to reach document vertices only. The
HITS algorithm was adapted in other ways to incorporate a prior vertex
weighting, among others by Bharat and Henzinger (1998). Since we use
HITS only for comparison, we tried to model it as similar to the before
defined infinite walk as possible.
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Algorithm 3: Iterative HITS Algorithm
HITS(Graph G(V,E)) ≡

begin

initialize hub(v) and auth(v) for all v ∈ V ;
while hubs and authorities not converged do

calculate auth(v) for all v ∈ V ;
calculate hub(v) for all v ∈ V ;
normalize authorities;
normalize hubs;

return authorities, hubs

end

In fact, the only remaining difference between the above personalized
HITS definition and the before shown infinite random walk concerns the
edge transition weights. Notice that the HITS algorithms (see Algorithm 3)
performs a normalization step on its hub and authority values after each
iteration. Therefore it does not need to have real transition probabilities.
We can for instance set them uniformly to 1 with the implication that a
document does not divide its importance among its contained entities but
propagates its full weight to all of them, vice versa for the propagation from
entities to documents.

In this respect, HITS can be seen as a straightforward extension of the
weighted indegree model, which could also use edge weights instead of tran-
sition probabilities.

4.5 Experimental Study I: Expert Finding

A quite typical example of an entity ranking task is the problem of expert
finding. In expert finding, as performed in TREC’s enterprise track (Craswell
et al., 2005), a system has to come up with a ranked list of expert entities
with respect to a given topic of expertise, a corpus of enterprise documents,
and a list of the employees of the company as candidate entities. We therefore
used TREC’s expert finding task for a first evaluation of our entity ranking
approach. TREC changed the corpus and in a more subtile way also the task
itself between 2006 and 2007. We will report here results of both years.

Expert Finding Task 2006, W3C Corpus The corpus used in that year was
the W3C-corpus representing the internal documentation of the World Wide
Web Consortium (W3C). It was crawled from the public W3C (*.w3.org)
sites in June 2004. The data consists of several sub-collections: web pages,
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source code, and mailing list archives. All experiments in this section are
performed on the email part of the W3C corpus (1.85 GB, 198,000 emails),
which is the most clean and structured part of the corpus. Using the entire
W3C corpus yielded in slightly worse results in general, however the order
of compared techniques with respect to their retrieval quality remains the
same. A list of 1092 potential experts with full name and email, all of them
participating in the W3C working groups, is provided with the TREC data.
We preprocessed the corpus data in order to convert it into well-formed XML
with the least possible changes to the data itself, and secondly for tagging all
occurrences of experts within the corpus. A simple string-matching tagger
marked a candidate when it either matched the complete candidate name or
her/his email-address. We disregarded abbreviations of the names since they
could also mislead to different persons. Other occurrences of email addresses
were tagged as well as non-candidate persons.

Expert Finding Task 2007, CSIRO Corpus The data used in TREC 2007
is a crawl from publicly available pages of Australia’s national science agency
CSIRO. It includes about 370,000 web documents (4 GB) of various types:
personal home pages, announcements of books and presentations, press re-
leases, publications. The task itself also changed slightly since no list of
candidate expert was provided as in 2006. Instead only the structure of candi-
dates’ email addresses was given: firstname.lastname@csiro.au, and systems
had to recognize experts themselves using this pattern. We built therefore in
a first step our own candidate list as well as a list of other persons, searching
for the provided pattern, respectively a general pattern of email addresses
for non-candidate persons. About 3500 candidate experts and around 5000
others persons were identified this way by full name and email address. In
a second preprocessing step all mentions of either full name or email ad-
dress were tagged in the corpus data assigning unique person or candidate
identifiers.

Ranking and Graph Building The initial ranking as well as the graph gen-
eration was expressed by XQuery statements and executed with PF/Tijah.
For this experiment, we generated XQueries that directly output entity con-
tainment graphs in graphml format2 given a title-only TREC query. A stan-
dard language modeling retrieval model with Jelinek-Mercer smoothing was
employed for the initial scoring of text nodes (see Section 4.4). The gener-
ated graphs were later analyzed with a Java graph library, adapted by our
own weighted propagation models.

2http://graphml.graphdrawing.org
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The HTML structure of the CSIRO corpus allowed to include text frag-
ments of different size into the entity containment graph. We experimented
on this corpus with building entity containment graphs containing either
only document vertices or document and paragraph vertices together. In the
second case, we performed a second paragraph ranking of those paragraphs
included in the top retrieved documents of the first document ranking.

4.5.1 Result Discussion

The result analysis is based on standard retrieval quality measures such as
mean average precision (MAP) and precision at top 5 ranked experts (P@5).
P@5 is used here instead of the otherwise reported P@10, since the expert
ranking task on the CSIRO corpus has a very low number of relevant entities,
on average 3 per topic. Therefore we even observe P@5 values lying below
the measured MAP for most experiments on this track.

Although it is objectionable in general to set parameters differently for
different test collections, since it enables overfitting, we have made one ex-
ception. The number of top ranked documents that was used to build the
entity containment graph needed to be analyzed in a quite different value
range for the two test collections. Figure 4.9 and Figure 4.10, which will be
discussed later, show clearly the diverse behavior. We assume that the effect
is caused by two factors. Firstly, the TREC 2006 topics know a clearly higher
number of relevant experts compared to the judgments of 2007. Hence, for
the 2006 topic set including more documents in the evaluation increases the
chance to deliver more relevant experts, whereas the 3 relevant experts of
the 2007 topics are often found in the first few documents. Secondly, the
effect might also be caused by the different characteristics of the two text
collections. The email data of the W3C corpus is in general more repetitive
than the web pages of CSIRO. Often a few web-pages of a certain research
group contain all relevant experts and the likelihood to relevant experts any-
where else remains extremely small. In order to find a comparable parameter
setting of the two collections, we set the number of included documents not
to the value yielding the highest precision, but to the point where recall is
not increasing significantly any further. Therefore, all later mentioned exper-
iments on the W3C corpus use the top 1500 retrieved documents, whereas
for the CSIRO corpus only the top 200 documents are included in the graph.

We start the evaluation by looking at the introduced propagation meth-
ods and their parameters. The influences of modeling options of the entity
containment graph will be presented and discussed thereafter.
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W3C corpus CSIRO corpus

MAP P@5 MAP P@5

IDG 0.326 0.555 0.288 0.168
wMAX 0.355 0.596 0.313 0.176
wIDG 0.375 0.629 0.351 0.208
wIDG-norm 0.372 0.633 0.330 0.212

Table 4.1: Retrieval quality of one-step propagation methods

One-Step Propagation Models The set of one-step propagation models is
extended for the experiments by 2 further variants of the indegree model. The
unweighted indegree IDG represents a pure centrality score depending solely
on the structural properties of a vertex. Moreover, the unweighted indegree is
equivalent to the so-called voting model often applied in question answering
(Lin, 2007) and also in expert finding (Macdonald and Ounis, 2006). The
degree of an entity vertex is equal to the number of votes it gets by mentions
from document vertices. The other additional indegree variant shows the
effect of normalizing all edge transition probabilities. It represents a fully
probabilistic propagation model identical to the one proposed by Balog et al.
(2006).

