
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

1

FROM DOMAIN ONTOLOGIES TO MODELING ONTOLOGIES TO EXECUTABLE SIMULATION MODELS

Gregory A. Silver
Osama Al-Haj Hassan

John A. Miller

University of Georgia
Athens, GA 30602, U.S.A.
ABSTRACT

Ontologies allow researchers, domain experts, and soft-
ware agents to share a common understanding of the con-
cepts and relationships of a domain. The past few years
have seen the publication of ontologies for a large number
of domains. The modeling and simulation community is
beginning to see potential for using these ontologies in the
modeling process. This paper presents a method for using
the knowledge encoded in ontologies to facilitate the de-
velopment of simulation models. It suggests a technique
that establishes relationships between domain ontologies
and a modeling ontology and then uses the relationships
to instantiate a simulation model as ontology instances.
Techniques for translating these instances into XML
based markup languages and then into executable models
for various software packages are also presented.

1 INTRODUCTION

Many application domains are developing detailed,
agreed-upon ontologies to define and document concepts
in their domain. For example, the Problem-oriented
Medical Records ontology (PMRO) (in the healthcare
domain) defines patients, clinical personnel, symptoms,
diseases, and treatments (WC3 Health Care and Life Sci-
ence Group 2006). The Glycomics ontology (GlycO) (in
the biology domain) defines glycan (carbohydrate) struc-
tures and the items in the biosynthetic pathways that cre-
ate them (Thomas, Sheth, and York 2006). The premise
behind our research is that this knowledge and data can be
used productively to bootstrap the creation of simulation
models. In this paper, we illustrate how to drive the de-
velopment of simulation models using ontologies in detail
for the healthcare domain and briefly discuss it in the
simulation of biosynthetic pathways. The basic strategy is
to use information in the application or domain ontologies
and map it to a modeling ontology. Through the use of
computer aided techniques this information is expanded,
refined, and translated step-by-step into effectively execu-
table simulation models.
11-4244-1306-0/07/$25.00 ©2007 IEEE
An overview of ontology driven simulation and its
benefits is presented in Section 2 of the paper. In Section
3, we apply our approach to ontology driven simulation to
an application scenario to develop a Discrete Event Simu-
lation (DES) model. Section 4 discusses ways in which
the Discrete Event Modeling Ontology (DeMO) (Miller,
et al. 2004) is used to supply a foundation for ontology
driven simulation. In Section 5, we describe the architec-
ture of the Ontology Driven Simulation design tool (ODS)
and Section 6 reviews related work. Finally, conclusions
and recommendations for future work are discussed in
Section 7.

2 ONTOLOGY DRIVEN SIMULATION

2.1 Exploiting Domain Knowledge

Simulation models have been used to simulate processes
in many different domains. The simulation modeler must
rely on the information provided to him/her by domain
experts during the development of the model. Domain ex-
perts are a necessary part of the process because they un-
derstand the concepts and relationships among the con-
cepts within the domain. In the past few years another
source of domain knowledge, known as the domain on-
tology, has also become available. While domain ontolo-
gies cannot replace domain experts, they may be very use-
ful to simulation modelers.

Ontologies provide formal methods for describing the
concepts, categories, and relationships within a domain.
In addition, ontologies written in languages such as the
Web Ontology Language (OWL) (McGuinness and Har-
melen 2004) can be processed by machines. Domain on-
tologies may be particularly helpful to simulation model-
ers since they can be used to communicate domain
information to simulation and modeling tools with limited
human intervention. ODS takes advantage of this feature
by using software tools to align knowledge resident in
domain ontologies with knowledge resident in a modeling
08

Silver, Al-Haj Hassan, and Miller
ontology in order to facilitate the creation of simulation
models.

In ODS, a tool is used to map concepts from domain
ontologies to concepts in a modeling ontology and then
create instances of modeling ontology classes to represent
a model. Once the ontology instances representing the
model have been created additional tools are used to
translate the instances into an executable simulation
model.

