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Abstract: Any automorphism of the Dynkin diagram of a symmetrizable Kac-Moo- 
dy algebra g induces an automorphism of 9 and a mapping ~-,~ between highest weight 
modules of g. For a large class of such Dynkin diagram automorphisms, we can de- 
scribe various aspects of these maps in terms of another Kac-Moody algebra, the 
"orbit Lie algebra" ~. In particular, the generating function for the trace of r~ over 
weight spaces, which we call the "twining character" of g (with respect to the auto- 
morphism), is equal to a character of ~. The orbit Lie algebras of untwisted affine 
Lie algebras turn out to be closely related to the fixed point theories that have been 
introduced in couformal field theory. Orbit Lie algebras and twining characters con- 
stitute a crucial step towards solving the fixed point resolution problem in conformal 
field theory. 

1. Introduction 

In this paper we associate algebraic structures to automorphisms of Dynkin diagrams 
and study some of their interrelations. The class of Dynkin diagrams we consider are 
those of symmetrizable Kac-Moody algebras [1]. These are those Lie algebras which 
possess both a Cartan matrix and a Killing form, which includes in particular the 
simple, affine, and hyperbolic Kac-Moody algebras. 

An automorphism of a Dynkin diagram is a permutation of its nodes which leaves 
the diagram invariant. Any such map divides the set of nodes of the diagram into 
invariant subsets, called the orbits of the automorpbism. We focus our attention on 
two main types of orbits, namely those where each of the nodes on an orbit is either 
connected by a single link to precisely one node on the same orbit or not linked to any 
other node on the same orbit. If  all orbits of a given Dynkin diagram automorphism 
are of one of these two types, we say that the automorphism satisfies the linking 
condition. Except for the order N automorphisms of the affine Lie algebras A ~ ) I ,  
all diagram automorphisms of simple and affine Lie algebras belong to this class. 

* Heisenberg fellow 
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1.1. Orbit Lie algebras. In Sect. 2 we show that for any automorphism satisfying the 
linking condition one can define a "folded" Dynkin diagram (and associated Cartan 
matrix) which is again the Dynkin diagram of a symmetrizable Kac-Moody algebra. 
The folded Dynkin diagram has one node for each orbit of the original diagram, and 
there is a definite prescription for the number of links between any two nodes of 
the folded diagram. If the Kac-Moody algebra corresponding to the original Dynkin 
diagram is g, we denote the algebra corresponding to the folded Dynkin diagram by 

and call it the orbit Lie algebra. We show that the folding procedure preserves the 
"type" of the Kac-Moody algebra, where the type of a symmetrizable Kac-Moody 
algebra can be either "simple", "affine", "hyperbolic", or "non-hyperbolic indefinite". 
(However, "untwisted affine" and "twisted affine" are not separately preserved.) 

Any automorphism of a Dynkin diagram (not necessarily satisfying the linking 
condition) induces an outer automorphism of the associated Kac-Moody algebra g. 
This is described in Sect. 3. For simple, affine and hyperbolic algebras the induced 
automorphism is unique. In the case of simple Lie algebras, these outer automorphisms 
are well known; they correspond to charge conjugation (for g = An (n > 1), D2n+l 
(n > 1), and E6), to the spinor conjugation of Dzn (n > 2), and to the triality 
of D4. The induced outer automorphisms of untwisted affine Lie algebras are either 
the aforementioned ones (inherited from the simple horizontal subalgebra), or certain 
automorphisms related to simple currents [2] of WZW theories (i.e. conformal field 
theories for which the chiral symmetry algebra is the semidirect sum of the untwisted 
affine Lie algebra and the Virasoro algebra), or combinations thereof. 

1.2. Twining characters. The automorphism of g induces a natural map on the weight 
space of g. We can also employ the action on the algebra, in a less straightforward 
manner, to obtain an action, compatible with the action on the weight space, on the 
states of any highest weight module of g. We can therefore define a new type of 
character-like quantities for these modules by inserting the generator of the automor- 
phism into the trace that defines the ordinary character. We call the object constructed 
in this manner the twining character of the highest weight module; its precise defi- 
nition is presented in Sect. 4. 

Trivially, the twining character vanishes whenever the highest weight is changed 
by the automorphism. As a consequence, our interest is in those highest weight mod- 
ules whose highest weight is not changed by the automorphism; we call these spe- 
cial modules the fixed point modules of the automorphism and refer to their highest 
weights as symmetric g-weights. For fixed point modules, the twining character re- 
ceives a non-vanishing contribution from at least one state, namely the highest weight 
state, but it is far from obvious what happens for all the other states of the module. 
Note that the weight of a state does not provide sufficient information for answering 
this question. Rather, the action of the automorphism also depends on the specific 
way in which the state is obtained from the highest weight state by applying step 
operators, as the automorphism acts non-trivially on these step operators. 

There is one interesting class of automorphisms for which only the highest weight 
state of a fixed point module contributes to the twining character. These are the order 

N automorphisms of the affine Lie algebras A%)_1. In this particular case the Serre 
relations among the commutators of step operators conspire in such a way that all 
other states in the Verma module (and hence also in the irreducible module) cancel 
each others' contributions to the twining character. This statement will be proven in 
Sect. 7 (following a route that does not rely on the explicit use of the Serre relations 
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and hence avoids various technical complications). Note that these automorphisms 
do not satisfy the linking condition. Rather, all N nodes of the Dynkin diagram of 

A~)_I lie on the same orbit of this automorphism, and hence each node on the orbit 
is connected to two other nodes on the orbit. Correspondingly, there is no associated 
orbit Lie algebra (formally one obtains the "Lie algebra" which has the 1 • 1 Cartan 
matrix A = (0)). 

The main result of this paper, proved in Sect. 5, concerns the fixed point modules 
of Dynkin diagram automorphisms which do satisfy the linking condition. We prove 
that these modules are in one-to-one correspondence with the highest weight modules 
of the orbit Lie algebra 0, and that the twining characters of the fixed point modules 
(both for Verma modules and for their irreducible quotients) coincide with the ordinary 
characters of the highest weight modules of 0. Note that we are not claiming that the 
orbit Lie algebra ~ is embedded in the original algebra g. We can show, however, 
that the Weyl group of 0 is isomorphic to a subgroup of the Weyl group of 0. This 
observation plays a key r61e in the proof, as it enables us to employ constructions that 
are analogous to those used by Kac in his proof of the Weyl-Kac character formula. 

In Sects. 6, 8 and 9, we specialize to the case of untwisted affine Lie algebras and 
those automorphisms which correspond to the action of simple currents. In Sect. 6 
the action of such automorphisms is described in some detail, using the realization of 
affine Lie algebras as centrally extended loop algebras. We find that for this special 
class of automorphisms the characters of 0, and hence also the twining characters, have 
nice modular transformation properties. In Sect. 8 it is shown that the modification of 
the irreducible characters of ~, and hence of the irreducible twining characters of g, 
that is required in order to obtain these nice modular transformation properties, differs 
from the modification of the irreducible characters of g only by an overall constant. 
Finally, in Sect. 9 we comment on those cases where the orbit Lie algebra is one of 
the twisted affine Lie algebras/3~) rather than an untwisted affine algebra. 

1.3. Fixedpoint resolution. Our main motivation for introducing and studying twining 
characters stems from a long-standing problem in conformal field theory, namely the 
"resolution of fixed points". Twining characters and orbit Lie algebras constitute 
important progress towards solving this problem. This will not be discussed further in 
the present paper, except for the following brief explanation of the relation between 
the two issues. 

The fixed point resolution problem can be divided into two aspects. The first 
aspect is the construction of representations of the modular group; the second is the 
description of representation spaces of the chiral symmetry algebra whose characters 
transform in these representations of the modular group. For theories with an extended 
chiral symmetry algebra, one tries to achieve the construction of representations of the 
modular group by starting from the modular transformation matrices S and T of the 
original, unextended chiral algebra. One then typically finds that certain irreducible 
modules appear in the spectrum more than once or appear only in reducible linear 
combinations; it follows in particular that the original matrix S does not contain 
enough information to derive the matrix S~xt of the extended theory. If the extension 
of the chiral algebra is by simple currents (the corresponding modular invariants are 
often referred to as "D-type invariants"), these reducible modules originate from fixed 
points of these simple currents. 

By requiring the characters of the extended theory to have the correct modular 
transformation properties, one learns that the missing information is supplied by an- 
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O 

other matrix S, which is defined only on the fixed point representations and together 

with a diagonal matrix T again generates a representation of the modular group; T is 

simply T restricted to the fixed points. By studying the spectrum of T and comparing 

it to known conformal field theories, conjectures regarding S could be made for most, 
though not all, simple current invariants for untwisted affine Lie algebras. Indeed, it 

was found in [3, 4] that in all cases except/3~) and ~(1) at even levels, T is equal up ~ 2 n  
to an overall phase to the T-matrix of another untwisted affine algebra. One may call 
this the "fixed point algebra" (as we will see in a moment, this is a more appropriate 
name than the term "fixed point conformal field theory" that was chosen in [3, 4]). 

The second aspect of the fixed point resolution problem is closely related to the 
"field identification" in coset conformal field theories. From the point of view of the 
modular group, this can be described in terms of an "extension of the chiral algebra 
by spin-zero currents". As far as the matrix S is concerned we are then in exactly 
the same situation as discussed above. However, if the field identification currents 
have fixed points, then there is an additional problem: formally one either obtains a 
partition function with more than one vacuum state, or, if one normalizes it, a partition 
function with fractional multiplicities for the fixed point states. The solution to the 
latter problem is that the various irreducible components of the reducible module that 
is associated to the fixed point possess in fact different characters. The difference of 
these characters must then transform like a character with respect to the new modular 

matrix S. 

This implies that for field identification fixed points the characters of the coset 
theory are not simply equal to the branching functions of the embedding of affine Lie 
algebras, which are merely sums over the characters of the irreducible components. 
It may seem that writing down the correct irreducible characters requires additional 
information that is not directly provided by the Lie algebras g and h defining a coset 

theory ~ ( g / h ) .  This additional information is contained in the matrix S and in the 
character modifications. 

As already mentioned, some of the diagram automorphisms introduced above are 
closely related to the action of simple currents. Simple currents act as a permutation 
on the modules of the chiral symmetry algebra. More precisely, their action is defined 
via the fusion rules of the conformal field theory. On the other hand, an action of 
simple currents on the Hilbert space of states of the theory could so far not be defined, 
nor was it required for the purpose for which the simple currents were used, namely 
the construction of modular invariants. In the special case of WZW models, simple 
currents act by permuting the integrable highest weight modules of the underlying 
affine Lie algebra. Since the action of some of the diagram automorphisms on highest 
weights is identical to this simple current action, and since the action of diagram 
automorphism is defined on individual states, the results of the present paper provide 
a natural definition of the simple current action on the entire Hilbert space. 

In the application to field identification in coset models, this should enable us 
to prove that identified fields are really identical as modules of the chiral algebra. 
The action on fixed point modules is more interesting still. In this case the module 
is mapped to itself, and as the mapping has finite order N, the module splits into 
invariant subspaces of eigenvectors with an N th root of unity as eigenvalue. These 
eigenspaces are natural candidates for the irreducible modules. The twining charac- 
ters are then natural ingredients for the character modifications. Note, however, that 
although the twining characters of untwisted affine Lie algebras are non-trivial, no 
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character modifications (for the Virasoro-specialized characters) are required for the 
D-type modular invariants of the WZW theories which are associated to the affine Lie 
algebras. This already shows that more work will be needed to make all this precise; 
we plan to analyze this situation in detail in a separate publication. The effort will be 
worthwhile, however, since in this formalism we should be able to derive the char- 
acter modifications for a coset theory ~(g/h) in terms of the twining characters of 
the Kac-Moody algebras g and h rather than having to introduce them as extraneous 
objects as was done in [3, 4]. 

An obvious candidate for the fixed point resolution matrix ~ is the modular 
transformation matrix S of the orbit Lie algebra ~. Indeed, in [3, 4] the relation 

between the matrix T and the spectrum of the WZW theory based on an affine 
algebra g was proved by applying a folding procedure to the weight space metric 
(the inverse of the symmetrized Cartan matrix) of the horizontal Lie algebra ~. For 
all simply-laced algebras and also for C2n+I at even levels this folding procedure is 

equivalent to the one discussed here, and consequently 5~ = S in these cases. In other 
words, the fixed point algebra is equal to the orbit Lie algebra defined here. 

As remarked above, the folding discussed here does not necessarily map untwisted 
to untwisted affine algebras. This turns out to be relevant for the remaining cases, 

i.e. for /:;t(1) and c7(1) Here a "fixed point conformal field theory" could only be ~ n + l  ~ 2 n "  

identified for odd levels k = 2p + l, namely the WZW theory based on C(n 1) at level 

p in both cases. For even levels k = 2p, the fixed point spectra for R(1) and C (~) ~ n +  1 2n 
were shown to differ by an overall constant, but they could not be identified with any 
known conformal field theory, apart from a few special cases. (These spectra were 

denoted as ~ n , p  in [3, 4]. Meanwhile, the matrix S has also been constructed in 
an indirect manner, using rank-level duality in N = 2 supersymmetric coset models 
[6].) A natural solution now suggests itself, namely that again the fixed point algebra 
is equal to the orbit Lie algebra, just as in all other cases. Applying our folding 

procedure, we find that the orbit Lie algebra is in fact a twisted algebra, namely A~ 2) 

~0), C O) kv (for n = l) or/3(n 2). 1 The fixed points of ~n+, and 2n at level are in one-to-one 

correspondence with the representations of/3(n 2) at level k v. 
The modular transformations for characters of twisted algebras do not always close 

within a given algebra. Rather, typically the characters of one algebra are mapped to 

those of a different algebra. In fact, A~ 2) and/3(n 2) are precisely those twisted affine 
Lie algebras whose characters possess well-defined modular transformations among 
themselves, and just as for untwisted algebras, these transformations preserve the 

level of a module [1]. Remarkably, the modular matrix 5: of/3(n 2), respectively A~ 2), 
appears to provide the correct fixed point resolution for even as well as odd levels. 
Indeed, S at level k is related in the correct way to the matrices S of C(n 1) at level p 
(for k = 2p + 1), respectively ~ n , p  (for k = 2p). At present we do not have a general 
proof that these matrices resolve the fixed points correctly, but we have checked it 
for algebras of low rank at low level. 

1.4. Organization. Let us briefly summarize how this paper is organized. There are 
two main results, which concern the automorphisms of Dynkin diagrams satisfying 

the linking condition and the order N automorphisms of the affine A%~_1 Dynkin 
diagrams, respectively. These two theorems are stated at the end of Sect. 4; the 

1 Here we use the notation of [5]; in the notation of [1], these algebras are called A (2) 2n"  
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former is proven in Sect. 5 (some details are deferred to Appendix A), and the latter 
in Sect. 7. In the earlier sections, various concepts which are necessary for being 
able to formulate our theorems are introduced, such as the folding of Cartan matrices 
(Sect. 2), the induced automorphisms of Lie algebras and the concept of an orbit 
Lie algebra (Sect. 3), and the maps induced on Verma and irreducible modules as 
well as the concept of their twining characters (Sect. 4). The remaining Sects. 6, 8 
and 9 contain further details about the special case of affine Kac-Moody algebras, in 
particular about modular transformation properties, which are relevant for applications 
in conformal field theory. 

2. Folding Cartan Matrices 

2.1. Dynkin diagram automorphisms. In this paper we consider symmetries of in- 
decomposable symmetrizable Cartan matrices. A symmetrizable Cartan matrix is by 
definition a square matrix A = (Ai'J)i, jEi,  where I C Z is some finite index set, 

satisfying the properties A i,j c Z, A ~,i = 2, A i,j <_ 0 for i ~ j ,  A i'j = 0 iff A j# = O, 

and that there is a non-singular diagonal matrix D such that D A  is symmetric. To 
any symmetrizable Cartan matrix there is associated a unique Lie algebra 9 with an 
invariant bilinear form (. [. ) : 9 • 9 ~ 9 (see [1] and Sect. 3). The Dynkin diagram 
of 9 is defined as the graph with ]I I vertices which has coincidence matrix 2- 11 - A, 
with 11 the identity matrix. The Dynkin diagram is connected iff A is indecomposable. 

By an automorphism of the Dynkin diagram of 9 (or of the associated Cartan 
matrix) we mean a bijective mapping &: I -+ I satisfying 

A ~i'c~ = A i'j (2.1) 

for all i , j  E I.  We denote by N the order of d~, i.e. the smallest positive integer such 
that J3 N = id ( N  is finite since I is finite), and by 

Ni := I {i ,~i ,  ... , J v - l i }  I (2.2) 

the length of the dJ-orbit through i. Also, let 1 denote a set of representatives for 
the orbits of d3. It will be convenient to fix the choice of these representatives once 
and for all; for definiteness we choose the smallest representatives of the orbits (for 
a given labelling by I C Z), 

i : = { i E I l i < d ~ n i  for 1 < n < N - 1 } .  (2.3) 

We will now show that a large class of automorphisms 5J of symmetrizable Caftan 
matrices can be used to "fold" the Caftan matrix A such as to obtain another matrix 

which is again a symmetrizable Cartan matrix. In particular, with the exception of 

the automorphism of order N of A(N1)_I, all diagram automorphisms of all simple and 
affine Lie algebras belong to this class. 