Table 4.1 gives a result overview of the one-step propagation methods.
The results of the unweighted indegree methods first of all shows that graph
features are meaningful for entity ranking. Even without information about
the documents content, the indegree enables to rank entities appropriately.
However, the pure centrality based entity ranking still stays behind the sim-
ple maximum retrieval score approach wMAX, which shows that the initial
document ranking carries such meaningful relevance evidence that every suc-
cessful method needs to incorporate that information. Consequently, the
weighted indegree wIDG, using both graph features and the initial scoring,
easily outperforms the other techniques.

Another important observation concerns the normalization of the edge
transition probabilities. We can see that edge weight normalization drops
the performance slightly on the W3C corpus, and even considerably on the
CSIRO corpus. The results indicate that the required edge weight normal-
ization for probabilistic walks does not correctly model the actual relevance
evidence an entity gets from its associated documents. It is apparently not
appropriate to assume that an important document needs to share its influ-
ence among all mentioned entities, it should instead support each mentioned
entity with its entire undivided relevance.
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Figure 4.6: Adjusting the random jump probability, W3C corpus

Multi-Step Propagation Models In order to demonstrate the performance
of the multi-step propagation models, it is important to first tune the steer-
ing parameters of the random walk. Since our collection data provides a
poor base for connections among documents or entities themselves, we only
analyze walks over document-entity edges combined with random jumps on
the graph. Hence, the steering of the walk falls back to a single parameter
λ, that determines the probability of a random jump.

Figure 4.6 and Figure 4.7 show that the best setting of λ differs between
the common random walk model RW and the HITS-like variant. Following
the MAP curves, we see in the figures of both collections that the common
random walk shows its best retrieval quality for a smaller value of λ than the
HITS model. The precision on top of the retrieved list P@5 seems in general
less influenced by the choice of λ. Although the graphs in the two figures
do not have the exactly same maxima, it is possible to set the random jump
probability in a uniform way without sacrificing retrieval quality noticeably.
The random walk λ is fixed to 0.4 for all following experiments whereas the
HITS λ is set to 0.85. Such a uniform setting also prevents from over-fitting
for a single collection.

Furthermore, the figure shows that the HITS variant of the random walk
works as good as the other one on the W3C data and considerably better
than the other on the CSIRO collection. The result directly corresponds to
the before made observation concerning the effect of edge weight normaliza-
tion. Since the HITS walk uses a different normalization technique, it is not
influenced by the negative effect of edge weight normalization.
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Figure 4.7: Adjusting the random jump probability, CSIRO corpus

The stationary probabilities of a random walk represent the chance that
the “walker” is present at a certain node after an infinite number of steps in
the graph. The iterative calculation of the stationary probabilities performs
an n-step walk starting from an initial probability distribution that stops as
soon as the values converge. If we start the walk with the initial distribution
given by the query scores and stop the walk after a certain number of steps
n, we get the results displayed in Figure 4.8. The figure shows the common
random walk model only, not its HITS variant.

Whereas a converging walk requires between 50 to 100 iterations de-
pending on the setting of the convergence test, we see in the figure that
in fact a rather limited number of steps is sufficient to reach the maximal
retrieval quality. A one-step walk in this model is equivalent to the normal-
ized weighted indegree model. The figure thus also shows that multi-step
propagation models can further improve the retrieval quality of the one-step
propagation models.

Number of Top Retrieved Documents As we stated already before, the
number of top retrieved documents k included in the graph modeling has an
important impact on the retrieval performance and depends highly on the col-
lection and expected number of relevant entities. Figure 4.9 and Figure 4.10
shows furthermore how the different propagation models are influenced by the
number of included documents k. Obviously, the retrieval quality of the un-
weighted indegree drops when the graph looses its tight topical focus. When
the number of documents increases, this ranking technique suffers from the
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fact that it cannot distinguish the relevance of the included documents. All
other ranking approaches that propagate the initial retrieval scores through
the graph, are not affected by the decreasing topical focus of the graph. In
case of the W3C corpus, the mean average precision is even constantly in-
creasing over the displayed range of k for all 3 propagation methods, since
the higher number of included documents slightly increases the recall.

Comparing the wIDG, common random walk, and HITS, the figure ap-
proves our previous results. The common random walk looses when edge
weight normalizations shows a negative effect as on the W3C corpus. Oth-
erwise all 3 approaches reach a similar retrieval quality with the multi-step
random walks slightly on top of the indegree model.

Including Persons, Paragraphs, or Associations Weights In the follow-
ing, we present the test results of several graph modeling options introduced
in Section 4.3.1.

During corpus preprocessing, all mentions of expert candidates and other
persons had been tagged, which could be identified by their email address.
However, all experiments reported so far used only the candidate entities and
did not include non-candidate persons into the entity containment graph.
Our hypothesis was that random walk models might be able to profit from
the additional connections emerging from the further person vertices in the
graph. Table 4.2 does not show support for the hypothesis on both collec-
tions. Although the other persons do not harm the retrieval quality, their
inclusion also shows no positive effect.
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W3C corpus CSIRO corpus

MAP P@5 MAP P@5

normal
wIDG 0.375 0.629 0.351 0.208
RW 0.381 0.641 0.334 0.208
HITS 0.379 0.649 0.357 0.212

person
wIDG 0.375 0.629 0.351 0.208
RW 0.376 0.645 0.335 0.208
HITS 0.377 0.637 0.356 0.212

edge-weights
wIDG 0.373 0.616
RW 0.378 0.637
HITS 0.376 0.637

paragraphs
wIDG 0.383 0.220
RW 0.377 0.216
HITS 0.389 0.220

Table 4.2: Comparing different graph modeling options

Another proposed modeling variant uses edge weights to model the associ-
ation between documents and experts. In case of the W3C emails from 2006,
we had the chance to experiment with such association weights. Instead of
weighting all mentions of an expert equally, we assigned different weights to
occurrences in the emails’ FROM, TO, and CC fields or the text body. Instead of
experimenting with all possible weight settings ourselves, a uniform weight-
ing was compared to the setting as suggested by Balog and de Rijke (2006):
w(e, Dfrom) = 1.5, w(e, Dto) = 1.0, w(e, Dcc) = 2.5 and w(e, Dbody) = 1.0.
If a person appeared in several fields, only the maximum of the association
scores is considered. In case of the CSIRO data-set, the same distinction was
not possible since the web documents do not contain elements that suggests
a different association between document and candidate. Unfortunately, the
outcome of this test neither confirmed the results of Balog and de Rijke, who
tested themselves on the expert finding query set of TREC 2005, nor does it
show any improvements at all compared to the uniform assignment of edge
weights. We even tested a few further ad-hoc weighting schemes not reported
here, but could not yield noticeable improvements over the uniform model.

As a last modeling option, we tested the inclusion of further smaller-
sized text fragments as shown in Figure 4.4(a). The HTML tagging of the
CSIRO web-pages subdivides most documents into paragraphs containing
only a small number of sentences. If the entity containment graph includes
both document and paragraph vertices combined with their respective initial
scores, the model allows to distinguish mentions of entities in unrelevant
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parts of the document from those in more relevant paragraphs. The graph
generation process was extended slightly for this experiment. After the initial
document ranking, we selected all contained paragraph nodes that mention
at least one candidate entity and ranked them as well according to the query
terms. The graph was then built with both document and paragraph vertices.
The last row of Table 4.2 shows that this graph modeling option indeed
results in considerably better performance. All three propagation methods
profit from the included paragraph vertices.