2.2 Benefits of Ontology Driven Simulation

Ontology driven simulation uses ontologies to drive the
creation of simulation models and in doing so makes use
of an agreed upon set of terms and relationships that are
shared by domain experts, modelers, and model develop-
ment tools. These terms and relationships provide a se-
mantic grounding and structure for the executable model.
The domain ontology exists for a specific application
area, and its classes and instances determine the types of
components that will make up the model. The modeling
ontology is developed independently of any specific do-
main ontology but may rely on general upper ontologies.
It provides the concepts and relationships common to the
DES modeling world views under which simulation mod-
els are built. We might say that the domain ontology pro-
vides a universe of discourse for the application domain,
while the modeling ontology provides a universe of dis-
course for discrete event modeling.

 A domain ontology, such as a medical records ontol-
ogy, can provide domain information about patients, dis-
eases, health care workers, and procedures performed on
behalf of patients. A DES modeling ontology can provide
information about model components, activities, and rela-
tionships for the various simulation world views. Informa-
tion from both ontologies is used in the development of
models. Modelers receive the benefit of having a stable
set of terms for the domain available through the design
tools that they are using. Domain experts and others who
make use of the simulation models benefit by having
simulations use a common set of terms with which they
are familiar.

The relationship between the domain ontologies and
the modeling ontology is established during the mapping
process, and mapping instances are stored separately from
the ontologies. Since the domain ontology is created in-
dependently from the modeling ontology, multiple do-
main ontologies can be mapped to the modeling ontology.
Both ontologies can also be reused or modified without
directly impacting each other or exsisting simulation
models. If models need to be rebuilt based on changes to
either ontology, they can be generated as instances of the
modeling ontology.

The development of a simulation model which accu-
rately represents the processes being modeled is a chal-
11
lenging task. Information about the environment and
processes is typically collected by discussions with do-
main experts, observing the processes, reading documents
and learning terminology. An ODS tool suite can help
model developers in these early phases of model design as
well as facilitate greater automation in the later phases of
model development.

Given a particular problem domain, an ODS tool
suite could be used in the following fashion. It would al-
low the modeler to select ontologies relevant to the do-
main and then select a subset of concepts that can be ap-
plied to the problem. Typically, the modeler would like to
have simultaneous views of two ontologies, one for the
application domain and one for the modeling paradigm.
The modeler would first browse to find the relevant por-
tions of the domain ontology, and then browse the model-
ing ontology looking for a suitable simulation world view.
Choice of world view is influenced by the application
domain (specifics of the domain ontology) as well as the
modelers experience with different world views. The
DeMO ontology provides the following four world views:
state oriented, event oriented, activity oriented, and proc-
ess oriented.

After choosing a world view, the modeler may go on
to select a particular modeling technique such as Stochas-
tic Petri Nets. Once these selections are made, the more
difficult task of matching and mapping come into play
(Kalfoglau and Schorlemmer 2003). A correspondence
between classes and properties in each ontology needs to
be established. Typically, the classes will not be equiva-
lent; therefore, mappings will need to be provided.

Once a correspondence between the domain and
modeling ontologies has been created, detailed knowledge
needs to be transferred from the application domain to the
model development process. This boils down to taking
instances from the domain ontology and transforming
them into instances of the modeling ontology. The key
question regarding the merit of this approach is how much
knowledge can be transferred from the domain ontologies
to the modeling ontology. Briefly, the following types of
information may be available in the domain ontology: en-
tities, resources, activities, etc. We address this question
in more detail in Section 5.1.

Ontology driven simulation makes it possible to rep-
resent simulation models for various simulation world
views and even models which may be targeted for a wide
variety of different simulation engines in a common for-
mat which can be browsed by various tools. Since models
can be represented as a collection of modeling ontology
instances, it will be possible to create a repository of
models which can be browsed using currently available
Semantic Web tools. Furthermore, since the instances
which make up the models have names that are grounded
in particular domain ontologies, tools can be used to
browse for models within a particular domain. These ca-
09

Silver, Al-Haj Hassan, and Miller
pabilities make it possible to create Web based model re-
positories which can be organized by application domain
or by simulation world view. Terms from domain ontolo-
gies can be used to search for models within a particular
domain, while terms from the modeling ontology can be
used to search for models conforming to a particular
simulation world view.