2.2. The folded Cartan matrix. For any given automorphism ~b of an indecomposable 
symmetrizable Caftan matrix A and any i E I let us define the integer 

N--1 Ni--1 
Ni AJ i , i  AJ i , i  : l - E  

l=0 /=l 

(2.4) 
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In the following we restrict our attention to the class of those automorphisms ~ which 
satisfy the relation 

s i _ < 2  for a l l i c I ,  (2.5) 

to which we will refer as the linking condition. As the last sum in (2.4) is non-positive 
and integer, this means that si is either 1 or 2. Since each contribution to that sum is 
non-positive, in the case si = 1 we have 

A i'~zi = 0 (2.6) 

whenever l 5/0 mod Ni, and accordingly the restriction of the Dynkin diagram of 9 
to the orbit of i is isomorphic to the Dynkin diagram of the direct sum of Ni copies 
of  A1. For s~ = 2, there is exactly one m,  1 _< m _< N~ - 1, such that A ~'~i,i = - 1 .  In 

this situation we have w'~i = d~-'~i (otherwise A ~-"%i  = A i,~'~i would be negative 
as well, leading to a contradiction with the assumption (2.5)). This implies that in 
this case Ni and hence also N are even; the restriction of the Dynkin diagram of g 
to the orbit of  i is then isomorphic to the Dynkin diagram of the direct sum of Nil2 
copies of A2. 

Next we introduce a I i l •  Ii l-matrix ~ that is obtained from A by folding it in the 
sense of  summing up the rows of A that are related by d~ and multiplying them by 
s~, and afterwards eliminating redundant columns; thus we define 

N - 1  
Ni ACO~ i,j 

j]i,j := s i ~  Z (2.7) 
/=0 

for i, j E I .  From the indecomposability of A it is obvious that Z] is indecomposable 
as well. We claim that ~ is also again a symmetrizable Cartan matrix, i.e. that it 
satisfies the following five properties: 

a) . ~ i , i = 2  for a l l i E i ,  

b) / ] i , j E z  for a l l i ,  j E i ,  

c) ~ , J < _ 0  for a l l i , j E i ,  i 4 j ,  (2.8) 

d) A i'j = 0 <'. ). ~ j , i  = O, 

e) there is a non-singular diagonal m a t r i x / J  

such tha t /3  : = / J ~  is symmetric. 

Let us prove the relations (2.8) consecutively. First, under the assumption that the 
linking condition (2.5) holds, we have 

,~i# = si (3 - si) = 2,  (2.9) 

which proves (2.8a). The property (2.8b) is fulfilled because in fact we only add up 
and multiply integers, as is made manifest by rewriting (2.7) as 

Ni -- 1 

~ i , j  = 8i ~ AwZi,j. (2.10) 

l=O 

Next we observe that if i, j c i are different, then i, j c I lie on different orbits of  
cO. AS a consequence, d / i  5/5J'~j for all l, m, and hence, as A is a Caftan matrix, 
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A w~i'w~j <_ 0 for all l, m. Thus in particular the sum on the right-hand side of  (2.10) 
is also smaller than zero, which proves (2.8c). Further, since all terms in the sum 

(2.10) are non-positive, ft  i,j = 0 implies that A ~zi'j = 0 for all l. Because of (2.1) 

this means that also A i,c'Vj = 0 for all I. Since A is itself a Cartan matrix, this in turn 

implies that also A ~'*j# vanishes for all I. Thus 

Nj--1 

-~J# = Z A~ZJ'i = 0 ,  (2.11) 

l=O 

and hence we obtain the property (2.8d). 
Finally, we know that there is a non-singular diagonal matrix D = diag(di) such 

that B := D A  is symmetric. This matrix is unique up to scalar multiplication, and 
we can choose di > 0 for all i E I .  To verify (2.8e), we first show that di = d~i 
for all i E I .  To this end suppose that we are given a matrix D which has the 
required properties. Then we define the "orbit average" b of  D as follows. For any 

x-~N-1D I = 0, 1 , . . . ,  N - 1 we set D(z) := diag(d~i) ,  and then d e f i n e / )  :=/_-.,l=0 (l). The 
automorphism property of  w implies that B(z) := D(t)A satisfies 

i,j .,r aw~i,w~j Bw~i,~lj B(z ) = d~liA i'j = u ~ z ~  = . (2.12) 

This shows that B(1) is symmetric, and hence/3  := [gA = ~ = o  1B(1) is symmetric as 

well. Thus /9 possesses all the properties required for D, so that by the uniqueness 
of  D it follows that D c< D. This proves that di = d ~  for all i C I ,  as claimed. Next 
we define D as 

1 N di (2.13) /3 = diag(di),  di := s~. -~ " 

Clearly, /9  is anon-degenerate diagonal matrix with positive diagonal entries. Further, 
the entries of B := D A  read 

N - 1  N--1 
~i , j  = N di~i , j  -_ di Z A'Ji'J = 1 1 N-1 

siNi ~ Z d ' z ' A ~ i ' J J  : -  E B~Z~'JJ 
~ N " 

l=O l y=O l,l~=O 
(2.14) 

This shows that the mat r ix /3  is symmetric, and hence completes the proof of  (2.8e). 
As we will see below, the formula (2.14) encountered in this proof is also interesting 
in its own right; it describes the relation between the invariant bilinear form of 9 and 
that of the orbit Lie algebra ~ that will be defined in Subsect. 3.3. 

2.3. Type conservation. Symmetrizable Caftan matrices belong to one of the following 
three classes (compare e.g. [1, w they are either of  finite, affine or indefinite type. 
We are now going to show that A as obtained from A by the prescription (2.7) is of  
the same type as A. 

If  A is symmetrizable and the bilinear form given by B = D A  is positive definite, 
then A is said to be of finite (or simple) type. Now for any vector z~ = (~zi)ic? we 
have by (2.14) the relation 

Ni-1 Nj--1 

Z ~i,J~i~Z j _ N i N j Z  Z ~I:~wzi'dJl'J~i~3 ~ '  = N  Z t~i'J?~iUJ' 

i,jCi i,jCi l=O l'=O i,jEI 

(2.15) 
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where ui = (zco~i/Ni with ra chosen such that cb'~i E [. As a consequence, if B is 

positive definite, then so i s / ) ,  and hence ~ is of finite type as well. 
If  A is symmetrizable and the bilinear form B is positive semidefinite and has 

exactly one eigenvector with eigenvalue zero, then A is of affine type. The components 
of the left respectively right eigenvector of A with eigenvalue zero, 

r 7- 

E a i A i ' J  = 0 =  ~-'~ Ai'3 aj 

i=o j =o 

(2.16) 

are thus unique once the normalization of the eigenvector is specified (in (2.16), we 
set [ ~ {0, 1, ... ,r},  which is the conventional labelling in the affine case). Fixing 
the normalization in such a way that the minimal value (denoted by a0 and a~, 
respectively) is equal to 1, the components ai and a~ are called the Coxeter labels 

and dual Coxeter labels of A, respectively. In the affine case (2.14) implies tha t / )  is 
either positive definite or positive semidefinite. 

Now by (2.16) and the invariance (2.1) of the Cartan matrix, the vector with 
ith component a ~  is also a right eigenvector with eigenvalue zero and hence is 
proportional to the vector of dual Coxeter labels, and an analogous statement holds 
for the Coxeter labels. The fact that 5J has finite order (together with the positivity of 
the (dual) Coxeter labels) then implies that 

v v ( 2 . 1 7 )  ac~i = ai ~ awi = a i 

for all i E I .  It follows that the vectors with entries 

8 
~i := - -  ai 

8i 

J V /  V 
5~' := ~ -  a i for i E [ ,  (2.18) 

with s - maxjei{sj} ,  satisfy 

and 2 

N-1 

~zi~'i'i = Z Z s -~Ni a~A~i,j : sZa~Ai '3  = 0  

iE[ iC[ 1=0 iEI 

N - 1  
NiNj AC~% j v Ni ~-~Ai,j ,, = O. 

Z ~ i ' J s ;  = ~ Z 8i N - - 2  - aj = s i - ~  aj 

jei  je i  l=o j~x 

(2.19) 

(2.20) 

In particular there is an eigenvector o f / 3  with eigenvalue zero, i.e. /) is positive 
semidefinite rather than positive definite. Also, the eigenspace of B to the eigenvalue 
zero is one-dimensional, since if 5 with entries 5i, i E I ,  is an eigenvector of B 

1 to the eigenvalue zero, then the vector v with entries vi = NTvc~i, with 1 such that 

cOli E [,  is an eigenvector of B to the eigenvalue zero, which is, however, unique up 
to normalization. 

Finally, a symmetrizable Cartan matrix is said to be of indefinite type if it is 
neither of finite nor of affine type. Let us show that if A is of indefinite type, then ]~ 
is also of indefinite type. By Theorem 4.3 of [1], A is of indefinite type iff 

2 The chosen normalization of ~v proves to be convenient for the treatment of the affine case. In the 
~ V  general case, with this specifc normalization the coefficients a i are, however, not necessarily integral. 
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1. there is a vector u with strictly positive components, such that uA has strictly 
negative components, and 

2. the fact that a vector v and vA both have positive components implies that v is 
the zero vector. 

To show that the first condition is fulfilled for the folded Cartan matrix ~1, assume 
that u is a vector with strictly positive components for which uA has strictly negative 
components. Clearly, the vector u ~ with ith component u~ = u~i shares these properties 
of u, and hence we can assume without loss of generality that ui = u~i. We then 
define ~i := ui/si; this is positive as well, and also obeys 

Z~ .~i,j = Z uiAi'J < 0 for all j E i (2.21) z 

iEi iEI 

To show that the second condition is fulfilled, we assume that 5 is a vector such that 

5~[_>0 and 5_>0 .  (2.22) 

Define a vector v by vi := si~z~ for i E I ,  where 1 is chosen such that &ti E i.  Then 
v fulfills the conditions (2.22) with A replaced by A. Since A is by assumption of 
indefinite type, v and hence also 5 have to vanish. Together, these results imply that 

is of indefinite type as well. 

We have thus shown that the matrix ~[ that is obtained by the folding prescription 
(2.7) is always of the same type as the Cartan matrix A. 

A particularly interesting subclass among the Cartan matrices of indefinite type 
is given by the hyperbolic Cartan matrices. These are characterized by the additional 
property that any indecomposable submatrix of the Cartan matrix A that is obtained 
by deleting any row and the corresponding column of A is of finite or affine type. 
Again one can show that if A is hyperbolic then the same is true for 4 .  Namely, 
the pre-image (under the folding) of any proper subdiagram of the Dynkin diagram 
of A is a subdiagram of the Dynkin diagram of A, which, as A is assumed to be 
hyperbolic, is of finite or affine type. But as we have just seen, these diagrams are 
mapped to diagrams of affine or finite type, and hence the subdiagram of ][ has to be 
of affine or finite type as well. This shows that also J~ is hyperbolic. 

2.4. Simple Cartan matrices. In the next two subsections we will list all automorphisms 
of all simple and affine Dynkin diagrams explicitly. The numbering of the nodes of the 
Dynkin diagrams is taken from [5, p. 43]. Below we write 9 and ~ for the Kac-Moody 
algebras which have Caftan matrix A and .~, respectively (~ will be called the orbit 
Lie algebra associated to 9 and ~, see Subsect. 3.3 below). 

The non-trivial automorphisms of the Dynkin diagrams of simple Lie algebras are 
as follows. For At, Dr and E6 there is a reflection which we denote by -y; it acts as 
i - - ~ r + l - i f o r A ~ , a s r - 1  ~ r , i ~ i e l s e ,  f o rDr ,  andas  1 +-+5, 2 ~ 4 ,  3 
3, 6 ~ 6 for E6, In addition, for/94 there is the triality P3, an order three rotation 
which acts as2~-+2,  1 ~ 3 H 4 ~ 1 .  
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The algebras ~ for the cases when g is simple are listed in Table (2.23); this is in 

fact a well known list, as ~ plays an important role in the realization of the twisted 

affine Lie algebras as centrally extended twisted loop algebras [1]. 

g ~ N 

A2n+l ~ n>0 3' 2 Bn+l 

D4 P3 3 G2 

Dn, n>4 3" 2 Cn-1 

E 6 3" 2 F4 

A 2n 3" 2 Cn 

(2.23) 

In this table we have separated the A2n case from the others because in this case we 

have Sn = 2 (and si = 1 else), whereas in all other cases all the s~ are equal to 1. 

2.5. Affine Cartan matrices. The relevant automorphisms & for affine Lie algebras are 
the following. For  g = A(~ ), the automorphism group of the Dynkin diagram is the 

dihedral group ~n+l  which is generated by the reflection '7: i ~ n + 1 - i mod n + 1 

and the rotation Crn+ 1 : i ~-+ i + 1 rood n + 1 which is of order n + 1. Among the 
powers an+t 1, only those need to be considered for which l is a divisor of  n + 1 so 

that the order is N = (n + 1)/l. 

For 9 = D~ 1) the automorphism group is generated by the "vector automorphism" 

Crv, the "spinor automorphism" ~rs and a conjugation 3'. ~rv acts as 0 ~ 1, r ~ r - 1 

and i ~ i else, and hence is of  order two; the map 3' acts as r ~ r - 1 and i H i 

else. If  r is even, as acts as i ~ r - i and hence has order two, while for odd r 
the prescription i H r - i only holds for 2 _< i _< r - 2 and is supplemented by 

0 ~-+ r ~ 1 ~ r - 1 ~-+ 0, so that Ors has order 4. If  r = 4, then the automorphism 
group is larger, namely the symmetric group 5~4; it contains as additional symmetries 

an order four rotation P4, which acts as 0 ~ 1 ~ 3 ~-+ 4 ~-+ 0, 2 ~ 2, and an order 
three permutation P3, acting like 1 ~-+ 3 ~ 4 ~ 1, 2 ~ 2 and 0 ~ 0. 

For the untwisted algebras g = B~ 1), C~ 1) and E~ 1) and for the twisted algebras g = 

r~(2) there is only a single non-trivial automorphism 3" which is a reflection. /3~ 2) and ~ r  , 

For g = E6 (1) the automorphism group of the Dynkin diagram is the symmetric group 

~3; it is generated by the order three rotation ~r : 1 ~-+ 5 ~-+ 0 ~ 1, 2 H 4 ~ 6 ~-+ 

2, 3~-+3 and the reflection 3': 1 ~ 5 ,  2 ~ 4 ,  3 ~ 3 ,  6 ~ 6 ,  0 ~ 0 .  Finally, for 

g = E~ 1), F4 (1), G(21) and for the remaining twisted algebras, there are no non-trivial 
Dynkin diagram automorphisms at all. 
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g w N 

(1) A~) (crn+~)(n+WN N < n+ 1 A((n+I)/N)-I 
AU) n(2) 

2n+l "~ 2 ~ n + l  

B~ ) Cry 2 , ~ ( 2 )  . ZSn_ 1 

B(2) B ~  ) 2,~ "Y 2 

c2 o) ~) n (7 2 

C (1) cr 2 A{ :) 

C(~ 2) ~f 2 C(1) 1 

D(4 ') /9 4 4 A~ 2) 

D(a 1) P3 3 G(2 3) 

D ~  ) (Tv 2 tq(1) "in--2 

D ~  ) "~ 2 /'7(2) 

D(a) ~(1) 2n O-s 2 ~n  

D(1) 1~(2) 
2n O's"Y 4 

E~ (1) ~ 3 G ') 

E6 (1) "~ 2 F (2) 

E7 (1) cr 2 F (1) 

A 0) / ~ )  2n 7 2 

A(1) C(1) 2n+ 1 O'n+ 1 ")/ 2 

B(2) /~(n2) 2n+1 '~ 2 

Ca 1) c#)  n+l O" 2 

D(1) ~(1) 
2n+l O's 4 

D0) C(n2) 2n+1 O's "Y 2 

A~ ) O'n+ 1 n + 1 {0} 

(2.24) 

Notation of [1] A(2 2) ~a(e)~zn -a(e)-2~-i lJn+l'-'(2) E~e) D(4 3) 

Notation of [5] A~ 2) /~(n 2) C(n 2) B(n 2) F4 (2) G(2 3) 
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Let us remark that the notation has been chosen such that for the untwisted affine 
algebras, ~ implements charge conjugation, while ~r corresponds, in conformal field 
theory terms, to a simple current [2]. 

We list 0 for these automorphisms in Table (2.24). In this table we again separate 
the cases where all the si are equal to 1 from the others. Also, there is a single 
series of  automorphisms which do not obey the linking condition (2.5), namely for 

any N > 2 the automorphism of the Dynkin diagram of A%)_I that has order N ;  
this series is displayed in the last row of the table. In this case, which will be treated 
separately in Sect. 7, there is only a single s, which takes the value zero, and the 
prescription (2.7) formally yields a one-by-one matrix with entry zero. 