4.6 Experimental Study II: Entity Ranking on

Wikipedia

The INEX entity ranking track meets our evaluation requirements with a
testset of entity ranking topics and corresponding judgments on the INEX
Wikipedia corpus. All topics specify a target entity type and a topic of inter-
est in a few query terms. The target type is given as a Wikipedia category,
e.g. “movies”, “trees”, or “programming languages”. In contrast to other
entity ranking tasks, each retrieved entity in the INEX track needs to have
its own article in the Wikipedia collection. Obviously, this decision is only
suitable for entity ranking within an encyclopedia, where we can assume that
most mentioned entities in fact have their own entry. In consequence, a sim-
ple baseline run is given by a straightforward article ranking using the query
terms that describe the topic of interest. Combined with an appropriate cat-
egory filtering mechanism that also allows articles of descendant categories,
such a baseline can reach already a high retrieval quality.

However, the described baseline approach shows no techniques so far that
are specific to entity ranking. We want to evaluate in the following how
the relevance propagation approach can be introduced to the setting of the
Wikipedia entity ranking task. Furthermore, we extend the existing indegree
propagation model by incorporating text fragments of various sizes.

4.6.1 Exploiting Document Entity Relations in Wikipedia

Entity mentions in Wikipedia articles are often linked towards their own
encyclopedia entry. If we use these links to build a query-dependent entity
containment graph, consisting of the top k initially retrieved entries and
all their included linked entities, we can apply the introduced graph-based
propagation models. Notice, that the graph does not distinguish between
entity and document vertices in this case. Each vertex e represents an entity
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and at the same time its text description in the corresponding Wikipedia
entry. Hence, we also have an initial relevance estimation for each entity
given by the score of its entry w(e|q).

Initial experiments showed that the basic weighted indegree model does
not improve over our initial baseline ranking. It even decreases the retrieval
quality considerably. In fact, the direct text description of an entity is so
important for the ranking that it needs to be considered in the retrieval
model. Hence, we suggest the following extension of the weighted indegree:

PwIDG(e) = λw(e|q) + (1− λ)
∑

e′∈Γ(e)

w(e′|q).

The factor λ interpolates the initial article relevance with the summed rel-
evance of other articles mentioning entity e. Since the above equation re-
sembles the definition of a personalized graph centrality by incorporating the
weighting of the vertices themselves, we call it personalized weighted indegree
PwIDG.

Adding Smaller Sized Text Fragments Since the Wikipedia collection
contains structured text, we can make use of the given paragraph segmenta-
tion and retrieve and score XML <P> elements as well. We have shown before,
that the graph model allows to combine paragraph and article level relevance
by simply adding vertices of both types to the graph (see Figure 4.4(a)). An
entity e is then linked by other entities e′ or paragraph vertices p when their
text refers to e. For distinction, we denote the set of neighboring paragraph
vertices of an entity e by ΓP (e), respectively ΓE(e) for the set of adjacent
entities. In order to control the influence of both types of text fragments, a
second interpolation factor µ is introduced:

PwIDG∗(e) = λw(e|q) + (1− λ)



µ
∑

p∈ΓP (e)

w(p|q) + (1− µ)
∑

e′∈ΓE(e)

w(e′|q)



 .

The earlier introduced infinite random walk model (Section 4.4.2) can be
extended equivalently with a second interpolation to control the propagation
from articles or paragraphs.

Category Filtering For the categorization of entities, the INEX testset pro-
vides three files containing category name and identifier, the hierarchy of
categories, and a list assigning each article to one ore more categories. The
processing model for the ranking the entities of a given topic (see Section 4.2)



108 CHAPTER 4. ENTITY RETRIEVAL

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0  0.2  0.4  0.6  0.8  1
 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

M
A

P

P
5

PwIDG-MAP
PwIDG-P5

RW-MAP
RW-P5

Figure 4.11: Influence of λ, µ = 0

has to be extended by an additional filtering step to select only those enti-
ties belonging to the required target category. We found in the data that a
Wikipedia article being assigned to the category “Italian composer” is not
neccessarily also assigned to the parent categories ”composer” or ”Italian”.
When filtering entities, it is thus important to consider also descendant cat-
egories of the given target category. A training run on additional topics
borrowed from the ad-hoc track showed that it was useful to include 3 gen-
erations of children, which became then the default setting for all reported
experiments in this section.

4.6.2 Result Discussion

We generated for each INEX topic an entity containment graph from the top
200 articles retrieved by the title keywords. A standard language modeling
retrieval model with Jelinek-Mercer smoothing was employed for the initial
scoring of all text fragments. In difference to the expert finding task, no
tagging at a preprocessing stage was needed, since the internal links in the
corpus already mark mentions of entities within articles.

Setting of the Interpolation Factors Analyzing the introduced entity
ranking models requires to study the influence of the two interpolation fac-
tors λ and µ. In a first test we only retrieved articles and were interested
in finding an appropriate setting of λ for calculating a personalized weighted
indegree PwIDG as well as for the earlier introduced random walk model.
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Figure 4.12: Influence of µ, λ set to best value

Figure 4.11 shows that λ needs to be set close to 1 for the indegree model,
and to 0.7 to achieve the best random walk performance. Both results clearly
point out the importance of the entity’s own Wikipedia entry. On the other
hand, the combination with the scores of other articles mentioning the entity
clearly improves the retrieval quality.

For the second test, we kept λ fixed at its respective best values (λ = 0.95
for PwIDG, λ = 0.7 for RW), now varying the setting of µ, displayed in Fig-
ure 4.12. We can observe for the indegree model that mean average precision
as well as precision on top of the retrieved list P@5 show a maximum when
article and paragraph scores are considered equally with a setting of µ around
0.55. The random walk profits apparently less from the inclusion of further
paragraph vertices. The retrieval quality drops soon when assigning a higher
probability µ for propagation from paragraph vertices. The independence of
λ and µ assumed by the testing procedure might be not adequate, but even
without finding a global maximum the results indicate the advantage of the
combining article and paragraph level relevance.

Comparison of Propagation Methods Table 4.3 shows the best outcome
for all introduced ranking methods. It is important to see that our base-
line, a simple ranking of all Wikipedia articles, achieves already a high mean
average precision, which makes the task largely different from the before
studied expert finding, where a direct entity ranking was impossible. It is
thus not surprising that the baseline methods outperforms the weighted in-
degree, where the direct article ranking is not incorporated. By combining
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MAP P@5

baseline 0.291 0.343
wIDG 0.267 0.330
PwIDG λ = 0.95 0.309 0.370
PwIDG∗

λ = 0.95, µ = 0.55 0.321 0.409
RW λ = 0.7, µ = 0.35 0.314 0.400

Table 4.3: Overview: best setting per method

PwIDG∗ 100 200 500

MAP 0.304 0.321 0.321
P@5 0.400 0.409 0.413

Table 4.4: Number of included top retrieved documents k

the baseline article score of an entity with those of text fragments mentioning
the entity gives room for further improvements, but requires to set the in-
terpolation controlled by λ and µ appropriately. The values presented in the
table indicate the possible range of improvements that can be achieved by
the different methods. It is not realistic to expect the exactly same improve-
ments with the same parameter settings on a different testset and collection.
When all informations sources are included, the best random walk model
still stays behind the weighted indegree. We have to conclude therefore, that
multi-step relevance propagation is not able to improve over the one-step
model in case of the INEX task.