These model repositories could also be populated us-
ing reverse engineering. Legacy simulation models devel-
oped using proprietary packages may be reverse engi-
neered into modeling ontology instances (Lacy 2006).
This would allow models developed using various tools to
be represented in a common format, become available to a
larger audience, support translation from one package to
another, and be converted to another simulation world
view. In general, support for interoperability will be a key
advantage of using techniques like ODS.

3 APPLICATION SCENARIO

This Section discusses how ODS takes place by using an
example from the domain of clinical medicine. The do-
main ontology used for the example is the Problem-
oriented Medical Records Ontology (PMRO). The exam-
ple is a simulation for a hospital emergency department.
The table below shows some of the concepts that were
needed to simulate the emergency department using proc-
ess interaction. The PMRO classes that were used to rep-
resent emergency department concepts and the Discrete
Event Modeling Ontology (DeMO) classes to which the
PMRO classes were mapped are also shown.

Table 1: Classes Used in Simulation Example

Concept PMRO Class DeMO Class
Patient Patient Entity
Triage Screening Activity
Examination Clinical-Exam Activity
Physician Clinician Resource
11
Each of the PMRO classes in the simulation were
mapped to DeMO classes so that DeMO ontology in-
stances could be used to represent the simulation model.
The ontology instances were then translated into an XML
based markup language which was used to generate an
executable simulation model. The details of this process
are covered in Sections 4 and 5.

4 THE DEMO APPROACH TO ODS

4.1 Review of DeMO

The Discrete Event Modeling Ontology (DeMO) is a gen-
eral ontology for discrete event simulation (DES) and in-
cludes state oriented, activity oriented, event oriented, and
process oriented models. Development of DeMO began in
2003 (Miller, Baramidze, Fishwick, and Sheth 2004;
Fishwick and Miller 2004; Miller and Baramidze 2005;
Silver, Lacy, Miller 2006) to explore issues and chal-
lenges in developing ontologies for Modeling and Simula-
tion (M&S). It is focused on discrete events models in
which state changes discretely over time due to the occur-
rence of events. The OWL language is used to define over
80 classes. Figures 1, 2, and 3 illustrate visualizations cre-
ated by OntoViz (Sintek 2003) showing the DeMO
classes and their relationships. The ontology is divided
into four main parts: ModelConcept, DeModel, ModelCompo-
nent and ModelMechanism. The principal component, De-
Model, is itself divided into four top-level classes each rep-
resenting a modeling paradigm. The first is based upon
state based modeling, a modeling paradigm used through-
out computer science. The other three are based on the
most popular simulation world views. These classes,
StateOrientedModel, ActivityOrientedModel, EventOriented-
Model, and ProcessOrientedModel form the foundation for
all of the modeling techniques supported in DeMO. In its
current form, DeMO does not address much of the model-
ing and simulation domain including continuous models,
statistical modeling, output analysis, random variates.
Figure 1: DeMO Top Level Classes
10

Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.
4.2 Using DeMO for ODS

Two of the top level classes of the DeMO DeModel are
currently used for ODS. The portion of the model repre-
sented by the ActivityOrientedModel class, as seen in
Figure 2, is used to create Petri Net models. The instances
used to represent these models can be transformed by the
ODS tool suite into the Petri Net Markup Language
(PNML) (Jungel, Kindler, and Weber 2000) for execution
on Petri Net simulators like the one found in the Petri Net
Kernel (PNK) (Kindler and Weber 2001).

The PIModel subclass of the ProcessOrientedModel
top level class, as seen in Figure 3, is used by the ODS
tool suite to develop Process Interaction Models. The
models may be translated to Extensible Process Interac-
tion Markup Language (XPIML) (Silver, et al. 2006) and
then into executable models for simulation software pack-
ages. The details of creating executable models will be
discussed in Section 5.

5 ARCHITECTURE AND IMPLEMENTATION

In order to support ODS, we have developed an architec-
ture that gives a smooth way to refine knowledge from
domain ontologies to the point of creating executable
simulation models. Because of the complexity, our ap-
proach consists of multiple steps as shown in Figure 4.
The figure uses the following conventions: rectangles rep-
resent documents, ovals represent process steps or pro-
grams, and rounded rectangles represent the ultimate goal
of simulating the generated models. The blue text (left
side of the diagram) in the model represents an emer-
1111
gency room simulation using a medical records domain
ontology and the text in green (right side of the diagram)
represents a glycan biosynthetic pathway simulation using
the GlycO Ontology. These steps are explained in greater
detail in the sub-sections below.