Also, in the table we use the notations of [5, p. 95] for twisted affine algebras; the 
relation with the notation of  [1, p. 55] is indicated below the table. 

2.6. Hyperbolic Cartan matrices. One can, of course, compile an analogous list for 
the hyperbolic Lie algebras as well. However, the number of  these algebras and their 
automorphisms (satisfying the linking condition) is rather large, and hence we refrain 
from presenting this list here. Let us just mention that the result that along with O also 

is a hyperbolic Lie algebra may be easily verified case by case. As a by-product, 
this provides a check on the completeness of  the list of  hyperbolic Lie algebras that 
has been given in the literature. 3 

3. Lie Algebra Automorphisms 

In this section we show that any automorphism CO of finite order of the Cartan matrix 
A induces an automorphism of the same order of  the Kac-Moody algebra 9 which 
has Cartan matrix A. To this end we first sketch how O can be constructed from 
the Cartan matrix [1]. Then we show how cO induces an automorphism aJ of  O and 
investigate to what extent this automorphism is unique. 

3.1. Symmetrizable Kac-Moody algebras. To any symmetrizable Cartan matrix A 
there is associated a Lie algebra, denoted by 9 = g(A) and called a symmetrizable 
Kac-Moody algebra, which is unique up to isomorphism [1, Prop. 1.1]. 9 is con- 
structed from A as follows. Denote by n the dimension and by r the rank of  the 
matrix A. We introduce a complex vector space 9o of  complex dimension 2n - r. 
Next we choose n linearly independent elements H i of  9o and n linearly indepen- 
dent functionals a (0 E 9~* (called the simple roots of  9), such that ~(i)(HJ) = A id 

for i , j  = 1,2, ..., n. This choice is unique up to isomorphism. 
The Kac-Moody algebra g is then the Lie algebra that is generated freely by the 

elements of  9o and 2n further elements E/, = E +a"), with i E I _= { l, 2, ..., n}, 
modulo the relations 

[x, y] = 0 for all x, y c 9o,  

[x, E/,]  = -4-a(i)(x) E~: for all x E go,  

[E~, E~] = 6~5 Hs, (3.1) 

(~ �9 ~I-A~"~i  = 0 for i 4 J  

3 In fact, the classification of hyperbolic Lie algebras presented in [7] turns out to be not quite complete. 
We thank C. Saclioglu for a correspondence on this issue. 
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where the map ad x is defined by adx(y) := [x, y]. Thus the subspace go is an abelian 
subalgebra of g; it is called the Cartan subalgebra of g. Also, g has a triangular 
decomposition 

g = g+ | go E) g_ ,  (3.2) 

where g•  are subalgebras and generated freely by the E~_ modulo the relations in the 
last line of  (3.1), which are known as the Serre relations. 

The algebra 8 := [g, g] is called the derived algebra of  g. It contains all central 
elements and has a triangular decomposition 

8 - [g, g] = g+ | go | g - ,  (3.3) 

where go is the span of the elements H i, i = 1,2, ... ,n .  Thus go C_ go is the Cartan 
subalgebra of g, and the der iva t ions ,  i.e. the generators of  a complement of  8 in g, 
span a complement of  go in go. We will also denote by gK the common kernel of all 
the simple roots c~ (i) (and hence of all roots, since any root c~ is a linear combination 
of the c~(i)), g ~  is a subspace of 80. 

By definition, the non-degenerate bilinear form of O satisfies 

( H  i [ x )  = di c~(i)(x) for all x E go (3.4) 

with di as defined after (2.11), and hence in particular 

( H i  I H J )  = di A i ' j  = B i ' j  for i = 1,2, ..., n .  (3.5) 

3.2. I n d u c e d  o u t e r  a u t o m o r p h i s m s .  We are now in a position to construct an auto- 
morphism aJ of  9 using any sYmmetry cb of the Dynkin diagram of 9. We start by 
defining w on the generators E~_ of  9•  

~o(E~:) := E~: i . (3.6) 

Because of (2.1) this mapping preserves the Serre relations, and hence it provides 
automorphisms of both 9+ and g - -  Further, the automorphism property of a~ implies 
that it has to act on the H i as 

w ( H  i) = w ( [ E ~ ,  E/_]) = [EC~ i, EW_ i] = H c~i . (3.7) 

This way we have constructed a unique automorphism of the derived algebra 8 of 
g. This automorphism has the same order N as the automorphism cb of the Dynkin 
diagram. To show how a; acts on the rest of the Cartan subalgebra of  g, i.e. on the 
derivations, requires a bit more work. To this end it is helpful to work with a special 
basis of  go. 

Since o~(i)(H j )  = A id = A c~ = ct(c~i)(H c~ and since the H J  span 8~ for all 

x E g o  we have 
a ( ~ % 4 x ) )  = c~(i)(x). (3.8) 

Hence the subspace gK is mapped by w bijectively to itself. We can therefore diag- 
onalize w on g ~  and choose a basis of  n - r eigenvectors K a, a = 1 , 2 , . . . ,  n - r ,  

such that 
a~(K a) = ~ K  a , (3.9) 

where 
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/27ri~ 
:= exp t . -~- )  (3.10) 

is a primitive N th root of  unity. We can extend the basis of  OK to a basis of  0o by 
adding further eigenvectors of  w on 0o, which we denote by JP, p = 1, 2, ..., r. We 
write 

w( J p) = ~"~p JP, (3.11) 

and denote the span of  all JP by g j .  Clearly, the restriction of  the invariant bilinear 
form to g j  is non-degenerate. Moreover, we find that 

( K a  I X) = 0 for all x E ~o. (3.12) 

n 
This holds because writing K a = ~j=l ~ Hj  we have 

0 = o~(i)(K a) = a~ c~(i)(Hj) = E Ai'Ja~ (3.13) 

j=l j=l 

for all i = l, 2, ..., n, so that the invariant bilinear form obeys 

( Hi I Ka) = E t~ (H i I H i )  = E diAi'Je;] = 0 (3.14) 

J J 

for all i = l, 2, ..., n. 
Using the fact that the invariant form is non-degenerate on go, we conclude that 

there are n - r unique elements D a of go such that 

( D a l K  b)=5 ab for all 1 < a , b _ < n - r ,  

( D a l D b ) = o  fora l l  l < _ a , b < _ n - r ,  (3.15) 

( D a l J  p)=O for all 1 < a < n - r ,  l _ < p < r .  

The elements D a are linearly independent and span a complement gD of ~o in go" 
We can now study the action of  w on the derivations D a. To this end we first 

show that w(D ~) is again an element of the Cartan subalgebra go. Namely, let us 
start from the most general ansatz w(D a) = h + ~c~,e ~a,e Ea'e, where h E go and 

the elements E '~,e are generators of  the root space for the root c~ (thus the number 
of  possible values of  the index ~ equals the (finite) dimension of  this root space). 
Assume now that ~,e  ~ 0 for some root c~ > 0 (the argument for c~ a negative root 

is completely parallel) and some L The step operator E -a'e is an element of  9 - ,  and 
hence so is w-l(E-'~,e). Because of  D a E 9o and the fact that co is an automorphism 
of  g, this implies that [D ~, w- l (E -~ , e ) ]  and [co(D~), E -~'e] = w([D a, co- l (E-" ,e ) ] )  

are elements of  g_,  too. On the other hand, we have [E ~,e, E -~,e'] = 5~,~5e,e,h ~'~ 

with non-vanishing h '~,e E go, so that by inserting the ansatz we made above we 
f ind  that the element [aj(Da), E -"'e] of 9 has a component s ~,e in go. This is 
a contradiction, and hence the assumption that ~ , e  5 ~ 0 is wrong. Thus we conclude 
that w(D a) E go. 

We can therefore make the general ansatz 

w(D ~) = E ( U ~ D b  + (~bV~K b) + W ~ J  ~ . 

b=l p=l 

(3.16) 
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Here in the second term we have introduced an explicit  phase factor, which will 

simplify the discussion below. We now impose the condition that w preserves the 
invariant bilinear form, i.e. require that (~ (D  a) [ w(JP)) = 0 = (~ (D  a) 1.4Db)) and 

(~(D~) I ~(Kb)) = 5 ab for all p = 1,2, . . . ,  r,  a, b = 1,2, . . . ,  n - r.  Inserting the ansatz 

(3.16), the first of  these conditions reads 

7" 

0 = (w(D ~) I w(JP)) = r  ( E  Wq Jq [ Jp) (3.17) 

q=l 

for all p = 1,2, ... , r .  As the metric on 9 j  is non-degenerate, this implies that Wq 

vanishes.  The second requirement then amounts to 

n - - r  

5~b (w(Da) l ~(Kb))= E ~ ~b ~ = = U~ r (D I K b) (3.18) 

e=l 

Thus the ansatz (3.16) for w(D a) gets reduced to 

aJ(D'~) = r + E Vr162 Kb" (3.19) 

b=l 

The last requirement then constrains the matrix V; we obtain 

0 = (w(D ~) [ ~(Db)) = V~ + V~, (3.20) 

i.e. V has to be an antisymmetric matrix. 
To summarize, we have shown that the only freedom we are left with consists 

in adding terms proportional to central elements to ~ (Da) ,  and that this freedom is 

parametrized in terms of  an antisymmetric (n - r )  • (n - r )  matrix. In the particularly 

interesting cases where g is simple, affine, or hyperbolic,  there is thus no freedom left 
at all; in the simple and hyperbolic cases there are no derivations, while in the affine 
case no term with the central element K appears (the only antisymmetric one-by-one 

matrix is zero) so that just ~ ( D )  = D. 
We can restrict the freedom in ~ (D)  even more by imposing the requirement that 

has order N also on the derivations D a. The relation (3.19) implies that 

n - - r  l 

wZ(D~) = r D~ + E V ~ ( E  r )Kb " (3.21) 

b=l t=l 

It follows that w has order N if  and only if  Vb a vanishes whenever na = --nb mod N.  
It is also clear that these constraints always possess the trivial solution V -= 0. 

From the invariance of  the bilinear form on 90 it follows that co as defined above 

is in fact an automorphism of 9. The only identity that still has to be shown to this 
end is that ~(O(Da) coincides with ~(~i)(w(D~)); this follows by 

1 1 
a(~ ~) = ~ (Hi[D a) = ~ (H~i[w(D~)) = a(~i)(~(Da)). (3.22) 

From now on we will assume that V has been chosen such that w has in fact order 

N on all of  O. We will refer to such an automorphism which respects the triangular 
decomposit ion as a strictly outer automorphism or as a diagram automorphism of g. 
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The first of these terms is appropriate because any such automorphism is indeed outer, 
as can be seen e.g. by the fact that (compare Sect. 4 below) it induces a non-trivial 
map on the representation ring of 9, whereas inner automorphisms do not change the 
isomorphism class of a representation. 

3.3. Orbit Lie algebras. We denote by 8 the symmetrizable Kac-Moody algebra that 
has ~ as its Cartan matrix and call 0 the orbit Lie algebra that is associated to the 
Dynkin diagram automorphism ~, respectively to the automorphism ~ of 9 that is 
induced by d~. We would like to stress that 0 is not constructed as a subalgebra of 
9; in particular it need not be isomorphic to the subalgebra of 9 that consists of 
those elements which are mapped to themselves by w. There does exist, however, 
a subalgebra 9 of 9 (to be described elsewhere) which is pointwise fixed under 
and whose Cartan matrix is closely related to the Cartan matrix ~ of 8; namely, the 
transpose of the Cartan matrix of ~ is equal to the matrix (At)~that one obtains when 
applying our folding procedure to the transpose A ~ of the Cartan matrix A of O. 

Later on, we will use this orbit Lie algebra to describe aspects of the action that 
induces on irreducible highest weight modules of O. To this end, we need to set 

up some relations between 9 and ~. In preparation for these considerations, we first 
show that there is a close relation between the Cartan subalgebra 8o of the orbit Lie 
algebra and the eigenspace 9~ ) of w to the eigenvalue if0 = 1 in 9o- This relation 
is described by a map Pw which is defined as follows. First consider the subalgebra 
8~ ) := O~ ) N 8o of 9~ ). The elements of 8(o ~ are those elements h = ~ i n l  Vi Hi of 
8o which are fixed under w, ~(h) = h, which implies that vi = vc~zi for all l. To any 
such h we associate the element 

P~(h) := Z ~i~i  (3.23) 

ici 
^ 

of 80, where 
~3i := Nivi (3.24) 

for all i E I. It is obvious that the map P,o is an isomorphism between 8(o ~ and ~o. 

Moreover, the invariant bilinear forms on 8~ ) and ~o satisfy 

1 
(h I h') = ~ (P~(h) I P~(h')) (3.25) 

for all h, h' E 8(0 ~ To prove this relation, it is sufficient to check it on a basis of 8(0 ~ 
As a basis, we choose 

N--1 N~-I  
1 1 

h i := ~ ~ H e Z i = -  ~ H c~ (3.26) 
/=0 Ni /=0 

for i E/~. Then we have r'~(h i) =/z/i, and we can use (3.5) to find 

N - 1  
1 1 1 

(hi l hJ) = ~ ~ B~Zi'~'J = --N [3i'j = ~ (pw(h~) l p~(hJ)). (3.27) 

l,U=O 

Next we show that r'~ yields a one-to-one correspondence between central ele- 
n 

in 8~ ) and central elements of 8. First note that K = ~i=1 t~iHi is central ments 
iff 
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Z AJ'it~i = 0 for all j E I .  (3.28) 

iEI 

Now (3.28) implies that 

Z AJ'iNini = Nj sj EAJ ' in i  = 0 for all j E [ ,  (3.29) 

iE[ iEI 

and hence also the element P~(K) = ~ i e i  ni/:/~ of  ~, with ~q := N i ~ ,  is cen- 

tral. Conversely, with K also the pre-image p~-l(/~) is central. This result shows in 

particular that the dimension of g~) is precisely I[I - ~, where ~ is the rank of .4. 

Finally we can continue the range of definition of P~ to all of g~) such that (3.25) 
is still valid: we use again the basis of  eigenvectors of  w introduced in Subsect. 3.2. 
Given the derivation D ~, consider the projection P w ( K  a)  E g of the corresponding 
central element K ~ E g. Since the bilinear form on go is non-degenerate, for each 

D ~ E g(D ~ we can define P~(D ") to be the unique derivation in go for which 

(P~(D")I%(Db)) = O, 

for all K b E g~), and 

(Pw(Da) I P~o(x))= 0 

(p~(D~) I %(Kb)) = N(5 ab (3.30) 

for all x E g~) (3.31) 

(the factor of  N in the second of the conditions (3.30) ensures that the relation (3.25) 

between the invariant bilinear forms on 0(o ~ and ~o extends to all of  g(o ~ and ~o). 
This completes the definition of P~. 

We can use the action of a3 to define a dual action, denoted by w*, on the space 
g* that is dual to go, i.e. on the weight space of g, namely as 

(a)*/~)(X) :---- /3(a3--1X) (3.32) 

for all/3 E g*o and all x E go. The natural correspondence between g(o ~ and the Cartan 
subalgebra go of ~ implies a corresponding relation for the dual spaces, the weight 
spaces. We therefore have a bijective map 

P* : go* --+ g.(O) (3.33) 

between the weights of ~ and the weights ,k E g*o (~ i.e. those weights of  g that 
are fixed under w*, w*A = /k. We will refer to the elements of  g.(0) as symmetric 
g-weights. For brevity, we will also often denote the pre-image P*-I(A) E ~* of 

A E g*o (~ by ),. 
By duality, the invariant bilinear form on g(o ~ defines an invariant bilinear form on 

go *(~ and analogously for ~. The relation (3.25) between the restriction of the invariant 
bilinear form on g(o ~ and the bilinear form on ~o therefore implies an analogous 
relation between the bilinear form on symmetric weights A E g.(0) and the one on 
0_weights: 4 

(A I/z) = N-(p ; - l ( .~ )  I p;-l(]~)) ~ N - ( ~  I /~). (3.34) 

4 As for Eqns. (3.34) and (3.25), the following remark is in order. For an arbitrary symmetrizable 

Kac-Moody algebra there is no canonical normalization of the invariant bilinear symmetric form. On the 

other hand, in (3.34) and (3.25) the relative normalization of these forms on g and ~ has been fixed in a 

convenient way. This can be in conflict with the conventional normalization as soon as g, and along with 
g also ~, is simple or affine. 
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4. Twining Characters 

4.1. The map 7o;. Let V be a vector space and 

R : g --+ End(V) (4.1) 

a representation of a Lie algebra g by endomorphisms R(x) : V -+ V. Any automor- 
phism ~v of g induces in a natural manner a map on the g-module (V, R). Namely, 
via 

R~(x) := R(~(x)) (4.2) 

for all x E 9, the action of ~ provides another representation R ~ of g. This is again 
a representation of g in End(V). To describe the structure of the module (V, R ~) 
in more detail, we first note that the construction does not change V as a vector 
space. However, this identity between vector spaces in general does not extend to 
an isomorphism of g-modules, i.e. in general the map does change the (isomorphism 
class of the) module. 