Graph Building and Category Filtering Controlling the number of top re-
trieved documents that are considered when building the entity containment
graphs was an important parameter in the previous study on expert finding.
The INEX track shows in this respect similar characteristics as the expert
finding task on the CSIRO corpus. Altough the number of relevant entities
per topic is considerably higher for the INEX task, the achieved recall is not
growing noticably if we include more than 200 articles in the graph building
as shown in Table 4.4.

Table 4.5 confirms the need to extend the list of given target categories

PwIDG∗ 0 1 2 3 4 5

MAP 0.272 0.298 0.331 0.321 0.316 0.303
P@5 0.322 0.387 0.430 0.409 0.391 0.374

Table 4.5: Number of included child categories
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by their child categories. Including up to 2 generations of child categories
yields considerable improvements on mean average precision as well as for
precision at 5 retrieved entities. Including further descendants has a slightly
negative effect on precision. Remember that the same test on the training
set suggested to include 3 generations of child categories. In consequence,
all results reported in this section could be improved equally by employing a
more selective category filtering.

4.7 Searching Mixed-typed Entities

In this last section, we discuss and evaluate ideas for creating a mixed-typed
topic overview. Thus, we address here entity ranking task 1 (see Section 4.1).
Compared to other entity ranking tasks studied in the previous sections, this
one represents the most open information need. We think mainly of a user
who wants to get a first overview on a topic he/she is not familiar with. In
response to an initial ad-hoc query, we do not return documents, but entities
of different types that are strongly related to the topic. Such entity overview
provides a fast access to capture the essence of a topic. The entities might
be used further in subsequent new queries, or for new kinds of browsing
interface as known from faceted search (Yee et al., 2003; Bast et al., 2007).
Imagine that a user is looking for the “Life of Pablo Picasso” or “Egyptian
Pyramids”, the returned topic overview should contain associated people,
countries or dates.

In particular we demonstrate how to deal with a large and heterogeneous
set of types, some being more generic, others rather specific. Such type set is
typical when working with NLP techniques such as named entity recognition
or semantic tagging. Since the user query does not specify a certain type, the
system has to decide itself whether specific types should be preferred over
others.

4.7.1 Model Adaptations

The task of searching mixed entity types requires the following adaptations
of the previously introduced graph models and ranking schemes.

Entity Containment Graphs for Mixed-Typed Entities Since we do not
want to exclude any types in advance, our entity containment graph has to
contain all found entities of all types. However, this would result in almost
unhandable graph sizes, when using roughly the same number of relevant
documents for the graph generation as in previous experiments. Moreover,
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we found a high number of topically irrelevant entities in such large graphs.
In order to tackle the problem, we could clearly reduce the number of top
relevant documents in the graph building process. However, such a solution
would exclude entities not mentioned in the first few documents and the
graph would still contain many irrelevant entities if those documents are
not exclusively about the specified topic. We choose therefore to switch from
document to sentence retrieval for this task. In contrast to entire documents,
the entities of a relevant sentence have a clearer connection to the given topic.
Furthermore, sentence retrieval provides a better control of the graph sizes.
Documents vary highly in length and hence also in the number of mentioned
entities. By specifying the number of top retrieved sentences instead, we get
a better dimensioning of the total number of entities in the graph model and
achieve a higher topicality of the included entities.

Adapting the Indegree Model Once the graph is constructed, the pro-
posed relevance propagation techniques can be used. We observed, however,
in first experiments that all degree-dependent methods are biased by a few
entities of very general types, such as descriptions or country names. Those
entities are usually not specific to the topic but have a high frequency of
mentions.

An ad-hoc method to overcome the problem consists in removing all
generic types from the final result list. Notice that we do not want to exclude
them already in the graph building phase since their connectivity supports
the relevance propagation in the graph. The ad-hoc solution is, however, only
applicable if we know a priori which types can be regarded as too generic
and non informative.

We suggest therefore also a second method, which is inspired by the
inverse document frequency component in document retrieval models. The
inverse document frequency is used to re-weight terms with respect to their
specifity. Often occurring terms with stop-word characteristics are effectively
disregarded. Similarly, we calculate the inverse sentence frequency isf(e) of
an entity and combine it with the result of the graph-based entity score, for
instance with its indegree IDG(e):

isf(e) = log

(

|S|

|{s ∈ S|s contains e}|

)

,

RSV (e) = IDG(e) isf(e),

with S being the set of all sentences s in the collection. The final entity
score RSV (e) reflects now also the specifity of an entity with respect to the
given query topic. Notice that the sentence frequency of an entity is equiv-
alent to the indegree of the entity in the global, query-independent entity
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containment graph. The suggested method therefore stresses the differences
between global and local graph.

4.7.2 Experiments

For testing the presented ideas, we could not use a standard query and judg-
ment set from the evaluation initiatives, since they do not consider the task
of open-domain entity ranking. Instead we built up our own evaluation envi-
ronment and asked a number of test users to formulate queries and to judge
the relevance of the returned entities. The results of this study have to be re-
garded preliminary since we could not judge a large pool of different rankings
and queries.

Collection and Tagging Again the Wikipedia collection was used, since it
represents an interesting source for open-domain entity ranking queries. For
tagging, the open source SuperSense Tagger3 was trained on the BBN Pro-
noun Coreference and Entity Type Corpus, which includes the annotation of
nominal types (like Person, Facility, Organization), and numeric types
(like Date, Time, Percent). Further description types are dedicated to iden-
tify common nouns that refer or describe named entities. For example, the
words “father” and “artist” would be tagged as a person-description.

Tagging the entire Wikipedia corpus resulted in 28 million occurrences of
5,5 million unique entities. The tagged corpus is publicly available attached
with a full reference of all tagged types (Zaragoza et al., 2007a).

Evaluation The evaluation environment for the user study was set up in
the following way. The user first had to choose a topic and to formulate
an initial term query. There was no restriction on the choice of the topic
other than then to remind the user that his/her query would be run on a
collection of encyclopedia texts, such as the Wikipedia corpus. The user was
also reminded that he/she should feel knowledgeable on the chosen topic to
be able to later judge the relevance of entities.

The system employed the Lucene search engine4 to retrieve the 500 most
relevant sentences from the collection. It should be mentioned that the ap-
plied scoring function does not provide probabilistic scores here. However, we
still ensured a probabilistic score range by normalising the scores of the top
retrieved included sentences. All mentioned entities were ranked according
to their indegree IDG(e) and presented to the user for evaluation.

3http://sourceforge.net/projects/supersensetag/
4see http://lucene.apache.org/
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Query “Yahoo! Search Engine”

Most Im-

portant

Yahoo, Google, MSN, Inktomi, Yahoo.com

Important Web, crawler, 2004, AltaVista, 2002, Amazon.com, Jeeves, TrustRank,
WebCrawler, Search Engine Placement, more than 20 billion Web, eBay,
Worl Wide Web, BT OpenWorld, between 1997 and 1999, Stanford Uni-
versity and Yahoo, AOL, Kelkoo, Konfabulator, AlltheWeb, Excite

Related users, Firefox, Teoma, LookSmart, Widget, companies, company, Dog-
pile, user, Searchen Networks, MetaCrawler, Fitzmas, Hotbot, ...

Query “Budapest”

Most Im-

portant

Budapest, Hungary, Hungarian, city, Greater Budapest, capital,
Danube, Budapesti Kzgazdasgtudomnyi s llamigazgatsi Egyetem, M3
Line, Pest county

Important University of Budapest, Austria, town, Budapest Metro, Soviet, 1956,
Ferenc Joachim, Karl Marx University of Economic Sciences, Budapest
University of Economic Sciences, Etvs Lornd University of Budapest,
Technical University of Budapest, 1895, February 13, Budapest Stock
Exchange, Kispest, ...