5.1 ODS Design Tool Suite

One issue addressed by the ODS design suite is the task
of assembling the knowledge necessary to create a simu-
lation model. This knowledge can come from a variety of
sources, one of which is the domain ontology. The ontol-
ogy mapping component of the suite provides a modeler
with the capability to browse a domain ontology and the
DeMO ontology simultaneously and create a correspon-
dence between selected concepts in the ontologies. For
example, in Figure 5 the Patient class of the PMRO on-
tology is mapped to the Entity class of the DeMO ontol-
ogy.
Other sources of information include databases, logs,
spreadsheets, and other simulation models. These same
sources can also provide information about resources used
in, and cost associated with clinical procedures. The data
generated by prior simulation studies is another source of
information. Medical personnel and information systems
use terms to categorize the data stored in the sources men-
tioned above. If these terms originated from the domain
ontology used for the simulation study, then communica-
tion among those involved in the study and the collection
of data for the study will be easier since a single set of
concepts is being used by all of the information sources.
Figure 2: DeMO ActivityOrientedModel

Silver, Al-Haj Hassan, and Miller

Figure 3: DeMO PIModel
Figure 4: ODS Architecture

If the domain ontology is populated with instances, it
may also serve as an additional source of information for
the model. The classes and properties in an ontology de-
fine the terms and relationships of a domain, and in doing
so they act as a schema, but the usefulness of the ontology
is increased if it is populated with instances. In the medi-
cal records ontology mentioned earlier, a clinician might
111
be described as a person who plays a clinical role. In this
case, the Clinician class is a subclass of the Person class.
If the ontology is populated, ODS will be able to gather
information from the domain ontology about the existence
of various clinician resources available for the processes
being modeled.

Figure 5: ODS Mapping Tool

A simulation model should contain enough informa-
tion to accurately represent the processes being simulated.
This may include the activities involved in the processes,
resources used in the processes, the entities involved in
the processes, the routes taken by the entities. It may also
include statistical data such as mean arrival times, service
times, and their standard deviations. Some of this infor-
mation can be gathered from the domain ontology
schema, while other portions may be retrieved from the
instances of the populated ontology, external data sources,
domain experts, or the person developing the model.
2

Silver, Al-Haj Hassan, and Miller
When simulation models are developed using popular
software packages, the reusability of the model is very
limited for several reasons: (1) There is no formal way of
specifying an agreed upon domain of discourse for the
application domain of the process being modeled. If mod-
elers want to select components from one model to be
used in the development of another model, they must be
able to determine the intended function of the selected
components. Unless both models reference a commonly
agreed upon set of definitions, this is a difficult task. For
example, one model for a hospital emergency department
may refer to a particular resource as a physician, and an-
other may refer to a component that performs the same
function as a doctor; (2) The modeling domain suffers
from a similar problem. The same term may mean differ-
ent things in different simulation software packages. For
example, a component that is an activity in one software
package may be called a process another package. ODS
overcomes these problems by allowing commonly agreed
upon ontologies for both the application domain and the
modeling world view to be used as the basis upon which
model components are constructed; (3) There is no com-
monly agreed upon format for representing and storing
models. For example, models developed using ARENA
are stored in one format and models developed in JSIM
are stored in a different format. ODS overcomes this
problem by representing models as DeMO ontology in-
stances which can be translated into executable simulation
models for various software packages.