Here we are interested in the case where ~ is a strictly outer automorphism 
and where the module is a highest weight module. If the highest weight module 
with highest weight A is a Verma module, we denote it by (If, RA), while if it is 
the irreducible quotient of (I7, RA), we write ( , ~ ,  RA). A natural basis of a highest 
weight module consists of eigenvectors of the action of the Caftan subalgebra go c g. 
Both for Verma and irreducible modules, the eigenspaces W(~) C V of weight )~ with 
respect to the action of R~(go) coincide with the eigenspaces with respect to the 
original action R(go). 

Further, recall that the action of ~ preserves the triangular decomposition (3.2) 
of g, i.e. not only maps the Caftan subalgebra to the Caftan subalgebra, but also the 
generators for positive (negative) roots to generators for positive (negative) roots. As 
a consequence, (17, R~) is again a Verma module. Moreover, since ~ maps g+ to 
g+, the sets of primitive singular vectors, i.e. those vectors which are annihilated by 
the enveloping algebra 13(9+), of (V, RA) and (12, R~) coincide. Now an irreducible 
highest weight module ~A has a single primitive singular vector, namely its highest 
weight vector, and hence the previous observation implies that ( J r  ~ , R~) is again an 
irreducible highest weight module. 

To obtain a more detailed description of the relation between (V, RA) and (If, R~) 
(respectively ( . ~  RA) and ( . ~  R~)) as g-modules, we note that the highest weight 
vector in both modules is the same element of the underlying vector space V (respec- 
tively ~ ) .  However, as an element of the module, its associated weight has to be 
transformed by the map ~* defined by (3.32), so that in fact the highest weight vector 
Vh.w. C V has highest weight A in (V, RA), but highest weight aJ*A in (V, R~). We 
thus conclude that as a module, (V, RA) is isomorphic to the abstract Verma module 
VA (and hence ( ~ ,  RA) is isomorphic to the irreducible quotient ,~'~A, the irre- 
ducible highest weight module with highest weight A), while (V, R~) and ( ~ ,  R~) 
are isomorphic to V~,A and ~ * A ,  respectively: 

(2) 
For simple Lie algebras and affine Lie algebras other than /3n one usuall:( fixes the normalization by 

requiring that the long roots have length squared 2 [1, (6.4.2)], while for /3~)  one normalizes the bilinear 

form such that the roots have length squared 1,2 or 4. If one sticks to this normalization, then the factor N 

in Eqns. (3.25) and (3.34) must be replaced by a different factor N t in the following cases: for g = A2n,  

for  g = "*2n A(l) with the order two automorphism % and for g = B (2)2n+1 one has N ~ = 2N = 4, while for 

the order two automorphism of C~ ) one has N t = N / 2  = l, and for the order four automorphism Os'7 of 

D 0) one needs N ~ = 2N = 8. 2n+l 
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(g~ RA) ~ VA, (V~ R~) ~ Vw*A, 
(4.3) 

( , ~ ,  RA) ~ ~ A ,  ( ~ ,  R~I) ~ ~ w * A .  

Via these isomorphisms, one and the same element v of  the  vector space V 
(respectively , ~ )  is identified with an element v '  of  VA and another element v" of  
Vw* a (respectively of  o ~  a and o~g~,A). In other words, the automorphism cv induces 
maps ~-~ : VA ---+ V~ and ~-~ : ~ a  ~ o~ff~ acting as v '  ~-* v"  (for simplicity we 
use the same symbol for the map on the Verma module and its restriction to the 
irreducible quotient). By definition, this map ~-~o thus satisfies 

To2(RA(x) " V) = Rw*A(~(X)) " Too(V) 

for all x E 9 and all v EVA (respectively ,~A),  i.e. the diagrams 

(4.4) 

VA R A ( X ~  VA ~:ff A RA(X) ?~ ~ 

~ .[ I ~-~ and ~-~ ~. A. ~-~ (4.5) 

Vw*z ]:lw*A(C~ Vw*A "~w*A Rw*A(C~ ~ 

commute. As (4.4) generalizes the defining property of an intertwining map, we will 
refer to the relation (4.4) as the or-twining property of T~o. Also note that for any 
weight A of the module, the action of ~-~ restricts to an action 

~-~]w(x ) : W(a) ~ W(~,;~) (4.6) 

on the (finite-dimensional) weight space W(~). 

4.2. Twining characters. Of particular interest in applications, e.g. in conformal field 
theory, are those irreducible highes t weight representations for which cv*A = A; in the 
physics literature they are known as "fixed points" of the diagram automorphism [4]. 
While ~-~ is generically a map between two different irreducible modules, in this case 
it is an endomorphism of a single irreducible module. 5 In this situation the following 
definition makes sense. For any strictly outer automorphism a~ of 9 let us define the 

automorphism-twined characters, or, briefly, twining characters ~A (~) of  a Verma 

module VA and X(A ~) of its irreducible quotient o~fa, as follows. They are (formal) 
functions on the Caftan subalgebra 9o, defined analogously to ordinary characters, 
but with an additional insertion of the map ~-~o in the trace. Thus in the case of Verma 

modules the twining character ~AA (~) reads 

9o ~ C ,  

TAA (c~ ~/.AA(a0 ( h )  := trv47_weZTriRA(h) ' (4.7) 

and analogously the twining character X(A ~) of  the irreducible module is given by 

90 ~ C ,  
X(a0 

A :  X(A ~')(h) := ,~a'~ tr ~ e27riRA(h) (4.8) 

5 As a consequence, we will always be dealing with a definite representation R, and correspondingly 
often simplify notation by writing x in place of R(x). 
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These twining characters are majorized by the ordinary characters, and hence in 
particular they are convergent wherever the ordinary characters converge. Note that 
generically some contributions to the twining characters have non-zero phase, so that 
instead of using the term character one might prefer to call these objects character- 
valued indices. However, by the identifications (4.16) and (4.17) below, it follows that 
the expansion coefficients of the twining characters are still non-negative integers. 

The twining character can be interpreted as the generating functional of the trace 
of the map 7-~o restricted to the various weight spaces. Taking the trace separately on 
each weight space and extending the definition of the weights as functionals on go to 
formal exponentials, e2~i~(h) := exp(27riA(h)), we can rewrite the twining character 

~AA (~) in the form 
~A(~o) ~ __(w)~2~riA 

= ' . i x  ~ , (4.9) 
.X_<4 

and analogously for the twining character X(A ~) of the irreducible module. Here m(x ~~ 
denotes the trace of the restriction of ~-~o to the (finite-dimensional) weight space W(x) 
of weight A, and we write A < A iff A - A is a non-negative linear combination 

of simple roots. Because of the trace operation, the coefficient m(~ ~) can be different 

from zero only for A E go*(0), i.e. only if A is a symmetric weight. Hence we can 
restrict the sum in (4.9) to symmetric weights. 

Combining the cyclic invariance of the trace and the c~-twining property (4.4) of 
~-~, we also learn that 

)~(c~ ) = tr ~r _= tr ~r 
(4.10) 

= t r~a Twe 27riRA(w(h)) = X(~)(co(h)) 

for the character of the irreducible module, and an analogous result holds for the 
character of the Verma module. 

4.3. Eigenspace decompositions. In the discussion in Subsect. 3.3, the eigenspace g~) 
in go to the eigenvalue if0 of w played an important r61e. Similarly, when analyzing 
the properties of twining characters, it proves to be convenient to decompose elements 
of go into their components in all eigenspaces g~) (to the eigenvalue ~l) of co. Also, 
the map co* on the weight space has the same order N as co, and hence we can 

decompose the weight space into eigenspaces go*(J) of co* to the eigenvalue C j, 

N-I 

g* = t ~  g*@). (4.11) 
j=O 

The elements of the subspaces of go*(J) can be characterized by the fact that for any 
l different from - j  rood N, their restriction on g~) vanishes. To see this, consider 

arbitrary elements/3 E go*(J) and z E g~). Then we have 

/3(x) = (co* /3)(cox) = ~J+~ /3(x) , (4.12) 

which shows that/3(x) has to vanish whenever j + l 5r 0 mod N. Conversely, if an 
element /3 of go* vanishes on all elements of go except for those of g(o t), then by 

decomposing any element h E go into its components in the various eigenspaces go ~) 
according to h = ~ j  h 0) with co(h (j)) = ~Jh (j), we find that 
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(w* /3)(h) =/3(~-1h) = ( - t  /3(h(l}) = (-z/3(h), (4.13) 

and hence that/3 E g~(-t rood N) 

Consider now the twining character in the formulation (4.9), i.e. ~AA(~)(h) = 

~;~<A m~)eZ~i~(h) , and decompose h E go into its components h @) as above. As 
only-symmetric weights contribute in (4.9), the relation (4.12) can be employed in a 
similar manner as above to conclude that 

~A (w)(h) = EA<A re(w) e27riA(~j h(J)) 

N-I  
= Z exp[2 i = Z exp[2 i (h%]. (4.14) 

A<A j=O A<_A 

Thus we have 
~(~)(h)  = ~AA(~)(h(O)), (4.15) 

and analogously for the twining character X~A ~) of the irreducible module. In other 
words, the twining characters depend on h E go non-trivially only through its com- 
ponent in the subspace g(o ~ of the Cartan subalgebra go that consists of fixed points 
of w. Correspondingly, from now on we will consider the twining characters just as 
functions on g~). 

4.4. The main theorems. We are now in a position to state the main result of this 
paper. Recall that there is a natural mapping P~ (3.23) from g~) to ~o, which induces 
a corresponding dual map P~* (3.33) between the respective weight spaces. Let d3 
satisfy the linking condition (2.5), and let A be a symmetric g-weight. Then we have 

Theorem 1: a) The twining character ~AA (~) of the Verma module of g with highest 
weight A coincides with the ordinary character of the Verma module with highest 
weight P~- 1 (A) of the orbit Lie algebra ~ in the sense that 

~AA(~)(h) = ~p~ I(A)(P~(h)). (4.16) 

b) The twining character X(A ~) of the irreducible g-module with dominant integral 
highest weight A coincides with the ordinary character of the irreducible module with 
highest weight P~*-I(A) of the orbit Lie algebra ~ in the sense that 

X(AW)(h) = ~ps ~(A)(Pw(h)). (4.17) 

As already mentioned, the linking condition (2.5) is in fact satisfied for all diagram 
automorphisms of all affine and simple Lie algebras with the exception of the order 

N automorphisms of A%)_1. In these exceptional cases for any value of the level 

there is only a single highest weight A on which pS-1 is defined. These cases can 
still be treated with our methods; they are covered by 

Theorem 2: In the case of g = A(N1) 1 and the outer automorphism of order N, the 

coefficients m (~) in the expansion (4.9)for the twining character of both the irreducible 
and Verma modules obey 

m~ ~) = 0 for A 4 A ,  (4.18) 
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i.e. except for the contribution from the highest weight vector, all contributions cancel 

against each other. 
Theorems 1 and 2 will be proven in Sect. 5 and Sect. 7, respectively. In Sect. 7 

we will also present the explicit expression for the twining character for A% )_ l with 
respect to the order N automorphism. 

5. The Twining Character and the Weyl Group l ~  

Our proof of Theorem 1 proceeds in several rather distinct steps which are inspired 
by Kac'  proof of  the Weyl-Kac character formula (see e.g. [1, pp. 152, 172]). An 
additional crucial ingredient of  the proof consists in the identification of a natural 
action of IeV, the Weyl group of the orbit Lie algebra 0, on the twining characters. 

5.1. The action of the Weyl group 17V. We have seen that in the description (4.9) of  
the twining character only weights lying in 90 *(o) contribute, and that this part of  the 
weight space of 9 is isomorphic to 00* via the map e~*. Hence we can employ r,~* to 

push the action of IY on 00* to an action of 17V on 9~ *(~ 
To describe the Weyl groups explicitly, we denote by wi the fundamental reflec- 

tions which generate the Weyl group W of 9, i.e. the reflections of the weight space 
of 9 with respect to the hyperplanes perpendicular to the simple roots a (i), and analo- 
gously by z~i the fundamental reflections for 0. Now for any fundamental reflection z~i 
of W we can find an element of the Weyl group of 9, to be denoted by wi, which acts 
on 9o* (~ precisely like zbi acts on ~ ,  i.e. which satisfies p~*-l(z~i(A)) = zbi(p~-l(A)) 
for all A E 9o *(~ We will denote the mapping which maps zbi to zbi by e w ,  

P W  : Wi H Z~i, ( P w ( W i ) ) ( ) 0  := Wi(/~) ~ Pw*(Wi(p~-I(/~)))  �9 (5.1) 

Moreover, we will see that zb~ commutes with a J*. 
Let us first deal with those fundamental reflections zbi for which the integer si 

defined in (2.4) is s~ = 1. In this case define 

Ni--1 

zb~ := H w ~ i .  (5.2) 
/=0 

Note that because of si = 1 we have A i ,~J/= 0 whenever i 5 /cJ i ,  so that w ~ i  and 
w~z,i commute, and hence the product in (5.2) is well-defined. The fact that w~v~i and 
wcj  i commute also ensures that zb 2 = id, and that zbi commutes with the induced 
automorphism w *. This implies in particular that the action of zbi respects the orbits 

of  w*. For si = 1 we also have (c~ (i) I ce (~'i)) = 0, so that the action ofz~i on 9-weights 
A reads 

Ni--1 

~(;~) = ;~ - ~ (;~ I ~ ( ~ ) ~ )  c~(J~) �9 (5.3) 

/=0 

Let us now describe how zbi acts on the positive roots of 9. We have 

z~i(c~ (~i)) = w~zi(a (~i)) = -c~ (~zi) , (5.4) 
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while z~i maps any positive root which is not on the w*-orbit of  a (i) to a positive root 
n 

which is also not on that orbit. This can be seen as follows: let/3 = ~ j = l  nJ c~(j) be a 

positive root which is not on the orbit of a (0. Then there is some index j ,  which is 

not on the orbit of  i, j 5 ~ ~Ji, for which nj  is strictly positive. Since the only effect 

of z~i on/3 is to add terms proportional to the a (~zi), 

n N~ -- 1 

= nj (J) + (5.5) 

j = l  l=l  

the expansion of wi(/3) in terms of  simple roots still contains the term nio/J).  Since 
~i(/3) is again a root of 9, and since one coefficient is positive, it is again a positive 
root of  9. Moreover, since nj  7L 0 it is clear that it cannot be on the orbit of a (i). 

To deal with the case si = 2 we first recall that in this case Ni  is even and that 
the restriction of the Dynkin diagram of 9 to this orbit is the Dynkin diagram of 
N i / 2  copies of  the simple Lie algebra A2. As a consequence, in the sequel we can in 
fact restrict ourselves to the case Ni = 2. Otherwise we first treat the automorphism 
w N~/2, which has order two and possesses N i / 2  orbits each of which corresponds to 

the Dynkin diagram of A2. On the set of  orbits of  w N~/2, the automorphism w induces 
an automorphism w ~ of order N i / 2 ;  all orbits with respect to this automorphism w ~ 

! ~-- 1 ,  have sj  

For Ni  = 2 and si = 2 we define 

~bi := wi w~i  w i .  (5.6) 

Clearly, @ has order 2, ~ = id. Since A i,~i = - 1 ,  we also have (wiw~i )  3 = id and 
hence 

ffJc~i = wc,,iw~wc~i = wiw~,iwi = wi . (5.7) 

This implies that again ~i  and co* commute. The action of  t~i on the roots of  our 
main interest reads 

~)i(OL (i)) ---- --0~ (6)i) , ~)i(O~ (5Ji)) = --OL (i) , ~)i(OZ (i) + O~ (d~i)) = - - (0~ (i) + OZ(dJi)) , ( 5 . 8 )  

while any other positive root is again mapped on a positive root different from 
a(i), a(~i) and a(i) + cr(~i). This can be checked explicitly by using arguments which 

are completely parallel to those used in the case si = 1. 
Finally, we again compute the action of  ~i  on weights in 9o *(~ For any such 

9-weight we have (Ala  (i)v) = (Ala  (~i)v) =: l, and hence 

~ ) i ( A )  = W i W d j i W i ( A  ) --  W i W c o i ( A  - -  loz( i ) )  
(5.9) 

= wi(A - l a  (i) - 2 la  (~i)) = A - 21 �9 (a(i) + a(~o).  