Related Paris, Vienna, German, Prague, London, Munich, Collegium Budapest,
government, Jewish, Nazi, 1950, Debrecen, 1977, M3, center, Tokyo,
World War II, New York, Zagreb, Leipzig, population, residences,
state, cementery, Serbian, Novi Sad, 1949, Szeged, Turin, Graz, 6-3,
Medgyessy, ...

Query “Tutankhamun curse”

Most Im-

portant

Tutankhamun, Carnarvon, mummies, Boy Pharaoh, The Curse, archae-
ologist, Howard Carter, 1922

Important Pharaohs, King Tutankhamun
Related Valley, KV62, Curse of Tutankhamun, Curse, King, Mummy’s Curse, ...

Table 4.6: Example queries and user judgements of the entities

For judging the retrieved entities, the user was shown the entire returned
list of entities in ranked order. Each of the entities should then be assigned
one of the following labels: Most Important, Important, Related, Unrelated,
or Don’t know. The user was asked to assess all entries if possible, and at
least the first fifty. The users were not given any further instructions nor
were they trained before using the evaluation system. 10 test persons were
recruited and each judged from 3 to 10 queries, coming to a total of 50 judged
queries.

Some of the gathered queries and judgments are shown in Table 4.6. With
those examples we want to demonstrate the difficulty and subjectivity of the
evaluation. The machine tagging and entity ranking indeed delivered inter-
esting and highly related entities, but the quality is not always as expected.
The ranked list often shows up different names and spellings of the same
entity like “Yahoo” and “Yahoo.com”, or “Tutankhamun” and “King Tu-
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MODEL MAP P@10 DCG nDCG

wMAX 0.34 0.37 67.91 0.64
IDG 0.50 0.54 79.69 0.78

wIDG 0.48 0.51 79.11 0.76
IDG filt. 0.50 0.52 79.23 0.79
IDG isf 0.60 0.63 83.89 0.84

wIDG isf 0.54 0.63 82.68 0.81

Table 4.7: Performance of the different models

tankhamun”. It also contains many items that are hard to judge without
the context of the surrounding sentence as dates or numbers. We were aware
that all those problems influence the quality of the judgments, but still regard
them as sufficient for a preliminary testing of the above shown approaches.

Apart from mean average precision (MAP) and the precision at 10 re-
trieved entities (P@10), we wanted to use a measure for graded relevance
judgments, since the entity ranking task clearly asks for a finer-grained
distinction of relevance. Therefore the most established graded relevance
measure, the (normalized) discounted cumulative gain (nDCG) suggested by
Järvelin and Kekäläinen (2002), was used with the gain vector {10, 3, 1, 0}
corresponding to the 4 judgment labels. All entities labeled as Don’t know
were ignored in the ranking. For the binary relevance measures, only Im-
portant and Most Important marked entities were considered as relevant,
whereas all others entities were treated as irrelevant.

Results Table 4.7 gives an overview of the results. The best results are
shown in bold face. Looking first on the graph based retrieval models from
previous sections, the indegree again outperforms the simplistic wMAX.
However, in contrast to previous experiments, the weighting by initial sen-
tence scores (wIDG) slightly decreases the retrieval quality of the indegree
model. We tried several score normalization techniques, but were unable to
achieve the expected increase from score propagation. The reasons for this
difference are difficult to explain. Firstly, we employed a different retrieval
system for the experiments in this section, which does not return probabilis-
tic scores. Secondly, the scores of the top retrieved sentences vary more than
those of the top retrieved documents examined before. Multi-step relevance
propagation, consequently, did not work in this scenario either. Therefore,
we did not even list the results for random walk based models in the table.

On the other hand, our proposed isf component clearly shows improve-
ments on all measurements. It also achieves better results than the ad-hoc
filtering of generic types (IDG filt.). The improvements in our preliminary
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study are clear enough, to expect the isf component to be an appropriate
extension also for other graph based entity ranking models.

4.8 Summary and Conclusions

We motivated and defined the retrieval of entities which differs in some im-
portant ways from the retrieval of any other kind of text fragments. The
most obvious difference concerns the distinction of an entity’s identity and
its mentions in the text. Moreover, entities cannot be ranked directly based
on their text representation. We distinguished in the following three sub-
tasks of entity ranking, differing in whether the topic and entity type are
specified or left open, namely open domain entity search, typed search, and
list completion.

Our own approach to entity ranking is based on graphs. We showed how
the relation between documents and entities can be modeled in bipartite en-
tity containment graphs. The graph modeling is flexible enough to capture
also other relevance related information, like the strength of association be-
tween entities and documents, or the relation of entities among themselves if
it is known from a given ontology.

Formulating the task of entity ranking as a graph-based relevance propa-
gation has shown to be a fruitful theoretical model. It does not only motivate
and justify existing propagation models used for expert finding or question
answering, but also suggests to extend those simple models by exploiting
more graph features. We showed how the basic indegree model can be ex-
tended to a random walk, which also takes into account the relevance of
indirect neighbors.

Both graph modeling and relevance propagation has been tested on dif-
ferent collections and entity ranking tasks. The main findings of the exper-
imental studies can be summarized as follows. The pure unweighted graph
structure of the entity containment graph provides useful additional hints for
the ranking of entities, but cannot come up with high quality rankings on its
own. Similarly, our baseline ranking approach that relies solely on the initial
ranking of documents is outperformed by all graph-based relevance propaga-
tion models. It is thus necessary to combine both the structural features of
the graph as well as the initial document ranking to yield the best retrieval
performance. From the tested relevance propagation models the weighted
indegree model have shown the most robust performance. Without the tun-
ing of further parameters it came in all cases close to the best performing
model. The probabilistic random walk suffers slightly from its normalized
edge transition weights, which do not model the propagation appropriately.
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The HITS-like normalization is able to solve the problem and shows that
random walks are able to achieve slightly superior rankings than the simple
indegree, but come with the disadvantage of a more costly computational
model and further parameters that require to be set appropriately.

By experimenting with different collections and tasks like expert finding
or the search for Wikipedia entities we demonstrated the usefulness of a
uniform model for entity ranking. Instead of developing a ranking model for
each single task our graph-based entity ranking framework needed only slight
adaptations to work in different environments.

We could not test all suggested options for graph modeling with the given
collections and tasks. Especially the incorporation of known relations be-
tween the entities themselves seems an interesting direction for future work.
If ontologies are available for entities in Wikipedia, or organizational struc-
tures of the enterprise are known in case of expert finding, the modeling of
this additional information might improve the retrieval results further.

Another interesting direction for future work lies in the challenging task
of finding suitable short text fragments supporting the estimated ranking of
entities. Although we explained in the introduction that the added value
of entity ranking compared to passage or XML retrieval is that it directly
returns the extracted ranked list of entities, it is important to notice that
such a result list is in many cases only useful in combination with links
to supporting sentences or passages. Our graph-based propagation models
might be useful here as well, since they also rank the text fragments with
respect to the included entities.
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5
Review and Outlook

Whereas it is common practice to repeat the main achievements and to point
out their contribution to the research community at the end of any scientific
work, we think we satisfied this issue already with the summaries and con-
clusions at the end of each chapter. The interested reader is hence referred to
the respective last sections of each chapter. Instead, this last chapter gives a
more critical review on the presented work and concludes by an outlook on
possibilities to integrate and combine the research shown in the three main
chapters of this thesis.

