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ABSTRACT 

Ontologies allow researchers, domain experts, and soft-
ware agents to share a common understanding of the con-
cepts and relationships of a domain. The past few years 
have seen the publication of ontologies for a large number 
of domains. The modeling and simulation community is 
beginning to see potential for using these ontologies in the 
modeling process. This paper presents a method for using 
the knowledge encoded in ontologies to facilitate the de-
velopment of simulation models. It suggests a technique 
that establishes relationships between domain ontologies 
and a modeling ontology and then uses the relationships 
to instantiate a simulation model as ontology instances. 
Techniques for translating these instances into XML 
based markup languages and then into executable models 
for various software packages are also presented. 

1 INTRODUCTION

Many application domains are developing detailed, 
agreed-upon ontologies to define and document concepts 
in their domain. For example, the Problem-oriented 
Medical Records ontology (PMRO) (in the healthcare 
domain) defines patients, clinical personnel, symptoms, 
diseases, and treatments (WC3 Health Care and Life Sci-
ence Group 2006). The Glycomics ontology (GlycO) (in 
the biology domain) defines glycan (carbohydrate) struc-
tures and the items in the biosynthetic pathways that cre-
ate them (Thomas, Sheth, and York 2006). The premise 
behind our research is that this knowledge and data can be 
used productively to bootstrap the creation of simulation 
models. In this paper, we illustrate how to drive the de-
velopment of simulation models using ontologies in detail 
for the healthcare domain and briefly discuss it in the 
simulation of biosynthetic pathways. The basic strategy is 
to use information in the application or domain ontologies 
and map it to a modeling ontology. Through the use of 
computer aided techniques this information is expanded, 
refined, and translated step-by-step into effectively execu-
table simulation models. 
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An overview of ontology driven simulation and its 
benefits is presented in Section 2 of the paper. In Section 
3, we apply our approach to ontology driven simulation to 
an application scenario to develop a Discrete Event Simu-
lation (DES) model. Section 4 discusses ways in which 
the Discrete Event Modeling Ontology (DeMO) (Miller, 
et al. 2004) is used to supply a foundation for ontology 
driven simulation. In Section 5, we describe the architec-
ture of the Ontology Driven Simulation design tool (ODS) 
and Section 6 reviews related work. Finally, conclusions 
and recommendations for future work are discussed in 
Section 7. 

2 ONTOLOGY DRIVEN SIMULATION 

2.1 Exploiting Domain Knowledge 

Simulation models have been used to simulate processes 
in many different domains. The simulation modeler must 
rely on the information provided to him/her by domain 
experts during the development of the model. Domain ex-
perts are a necessary part of the process because they un-
derstand the concepts and relationships among the con-
cepts within the domain. In the past few years another 
source of domain knowledge, known as the domain on-
tology, has also become available. While domain ontolo-
gies cannot replace domain experts, they may be very use-
ful to simulation modelers.  

Ontologies provide formal methods for describing the 
concepts, categories, and relationships within a domain. 
In addition, ontologies written in languages such as the 
Web Ontology Language (OWL) (McGuinness and Har-
melen 2004) can be processed by machines. Domain on-
tologies may be particularly helpful to simulation model-
ers since they can be used to communicate domain 
information to simulation and modeling tools with limited 
human intervention.  ODS takes advantage of this feature 
by using software tools to align knowledge resident in 
domain ontologies with knowledge resident in a modeling 
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ontology in order to facilitate the creation of simulation 
models.  

In ODS, a tool is used to map concepts from domain 
ontologies to concepts in a modeling ontology and then 
create instances of modeling ontology classes to represent 
a model. Once the ontology instances representing the 
model have been created additional tools are used to 
translate the instances into an executable simulation 
model. 

2.2 Benefits of Ontology Driven Simulation 

Ontology driven simulation uses ontologies to drive the 
creation of simulation models and in doing so makes use 
of an agreed upon set of terms and relationships that are 
shared by domain experts, modelers, and model develop-
ment tools. These terms and relationships provide a se-
mantic grounding and structure for the executable model. 
The domain ontology exists for a specific application 
area, and its classes and instances determine the types of 
components that will make up the model. The modeling 
ontology is developed independently of any specific do-
main ontology but may rely on general upper ontologies. 
It provides the concepts and relationships common to the 
DES modeling world views under which simulation mod-
els are built. We might say that the domain ontology pro-
vides a universe of discourse for the application domain, 
while the modeling ontology provides a universe of dis-
course for discrete event modeling. 