We can summarize the formulae (5.3) and (5.9) by 

N i - 1  

~i(A) -- A - si �9 E (A [ a(wti)v) ct (~zO . (5.10) 

I=0 

Let us check that the prescription (5.10) indeed describes the mapping Pw defined 
by (5.1). Knowing how P~ acts on 90, it is straightforward to determine how P~ acts 

on 9"o. Let us first compute the action of  p~ on the simple coroots 5 (i)~ := di 5(i). We 
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observe that the invariant bilinear form on the orbit Lie algebra ~ identifies ~o with 

its weight space ~* in such a way that & (i)v corresponds to/7/i. Also, since co leaves 
the bilinear form invariant and (p~h [ p~h') = N ( h l h ' ) ,  the identification of ~o with 
9o* corresponds to identifying the maps P~o and p . - i  up to a rescaling by N. As a 

consequence, the dualization of the identity p ~ ( ~ ]  H cJi) = N ~ H  i reads 

~ N~--I 
(6fli) v r,~(~ ")~) = & ~ c~ . (5.11) 

Using the relation (2.13) between di and di and the fact that p~ is a linear map, we 
can also compute the action on the simple roots, 

Ni - I 

pw.(&(i)) = 1 p.gx(i)v-~ O~(dfli) 

l=O 

(5.12) 

With these results, the formula (5.1) for z~i(A) becomes 

ZVi(A) ~ P~(zOi(~)) = Pw*(~ -- ( ~ l a  (i)v) (~(i)) 

Ni -- 1 

l=O 
N - I  N i - 1  

1 N Ol(dfl i)v ) Og(Coti) 

l=O l=O 

N ~ - I  

= A - *i" ~ (;~ I o~(~'~ ~ (~'~) �9 

/=0 

(5.13) 

Thus z~i(A) as defined in (5.1) coincides with (5.10), as promised. In short, both for 
si = 1 and for si = 2 we have shown that we can represent the generators of the Weyl 
group l/VV by elements of W which commute with co*. 

Of particular interest is the case where the g-weight on which z~i acts is a Weyl 
vector of 9, i.e. an element p of 9" which obeys p ( H  ~) = 1 for all i E I .  In this case 
(5.10) reads 

N i - 1  

zbi(p) = p - si Z ~ " (5.14) 
l=0 

5.2. IPV as a subgroup o f  W .  We can now define IY as the subgroup of W that is 
generated by the elements zbi of W that are defined by (5.10). In this section we show 

that I?V is in fact isomorphic to IY, the Weyl group of the orbit Lie algebra ~, or in 
other words, that the map Pw which maps zbi to zbi as defined in (5.1) extends to an 

isomorphism of the groups I~V and l?V. The proof involves a few lengthy calculations 
which will be described in detail in Appendix A. 

First recall that the Weyl group 1~( can be described as a Coxeter group, namely 
as the group that is freely generated by the generators zbi modulo the relations 
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(~i) z=id for all iE[, 

(Cvi~vj) ~ j  = id for all i , j  c [, i T~ j .  
(5.15) 

The integers ~i j  take the specific values Tnij ---- 2, 3,4,6 for ~i,j~j,i  = 0 ,  1,2,3, 

while for fli,J]t j,i _> 4 one puts r~ij = ec (and uses the convention that x ~ = id for 
all x). 

We have to show that the generators t~i obey exactly the same relations. Above 
we have already seen that the zbi square to the identity; thus, denoting by 7~tbij the 
order of ~UiW j in W, it remains to be shown that f~ij .~- ~ i j .  To see this, we first 
prove that ~ i j  is a divisor of ~ i j  (and hence a fortiori rhij >_ rhij). Namely, assume 

that (~bi~bj) ~i~ E W is the identity element of W; then in particular it acts as the 

identity on the subspace go *(~ of 9*. Hence by construction also (z~iz~j) r E 1~ acts 
as the identity on the weight space of ~; this means that it is the identity element of 
l~,  which in turn by (5.15) implies that rhij must a divisible by rhij. 

The inequality r~ij > rhij automatically proves our assertion for Jti,J~ j,i > 4. 
In the remaining cases, one can show in a case by case study that in fact already 
(2~)iwj) r~ij = id, which then concludes the proof of the isomorphism property of Pw. 
These calculations are straightforward, but somewhat lengthy, and accordingly we 
present them in Appendix A. 

For later convenience, we also introduce the homomorphism f from 1~ to Z2 = 
{+1} that is induced by the sign function ~ on I?V, 

~(/~) := ~ ( P ~ ( ~ ) ) .  (5.16) 

Note that ~ is typically different from the sign function that l~  inherits as a subgroup 
from the sign function e of W. 

5.3. The action of  l?V on the twining character of  the Verma module. We now consider 
the action of 1~ on the twining characters. As 1~ is a subgroup of W, its action on 
the twining character is defined in the same way as the action of W on the ordinary 
characters is, i.e. via the action (5.10) on 9-weights. In this subsection we show that 
the function 

~'(~) := e-P-A~#AA (~) , (5.17) 

with ~TAA (~) the twining character of the Verma module with highest weight A, is odd 

under the action (5.10) of 1~, i.e. 

zb(~ "(w)) = ~(zb) ~'(w). (5.18) 

Note that here the sign function ~ on If( defined in (5.16) appears, rather than the 
sign function e of W. We also remark that, since the only dependence of the twin- 

ing character ~AA (~) of the Verma module on the specific highest weight A is by a 

multiplicative factor of e A, the quantity ~-(~o) is independent of the choice of A. It is 

sufficient to check (5.18) for the fundamental reflections zbi which generate 1~. Thus 
in the sequel we consider a reflection ~bi with fixed i C [, for which we have to show 
that 

zb~(~(~)) = - ~.(~o). (5.19) 
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To prove this, we make use of  the Poincarr-Birkhoff-Witt  theorem. To this end we 
must first choose a basis , ~ _  of  O_, including some enumeration of the elements 
of  ~ _ .  Let us first deal with the case si = 1. In this case we choose as the first 

Ni elements of  ~ _  the step operators E_  ~q for l = 0, 1, ..., Ni - 1 (the root spaces 
corresponding to simple roots are one-dimensional so that this prescription makes 
sense), and then the step operators associated to all other negative roots in an arbitrary 
ordering. The Poincar6-Birkhoff-Witt theorem then asserts that the set of  all products 

~f(-,~) : ~(.). ~(~), ~(-) :: (z-~"~)~o (E-~'))~I ... (E-~(~'-"~)~ -' ' 

~ 2  (m) :=  (E-~,)"m(E-~O~2... , 

(5.2o) 
forms a basis of  the universal enveloping algebra U(9_);  6 here the exponents ni 
and mi can take all values in the non-negative integers in such a way that only 
finitely many of  them are different from zero. As the elements ~(.,m) are linearly 
independent, commutator terms that arise when reshuffling the products of  generators 
of  9 -  can never give rise to a non-zero contribution to the twining character ~-(~o); 
furthermore, an element V ( n ' m )  ---- ~t'~ ( n ' m )  �9 'U A of the Verma module can contribute to 

~ ' (~)  only if no = n;  . . . . .  nN,_ 1 =: n. 

The Poincar6-Birkhoff-Witt theorem also implies that the contributions to ~ ' (~)  

stemming from the products ~(") and ~(m) in (5.20) factorize, so that we can inves- 
tigate their transformation properties under zbi separately. First, zbi commutes with 
co* and maps any co*-orbit of  negative roots to some other orbit of  negative roots, i,e. 
only permutes the orbits that contribute to the second factor. Thus, by the fact that 
commutator terms are irrelevant for the trace, the contribution to ~/'(~) coming from 

operators of  the type ~(m) is invariant under ~bi. On the other hand, the contribu- 

tion ( ~ / ' ( W ) ) l  of operators of  the type ~(n) to .~-(~o) = e-P-A~/A(W) can be computed 
explicitly as 

(~'(~))l  = e-P ~ o  exp[ n(-c~(O - c~(~i) - " "  - c~(~N~-q))] 

e-~ (5.2l)  

l - - e x p [ - -  c N__;--10Z(a)/i) ] " 

Acting on this expression with zbi, with the help of  (5.4) and (5.14) we obtain 

X '~ + v'-~N~ -- 1 
zbi((~.(~))l) = e P t - P  2_4=o c~(~q)] = - ( ~ ( ~ ) ) 1 .  (5.22) 

~ x--'., N~, -- 1 
1 - exptLz=0 ~(~0]  

Combining the two factors of  the product (5.20), we thus arrive at the desired result 
(5.19). 

Next consider the case si = 2. In this case we choose a different basis ~ _  of  9 -  
in order to obtain a decomposition analogous to (5.20). As the first three elements 

_(~(1) E_~(~) E_c~(o_ c~(~) ' of  ._~_ we take the step operators E , and and then again 
the step operators corresponding to all other negative roots in an arbitrary ordering. 

A basis of  U(9 - )  is then given by (5.20) with the first factor 6~1 (") replaced by 

6 The automorphism a; of g extends to an automorphism of the universal enveloping algebra U(g) by 

simply defining co(xx')  = w(x)w(x  l) for all x,  x / E 9 as well  as w(1) = 1. 
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~I(n0,TL1 ,TL') := (E/_)n0(E~i)nl (E -~(  {)-~(~i))n' . (5.23) 

The same type of arguments as in the previous case then shows that the contribution 

to ~-(~o) from operators of  the type  J~2 (m) again transforms trivially under zbi. Further, 

in order to have a contribution (~'(~))1 from operators of  the type ~(~O,nl,n'), we 
need again no = nl =: n. Now the transformation properties co(Ei_) = E~_ i and 

co(E_ ~i) = E/_ imply that 

~ ( E  -c~(~)-~(~i)) = ~([E/_, E_~/]) = [E_ ~i, E/_] = - E  -~(i)-cr . (5.24) 

This allows us to compute the contribution (~'(~))1 to the twining character as 

OO OO 

(~'(~~ = e -P  Z [en(-"(")" en(-"<~'))] " Z ( -1)n 'en ' ( -"( ' ) -~(~ ' ) )  

n=O nt=O 
(5.25) 

= e-O(1 _ e - ~ - ~ ) - l ( 1  + e - ~ " ~ - ~ ) - I  

= e-P(1 - e-2C~(i)-2c~(~i))-I . 

Using the transformation properties (5.8) and (5.14) (note the additional factor of  
si = 2 in the transformation law (5.14) of  p) we find that this contribution to the 
twining character ~ ' (~)  changes sign under the action of z~i. Hence again we obtain 
(5.19). This completes the proof of (5.19), and hence of (5.18). 

5.4. The action of I?V on the irreducible twining character X(A ~). In this subsection we 

show that the twining character X(A ~) of  an irreducible highest weight module with 

dominant integral highest weight A is even under the action of 17r i.e. 

Z~(X(A ~)) = X(A ~~ . (5.26) 

Again, it is sufficient to check this for all generators z~i of l?V. Thus for all i E/~ we 
have to show that any weight ), E 9o *(~ contributes in the same way to the twining 
character as the weight zb~()~). 

Let us first deal with the case s~ = 1. Then the subalgebra 9i of 9 that is spanned 

by the genera tors  E~ ~i and  H ~Zi, 

9i := ( E~'zi, H ~ i  I l = O, 1 , . . . ,  Ni - 1), (5.27) 

is isomorphic to a direct sum of Ni copies of  A1 algebras, 

9i ~ A1 Q A1 O . . .  Q A1 �9 (5.28) 

Ni su~nands 

Now consider the decomposition 

�9 ~g~A = ( ~  ~ ( L k )  (5.29) 
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of  the irreducible module ,~A of 9 into irreducible modules o<~(rk) of  9i. As the 
highest weight A is dominant integral, each of  the modules o~#(Lk) has dominant 
integral highest weight, i.e. for any value of  k each of  the Ni numbers Lk, k = 
1, 2, ..., Ni, is a non-negative integer. Also, according to the representation theory of  
A1, any weight of  such a module with respect to the subalgebra 9i is then a sequence 
of  N i  integers gk, k = 1,2, . . . ,  Ni, and all these weights are non-degenerate. 

A module o~(ck) of  9i can of course only contribute to the twining character if 
it is mapped onto itself by ~-~. For the rest of  the discussion we will assume that the 
module under consideration fulfills this condition (otherwise no state of the module 
contributes to the trace, so that the contribution is trivially symmetric under l?V). Now 
to the twining character only those states can contribute for which gl = g2 . . . . .  g N i '  

Thus we have to show that the unique state v in ~ z k )  with gl = ~2 . . . . .  gN~ =: 

l > 0 contributes precisely with the same phase to X(A ~~ as the unique state v'  with 
g~ - ' = g '  v '  - -  g2 . . . .  Ni =: --l. NOW can be obtained by acting on v as 

v '  = ( E i _ E ~ j  . . . Ew_u~--li)l v . (5.30) 

We now combine the identity c o ( E i _ E ~ _ i . . .  E ~  N~- l i )  = E i _ E ~ _ i . . .  E ~  u i - l i  and the co- 

twining property (4.4) of the map ~-~o to find that the eigenvalue equation ~ i o ( v )  = Ckv 
implies 

T~(v') = r~((EiE_~i... E~_~-' i)I v) = ~((EiE_~i... E~_ ~-' i)l )r~(v) = Ck(v'). 

(5.3b 
Thus v and v'  contribute the same phase Ck, which proves our claim (5.26) in the 

case s i  = 1. 

To deal with the case si = 2 we can again assume that N i  = 2. In this case we 

define 9i as the subalgebra 

9i := (E4-a{i)~c~(~) , H i  + H W i )  (5.32) 

of  9, which is isomorphic to A1. The automorphism co acts on 9i as (compare (5.24)) 

co(E +~(i)+~(~)) = - E  +~(~)+~(~) , co (H  i + H c~i) = H i + H c~i . (5.33) 

Again we decompose the irreducible module O~A of 9 into irreducible modules , ~  
of  9i, for which again the weights are non-degenerate. Only states which have the 
same eigenvalue for H i and  H (~ can contribute to the twining character. Thus we 
have to show that the unique state v with H i v  = H W i v  = Iv  (l > 0) contributes the 
same phase as the unique state v '  obeying H i v  ' = H e ~  t = - I v  I. Now we have 

V' = (E-a({)-~(c~i))2lv  , (5.34) 

where the factor of  two arises because the H i- and H~Ceigenvalues are added up. 

Thus only even powers of  the step operator E -~")-~(~{) occur. Because of (5.33) the 
vectors v and v'  therefore contribute with the same phase (which for N i  = 2 is a 
sign), and hence the claim (5.26) is again proven. 
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5.5. The linear relation between irreducible and Verma characters. In this subsection 
we show that the twining character X(~ '~ of the irreducible module o ~  a c a n  be written 
as an (infinite) linear combination, with complex coefficients, of the twining characters 
of certain Verma modules. We first need to introduce some notation; as in (4.9), for 
two weights A, # ~ go* we write # < A iff the difference A - # is a non-negative 
linear combination of the simple roots of g, i.e. iff 

)~ --/z = Z ni oz (i) with ni ~ Z>_o. (5.35) 

i ~ I  

To any such pair of weights we associate a non-negative integer, the depth, by 

dp;~(#) := Z hi .  (5.36) 
iE I  

Let us assume that A is a symmetric weight, ), c go *(~ We claim that for any such 
A we can find complex numbers 5xu with EAx = 1 such that 

: E ), (5.37) 
~_<~ 

where ~r  denotes the twining character of the Verma module with highest weight 

A and X(u ~ the twining character of the irreducible module with highest weight #. 
Note that the weights A, # need not be dominant integral. (Also, for non-symmetric 

weights ~-(,o) vanishes, so that the assertion is trivially true.) 

To prove (5.37) we define inductively a sequence ~-(~)[~l of (finite) linear com- 
binations of twining characters of irreducible modules, 

~-(~)[nl .-'- Z ~ ,  z[~l "~v(~) , (5.38) 

~_<)~ 
dp.x (/z)_< n 

such that the coefficient of e u in ~'~(~) - ~(~)[~1 vanishes for any # with dpA(#) < n 

and that 

~ ]  = cA~=[dPx(~)] for all n >_ dpA(#) . (5.39) 

At depth zero, there is a single state we have to take into account, namely just the 

highest weight vector, and hence we define =[01 cxu := 8~,~. Next, suppose that we have 

defined ~-(~)[n] for some value of n > 0. Then the difference ~-r _ ~(~o)[~1 already 
is of the form 

~'~(~)- ~'~(~)[~]= Z d~ ~let' + Z d~ n l e " '  (5.40) 

dp,x (r dpx (/z)>n+l 

where dt~ ~1 are some complex numbers. We then define 

~_<)~ 
dp), (#)=n+l 

(5.41) 
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This way we only add terms proportional to e ~ with dpA(u) _ n + 1 to ~(~)[~],  

so that t~AU'~[n+l] = CAp-[n] ---- ~[dp~,(#)] for dpA(#) _< n. Moreover, all terms proportional to 

e p with dpA(#) = n + 1 are removed from the difference ~ ( ~ )  - ~.(~)[n], because 
any irreducible twining character contributes at dp(p) only through the highest weight 
vector, while all other contributions are at higher depths. This shows that the quantities 

~-r possess the properties stated above. From (5.39) and the properties of the ~[n] cap 
described above it then follows immediately that (5.37) holds, with the coefficients 
~A# given by 

SAp := ~; ' ( ' ) ]  �9 (5.42) 

The weights # which give a non-vanishing contribution to the sum (5.37) have to 
obey further requirements in addition to # _< A. First note that the twining character 
X(~) vanishes unless # E 9~ *(~ Writing A - # as in (5.35), the fact that both A and/z  p 
are fixed under ~* implies that nc~i = ni for all i C I ,  so that 

- fz = Z niS(O'  (5.43) 

i c i  

with ~ --- P~*-I(A), /~ = p . - l ( # ) ,  and hence/~ _< ~. 