5.1 A critical Review

At this point we take a critical perspective when judging the presented work
again on the basis of the research objectives proposed in the introduction.
The following review is meant to point at the weak points and limitations of
the proposed work, which we think should be a requirement for all scientific
publications. At the same time, the critical review shows perspectives for
future work.

Context Refined Document Retrieval Our first goal in Chapter 2 is to
refine retrieval by taking into account the context of a user. However, the
context of a user is a rather comprehensive and vague concept, which needs to
become more precise. Hence, we try here to take certain aspects of context
information into account which we expect to have a concrete influence on
relevance. If we take a look again at the considered context dimensions,
like topicality, genre, date, or location (see Section 2.1), the question arises
whether they really describe the “user context” and not something that would
better be called “search context”. In order to demonstrate the difference, one

119
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can think of a user sitting at home and planning the next vacation. A web
search for accommodations should not consider the user context sitting at
home, but the context of the search planning a vacation at a certain location.
The difference between user context and search context is mentioned but not
investigated, yet. It might even be appropriate to substitute the user by the
search context, for the purpose of improving retrieval results.

We address Objective (A1) by introducing conceptual language models
as a generic framework for the modeling of context information (see Sec-
tion 2.1.1). It is argued why a set of concept models describes the search
context better than individual user models. We also motivated the idea
of using language models as a representation of contextual concepts. The
advantage of the generic framework based on language models becomes ap-
parent when scoring documents against the given context information. The
language models are representation and classifier at the same time. Also the
score combination problem is simplified when all involved scores result from
the same retrieval model. When applying a retrieval model that normalizes
by the query length, like the NLLR, we even achieve individual classification
scores lying in the same value range (see Section 2.2). Unfortunately, the
testing remains rather limited here. The choice of the considered context
dimensions is less driven by the characteristics of the users’ context, but by
the available classifiers and meta-data coming together with the evaluation
corpus. In fact, the use of conceptual language models is shown only on two
example dimensions: topicality and location (see Section 2.3). Moreover, the
location dimension could not be modeled appropriately due to the broad lo-
cation categories considered by the evaluation track. It is thus still necessary
to investigate experimentally how suitable language models represent and
categorize locations, genres or readability. The tests on the selected context
dimensions indicated that some dimensions have a higher influence on the
retrieval quality than others. Hence, they are more useful when specifying
the user’s context. However, this does not allow to draw any conclusions
on the usefulness of a certain context dimension on the level of individual
queries.

In contrast to the score combination of all context dimensions, the combi-
nation with the relevance of the initial term query as described in Objective
(A2) is not sufficiently solved, yet. The experiments use different normaliza-
tion techniques when working with different collections (see Section 2.2.1 and
Section 2.5.4), in order to adjust to the respective setting. More testing that
also considers other combination models is necessary here. It is further im-
portant to find appropriate ways of taking ”dislike” statements into account,
since they play an important role in explicit user feedback.

The new method of relevance feedback suggested in response to Objec-
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tive (A3) overcomes several problems associated with common feedback on
documents or suggested query terms (see Section 2.4). Document feedback is
time consuming and suggesting additional query terms requires more knowl-
edge about the search topic than the query profile based feedback introduced
here. Query profiles further enable to distinguish on the base of an individual
query which context dimensions have a meaningful impact for query clarifi-
cation, and are therefore suited for refinement. Hence, the suggested query
profile based feedback can shorten the user interaction by asking only nec-
essary clarification questions (see Section 2.5). In order to claim that the
proposed relevance feedback is more helpful from a user point of view, it is
not sufficient to show that the method improves the retrieval quality on a
given test collection. The retrieval improvements need to be compared to
those of other feedback methods. Furthermore, it would be interesting to
see user studies that try to measure the more subjective satisfaction of use
in comparison to a system without feedback or systems using other forms of
feedback.

Structured Retrieval on XML If retrieval should take structural constraints
into account, it is important to ask what kind of structural features are
meaningful from a retrieval perspective. The discussion at the beginning of
Chapter 3 starts from a slightly different point of view. Instead of examin-
ing the impact of structural features on retrieval, the reasoning starts from
a data-centric perspective. We look here in fact more on the properties of
XML data with the question how the given structural mark-up can be used
for query refinement, than from the opposite side with the question what
structural features help retrieval. The same criticism holds for the existing
query languages NEXI and XQuery Full-text. The proposed integration of
the two languages does not overcome the data-bound perspective either (see
Section 3.1.5). When the NEXI embedding in XQuery is suggested, the pro-
posal is developed with mainly practical issues in mind. The more restricted
search features of NEXI are easier met by sound retrieval models, and the
composition with other XQuery expressions still provides a rather powerful
query language.

All research objectives in the area of structured retrieval address per-
formance issues. The presented index structure for the support of XML
retrieval concerned with Objective (B1) carefully avoids ”data-independent”
redundancy (see Section 3.2.3). It also enables fast positional access to the
data, which minimizes the unavoidable random access costs. However, con-
ventional inverted indices make use of further compression techniques that
allow to reduce redundancy in the data as well. Most important, the number
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of bits that encode the position of a term can be reduced. The compression
ratio achieved by such techniques on conventional indices is tremendous. If
we aim at making XML retrieval feasible on the same collection sizes, it
is necessary to incorporate such compression techniques also into the here
presented index structure.

Our optimized containment join algorithm performs clearly better than
other structural joins in common retrieval situations (see Section 3.3.1). It is
admissible here to focus on the often occurring cases, and to require a longer
evaluation for special cases. We showed that the containment evaluation can
indeed take place at query time and does not need to be pre-computed in
a large index. The execution time of the optimized structural join remains
in the same time range as the score calculation and aggregation. Especially
the later score aggregation considerably exceeds the execution time of the
containment join in some cases. Hence, optimizing the aggregation as well
would be the next step to satisfy Objective (B2).

Query optimization addressed by Objective (B3) is analyzed on the phys-
ical level for simple but often occurring query patterns and on logical level
for complex queries. On the logical level, however, the effect of optimization
is only demonstrated on the base of a single query pattern (see Section 3.4).
Though the pattern is probably typical for structured queries, it is unknown
whether the outcome is representative for the effect of logical query optimiza-
tion in structured query languages. In order to introduce a generic approach
for logical query optimization the proposed cost modeling needs to be ex-
tended considerably. Still, the shown example motivates future research in
this direction.

For the physical query execution of simple query patterns, three alter-
native query plans are considered that do not differ in the order of base
operations, but follow either a joint or a split processing model (see Sec-
tion 3.3.3). It is argued why changing the order of the involved operations
is not expected to improve efficiency in this case. In difference to the logical
level, the analysis is driven by the assumption to find a single best query plan
in all situations, and not a situation dependent optimization strategy. The
only considered parameter for a possible optimization strategy is the number
of query terms, which has a direct influence on the number of operations
in the split processing model. The analysis shows here that the operation
number plays in fact a minor role. However, the shortly addressed score
aggregation strategy becomes crucial when evaluating longer queries.

Entity Ranking The aim to develop a generic framework, that allows to
rank entities by their probability of relevance, is a rather wide-ranging task
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that asks to solve several sub-problems. In this case, a graph-based relevance
propagation approach is chosen, which includes finding a suitable a graph
model and relevance propagation.