As stated earlier, ODS creates a correspondence be-
tween classes in the domain ontology and the modeling
ontology. This correspondence is not ontology mapping in
the typical sense, where like classes in two ontologies are
mapped to indicate that a class in one ontology is the
same as a class in another ontology. ODS creates a corre-
spondence between classes to indicate that a class in the
domain ontology can serve as a instance of an object rep-
resented by a class in the modeling ontology. For exam-
ple, the clinical-examination class in the POMR ontology
may be mapped to the activity class in DeMO to indicate
that a clinical-examination may serve as an activity in a
model. Determining the correspondence between classes
can be a difficult task since, for example, a nurse object
might represent the activity performed by a nurse in one
simulation model; while in another simulation model a
nurse object might be a resource associated with a clinical
examination activity. Many of the decisions associated
with the creation of correspondences between classes are
dependent upon the perspective of the modeler rather than
the design of the ODS tool suite.

Given the fact that the creation of correspondences is
dependent upon the modeler’s perspective, the ODS tool
suite cannot ensure their validity. Instead of attempting to
do so the tool assists the modeler by finding inconsisten-
cies within the correspondences. If, for example, nurse
11
and physician are both subclasses of clinician in the
POMR ontology but nurse is mapped to the DeMO entity
class and physician is mapped to the DeMO resource
class, the ODS design tool suite will indicate that an in-
consistency exists within the correspondences since a cli-
nician is considered to be a model entity in one place and
a model resource in another.

5.2 Model Markup Generator

Simulation models represented as modeling ontology in-
stances can be transformed directly into executable mod-
els (Lacy 2006) or indirectly into an XML markup lan-
guage such as XPIML or PNML. Process Interaction
models in XPIML are described as a collection of proc-
esses which are themselves described as a collection of
activities.

The model markup generator of the ODS design tool
suite currently supports the creation of activity oriented
models in the form of Petri Nets and process oriented
models for process interaction simulation. The base class
used to represent a Petri Net model is the DeMO Extend-
edStochasticPetriNet class, and the base class for process
interaction models is the DeMO PIModel class. The
model markup generator searches the populated DeMO
ontology and displays instances of these classes on the
markup language generator (see Figure 6). When an Ex-
tendedStochasticPetri instance is selected for generation,
PNML will be generated and when a PIModel instance is
selected, XPIML will be generated.

Figure 6: ODS Markup Language Generator

DeMO PIModels are made up of process instances.
Each process is stored as a directed graph with nodes rep-
resented as activity instances and edges represented as
transport instances. Figure 7 shows an activity instance in
OWL and Figure 8 shows the XPIML that was generated
for this instance.

Since XPIML may be viewed as having a grounding
in the DeMO PIModel, PIModel instances can be trans-
formed into XPIML instances using Jena (McBride 2002),
SPARQL (Prud’hommeaux and Seaborne 2007), and Java
13

ssan, and Miller
Silver, Al-Haj Ha

IO. ExtendedStochasticPetriNet instances are transformed
into PNML using a similar process. When translating PI-
Model instances to XPIML, the ODS design tool suite
uses Java to execute a series of SPARQL queries against
OWL PIModel instances. It then parses the results in or-
der to write the XPIML output.

Figure 7: OWL Process Interaction Activity Instance

Our decision to use a combination of Java and
SPARQL to implement the translation of models into
XPIML arose from the need to accommodate the hierar-
chical structure XPIML. Each XPIML model element
may have several nested process elements, each process
element may have several nested activity elements, and
each activity element may have several transports and
other parameters. Java programs are used to execute a
SPARQL query for each level of nesting (model, process,
activity, etc.). The query result sets are kept in Java data
structures and accessed as needed. Using a procedural
language such as Java allowed us to create independent
query results for each level of nesting and move back and
forth between levels as necessary during the parsing of
the results sets.

It is possible to have SPARQL return query results as
XML. When this is done, languages designed for use with
XML, such as XSLT (Clark 1999) may be used to trans-
form the query results. Future plans include modifying the
model markup generator to transform the SPARQL query
results into XPIM using XSLT instead of Java.

Figure 8: XPIML Activity Instance
11
5.3 Simulation Code Generator

In ODS, models represented as ontology instances can be
translated into an intermediate markup language or di-
rectly into executable models for target simulation pack-
ages. At this time, the ODS design tool does not support
translation of ontology instance directly into executable
models. Instances must first be translated into a markup
language and then into executable models. The simulation
code generator of the ODS design tool performs the trans-
lation of markup language based models into executable
models. DeMO PIModel instances that have been trans-
lated into XPIML can be translated by the tool into execu-
table models for either JSIM (Nair, Miller, and Zhang
1996) or ARENA.