Next, we consider the generalized second order Casimir operator of  9, defined as 
[1] 

2n--r 

~ 2 : = 2 ( p l H ) +  Z ( u I I u I ) + 2 Z Z E ~ _ ' e E ~  'e. (5.44) 

I=1 a>0 g 

Here {u/}  and {u/}  denote any two dual bases of  90, the sum over g in the last 
term takes care of the possible (finite) degeneracies of  roots, and in the first term we 
implicitly identify 90 with its dual space 9* with the help of  the invariant bilinear form. 
Finally, the g-weight p is a Weyl vector of  9, i.e. a weight which obeys p(H ~) = 1 
for all i E I (if the determinant of  the Cartan matrix A vanishes, then this element is 
not unique; in this case we make some arbitrary, but definite choice for p). For any 
Weyl vector of 9, the projected 0-weight 15 = p . - l ( p )  is a Weyl vector of ~. With 
the above regults, we can then relate the eigenvalues of  the generalized second order 
Casimir operators of  9 and ~. The operator W22 has the constant value 

C2(.~) = (A "b 2plA) = I), + pl 2 - [pl 2 (5.45) 

(with Ipl 2 =-- (# I # ) )  on VA; taking into account the relation (3.34) between the 
invariant bilinear forms of 9 and ~, it therefore follows that 

N .  IX +/512 = I)~ + pl 2 = I# + pl 2 = N .  ]/~ +/512 (5.46) 

for all weights p which appear in (5.37). 
In summary, for any 9-weight A all weights appearing in the decomposition of the 

twining character of  the Verma module VA that is analogous to (5.37) are contained 
in the subset 

/)(A) := { A = p~(~) [ ~ ~ J[, IX + 1512 = 1~/~ + 1512 } (5.47) 
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of the weight space of g. Also, we can assume that the elements of/3(A) are indexed 

by the positive integers, /3(A) = {Ai[i  c N}, in such a way that Aj _< Ai implies 

that i is smaller than j .  Applying the formula (5.37) to all elements of/3(A), it then 
follows that for all Ai we have 

~',(~) = ~ - ~  ~ X(W) (5.48) a~ ~ cij aj 

a~ c ~(A) 

with complex coefficients 5ij. 

Moreover, by construction we have 5ii = 1, and cij can be non-zero only if .~j _< 

Ai, which due to the chosen ordering in/3(A) implies that i _< j .  Hence the (infinite) 
matrix 5 = (~j)  is upper triangular so that it can be inverted; its inverse c = (cij) 
is upper triangular as well and obeys ci~ = 1. This shows that the following kind 

of inverse of the formula (5.37) holds: the twining character X(A ~) of the irreducible 
module with highest weight A can be written as an (infinite) linear combination 

X(A~~ = Z CA ~'~(~) (5.49) 
aE/3(A) 

of the twining characters of Verma modules with highest weights in/3(A), where the 
cA are complex numbers such that CA = 1. 

5.6. The character formula.  We are now in a position to complete the proof of Theorem 
1. Assume that the highest weight A is dominant integral, and let us write the linear 
relation (5.49) as 

X(A~)= Z cAeP+a" e - P - a ~  (~)= ( Z cA ea+P)' ~ ' (~) '  (5.50) 

aE/3(A) aEB(A) 

where we used the fact that ~-(~o) _ e-p-A~'A-A(~) is independent of A. The results of 

the two preceding subsections show that ~'(~) is odd under the action of I?V (with 

respect to the sign function ~ inherited from IY), while the left-hand side of (5.50) is 

even under I?V. This implies that the sum in brackets on the right-hand side must be 

odd under l?V, which means that cA = ~(~b)c, whenever there is an element ~b E I?V 

such that ~b(A + p) = # + p. Thus for all ~b c I?V we have 

cA = ~(~) e~(a+p)_; (5.51) 

with ~(z~) as defined in (5.16). 
Moreover, as A (and hence also ~ = p~*-l(A)) is dominant integral, with any 

weight A the weight system of the irreducible module already contains the full l~V- 
orbit of A. As a consequence, we actually need to know ca only for a single element 

of each orbit of the action of I?V; moreover, only weights in g~ *(~ contribute. Now 

p~-I intertwines the action of I~V on go* and the action of I?V on 9"(~ any orbit of 

the lYV-action contains a unique representative in the fundamental Weyl chamber of ~. 

Since the only weight A in the fundamental Weyl chamber of ~ with A _< ~ = P~*- 1 (A) 

for which A + r has the same length as ~ +/~ is the highest weight A itself, we learn 
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that/)(A) contains only a single orbit of l?d, namely that of the highest weight A. 
Together with CA = 1 this implies that (5.50) can be rewritten as 

X(AW) = ( E ~(~) eW(Z+P))" ~'(~) " (5.52) 
~, 617V 

We can now use the fact that any symmetrizable Kac-Moody algebra g possesses 
the trivial one-dimensional irreducible module with highest weight A = 0. This weight 
is obviously a symmetric weight; also, by definition, r~ leaves the highest weight 

vector fixed, and hence in this special case the twining character is constant, X(0 ~~ = 1. 
Evaluating (5.52) for this case we find 

1 = X(0 ~) = ( E ~(@) e~(P)) " ~-(~o). (5.53) 

z~EW 

This allows us to read off the explicit expression 

~-(~o) =_ ( E ~(@)e~(P))-I (5.54) 

for ~-(~o). When inserted into (5.17) and (5.52), this yields the explicit expressions 

~AA(W) = eA+P~'(w) = eZ+P ( E e(@) eW(P))-I (5.55) 
z~O?r 

for the twining character of the Verma module, and 

X(A~O) = }-~WEW ~(@) eW(Z+P) 
~ c r 1 6 2  ~(Z~) e~(P~ (5.56) 

for the twining character of the irreducible module. 
We now observe that for any h E 9(o ~ we have 

*@ *--1 (@(A + p))(h) = ([pw(@)](A+p))(h) = (p~ p~ (A + p))(h) 
= (@(zi + ~))(p~h) (5.57) 

with A = P~*-I(A). When combined with (5.56), this implies that 

X(A~,)(h) = ~ e W  g(@) e(e(A+P))(P~h) 
~ e W c(ff~) e(~@))(P~ h) (5.58) 

for all h E g~). By the usual Weyl-Kac character formula for the integrable highest 

weight module with highest weight ~, this means that 

X(A~)(h) = X A(Pwh) . (5.59) 

This completes the proof of part b) of Theorem 1. Analogously, part a) of Theorem 
1 follows by comparing (5.55) with the formula for the Verma module characters of 

(since ~'(~) is independent of A, this result holds for arbitrary highest weights, not 
just for dominant integral ones). 
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6. Simple Current Automorphisms of Untwisted Affine Lie Algebras 

6.1. Centrally extended loop algebras. Let us now specialize to the case where g 
is an untwisted affine Lie algebra, which is relevant for applications in conformal 
field theory. Among the diagram automorphisms of the untwisted affine Lie algebras, 
there is a particularly interesting subclass which corresponds to the action of simple 
currents in the WZW models of conformal field theory. From now on we will also 
restrict to these specific diagram automorphisms; abstractly, they can be characterized 
as the elements of the unique maximal abelian normal subgroup ~U,;~(g ) of the group 
F(g)  of diagram automorphisms; this abelian subgroup is isomorphic to the center 
of the universal covering Lie group that has the horizontal subalgebra g C g as its 
Lie algebra. Also, the remark at the end of Sect. 3 shows that in this situation the 
Eqns. (3.25) and (3.34) are valid in the conventional normalization of the invariant 
symmetric bilinear form. 

In the affine case, the rank r of the n x n Caftan matrix A is n - 1. Hence the 
space g o  of derivations is one-dimensional. However, one usually does not choose 
the derivation D in the way we did in the general case, i.e. such that w(D) = D, but 
rather in a way which is suggested by the realization of affine Lie algebras in terms 
of centrally extended loop algebras. We will denote the latter derivation by L0. 

In the description of untwisted affine Lie algebras via loop algebras, a basis of 
generators of g is given by H ~  and E ~  together with the canonical central element 
K and the derivation Lo. Here rn takes values in Z, i takes values in the index set 
f that corresponds to the horizontal subalgebra 0 of g, and & is a root of g. The 
horizontal subalgebra is a simple Lie algebra; for O = X ( I )  it is given by 0 = Xr.  The 
rank of 0 is equal to the rank r = n - 1 of A, so that it is natural to write the index 
set I as 7 

I := i U  {0} = {0, 1 ,2 , . . . , r } .  (6.1) 

In this basis the Lie brackets of g read 

[H~,  H~] = ra/3~,J 5~+n,0 K ,  

[H.~, E~] = ~ iE~+n,  

[E~,  E~ ' ]  = ea,a, E~+~ ' , (6.2) 

[E~, E~ c~] : ((~v, H,~§ + mS~+~,oK , 

[Lo, Hr = - m  H L ,  [Lo, E~]  = - m  E ~ ,  

together with [., K]  = 0. It is implicit in (6.2) that ea,a, = 0 if & + &~ is not a 0-root. 
Further, /3 is the symmetrized Cartan matrix of g, 

~ i , j  = ((sL(i) v ' ~ ( j ) v  ) _ 2 fii, j (6.3) 
(~(~), ~(~)) 

for i , j  c [, with 5(i) the i th simple root and (~  - 2~/(5~,5), and we implicitly 
identify the Caftan subalgebra of 0 with the weight space inasfar as we use the 
notation (A,H~)  = ~i=1 Ai H /  - ~i , j=l  - -i j r r G i , j  A H~,  with G the inverse of /3 ,  for 

any 0-weight A. The relation between the inner product (-,-) on g and the invariant 
bilinear form (. ].) on g is 

7 Note, however,  that by construction the index set [ is then generically not the set {0, l ,  . . . ,  rankS}.  
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(h I hi) = (h,  h') + ~] '  + ~'~1 (6.4) 

for h = h + ~K - ~L0 with h E 9o. Note that the normalization of G, or equivalently 
the normalization of (., .) is arbitrary; we fix this freedom such that the highest 0-root 

has length squared 2. Then in particular the level k~, defined for any vector of 

0-weight A by k~, = 2k;~/(O, O), is equal to the eigenvalue kA of the canonical central 
element K.  

The step operators associated to the simple roots ~(~) with i c f are given by 

E~ -= E • = E ~  c~") and the corresponding Cartan subalgebra elements by H i 

[E~, Ei_] = H~, while the step operators associated to the zeroth simple root c~ (~ read 

E ~ = E ~  ~ and the corresponding Cartan subalgebra element is H ~ -- [E+ ~ E ~  = 

H ~ More generally, we introduce the elements H ~ as the linear combinations 

v j 
H ~ = K - ( 6 . 5 )  

j=l 

The level of a weight A is then related by 

= ~ aYA i k~ ~ ~ (6.6) 

i=0 

to its Dynkin components ,~i. Further, for i E f the Coxeter and dual Coxeter labels 
coincide with the expansion coefficients of the highest 0-root 0 in the basis of simple 
roots and the basis of simple coroots, respectively, so that (6.5) may be rewritten as 
H ~ = K 6~,0 - (0, H~). We also note that according to (6.6) the component A ~ of a 
weight is redundant if only weights at a fixed level are considered. 

6.2. The derived algebra. We will again first describe how the automorphism w acts 
on the derived algebra 0 of 9 and later study the action on the derivation. On the 
generators H ~  and E~ ,  which together with K span 0, the diagram automorphism 
w acts as 

w(H~) = H~ i , w(E.~) = ~c~ E~[~ , (6.7) 

while it leaves the canonical central element K fixed, 

w(K)  = K .  (6.8) 

Here we use the following notation. In (6.7) the prefactors ~/a are signs which are 
+1 for the simple roots and can be deduced for all other roots by writing the step 
operator for a non-simple root as a (multiple) commutator of step operators for simple 
roots and then using the automorphism property of w to extend the action (3.6) of 
w on the step operators for simple roots. (We have already encountered an example 

with ~c~ = - 1  when we calculated w(E ~")+~(~)) in Subsect. 5.3, cf. Eqn (5.24).) 
Also, the index i in principle only takes values in the unextended index set i ,  and for 
i = &-10 the identity (6.5) is implicit on the right-hand side (note that dj-10 E f for 
all w E r However, owing to this same identity and the invariance (6.8) of K,  
the relations (6.7) are still valid if one allows for i to lie in the extended index set I ,  
i.e. including / = 0. Further, in (6.7) we introduced for any 0-root 6 the number ga 
defined by 
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g~ := (~, A(~-~o)), (6.9) 

where we denote by A(i), i = 1,2, ..., r ,  the horizontal fundamental weights, i.e. the 
fundamental weights of  the horizontal subalgebra 0. Finally, we introduced a map 
cO* on the weight space of 0; it is defined by the following action on the Dynkin 
components M of the weight A: 

while 

Hence 

(~)f~)j = ~l.~ lj for j 4G~0, (6.10) 

7" 
= _ k ; ,  -  jJ, J .  

j=l 

(6.11) 

r 
~ , ~ =  v -  _ - - k~A(c~o) + ~c~ ljf~(j) ( E  a j M )  A(~0). (6.12) 

j=l j=l 
jr 

Note that c)* is an affine mapping on the weight space of 0. 
As the components of the simple 0-roots 5z (i) in the Dynkin basis are just the rows 

of the Cartan matrix of  0, the definition of &* implies in particular that 

&*~(0 = c~(~/) for i 7(c~-10, c~*(c~ (~-'~ = - 0 .  (6.13) 

By making use of  the Serre relations and the invariance property of  the Cartan matrix, 
it then follows that &*6z is a 0-root whenever 6~ is (and hence the notation E n a ~  
introduced in (6.7) indeed makes sense). 

The action of c~* on the roots of  0 can be described more concretely as follows. We 

write any root/3 of  0 as a linear combination of simple coroots as/3 = ~i=1 / 3i&(0v, 

and for simplicity set /3o = 0 for all roots /3 as well as & (~ = - 0 .  With these 
conventions we have 

ga = (&,/i(~-~o)) = a~-~o,  (6.14) 

while the action of ~* on the roots is 

T 7" 

&*& = E aJ 5z(~j)v = -gaO + E a~-~J 5z(j)v " (6.15) 
j=0 j=l 

We can use this result to derive a relation which we will need in Subsect. 6.6; since 
for untwisted affine Lie algebras we have a~ -- aaoV = 1, so that (A(~o), 0) = a~ ov = 1, 
the relation (6.15) implies 

(r ~*~)  = - g a  + ao = - g a .  (6.16) 

6.3. The derivation. Let us now describe how w acts on Lo. The derivation Lo is de- 
fined as the unique element of the Cartan subalgebra of  9 which has the commutation 
relations 

[L0, E/ , ]  = :F(Si,o E ~ (6.17) 
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and satisfies (Lo I L0) = 0. Then the automorphism property of  co demands that 
[w(Lo), E~=] 90. = =q=6<9oE+ , this fixes ~(Lo) up to a term proportional to the central 

e l e m e n t / ( ,  w(L0) = Lo - (A(9o), H )  + c/( .  Indeed, using (A(90), &(i)) = 39o# for i = 

l, 2, ..., r, and (A(9o), - 0 )  = - a ~ 0  = - 1 ,  we find that [w(L0), E~=] = :q=39o#Ei~. The 
constant of  proportionality c can be obtained from the requirement that the invariant 
bilinear form is w-invariant, which implies that (w(L0) Iw(Lo)) vanishes, 

0 = (~(Lo) I ~(Lo)) = (Lo - (Ji(9o), H) + cK I Lo - (A(9o), H) + cK) 
(6.18) 

= - 2 e  + (A(9o), A(90)) �9 

Hence we obtain 

~(Lo) = L0 - (-/i(90), H )  + 1 (-/i(90>-/i(90)) K .  (6.19) 

With this result we can now make the relation between the derivation D that we 
used in the general setting and the derivation Lo explicit. To this end recall that D 
is uniquely characterized by the relations (3.15) for (D I �9 ). To make the definition 
concrete, we choose a basis of  eigenvectors of  co for the Cartan subalgebra 8o of the 
derived algebra. Thus we introduce vectors 

1 Ni 

h i  := -~i E siL-'mH9q-~ , (6.20) 
l=l 

where i takes values in [,  m = 1,2, ... ,Ni,  and ~i = ~N/N~, with ff as defined in 
(3.10), is a primitive N~ h root of unity. As a basis of  ~o we now choose all h~ ,  
except for i = 0 = m,  together with the central e l e m e n t / ( .  Rewriting the conditions 
(3.15) in terms of the generators H i, we then find that D is characterized by 

(DIH~)=O f o r i g & t 0  ' ( D i H g t O ) =  1 for all I .  (6.21) ( D I D )  = O, 

This fixes D to 

with 

N - 1  
1 ~ o  K 

D = - L o  + ~ Z ('/i(9'~ ' H )  - 
l=l 

(6.22) 

N - 1  N--1 

Foo := E (A(9'~ ' A ( Jo ) )  = E 0 9 ' o , 9 " o '  (6.23) 
1,ll=l 1,1'=l 

Let us also determine the relation between the derivation D = P~(D) defined by 

(3.30) and (3.31) and the element L0 of the orbit Lie algebra ~. From p~o(h~) = / ) - i  

we learn that b is characterized by 

( b l b ) = O ,  ( b l / ~  ~ ) = 0  f o r i E [ \ { 0 } ,  ( D ] / ( ) = N .  (6.24) 