 A domain ontology, such as a medical records ontol-
ogy, can provide domain information about patients, dis-
eases, health care workers, and procedures performed on 
behalf of patients. A DES modeling ontology can provide 
information about model components, activities, and rela-
tionships for the various simulation world views. Informa-
tion from both ontologies is used in the development of 
models. Modelers receive the benefit of having a stable 
set of terms for the domain available through the design 
tools that they are using. Domain experts and others who 
make use of the simulation models benefit by having 
simulations use a common set of terms with which they 
are familiar.  

The relationship between the domain ontologies and 
the modeling ontology is established during the mapping 
process, and mapping instances are stored separately from 
the ontologies. Since the domain ontology is created in-
dependently from the modeling ontology, multiple do-
main ontologies can be mapped to the modeling ontology. 
Both ontologies can also be reused or modified without 
directly impacting each other or exsisting simulation 
models. If models need to be rebuilt based on changes to 
either ontology, they can be generated as instances of the 
modeling ontology.   

The development of a simulation model which accu-
rately represents the processes being modeled is a chal-
11
lenging task. Information about the environment and 
processes is typically collected by discussions with do-
main experts, observing the processes, reading documents 
and learning terminology. An ODS tool suite can help 
model developers in these early phases of model design as 
well as facilitate greater automation in the later phases of 
model development. 

Given a particular problem domain, an ODS tool 
suite  could be used in the following fashion. It would al-
low the modeler to select ontologies relevant to the do-
main and then select a subset of concepts that can be ap-
plied to the problem. Typically, the modeler would like to 
have simultaneous views of two ontologies, one for the 
application domain and one for the modeling paradigm. 
The modeler would first browse to find the relevant por-
tions of the domain ontology, and then browse the model-
ing ontology looking for a suitable simulation world view. 
Choice of world view is influenced by the application 
domain (specifics of the domain ontology) as well as the 
modelers experience with different world views. The 
DeMO ontology provides the following four world views: 
state oriented, event oriented, activity oriented, and proc-
ess oriented. 

After choosing a world view, the modeler may go on 
to select a particular modeling technique such as Stochas-
tic Petri Nets. Once these selections are made, the more 
difficult task of matching and mapping come into play 
(Kalfoglau and Schorlemmer 2003). A correspondence 
between classes and properties in each ontology needs to 
be established. Typically, the classes will not be equiva-
lent; therefore, mappings will need to be provided.  

Once a correspondence between the domain and 
modeling ontologies has been created, detailed knowledge 
needs to be transferred from the application domain to the 
model development process. This boils down to taking 
instances from the domain ontology and transforming 
them into instances of the modeling ontology. The key 
question regarding the merit of this approach is how much 
knowledge can be transferred from the domain ontologies 
to the modeling ontology. Briefly, the following types of 
information may be available in the domain ontology: en-
tities, resources, activities, etc. We address this question 
in more detail in Section 5.1. 

Ontology driven simulation makes it possible to rep-
resent simulation models for various simulation world 
views and even models which may be targeted for a wide 
variety of different simulation engines in a common for-
mat which can be browsed by various tools. Since models 
can be represented as a collection of modeling ontology 
instances, it will be possible to create a repository of 
models which can be browsed using currently available 
Semantic Web tools. Furthermore, since the instances 
which make up the models have names that are grounded 
in particular domain ontologies, tools can be used to 
browse for  models within a particular domain. These ca-
09
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pabilities make it possible to create Web based model re-
positories which can be organized by application domain 
or by simulation world view. Terms from domain ontolo-
gies can be used to search for models within a particular 
domain, while terms from the modeling ontology can be 
used to search for models conforming to a particular 
simulation world view.  

These model repositories could also be populated us-
ing reverse engineering. Legacy simulation models devel-
oped using proprietary packages may be reverse engi-
neered into modeling ontology instances (Lacy 2006). 
This would allow models developed using various tools to 
be represented in a common format, become available to a 
larger audience, support translation from one package to 
another, and be converted to another simulation world 
view. In general, support for interoperability will be a key 
advantage of using techniques like ODS. 