The simulation code generator of the ODS design
tool suite takes the XPIML representation of the model as
input and produces and executable simulation model.
When an executable JSIM model is being generated, the
code generator reads and parses the XPIML file then out-
puts Java classes which represent the simulation model.
These classes can be compiled and executed using the
JSIM simulation environment.

6 RELATED WORK

In the early days of DES, individual programs were writ-
ten for each simulation application. These programs were
written using general purpose programming languages
which had no specific support for simulation. This began
to change in the early 1960s with the introduction of the
first Simulation Programming Languages (SPLs). The
General Simulation Program (GSP) was developed by
Tochar in 1958 (Tochar and Owen 1960) and was fol-
lowed by several other SPLs, such as CSL, GPSS, GASP,
and SIMULA (Buxton and Laski 1963; Kiviat 1963;
Wexelblatt 1980; Nygaard and Dahl 1981), within the
next few years.

Early SPLs required model developers to deal with
programming language syntax and other implementation
details not directly related to model behavior. Recognition
of this situation was one of the primary factors that lead to
a shift in focus from simulation program development to
simulation model development in the 1970s (Nance 1983;
Page 1994). Since this shift, the modeling and simulation
community has seen the introduction of several model de-
velopment environments that allow models to be repre-
sented at higher levels using specific conceptual frame-
works (or world-views). Many factors, such as advances
in computer hardware, software, and networks have influ-
enced how model development environments have
evolved over the past several years (Nance and Sargent
2002).

One factor that is currently influencing the evolution
of model development environments is the Semantic Web
14

Silver, Al-Haj Hassan, and Miller
(Fishwick and Miller 2004; Miller and Baramidze 2005).
The Semantic Web improves discovery, integration, and
reuse of Web resources by providing meaningful and ma-
chine-processable descriptions of Web resources. These
descriptions of Web resources are typically made avail-
able via ontologies encoded in Semantic Web languages
such as OWL. Work related of ontologies in modeling
and simulation is currently underway by several groups.
Lacy (2006) developed the Process Interaction Modeling
Ontology for Discrete Event Simulations (PIMODES) to
focus specifically on the process interaction world view
and support the interchange of simulation models between
commercial simulation packages. Benjamin et al. (2005)
present an ontology driven framework for process ori-
ented applications, including process interaction simula-
tions. The framework is an attempt to overcome the prob-
lem of semantic inaccessibility where the semantic
intentions of the application developers and the semantic
rules of the application are not available to other entities
within an organization. Turnitsa and Tolk (2005) describe
what is required for an ontology to be sufficiently com-
plete to serve as a reference for simulation interoperability
and they also propose a method for evaluating an ontol-
ogy to determine it completeness.

7 CONCLUSIONS AND FUTURE WORK

We presented an ontology driven approach to the devel-
opment of DES models. The ODS design tool suite was
created in order to support this approach. The tool pro-
vides facilities for: (1) mapping concepts from domain
ontologies to a modeling ontology in order to represent
models as ontology instances; (2) translating ontology
instances to an intermediate XML markup language; and
(3) generating executable simulation models from markup
language representations of models. The benefits of this
approach are: (1) model developers and users have an
agreed upon set of terms and concepts available through-
out the development and use of a simulation model. This
facilitates good communication between all of the entities
involved in a simulation study and reduces the incidence
of ambiguities; (2) DES models targeted for various simu-
lation software packages or developed using various
simulation world views can be represented in a common
language; (3) Since models can be represented in a Se-
mantic Web enabled language, the possibility exists for
Web based DES model repositories, and (4) since much
of the knowledge needed to develop a simulation model
exists in the domain and the modeling ontologies, ODS is
able to speed up model development by allowing the de-
veloper to assemble ontology components to create a
model.

Possibilities for future work include the following:
creating an complete online demonstration of the
Ontology Driven Simulation design tool suite
(www2.ac.edu/faculty/gsilver/ODS.html);
developing Web based repositories for DES
models represented as DeMO ontology in-
stances;
refining the process for simulating biosynthetic
pathways using the GlycO and DeMO ontolo-
gies.