This f i xe s / )  t o / 3  = - N L 0 .  Together w i t h / )  = P~,(D) and (6.22), this relation shows 
that 

N--1 
1 - 

P~o(Lo) = N-Lo + ~ P ~ ( Z  A(9'~ 'H)  _ ~F~176 [( . (6.25) 

l=l 
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6.4. The action of~*.  From the action of ~ we can also derive the action of its dual 
map ~*. First, 

(~*(a(0) ) (H j) = o~(i)(H ~- ' j )  = A i '~-lj  = A J ' j  = a ( ~ 0 ( H  j)  . (6.26) 

It follows that w*(a  (i)) = c~ (~i) + ~i(5, where ~i is some number and (5 is the specific 
element 

T 

(5 := Z ai~ ' (6.27) 
i=l 

with the ai the Coxeter labels of  9, of the weight space 9*. (Note that the imaginary 
roots of  9 are precisely the integral multiples of  (5.) Also, applying ~ to the relation 
[D, E i] = a(i)(D)E i,  we obtain 

a(i)( D)E~  i = a~([D, E~]) = [D, E~ i] = a('~i)( D)E+ i , (6.28) 

which shows that a (0(D)  = o~(ai)(D). To determine the constants (i, we now apply 
cz*(a (0) to D. By the results just obtained, this yields 

(w*(o~(0))(D) = a(~0(D)  + (i (5(D) ; (6.29) 

on the other hand, from the definition of aJ* we obtain 

(~*(a(i)))(D) = a(i)(~-i  D) = a(i)(D). (6.30) 

Thus ~i6(D) = 0, which because of (5(D) ~ 0 means that ~i = 0. Hence we have 

~*(a (i)) = a (~0 (6.31) 

for all i E I .  This implies in particular that 

~*((5) = Z ai x*(a  (i)) = (5. (6.32) 

i 

Analogously, one derives how the fundamental weights A(0 E 9o ~, defined by 

A(o(H j)  = ~ and A(o(Lo) = 0,  (6.33) 

transform under w*. We find 

co*(A(i)) = A(wi) + [G~-IO, i 1 v - -  gai (A(50--10), ~/~((.0--'0))] (5. (6.34) 

Together with the element ~ (6.27), the fundamental weights A(i) form a basis of  
the weight space 9*. Another basis of  9* is given by (5, a := A(0)and by the horizontal 
fundamental weights 

-4(i) = A(i) - a[ A(o) (6.35) 

with i = l, 2, ..., r. The relation between the components of  a weight A in the two 
bases is 

r r 

Z )dA(i) + n,,(5 = A = Z ~iTl(o + k~,~ + nx(5, (6.36) 
i=0 i=1 

- v ~  -~,k i We also set -/i(o) = 0, which will i.e. A ~ = ) d  for i = 1 , 2 , . . . , r  and k~ = z_~i=o~ �9 
be convenient in some calculations. 
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The horizontal fundamental weights (6.35) transform under w* as 

w*(A(0) = A(~i) - aV A(o) + a~-(A(o) - A(~o)) + G'~-'o# 8 

?i(~i) - a i A(~0) + G ~ , - 1 0 , i  t~. 

Using the relations 

(6.37) 

(6 1 & O  = &~)(K) = 0, (6  1 8)  = 6(K) = O, (6.38) 

and the fact that along with w also w* is an isometry, we then find that the metric 0 
on the horizontal weight space obeys 

0~,~ - (A. ) I  ~i(5)) = (~*A(~) I ~*A(j)) 
(6.39) 

O ~ i  ~ j  ~ - - a j G ~ o , ~ i  ~ ~ - , a i G(vo,cvj + = --  a i a j  Gwo ,wo  �9 

Applying the analogous relation for the automorphism win, we see that 

N - 1  - = N - - I  - 
Zl,l'=O G~i,~' j  ~-]z,/'=o Gcol§ -- NaY ~N01Gw"~o,wz§ 

(6.40) 
- N a ;  E ~ o  1 (2~,~o,~'§ 2 v ~ -  + N a i a j  ~ w ~ o , w m o ,  

and hence 

N - 1  N - I  
v v - v - v - -  

Na i aj G~o,~-~o = ai E Gco~o,co~j + aj E Gc~o,~ .  (6.41) 
l=O /=0 

N - - 1  - 
Define now Xi := }-~,v=0 G ~ 0 , J i "  Summing Eqn. (6.41) over m, we obtain the 

system 
N - - 1  

a~Xj + a;Xi = N E G~m~176 a~a; =: ~a~a; (6.42) 
m=l  

of linear equations for the Xi. These equations have the unique solution Xi = �89 ~ a~. 
With a~ = 1, it then follows that 

N - - I  N - - 1  
- N - 

Foo = E G~*o,~z'o = Xo = ~- E G~mo,~m0 (6.43) 
1,1t=O m = l  

N - 1  

E - v v X~ = G ~ o , j i  = ai Xo = ai Coo 
1,U=O 

(6.44) 

and 

with F00 as in (6.23). 

6.5. The action of P~*. It is straightforward to determine the action of p* on 9o* from 
the action of p~ on 9o. We only need to observe that the invariant bilinear form 

identifies 9o with the weight space 9o* in such a way that &(O corresponds to / t~ /d i ,  
and that since w leaves the bilinear form invariant and (p~h I p~M) = N(hIM), the 
identification of ~o with 9o* corresponds to identifying p~ and p , -a  up to a rescaling 
by N. Then in particular for the simple roots we have 
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N i  -- 1 

/=0 

(6.45) 

as already deduced for the general case in (5.12). 
For untwisted affine Lie algebras the general relation (2.18) between the Coxeter 

labels and dual Coxeter labels of 9 and of the orbit algebra 0 can be made more 
concrete: because of the normalizations 5o = a0 = 1 and 5~ = (No/N)a~ = a~ = 1, 
the relations (2.20) and (2.19) tell us that the numbers defined by (2.18) are precisely 
the conventionally normalized Coxeter and dual Coxeter labels of 0, respectively 
(in particular for all untwisted affine algebras they are integral, which for 5~ is not 

manifest in (2.18)). For the generator 5 := ~ i e i  5i &(0 whose integral multiples are 
the imaginary 0-roots, this implies 

p~(5) = (5. (6.46) 

We can now also determine how the fundamental weights ~(i) E 9" are mapped 
by P*. As can be checked by considering the action on L0 and on the h~, we have 

N i  -- 1 

e~*(~(O) = E A(~,i) + ~a~ Ni 5, 
l=O 

(6.47) 

where ~ := (1 - 2N)Foo/2N 3 is a constant that depends only on w. 
v __Ns~ Using the relation a i = Ni i we compute the action of P~* on the horizontal 

fundamental weights: 

N ~ - - I  

l=O 

N i - - 1  

l=0 

N-1 

A(~,i) + ~a'~ Ni 5 - 5'(( E A(co~o) + ~a~ NS) 
l=O 

Ni v N--I Ni N-1 
A(~t~) - - ~ a  i E A(~~ = N ( E A(c~ - a~ A(~o)) . 

l=O l=O 

With the definition 

(6.48) 

(6.23) of F00 and the identity (6.44), this yields the relation 

N--1 
1 - N iNj  

= N (Pw*~(i) [P;2(J)) -- ~ [ E G w z i , w z ' J  - a'~ajFoo] (6.49) 
1,1'=O 

between the metrics of the horizontal part of the weight spaces of 9 and 0. 

6.6. The Virasoro algebra. It is natural to consider the extension of the affine algebra 
9 to the semi-direct sum of 9 and the Virasoro algebra ~/'ir. The Lie algebra ~ ' i r  
is spanned by generators C and Ln, n E Z; C is a central element, and L0 is the 
derivation of 9 described in Subsect. 6.3. The Virasoro algebra has Lie brackets 

[L,~, Ln] = (m - n) Lm+n + 1 (m 3 _ m) C ,  (6.50) 

and its semi-direct sum with 9 is defined by 

[L,~, H i] = - n  H~+n, [L~, E~] = - n  E~+n (6.51) 
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and [C,.  ] = 0 = [K , .  ]. It is in fact possible to extend w to this semi-direct sum, 
namely via 

] - _ 

a;(L,~) = L,~ - (fly, o), Hm) + ~ (A(~o), Ar 6,~,o K (6.52) 

and a;(C) = C. It is readily checked (using in particular the identity (6.16)) that 
defined by (6.7) and (6.52) is an automorphism of the Virasoro algebra and of its 
semi-direct sum with O. Note that, just as the extension from the derived algebra 
to all of O, the extension of w to the semi-direct sum 0 | ~/ ' ir  is unique. 

A symmetric weight satisfies by definition aJ*A = A, which because of (6.34) 
implies in particular that 

A i = A ~ i  (6.53) 

for all i = 0, 1, ..., r and all I. This identity is certainly a necessary condition for w*A = 
A, but in fact it is also sufficient. Namely, for any g-weight A = ~-~i=o AiA(i) + n~5 

with A i = A ~i one has 
T 

k~ = z_., ~ aVAii = E a~NiAi . (6.54) 

i=O iCi  

Furthermore, by an argument analogous to the derivation of (6.44) from (6.42), it can 
be deduced from the set of  Eqns. (6.41) that the metric on the weight space of 
satisfies the identities 

N--1 

E G~o,~,-~i = 1 N a~ G~o,~o (6.55) 
m = 0  

for all i c I which are not of the form i = &~0 for some n, and 

N--1 

1 (N  - 2) G~o,~o (6.56) ~ G~o,~mo = 
m=2 

(which is of course non-trivial only for N > 2). 
Combining these identities with (6.54), one finds that for any symmetric O-weight 

T one has ~ i = a G ~ o #  Ai l v - = ~ k;,G~0,~o, or what is the same, 

C ( ~ 0 ~ , X )  1 ~ - - = k;~ (A(~o), A(~o)). (6.57) 

Now according to (6.32) and (6.34) the weight A = ~ i~o  AiA(i) + n~5 is mapped by 
W* to 

T 1 , /  - 1 - i 

w*(A) = ~ AiA(~i) + (n;~ + E [ G ~ ) - x o , /  - ~a i (A(~- o), A(w-lo))])~ ) (~ 
i=0 i=0 ~ (6.58) 

: E  i ( Z G d d _ l O , i  ~ 1 - - V A A(coi) + n~6 + - i _ ~(A(~_~o), A(~-~o))k~) 5. 

i=O i=O 

T 
The relation (6.57) thus shows that w*A = ~ = o  AiA(mi) + n),5 = A if (6.53) holds. 
Thus (6.53) is a sufficient condition for A being a symmetric weight. 

It follows in particular that the pre-image p , - l ( A )  of  a symmetric weight A is 
the unique weight of  ~ that is obtained by restricting to components Ai with i in the 
index set I ,  and with ~X = n:~, i.e. 

e * - I  : /~ ~ ~ = Pw*-l(/~), X i = A i for i ~ I ,  r = n~,. (6.59) 
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7. The Order N A u t o m o r p h i s m  -~" A(1) u l  .e-aN_ 1 

We would like to be able to treat all diagram automorphisms of all affine Lie algebras. 

Except for the automorphism of order N of 9 = A%)_1 which rotates the Dynkin 
diagram, all of these are already covered by Theorem 1. The remaining exceptional 
case is the subject of Theorem 2, which we prove in the present section. 

For the automorphism w of order N of A%)_1, the symmetric weights A obey 

A i = const = like4 for i = 0, 1, ... , N  - 1, so that the level k~ of any dominant 
integral symmetric weight is divisible by N. Furthermore, the subspace 9~ ) of 90 
that stays fixed under w is two-dimensional; it is spanned by the two elements K = 

~-~N--1 H ~ and D ---~ N-~ t h0 = A.~i=l = ~t=o w (Lo)+ ( K ,  with ~ some number which can 

be deduced from (6.22). Now only symmetric weights A c g~(0) contribute to the 
twining character; for these we have 

N--1 

A(D) = - 1 E ((w*)t)')(L~ + A(~K) = ) , ( -L0 + ~K) .  (7.1) 

l=O 

This implies that the twining character of the Verma module obeys 

~AA(~)(tK + ~-no) = ~A(~)((t + ~ - ) K  -- TD),  (7.2) 

and an analogous formula holds for the irreducible twining character X(A ~). As K 
acts as a constant kA on any highest weight module, the dependence of the twining 
character on the variable t is only via an exponential factor, 

~AA(~)(t, ~-) = ~A(~)(tK + TLo) = e 27ritkA �9 trvA wwe 2~irR(L~ . (7.3) 

In the rest of this section we will show that the only non-vanishing contribution 
to the trace in (7.3) comes from the highest weight vector, thereby proving Theorem 
2. This vector is never a null vector, so that this statement holds both for the Verma 
module and for the irreducible module. Thus we have 

X(A w) ( t ,  7-) = ~AA (w) ( t ,  T )  = e 2~itkA e 27riTAA (7.4) 

where Z] A denotes the eigenvalue of L0 on the highest weight vector. 
To show that only the highest weight vector contributes to the twining character 

of the Verma module, we label the positive real roots of A%)I  in the following way. 

The positive roots of AN_ l  are 5(i,j) := O(0+&(~+l)+...+~5~(j--l) with 1 _< i < j _< N. 

Then all positive real roots of A(N1)_I are covered by 

{ (~(i'J), 0, n )  for i < j ,  

a~ ' J ) :=  (-5~ ( j ' 0 , 0 , n + l )  for i > j  
(7.5) 

with l _ < i s ~ j < N a n d n E Z _ > 0 .  
The outer automorphism acts on the positive roots as 

(i+1 ,j+l) . (7.6) 02*(OL(~ ' j ) )  = O~ n 

here (as well as in some formulae below) for convenience the upper indices are 
considered as being defined only modN. Hence for any fixed n there are exactly 
N - 1 orbits of length N, which can be written as 
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{a~ 'j) I / - J = const}, (7.7) 

where const E { 1 , 2 , . . . ,  N - 1}. It follows directly from the definition (7.5) that 

N - 1  

~n~(i+k#+k+Z) = (0, 0, N n  + l) (7.8) 

k=O 

for 1 < l < N - 1. Thus the horizontal projection of the sum of the roots of  each 
~,~N--1 CO.I(o~( i j)~ orbit vanishes, and the grade of z_~t=0 , ~, z is n N  + j - i. 

On the step operators H~ (n > 1) associated to lightlike roots, co acts as H~ ~-~ 

Hi+, for 1 < i < N - 2, while it sends H N-1  to - ~-~kN11 H k (compare (6.5) and n 
(6.7)). Thus the linear combinations 

N - 1  

hPn := Z ( (  - p j  - 1)H~,  (7.9) 

j=l 

with n _> 1 and p = 1 , 2 , . . , ,  N - 1, and with ~ = exp(27ri/N) a primitive N th root 
of  unity, obey 

N - 2  N - 1  

co(hp) = Z ( ( - p j  _ 1 ) H i + ,  _ ( ( - p ( N - a )  _ 1) ~ H~ 
j=l j=l 

(7.10) 
N--1 

= Z ( ( - p ( j - 1 )  -- 1 -- (P + 1)H j = (Ph  p , 

j=l 

i.e. they are eigenvectors of  co to the eigenvalue (P. 
According to the Poincar&Birkhoff-Witt  theorem a basis for U(g_)  (the subal- 

gebra of  the universal enveloping algebra U(g) that is generated by the step operators 

corresponding to negative roots of g = A % ) I )  can be described as follows. Consider 
an arbitrary, but definite ordering of the generators of g_ ,  starting, say, with the step 
operators corresponding to lightlike roots. Then for any sequences n =- ( n ( m ,  j ) )  and 
n ~ =_ (n~(m, j ,  l)) which take values in the non-negative integers and for which only 
finitely many elements are different from zero, we denote by [n, n ~] the element 

f i  N - 1  N - 1  . 
[n ,n ' ]  := [ I I ( h J , o  ~(m'j) H ( E - ~ z + ' ) )  ~'(m'j'z)] (7.11) 

m=l j=l l=O 

of U(g_).  Here it is to be understood that the products are ordered according to the 
chosen ordering of the basis of  g_ .  The Poincar6-Birkhoff-Witt  theorem asserts that 
the set 

{ [n, n ']  I n, n'  } (7.12) 

is in fact a basis of  U(g_).  
To compute the contribution of the state v = [n, n ']  - VA to the twining character, 

we consider the standard filtration of U(g_);  thus we denote by Up the subspace of 
U(g_)  that is spanned by all elements of  U(g_) which can be written as the product 
of  p or less elements of  g_.  Now under co, the generator [n, n ~] is mapped to 
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co  N- -1  N- -1  

w([n, n ' ] ) =  H [ H (CJhJ-'O'~('~'i) H (E-~+~'*§ ' (7.13) 

m=l j=l l=O 

and hence ~z maps the subspace Up bijectively to itself. 
Moreover, for any p elements xi of  9 -  and any permutation 7r of  { l, 2 , . . . ,  p} we 

have 
x l x 2 . . .  Xp - x~o)x~(2 ) . .. X~(p) E lJp_l (7.14) 