3 APPLICATION SCENARIO 

This Section discusses how ODS takes place by using an 
example from the domain of clinical medicine. The do-
main ontology used for the example is the Problem-
oriented Medical Records Ontology (PMRO). The exam-
ple is a simulation for a hospital emergency department. 
The table below shows some of the concepts that were 
needed to simulate the emergency department using proc-
ess interaction. The PMRO classes that were used to rep-
resent emergency department concepts and the Discrete 
Event Modeling Ontology (DeMO) classes to which the 
PMRO classes were mapped are also shown.  

Table 1: Classes Used in Simulation Example 

Concept PMRO Class DeMO Class 
Patient Patient Entity 
Triage Screening Activity 
Examination Clinical-Exam Activity 
Physician Clinician Resource 
11
Each of the PMRO classes in the simulation were 
mapped to DeMO classes so that DeMO ontology in-
stances could be used to represent the simulation model. 
The ontology instances were then translated into an XML 
based markup language which was used to generate an 
executable simulation model. The details of this process 
are covered in Sections 4 and 5. 

4 THE DEMO APPROACH TO ODS 

4.1 Review of DeMO 

The Discrete Event Modeling Ontology (DeMO) is a gen-
eral ontology for discrete event simulation (DES) and in-
cludes state oriented, activity oriented, event oriented, and 
process oriented models. Development of DeMO began in 
2003 (Miller, Baramidze, Fishwick, and Sheth 2004; 
Fishwick and Miller 2004; Miller and Baramidze 2005; 
Silver, Lacy, Miller 2006) to explore issues and chal-
lenges in developing ontologies for Modeling and Simula-
tion (M&S). It is focused on discrete events models in 
which state changes discretely over time due to the occur-
rence of events. The OWL language is used to define over 
80 classes. Figures 1, 2, and 3 illustrate visualizations cre-
ated by OntoViz (Sintek 2003) showing the DeMO 
classes and their relationships. The ontology is divided 
into four main parts: ModelConcept, DeModel, ModelCompo-
nent and ModelMechanism. The principal component, De-
Model, is itself divided into four top-level classes each rep-
resenting a modeling paradigm. The first is based upon 
state based modeling, a modeling paradigm used through-
out computer science. The other three are based on the 
most popular simulation world views. These classes, 
StateOrientedModel, ActivityOrientedModel, EventOriented-
Model, and ProcessOrientedModel form the foundation for 
all of the modeling techniques supported in DeMO. In its 
current form, DeMO does not address much of the model-
ing and simulation domain including continuous models, 
statistical modeling, output analysis, random variates.  
Figure 1: DeMO Top Level Classes 
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4.2 Using DeMO for ODS 

Two of the top level classes of the DeMO DeModel are 
currently used for ODS. The portion of the model repre-
sented by the ActivityOrientedModel class, as seen in 
Figure 2, is used to create Petri Net models. The instances 
used to represent these models can be transformed by the 
ODS tool suite into the Petri Net Markup Language 
(PNML) (Jungel, Kindler, and Weber 2000) for execution 
on Petri Net simulators like the one found in the Petri Net 
Kernel (PNK) (Kindler and Weber 2001). 

The PIModel subclass of the ProcessOrientedModel 
top level class, as seen in Figure 3, is used by the ODS 
tool suite to develop Process Interaction Models. The 
models may be translated to Extensible Process Interac-
tion Markup Language (XPIML) (Silver, et al. 2006) and 
then into executable models for simulation software pack-
ages. The details of creating executable models will be 
discussed in Section 5.  

5 ARCHITECTURE AND IMPLEMENTATION 

In order to support ODS, we have developed an architec-
ture that gives a smooth way to refine knowledge from 
domain ontologies to the point of creating executable 
simulation models. Because of the complexity, our ap-
proach consists of multiple steps as shown in Figure 4.  
The figure uses the following conventions: rectangles rep-
resent documents, ovals represent process steps or pro-
grams, and rounded rectangles represent the ultimate goal 
of simulating the generated models. The blue text (left 
side of the diagram) in the model represents an emer-
1111
gency room simulation using a medical records domain 
ontology and the text in green (right side of the diagram) 
represents a glycan biosynthetic pathway simulation using 
the GlycO Ontology. These steps are explained in greater 
detail in the sub-sections below.  