REFERENCES

Buxton, J., N. and J. G. Lanski. 1962. Control and Simu-
lation Language. Computer Journal. Volume 5: 194-
199.

Clark, J. 1999. XSL Transformations (XSLT) Version 1.0
[online]. Available via < http://www.w3.org/TR/xslt/
> [Accessed June 26, 2007].

Fishwick, P. A. and J. A. Miller. 2004. Ontologies for
Modeling and Simulation: Issues and Approaches,
Proceedings of the 2004 Winter Simulation Confer-
ence (WSC'04), 259-264 . Washington, DC.

Jungel, M. E., E. Kindler, and M. Weber. 2000. The Petri
Net Markup Language, Workshop Algorithmen und
Werkzeuge für Petrinetze. Koblenz, Germany.

Kalfoglau,, Y. and M. Schorlemmer. 2003. Ontology
Mapping: The State of the Art. The Knowledge Engi-
neering Review. Volume 18 Issue 1: 1-31. Cam-
bridge: Cambridge University Press.

Kiviat, P. J. 1963. GASP – a General Activity Simulation
Program. Applied Research laboratory, United States
Steel Corporation, Monroeville, Pennsylvania.

Kindler, E. and M. Weber. 2001. The Petri Net Kernel -
An Infrastructure for Building Petri Net Tools. Inter-
national Journal on Software Tools for Technology
Transfer (STTT), Volume 3 No. 4: 486-497. Berlin:
Springer.

Lacy, L. W. and W. J. Gerber. 2004. Potential Modeling
and Simulation Applications of the Web Ontology
Language – OWL. In Proceedings of the 2004 Winter
Simulation Conference. Washington D. C.

Lacy, L. W. 2006. Interchanging Discrete-Event Simula-
tion Process-Interaction Models using the Web On-
tology Language – OWL. Unpublished PhD Disserta-
tion, Department of Industrial Engineering and
Management Systems, University of Central Florida,
Orlando, Florida.

McBride, B. 2002. Jena: A Semantic Web Toolkit. Inter-
net Computing, Volume 6 No. 6: 55-59. Los Alami-
tos, CA: IEEE Computer Society.

McGuinness, D. L. and F. Harmelen. 2004. OWL Web
Ontology Language Overview [online]. Available via
< http://www.w3.org/TR/owl-features/ > [Accessed
June 5, 2007].
1115

Silver, Al-Haj Hassan, and Miller
Miller, J. A. and G. Baramidze. 2005. Simulation and the
Semantic Web. In Proceedings of the 2005 Winter
Simulation Conference, 2371-2377. Orlando, Florida.

Miller, J. A., G. Baramidze, and P. A. Fishwick. 2004. In-
vestigating Ontologies for Simulation and Modeling.
In Proceedings of the 37th Annual Simulation Sym-
posium, 55-71. Arlington, Virginia.

Miller, J. A., P. A. Fishwick, G. Baramidze, A. P. Sheth
and G. Silver. 2006. Ontologies for Modeling and
Simulation: An Extensible Framework. Technical
Report No. UGA-CS-LSDIS-TR-06-011, Department
of Computer Science, University of Georgia, Athens,
Georgia.

Nair, R., J. A. Miller, and Z. Zhang. 1996. A Java-Based
Query Driven Simulation Environment. In Proceed-
ings of the 1996 Winter Simulation Conference, 786-
793. Coronado, California.

Nance, R. E. 1983. A Tutorial View of Simulation Model
Development. In Proceedings of the 1983 Winter
Simulation Conference, 325-331. Arlington, Virginia.

Nance, R. E. 2002. Perspective on the Evolution of Simu-
lation. Operations Research. Volume 50, Number 1:
161-172. Hanover, Maryland: INFORMS.

Nygaard, K. and O. J. Dahl. 1981. The Development of
the SIMULA Languages. In History of Programming
Languages, 439-493. New York: Academic Press.

Page, E.. H. 1994. Simulation Modeling Methodology:
Principles and Etiology of Decision Support. Unpub-
lished PhD Dissertation, Department of Department
of Computer Science, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia.