The proposed graph modeling (see Section 4.3) represents the relation
of text fragments and entities in a bipartite entity containment graph as
requested by Objective (C1). It also considers a number of options to in-
corporate additional information, like association weights, relevance scores
on different levels of text granularity, or ontologies showing the relations of
entities among themselves. The graph modeling provides thus a high flexi-
bility to model the different cases of entity ranking. Unfortunately, it was
not possible to test all suggested modeling options on the given test collec-
tions. Especially the integration of ontologies seems an interesting direction
for further research.

We addressed Objective (C2) by suggesting a number of graph-based
relevance propagation models, some based on existing non-graph-based ap-
proaches, others transferred from web retrieval on link graphs (see Sec-
tion 4.4). One of the main advantages of the graph-based ranking approach
is the ability to rank an entity node not only by text fragments mentioning
it, but also by its indirect neighbors in the graph. The introduced random
walks model this relevance propagation from indirect neighbors (see Sec-
tion 4.4.2). Interestingly, the results on the expert finding task show only
a slightly better ranking compared to the simple propagation models that
take only the relevance of direct neighbors into account (see Section 4.5.1).
Hence, the experimental results reported here make it questionable whether
a graph-based ranking approach is really necessary for all entity retrieval
tasks. Other tasks might still show more need for graph-based propagation.
For timeline retrieval for instance, the ranking of date entities is probably
helped by looking at the co-occurrence with other more meaningful person
or location entities. In that case, graph-based ranking would play a more
important role again.

All propagation models take the association weights on the document-
entity edges into account. It seems logical to consider different association
weights depending on the relation between document and entity. Experi-
menting with those weights, however, yielded no measurable improvements
(see Section 4.5.1). Even in the case of structured email data, where it seems
reasonable to expect a closer relation between the email author and the text
than between the text and any other mentioned persons, we could neither
find a better weight setting ourselves, nor could we confirm the positive ef-
fects of weight settings reported by others working on the same collection.
It seems, however, unlikely that a uniform setting of association weights is
indeed the best possible setting here. Thus we regard it necessary to repeat
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the test on another collection, maybe employing machine learning techniques
to find the best weight setting.

Since some propagation approaches are probabilistic in nature, it is sound
to also apply a probabilistic scoring function for estimating the initial rele-
vance of the text fragments (see Section 4.4). On the other hand, it would
have been interesting to test the actual influence of the initial scoring on
the relevance propagation, and to consider alternative scoring models here
as well.

5.2 Outlook on Possibilities of Combination and

Integration

The contribution of this thesis is clearly divided over the three main chap-
ters. This final section gives an integrated view by asking how the different
proposed methods and techniques can learn from each other.

Can Entity Retrieval Learn from Structure and Context? Structural fea-
tures are used already in entity retrieval. In the test on association weighting,
the weights were determined with respect to the text element the entity is
mentioned in (see Section 4.5.1). Since the email collection came with a
meaningful structure, e.g. marking authors and recipients of emails, we tried
to make use of that structural information for the weight setting. Structural
features have been exploited also in a second more successful way. We consid-
ered text fragments of different granularity when building entity containment
graphs and combined this way the initial relevance of paragraphs and entire
documents (see Section 4.6.2). The more focussed paragraph relevance im-
proved the precision of our entity ranking, the document relevance increased
the recall.

Entity retrieval still needs an appropriate query language and efficient
execution. One imaginable approach towards an effective expert level query
language would be to introduce a set of new XQuery functions similar to
the ones used for the full-text search features, but ranking entities instead
of elements. The integration of entity search functionality in XML retrieval
systems might also help to improve the efficiency of entity retrieval. The
necessary efficient support for score propagation and combination is already
available in structured retrieval systems.

Furthermore, we see two possibilities for context aware query refinement
in the entity retrieval process: (1) Instead of applying a standard document
ranking to find the most relevant text fragments, the initial text relevance
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estimation can incorporate more context information if available. (2) We
can further introduce a feedback step in the entity retrieval process. The
graph-based propagation framework allows to represent relevance by its ver-
tex weighting. Hence, feedback information can be integrated naturally.

Can Structured Retrieval Become Context Refined? We stated already
before that structured retrieval needs to be brought back from its current
data-centric point of view towards more usage oriented applications. An ob-
vious direction for future research would then be to analyze which structural
features play a role in which search context.

Thinking of the query profiles based feedback suggested in Chapter 2,
such technique might be useful for structural search constraints as well. A
structural query profile would be able to display to the user the most influen-
tial element names or rooted paths to relevant elements for a given query. It is
then necessary to develop an interface that allows to refine the initial query
by user selected structural constraints seen in the profile. Such technique
also overcomes the problem that users often have little knowledge about the
actual structure of documents in the collection and therefore cannot write
structural queries, or choose unwanted inaccurate restrictions.

Can Entity Retrieval Improve Context Awareness? We just suggested
how structural features can be integrated in a query profile based refine-
ment strategy. Entities might be even more interesting for query refinement.
Entity mentions are rather distinctive and meaningful units of text, and typ-
ically kept when reducing a text to a short summary. Therefore, entities are
highly suitable for feedback and query refinement.

There are, in fact, existing approaches in this direction (Yee et al., 2003;
Bast et al., 2007). User interfaces for so-called faceted search offer browsing
facilities to explore the data. They display entities mentioned in related
texts together with the number of occurrences, a kind of entity profile in
our terminology. Such interfaces might be improved by applying the entity
ranking methods proposed in this thesis, instead of relying simply on the
number of occurrences. Our entity ranking approach would even be helpful
in two ways. It improves the relevance estimation of entities, and provides
furthermore a ranking of supporting text fragments, that can be displayed
in response to the selection of an entity.
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K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR tech-
niques. ACM Trans. Inf. Syst., 20(4):422–446, 2002.

J. Kamps, M. Marx, M. de Rijke, and B. Sigurbjörnsson. Articulating in-
formation needs in XML query languages. ACM Trans. Inf. Syst., 24(4):
407–436, 2006.



BIBLIOGRAPHY 133

R. Kaushik, R. Krishnamurthy, J. F. Naughton, and R. Ramakrishnan. On
the Integration of Structure Indexes and Inverted Lists. In G. Weikum,
A. C. König, and S. Deßloch, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Paris, France, June
13-18, 2004, pages 779–790. ACM, 2004.

J. Kazama and K. Torisawa. Exploiting Wikipedia as external knowledge
for named entity recognition. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages 698–707, 2007.

J. M. Kleinberg. Bursty and Hierarchical Structure in Streams. Data Mining
and Knowledge Discovery, 7(4):373–397, 2003.

J. M. Kleinberg. Authoritative Sources in a Hyperlinked Environment. In
SODA, pages 668–677, 1998.

J. Ko, E. Nyberg, and L. Si. A probabilistic graphical model for joint answer
ranking in question answering. In SIGIR ’07: Proceedings of the 30th
annual international ACM SIGIR conference on Research and development
in information retrieval, pages 343–350, New York, NY, USA, 2007. ACM.
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Summary

Text retrieval is an active area of research since decades. Several issues have
been studied over the entire period, like the development of statistical models
for the estimation of relevance, or the challenge to keep retrieval tasks efficient
with ever growing text collections. Especially in the last decade, we have also
seen a diversification of retrieval tasks. Passage or XML retrieval systems
allow a more focused search. Question answering or expert search systems
do not even return a ranked list of text units, but for instance persons with
expertise on a given topic.