5.1 ODS Design Tool Suite 

One issue addressed by the ODS design suite is the task 
of assembling the knowledge necessary to create a simu-
lation model.  This knowledge can come from a variety of 
sources, one of which is the domain ontology. The ontol-
ogy mapping component of the suite provides a modeler 
with the capability to browse a domain ontology and the 
DeMO ontology simultaneously and create a correspon-
dence between selected concepts in the ontologies. For 
example, in Figure 5 the Patient class of the PMRO on-
tology is mapped to the Entity class of the DeMO ontol-
ogy. 
Other sources of information include databases, logs, 
spreadsheets, and other simulation models. These same 
sources can also provide information about resources used 
in, and cost associated with clinical procedures. The data 
generated by prior simulation studies is another source of 
information. Medical personnel and information systems 
use terms to categorize the data stored in the sources men-
tioned above. If these terms originated from the domain 
ontology used for the simulation study,  then communica-
tion among those involved in the study and the collection 
of data for the study will be easier since a single set of 
concepts is being used by all of the information sources.
Figure 2: DeMO ActivityOrientedModel 
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Figure 3: DeMO PIModel 
Figure 4: ODS Architecture 

If the domain ontology is populated with instances, it 
may also serve as an additional source of information for 
the model. The classes and properties in an ontology de-
fine the terms and relationships of a domain, and in doing 
so they act as a schema, but the usefulness of the ontology 
is increased if it is populated with instances. In the medi-
cal records ontology mentioned earlier, a clinician might 
111
be described as a person who plays a clinical role. In this 
case, the Clinician class is a subclass of the Person class. 
If the ontology is populated, ODS will be able to gather 
information from the domain ontology about the existence 
of various clinician resources available for the processes 
being modeled.   

Figure 5: ODS Mapping Tool 

A simulation model should contain enough informa-
tion to accurately represent the processes being simulated. 
This may include the activities involved in the processes, 
resources used in the processes, the entities involved in 
the processes, the routes taken by the entities. It may also 
include statistical data such as mean arrival times, service 
times, and their standard deviations.  Some of this infor-
mation can be gathered from the domain ontology 
schema, while other portions  may be retrieved from the 
instances of the populated ontology, external data sources, 
domain experts, or the person developing the model. 
2
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When simulation models are developed using popular 
software packages, the reusability of the model is very 
limited for several reasons: (1) There is no formal way of 
specifying an agreed upon domain of discourse for the 
application domain of the process being modeled. If mod-
elers want to select components from one model to be 
used in the development of another model, they must be 
able to determine the intended function of the selected 
components. Unless both models reference a commonly 
agreed upon set of definitions, this is a difficult task. For 
example, one model for a hospital emergency department 
may refer to a particular resource as a physician, and an-
other may refer to a component that performs the same 
function as a doctor; (2) The modeling domain suffers 
from a similar problem. The same term may mean differ-
ent things in different simulation software packages. For 
example, a component that is an activity in one software 
package may be called a process another package. ODS 
overcomes these problems by allowing commonly agreed 
upon ontologies for both the application domain and the 
modeling world view to be used as the basis upon which 
model components are constructed;  (3) There is no com-
monly agreed upon format for representing and storing 
models. For example, models developed using ARENA 
are stored in one format and models developed in JSIM 
are stored in a different format. ODS overcomes this 
problem by representing models as DeMO ontology in-
stances which can be translated into executable simulation 
models for various software packages. 

As stated earlier, ODS creates a correspondence be-
tween classes in the domain ontology and the modeling 
ontology. This correspondence is not ontology mapping in 
the typical sense, where like classes in two ontologies are 
mapped to indicate that a class in one ontology is the 
same as a class in another ontology. ODS creates a corre-
spondence between classes to indicate that a class in the 
domain ontology can serve as a instance of an object rep-
resented by a class in the modeling ontology. For exam-
ple, the clinical-examination class in the POMR ontology 
may be mapped to the activity class in DeMO to indicate 
that a clinical-examination may serve as an activity in a 
model. Determining the correspondence between classes 
can be a difficult task since, for example, a nurse object 
might represent the activity performed by a nurse in one 
simulation model; while in another simulation model a 
nurse object might be a resource associated with a clinical 
examination activity. Many of the decisions associated 
with the creation of correspondences between classes are 
dependent upon the perspective of the modeler rather than 
the design of the ODS tool suite.  