Perakath, B. C., V. A. Kumar, and R. Fernandes. 2005.
An Ontology Driven Framework for Process-oriented
Applications, Proceedings of the 2005 Winter Simu-
lation Conference (WSC'05), 2355-2363. Orlando,
Florida.

Prud’hommeaux, E. and A Seaborne. 2007. SPARQL
Query Language for RDF W3C Candidate Recom-
mendation 14 June 2007 [online]. Available via
<http://www.w3.org/TR/rdf-sparql-query> [accessed
June 24, 2007].

Silver, G. A., L. W. Lacy, and J. A. Miller. 2006. Ontol-
ogy Based Representations of Simulation Models
Following the Process Interaction World View, Pro-
ceedings of the 2006 Winter Simulation Conference
(WSC'06), 1168-1176. Monterey, California.

Sintek, M. 2003. Ontoviz Tab: Visualizing Protege On-
tologies [online]. Available via
<http://protege.stanford.edu/plugins/ontoviz/ontoviz.
html> [accessed July 15, 2007].

Thomas, C., J., A. P Sheth,, and W. S. York. 2006.
Modular Ontology Design Using Canonical Building
Blocks in the Biochemistry Domain. In Proceedings
of the International Conference on Formal Ontology
11
in Information Systems (FOIS). Fairfax, Virginia:
IOS Press.

Turnitsa, C. and A. Tolk. 2005. Evaluation of the
C2IEDM as an Interoperability-Enabling Ontology.
In Proceedings of the European Simulation Interop-
erability Workshop. Toulouse, France.

WC3 Health Care and Life Science Group (HCLS). 2006.
A Problem-Oriented Medical Records Ontology
[online]. Available via
<http://esw.w3.org/topic/HCLS/POMROntology>
[accessed June 5, 2007].

Wexelblatt, R. L. 1981. History of Programming Lan-
guages. New York: Academic Press.

AUTHOR BIOGRAPHIES

GREGORY A. SILVER is a PhD student in the Com-
puter Science Department at the University of Georgia.
He is also a Computer Information Systems Instructor at
Anderson University. Mr. Silver received his M.S. Degree
in Computer Information Systems from Georgia State
University in 1996. His research interests include model-
ing and simulation, Web services, and distributed sys-
tems.

OSAMA M. AL-HAJ HASSAN is a PhD student in the
Computer Science Department at the University of Geor-
gia. Mr. He received his M. Sc. Degree in Computer Sci-
ence from New York Institute of Technology in 2004. Mr.
Al-Haj Hassan’s research interests include distributed sys-
tems, databases, and simulation.

JOHN A. MILLER is a Professor of Computer Science
at the University of Georgia and has also been the Gradu-
ate Coordinator for the department for 9 years. His re-
search interests include database systems, simulation, bio-
informatics and Web services. Dr. Miller received the
B.S. degree in Applied Mathematics from Northwestern
University in 1980 and the M.S. and Ph.D. in Information
and Computer Science from the Georgia Institute of
Technology in 1982 and 1986, respectively. During his
undergraduate education, he worked as a programmer at
the Princeton Plasma Physics Laboratory. Dr. Miller is the
author of over 125 technical papers in the areas of data-
base, simulation, bioinformatics and Web services. He has
been active in the organizational structures of research
conferences in all these areas. He has served in positions
from Track Coordinator to Publications Chair to General
Chair of the following conferences: Annual Simulation
Symposium (ANSS), Winter Simulation Conference
(WSC), Workshop on Research Issues in Data Engineer-
ing (RIDE), NSF Workshop on Workflow and Process
Automation in Information Systems, and Conference on
Industrial & Engineering Applications of Artificial Intel-
ligence and Expert Systems (IEA/AIE). He is an Associ-
16

Silver, Al-Haj Hassan, and Miller
ate Editor for ACM Transactions on Modeling and Com-
puter Simulation and IEEE Transactions on Systems, Man
and Cybernetics as well as an Editorial Board Member for
Journal of Simulation and International Journal of Simu-
lation and Process Modelling. In addition, he has been a
Guest Editor for the International Journal in Computer
Simulation and IEEE Potentials.
1117