The sketched situation forms the starting point of this thesis, which
presents a number of task-specific search solutions and tries to set them into
more generic frameworks. In particular, we take a look at the three areas
(1) context adaptivity of search, (2) efficient XML retrieval, and (3) entity
ranking.

In the first case, we show how different types of context information can
be incorporated in the retrieval of documents. When users are searching for
information, the search task is typically part of a wider working process. This
search context, however, is often not reflected by the few search keywords
stated to the retrieval system, though it can contain valuable information for
query refinement. We address with this work two research questions related
to the aim of developing context-aware retrieval systems. First, we show
how already available information about the user’s context can be employed
effectively to gain highly precise search results. Second, we investigate how
such meta-data about the search context can be gathered. The proposed
“query profiles” have a central role in the query refinement process. They
automatically detect necessary context information and help the user to ex-
plicitly express context-dependent search constraints. The effectiveness of
the approach is tested with retrieval experiments on newspaper data.

When documents are not regarded as a simple sequence of words, but
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their content is structured in a machine readable form, it is attractive to
try to develop retrieval systems that make use of the additional structure
information. Structured retrieval first asks for the design of a suitable lan-
guage that enables the user to express queries on content and structure. We
investigate here existing query languages, whether and how they support
the basic needs of structured querying. However, our main focus lies on the
efficiency of structured retrieval systems. Conventional inverted indices for
document retrieval systems are not suitable for maintaining structure indices.
We identify base operations involved in the execution of structured queries
and show how they can be supported by new indices and algorithms on a
database system. Efficient query processing has to be concerned with the
optimization of query plans as well. We investigate low-level query plans of
physical database operators for the execution of simple query patterns. Fur-
thermore, It is demonstrated how complex queries benefit from higher level
query optimization.

New search tasks and interfaces for the presentation of search results,
like faceted search applications, question answering, expert search, and au-
tomatic timeline construction, come with the need to rank entities instead of
documents. By entities we mean unique (named) existences, such as persons,
organizations or dates. Modern language processing tools are able to auto-
matically detect and categorize named entities in large text collections. In
order to estimate their relevance to a given search topic, we develop retrieval
models for entities which are based on the relevance of texts that mention the
entity. A graph-based relevance propagation framework is introduced for this
purpose that enables to derive the relevance of entities. Several options for
the modeling of entity containment graphs and different relevance propaga-
tion approaches are tested, demonstrating the usefulness of the graph-based
ranking framework.



Samenvatting

Tekst-retrieval is sinds decennia een actief onderzoeksgebied. Meerdere on-
derwerpen zijn onderzocht gedurende dit tijdperk, zoals de ontwikkeling van
statistische modellen voor de evaluatie van relevantie, of het efficiënt houden
van retrieval ondanks steeds groeiende tekstbestanden. In de afgelopen tien
jaar is bovendien een verdere diversificatie van retrievaltaken te herken-
nen. Passage- of XML retrievalsystemen maken het mogelijk het zoeken
te beperken tot delen van de volledige tekst. “Question answering” of ex-
pertzoeksystemen leveren geen lijst van relevante documenten op maar bi-
jvoorbeeld een lijst van personen met expertise in het genoemde vakgebied.

De beschreven situatie is het uitgangspunt van dit proefschrift, dat een
aantal oplossingen voor specifieke zoektaken voorstelt en deze beschrijft in
generiekere modellen. Met name onderzocht worden de gebieden: (1) context-
specifiek zoeken, (2) efficiënte XML retrieval, en (3) het ordenen van en-
titeiten op relevantie.

In het eerst genoemde gebied laten we zien hoe verschillende soorten
van contextinformatie gebruikt kunnen worden bij het zoeken naar docu-
menten. Gebruikers zoeken meestal naar informatie in de context van een
grotere taak. Deze context wordt echter zelden genoemd in het meestal
beperkte aantal zoektermen in de query van een gebruiker, alhoewel de con-
text vaak waardevolle informatie voor de inperking van een zoekopdracht
bevat. We gaan in dit onderzoek vooral in op twee vragen, die bij de on-
twikkeling van context-specifieke zoeksystemen een belangrijke rol spelen.
Ten eerste laten we zien hoe beschikbare contextinformatie gebruikt kan wor-
den voor het verbeteren van zoekresultaten. Ten tweede wordt onderzocht
hoe zulke contextinformatie verzameld kan worden door het zoeksysteem.
De voorgestelde “queryprofielen” spelen een centrale rol in het proces van
het specificeren/beperken van de query. Ze helpen de noodzakelijke contex-
tinformatie te herkennen en steunen de gebruiker bij het beperken van de
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query. De effectiviteit van de aanpak is getest op de geselecteerde dimensies
van contextinformatie.

Als documenten niet meer beschouwd worden als een simpele sequen-
tie van woorden, maar hun inhoud gestructureerd is in een voor een ma-
chine leesbare vorm, is het aantrekkelijk retrieval systemen te ontwerpen die
geschikt zijn voor de omgang met de toegevoegde structuurinformatie. Een
voorwaarde voor structuur-retrieval is het ontwerp van vraagtalen die het
voor de gebruiker mogelijk maken een inhouds- en structuurvraag te speci-
ficeren. Van bestaande vraagtalen wordt hier onderzocht in hoeverre ze de
fundamentele eisen van structuur-retrieval steunen. Het onderzoek betreft
echter vooral de efficientie van XML- of structuur-retrievalsystemen. Conven-
tionele gëınverteerde indices voor documentretrieval zijn niet geschikt voor
het opslaan van gestructureerde documenten. Het voorliggend onderzoek
identificeert basisoperatoren bij de uitvoering van gestructureerde queries en
laat zien hoe deze kunnen worden ondersteund door nieuwe indices en spec-
ifieke algoritmen draaiend op een database systeem. Efficiënte queryverw-
erking is ook gebaat bij de optimalisatie van queryplannen. We onderzoeken
hier eerst queryplannen van database operatoren voor simpele patronen van
queries. Later is ook gedemonstreerd dat queryplanoptimalisatie op hoger
niveau helpt de uitvoeringstijd van complexe queries te verkorten.

Nieuwe zoektaken en gebruikersinterfaces, zoals “faceted search” appli-
caties, “question answering”, expertzoeksystemen, of de automatische gen-
eratie van onderwerp-gerelateerde tijdlijnen, vragen om het ordenen van en-
titeiten in plaats van het ordenen van documenten. Met entiteiten bedoe-
len we unieke, benoemde existenties zoals personen, organisaties of data.
Nieuwe taalverwerkings- en herkenningssoftware kan entiteiten in grote tek-
stbestanden automatisch herkennen en categoriseren. We ontwerpen in dit
proefschrift retrievalmodellen voor het ordenen van entiteiten met hulp van
de relevantie van teksten die de entiteiten noemen. Een graaf-gebaseerd
raamwerk wordt voorgesteld voor het verspreiden van relevantie in een graaf.
Met behulp van dit raamwerk kan de relevantie van entiteiten worden afgeleid.
Meerdere modeleringsmogelijkheden voor zogenaamde “entity containment”
grafen en verschillede relevantie-verspreidingsmodellen zijn getest en laten
het voordeel van het graaf-gebaseerde raamwerk zien.
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