Given the fact that the creation of correspondences is 
dependent upon the modeler’s perspective, the ODS tool 
suite cannot ensure their validity. Instead of attempting to 
do so the tool assists the modeler by finding inconsisten-
cies within the correspondences. If, for example, nurse 
11
and physician are both subclasses of clinician in the 
POMR ontology but nurse is mapped to the DeMO entity 
class and physician is mapped to the DeMO resource 
class, the ODS design tool suite will indicate that an in-
consistency exists within the correspondences since a cli-
nician is considered to be a model entity in one place and 
a model resource in another. 

5.2 Model Markup Generator 

Simulation models represented as modeling ontology in-
stances can be transformed directly into executable mod-
els (Lacy 2006) or indirectly into an XML markup lan-
guage such as XPIML or PNML. Process Interaction 
models in XPIML are described as a collection of proc-
esses which are themselves described as a collection of 
activities.  

The model markup generator of the ODS design tool 
suite currently supports the creation of activity oriented 
models in the form of Petri Nets and process oriented 
models for process interaction simulation. The base class 
used to represent a Petri Net model is the DeMO Extend-
edStochasticPetriNet class, and the base class for process 
interaction models is the DeMO PIModel class. The 
model markup generator searches the populated DeMO 
ontology and displays instances of these classes on the 
markup language generator (see Figure 6). When an Ex-
tendedStochasticPetri instance is selected for generation, 
PNML will be generated and when a PIModel instance is 
selected, XPIML will be generated. 

Figure 6: ODS Markup Language Generator 

DeMO PIModels are made up of process instances. 
Each process is stored as a directed graph with nodes rep-
resented as activity instances and edges represented as 
transport instances. Figure 7 shows an activity instance in 
OWL and Figure 8 shows the XPIML that was generated 
for this instance.  

Since XPIML may be viewed as having a grounding 
in the DeMO PIModel, PIModel instances can be trans-
formed into XPIML instances using Jena (McBride 2002), 
SPARQL (Prud’hommeaux and Seaborne 2007), and Java 
13
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IO. ExtendedStochasticPetriNet instances are transformed 
into PNML using a similar process. When translating PI-
Model instances to XPIML, the ODS design tool suite 
uses Java to execute a series of SPARQL queries against 
OWL PIModel instances. It then parses the results in or-
der to write the XPIML output.   

Figure 7: OWL Process Interaction Activity Instance 

Our decision to use a combination of Java and 
SPARQL to implement the translation of models into 
XPIML arose from the need to accommodate the hierar-
chical structure XPIML. Each XPIML model element 
may have several nested process elements, each process 
element may have several nested activity elements, and 
each activity element may have several transports and 
other parameters. Java programs are used to execute a 
SPARQL query for each level of nesting (model, process, 
activity, etc.). The query result sets are kept in Java data 
structures and accessed as needed. Using a procedural 
language such as Java allowed us to create independent 
query results for each level of nesting and move back and 
forth between levels as necessary during the parsing of 
the results sets.  

It is possible to have SPARQL return query results as 
XML. When this is done, languages designed for use with 
XML, such as XSLT (Clark 1999) may be used to trans-
form the query results. Future plans include modifying the 
model markup generator to transform the SPARQL query 
results into XPIM using XSLT instead of Java. 

Figure 8: XPIML Activity Instance 
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5.3 Simulation Code Generator 

In ODS, models represented as ontology instances can be 
translated into an intermediate markup language or di-
rectly into executable models for target simulation pack-
ages. At this time, the ODS design tool does not support 
translation of ontology instance directly into executable 
models. Instances must first be translated into a markup 
language and then into executable models. The simulation 
code generator of the ODS design tool performs the trans-
lation of markup language based models into executable 
models.  DeMO PIModel instances that have been trans-
lated into XPIML can be translated by the tool into execu-
table models for either JSIM (Nair, Miller, and Zhang 
1996) or ARENA.  

The simulation code generator of the ODS design 
tool suite takes the XPIML representation of the model as 
input and produces and executable simulation model. 
When an executable JSIM model is being generated, the 
code generator reads and parses the XPIML file then out-
puts Java classes which represent the simulation model. 
These classes can be compiled and executed using the 
JSIM simulation environment.  

6 RELATED WORK 

In the early days of DES, individual programs were writ-
ten for each simulation application. These programs were 
written using general purpose programming languages 
which had no specific support for simulation. This began 
to change in the early 1960s with the introduction of the 
first Simulation Programming Languages (SPLs). The 
General Simulation Program (GSP) was developed by 
Tochar in 1958 (Tochar and Owen 1960) and was fol-
lowed by several other SPLs, such as CSL, GPSS, GASP, 
and SIMULA (Buxton and Laski 1963; Kiviat 1963; 
Wexelblatt 1980; Nygaard and Dahl 1981), within the 
next few years.   

Early SPLs required model developers to deal with 
programming language syntax and other implementation 
details not directly related to model behavior. Recognition 
of this situation was one of the primary factors that lead to 
a shift in focus from simulation program development to 
simulation model development in the 1970s (Nance 1983; 
Page 1994).  Since this shift, the modeling and simulation 
community has seen the introduction of several model de-
velopment environments that allow models to be repre-
sented at higher levels using specific conceptual frame-
works (or world-views). Many factors, such as advances 
in computer hardware, software, and networks have influ-
enced how model development environments have 
evolved over the past several years (Nance and Sargent 
2002).  

One factor that is currently influencing the evolution 
of model development environments is the Semantic Web 
14
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(Fishwick and Miller 2004; Miller and Baramidze 2005). 
The Semantic Web improves discovery, integration, and 
reuse of Web resources by providing meaningful and ma-
chine-processable descriptions of Web resources. These 
descriptions of Web resources are typically made avail-
able via ontologies encoded in Semantic Web languages 
such as OWL. Work related of ontologies in modeling 
and simulation is currently underway by several groups. 
Lacy (2006) developed the Process Interaction Modeling 
Ontology for Discrete Event Simulations (PIMODES) to 
focus specifically on the process interaction world view 
and support the interchange of simulation models between 
commercial simulation packages. Benjamin et al. (2005) 
present an ontology driven framework for process ori-
ented applications, including process interaction simula-
tions. The framework is an attempt to overcome the prob-
lem of semantic inaccessibility where the semantic 
intentions of the application developers and the semantic 
rules of the application are not available to other entities 
within an organization. Turnitsa and Tolk (2005) describe 
what is required for an ontology to be sufficiently com-
plete to serve as a reference for simulation interoperability 
and they also propose a method for evaluating an ontol-
ogy to determine it completeness. 

7 CONCLUSIONS AND FUTURE WORK 

We presented an ontology driven approach to the devel-
opment of DES models. The ODS design tool suite was 
created in order to support this approach. The tool pro-
vides facilities for: (1) mapping concepts from domain 
ontologies to a modeling ontology in order to represent 
models as  ontology instances; (2) translating ontology 
instances to an intermediate XML markup language; and 
(3) generating executable simulation models from markup 
language representations of models. The benefits of this 
approach are: (1) model developers and users have an 
agreed upon set of terms and concepts available through-
out the development and use of a simulation model. This 
facilitates good communication between all of the entities 
involved in a simulation study and reduces the incidence 
of ambiguities; (2) DES models targeted for various simu-
lation software packages or developed using various 
simulation world views can be represented in a common 
language; (3) Since models can be represented in a Se-
mantic Web enabled language, the possibility exists for 
Web based DES model repositories, and (4) since much 
of the knowledge needed to develop a simulation model 
exists in the domain and the modeling ontologies, ODS is 
able to speed up model development by allowing the de-
veloper to assemble ontology components to create a 
model.  

Possibilities for future work include the following: 
creating an complete online demonstration of the 
Ontology Driven Simulation design tool suite 
(www2.ac.edu/faculty/gsilver/ODS.html); 
developing Web based repositories for DES 
models represented as DeMO ontology in-
stances;
refining the process for simulating biosynthetic 
pathways using the GlycO and DeMO ontolo-
gies. 
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