(it is sufficient to check this statement only for ~r a transposition, in which case it 
follows from the properties of the commutator). Now both [n, n'] (7.1 l)  and co([n, n '])  
(7.13) are elements of Up with 

P = E n ( m ' j )  + E n ' (m, j ,  l), (7.15) 
m,j  m,j,l 

but not of  Uv_I.  In computing the trace of  % we are therefore allowed to reorder 
the factors in ~([n,  n '])  without changing the value of the trace, since reordering only 
introduces terms in [Jp-1. This shows that a state [n, n ']  �9 VA with [n, n'] of the form 
(7.1 l) can only contribute to the twining character if the number n'(m, j, l) is constant 
on any orbit, or in other words, if it does not depend on l at all. Correspondingly, 
we will write n'(m, j) from now on. To proceed, it is convenient to drop the trivial 
dependence of the twining character of  the Verma module on the central element and 

shift ~ ( ~ )  by e--~-ZXA; thus we define 

~'(~)(~-) := e -~-'~a ~A("O(O, T). (7.16) 

We will show that 
~'("~)(T) --= 1. (7.17) 

To see this, first note that a vector [n, n ']  - v A in the Verma module V A which fulfills 
the conditions formulated in the preceding paragraphs gives a contribution of ~Tq '~ to 
~'(~)(~-), where q = exp(27vb-), 

:= [I(~J) n(m'j) and n := Z n ( m , j ) . m + Z n ' ( m , j ) . ( N m + j ) .  (7.18) 

The function ~'(~)(7-) just keeps track of the contributions (7.18) from all states in VA. 
It is convenient to combine the contributions from all powers of any fixed generator 
of  9 - ;  thus any h{~ yields a contribution of a factor of  

1 + ~jqr~ + (~/q,~)2 + . . . .  (1 -- ~jq,~)--I (7.19) 

to ~ '(~)( ' r) ,  while any orbit characterized by j and m contributes a factor of  

1 + qNm+j + (qNm+j)2 + . . . .  (1 - -  qNm+j)--I . (7.20) 

Thus 
N - - l  

(~(~)(T))-I  = H I I  [(1 - eJq~)(1 - qN~+j)]. 
m = 0 j = l  

(7.21) 
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By arranging the terms in the first product differently this can be rewritten as 

(~'(~)(.r)) -1 

= H H [(1 _qNm+j). H(1 _~j'qN~,~+j)]. I I  (1 _~jqNm) . 
m=0 j=l j'=t j=l 

(7.22) 
For any fixed m and j the term in the square brackets evaluates to 

N--1 N--1 
H ( 1  -- ~ f  qNm+j) = qN(Nm+j) H (q--Nm--J __ ~j') 

j,=0 j,=0 (7.23) 

= qN(Nrn+j)(q -N2m- jN  -- 1) = 1 - qN(Nm+j). 

Inserting this identity into (7.22), we find 

o~ N--1 

(~7-(W)(q))-I = H H [(1 -- ~jqNm)(1 -- qN(Nm+j))] = (~'(W)(qN))-I .  (7.24) 

m=0 j=l 

This functional equation for ~AA (~) implies that ~'(~)(q) is constant. Evaluating the 

function for q = 0 we thus find ~'(~)(q) - 1, as was claimed in (7.17). 
According to the definition (7.16) of ~(~)(~-), it then follows immediately that 

the twining character of the Verma module is given by (7.4), and hence the proof of 
Theorem 2 is completed. 

8. Modular Transformations 

One important property of the untwisted affine Lie algebras (and of the twisted affine 

Lie algebras A] 2) and /)(~)) is that at any fixed value k v of the level, the set of 
irreducible highest weight modules with dominant integral highest weights carries a 
unitary representation of the twofold covering SL(2,z) of the modular group of the 
toms. To be precise, this representation does not act on the characters X as we used 
them in the previous sections, but rather on the so-called modified characters ~. From 
Table (2.24) we read off that if a~ is a simple current automorphism, which is the case 
we are considering, then also the characters of the orbit Lie algebra ~ - and hence 
the twining characters as well - give rise to a unitary representation of SL(2, z). 

The modified characters are defined as 

)~A := e--SASXA, (8.1) 

7" 
where ~ = ~i=1 aic~(~) is the element of the weight space that was defined in (6.27), 
and where for any integrable highest weight A of 9 the number SA is the so-called 
modular anomaly 

8A "-- (0, O) ~,, " ~  + ~ . (8.2) 
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For later reference, we also remark that using the strange formula (~,/5)/(0, 0) = 
9 ~ dim ~/24 and the eigenvalues 

C2(A) = (A + 2/5, ./i) = (/i +/5, ./i +/5) - (/5,/5) (8.3) 

of the second order Casimir operator ~ 2  o f  g, one can rewrite the modular anomaly 

as 
C'2(A) k v dim 9 c 

- A A - - -  ( 8 . 4 )  
8A = (~, O)(kv + gV) 24 (k ~ + g~) 24 " 

Here in the last step we implemented our convention that (0, 0) = 2, and introduced 
the central char_ge c := k ~ dim O/(k  ~ + 9 ~) of the Virasoro algebra and the conformal 
weight  A A := C 2 ( A ) / 2 ( k  ~ + 9 ~) of the highest weight A. 

In the present section we treat the case where also the orbit Lie algebra ~ is 
an untwisted affine Lie algebra; the alternative case that ~ =/3~)  will be described 
in Sect. 9. The modular anomaly of the twining character of g is not the one of 
the ordinary character of 9, i.e. exp(--SA(5), but rather the pull back of the modular 

anomaly of the ~-character. Defining S := P~*(~) and 

02(eI) 
8A := a p * - i  A ---- a A - 2(~v + ~v) 24 ' (8.5) 

we can introduce modified twining characters by 

~(A r := e--'~A*X(A~ . (8.6) 

They are related to the modified characters of the orbit Lie algebra ~ by a relation 
analogous to (4.17): 

5~(W)(h) = e--aA$X(~~ = exp [ap.-1a(P* (~))(h)])lA(P~h) 
(8.7) 

= exp [SP~*-]A ~(Pwh)] XA(Pwh) = ~A(Pwh). 

We will now show that the difference between the modular anomaly of the twining 
character and the one of the usual character is not as big as one might expect. In fact, 
they differ by a constant which only depends on the level of the weight A. First, 

the relation P~*(6) = 6 (6.46) shows that the two modifications differ only in the 
value of the modular anomaly; closer inspection shows that the difference 8 A  - -  8A 

is only a function of the level of the weight A. Since when analysing the modular 
transformation behavior one has to restrict oneself to weights at a fixed level, this 
shows that the modular anomalies differ only by a constant. This constant is precisely 
the "shift" of the conformal weights that was observed in [4]. 

More precisely, the relation between 8A and SA is as follows. For affine fl the 
relation (2.18) between the dual Coxeter labels of fl and ~ implies that the dual 
Coxeter numbers ~v = ~ i e i S ~  of ~ and gV = )-~=o a~' of g are related by 

N U = 9 ~ .  (8.8) 
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Further, for any symmetric O-weight A of level k~,, the level of the weight A = pw*-l(A) 
is given by 

~ ~ ~"'~ty~i 1 ~ V--i 1 v 
~ = - ~ _ . a  i A = ~ k A . (8.9) 

i~I  iEI 

TO compare 8A and SA, we also need a relation between the second order Casimir 
operators of the horizontal projection of the weights A and A. Thus consider two 
symmetric weights ),, # E 0o *(~ The scalar product (A,/2) = ~ , j = l  Gi , iA i#  j of their 
horizontal components can be written as 

(s #)  = 
N--I~ N i N j  Gd~mi,wnJ- -t-,~0 ~ N- - IN- -1 .  V "  V "  - y, i p~ Gco,~o,co,~y 

i,jE[\{0} m,n=O jEi\{0} m=l n=O 

N--1N-1 ~ N-1  

+,o Z ~ E 
i E / \ { O }  rn=0 n=l m,n=l 

(8.10) 
Further, we have 

_ V'ayAi   o=k; =k;-  iiaV  
i=1 ~i\{o) 

(8.11) 

which owing to the relation (2.18) between the dual Coxeter labels of 0 and 0 can 
be rewritten as 

= a i A = (8.12) 

iei\{0} 

Inserting this identity into the right-hand side of (8. I0) and using the formula (6.49) 
--G- 

for G, we can express the scalar product (8.10) entirely in terms of the horizontal 
subalgebra of the orbit Lie algebra. We obtain (compare [4]) 

~ v ~ v  (),,/2) = N(~,/~) + Foo k;~kt~, (8.13) 

where k~ and k~ are the levels of the 0-weights A and/~, respectively. 
Then in particular, the quadratic Casimir eigenvalue of a symmetric highest O- 

weight A at level k v can be written as 

(A, A + 2/~) = N (A, ~ + 2/~) + F00 k~(k~ + 2or) .  (8.14) 

(In [4], this formula was obtained in a different guise, which is obtained from the 
present one by (8.8) and the identity 

F00~ v = N (d - d), (8.15) 

where d and d are the dimensions of the simple Lie algebras 9 and ~, respectively.) 
Dividing (8.14) by 2(k v + 9v) and using (8.8) and (8.9), we then obtain a simple 
relation between the conformal dimensions of primary fields of the O and 0 WZW 

conformal field theories (at levels k v and k~, respectively), namely 
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1 9 v 
z~ A ---- z ~  + ~ ~00 kv (1 + ~ g ~ ) ,  (8.16) 

or, equivalently, using (8.15) 

A A = Z ~ A +  [ ( d - d ) + c - O ] ,  (8.17) 
g 

This shows that the two modular anomalies in fact only differ by a (level-dependent) 
constant: 

c ~ 1 k v 1 k ~ 
8A = AA -- ~ = f f~  -- - ~  + - ~  7 (d - d) = ~A + -~  - ~  (d - d). (8.18) 

The analysis above reproduces in particular the results concerning the fixed point 
conformal field theories that have been obtained in [4]. Note that in [4] the fixed poin t  
theory has been found by looking for those affine Lie algebras 0 for which a relation 
of the form (8.18) between the conformal dimensions of the symmetric weights of 
g and the weights of 0 exists. Equation (8.18) shows that the orbit Lie algebra ~, 
which was defined by a folding procedure of the Cartan matrix, fulfills precisely 
these requirements. Also note that from the explicit formulae (2.7) and (6.49) it is 
by no means manifest that the symmetrized Caftan matrix of the horizontal orbit Lie 

algebra is the inverse of the quadratic form matrix G as defined in (6.49), which 

coincides with the result obtained in [4] for the quadratic form matrix of ~; that this 
is nevertheless true can thus be seen as a non-trivial check of the identification of 
with ~. 

9. Twisted Orbit Lie Algebras 

When comparing the list of orbit Lie algebras in (2.24) with the list of "fixed point 
conformal field theories" as presented in [4], for the cases involving the simple current 

/-7(1) R(1) automorphisms of order two of 9 = ~2n or ~n+l some additional explanations are in 

order. In these cases.the orbit Lie algebra is ~ ~(2) while in [4] the fixed point ~ -  D n , 

theory was conjectured to he the C(n 1) WZW theory at level g if the level of 9 is 
k v = 2g + 1. For even level the spectrum could not be matched with any known 
conformal field theory apart from a few special cases. Based on a level-rank duality 
of N = 2 superconformal coset models, an S-matrix for the spectra at even levels 
was conjectured in [6]. 

In this section we explain how these observations fit together. For odd levels 

k v = 2g+ 1 of 9, we show that the S-matrix of ~ =/3~) at level /c ~ = k ~ coincides 
(up to sign factors which are related to certain shifts appearing in the application to 
fixed point resolution) with the S-matrix of 0 := C~ 1) at level g = (k ~ - 1)/2. For 
even levels k ~ = 2g we prove the conjecture of [6] related to level-rank duality. Note 
that the level of/3~) is defined with a conventional factor of two [1], 

k~ 2 Z  ~v~i 
= a i A , (9.1) 

ici  
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as compared to the formula (6.6) of the untwisted case; this cancels the factor of 1/2 

that according to (8.9) is present in the relation between kv and k ~. 

The modular S-matrix of ~ = /)(2) at level fc ~ is given by the Kac-Peterson 
formula 

S~,~ ' --'il'~§ ( ~ v M  . -1/2 (~+ /~ ,~ (~1+/~) ) ] .  
+O~) M ~ e ( ~ ) e x p  [ - 27ri /c~ + ~  

~cW 

(9.2) 

Such a formula holds for all untwisted a n n e  Lie algebras, while among the twisted 
algebras it is valid only for/~2) (here and below we employ the convention that the 

h(2) and hence is included in the/)~2) series; also twisted algebra A] 2) is denoted by ~1 

recall that in [1] these twisted algebras are denoted (2) by A2~). The notation used in (9.2) 

is as follows. For ~ =/~2),  ~ is the unique diagram subalgebra isomorphic to C, ,  
while for untwisted affine Lie algebras it is the horizontal subalgebra generated by the 

zero modes. The summation is over the Weyl group W of ~, and ~ is the projection 

of the 0-weight ~ to ~. In the prefactor of the sum, /]+ is the set of positive roots of 

~, M is the translation subgroup of the Weyl group of ~, and M* its dual lattice. We 
also note that the dual Coxeter number of/3~) is 0~ = 2n + 1, and that the translation 
lattice M of the Weyl group of /3~)  is isomorphic to the root lattice of the simple 
Lie algebra Bn. Moreover [1, Corollary 6.4.], if we normalize the invariant bilinear 
form of 9 such that the longest roots have length 2, the restriction of this invariant 
bilinear form to/~2) is twice the normalized form of C,~. 

For concreteness, from now on we consider ~ =/~(2) as the orbit Lie algebra of 

c~(1) is very similar. R(1) The case g = ~2n ~ "  ~n+l'  

9.1. Odd level. Let us first treat the case of R0) at odd level k v = 2g+ 1. We start by ~n+l 
showing that the prefactors in the Kac-Peterson formula for ~ = C~ 1) at level g and 

=/3~) at level 2p + 1 coincide. The powers of i are identical because ~ = Cn = ~, 
i.e. the horizontal algebras coincide. Further, for /3~), M is the root lattice L of 
B~, while for C~ ~) it is the coroot lattice L ~ of C~; these lattices are proportional 
because B~ and C~ are dual Lie algebras. To determine the relative normalization, 

we notice that the simple coroots of Cn are @)~ = 2@ ) with length squared 4 for 

i = 1,..., n - 1, and 7 f~)~ = 7 (n) with length squared 2, while the simple roots of/3~ 
are/3 (0 with length squared 2 for i = 1, ..., n - 1, and ,2 (~) with length 1. Hence 

m*(#}~)) = v~  M*(C~). 
(9.3) 

Finally for C~ ~) we have ~v + }v = g + (n + 1) = g + n + 1, while for ~(2),n ~v + 0v = 
(2g+ 1)+(2n+ 1) = 2(g+n+ 1). Taking these results together, we find that the prefactors 
coincide as claimed. 

Furthermore, the terms in the exponent coincide as well. As already seen, the 
denominators differ by a factor of two; this is cancelled by a factor of two in the 
numerator from the different normalization of the invariant bilinear form. Finally, the 
Weyl groups of Bn and Cn are isomorphic so that also the summation is the same 
for both cases. Thus we conclude that the formulae for the S-matrices coincide. 
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However, we still have to determine the precise relation between the weights in 
the two descriptions�9 Now clearly, the mappings of  the symmetric integrable highest 
weights of  9 to those of ~ and the mapping to weights of  0 that was considered in [4] 
are different�9 But even the restrictions of these maps to the isomorphic subalgebras 

= Cn and ~ = C~ do not coincide; rather, the two mappings are related as follows. 

A weight .k = (A ~ A 1 , A n+l) of g = B (1) is symmetric if A ~ A 1. The mapping 
�9 " " ' n + l  = 

of symmetric g-weights to weights of  ~ =/3~)  reads 

/~ ~ ~ := ( / ~ 1 , / ~ 2 . . . , / ~ n + l ) ,  (9.4) 

or in other words, .~i := Ai+l for i = 0, 1, . . . ,  n. The restriction of this mapping to the 

diagram subalgebra ~ = Cn of /3~)  is then given (in the conventional labelling of the 
C~ Dynkin diagram, i.e. with the n th node corresponding to the long simple root) by 

.~ ~ ~ := ( . ~ n / ~ n - 1 , . . . ,  Am) , (9.5) 

i.e. by ~i := An-i+1 for i = 1,2, ..., n. On the other hand, the mapping to weights of 

= Cn described in [4] is 

A ~ ~ := (A 2 , A 3 , . . . , A  n, �89 (A n+l - 1)), (9.6) 

i.e. ~i := Ai+l for i = 1,2, ... , n -  1 and ~ := �89 (A n+l - 1 ) .  Extending this map to the 

affinization 0 = C~ 1) of ~ at level p one has h i = ~i, with ~ as defined in (9.6), for 
i = 1 ,2 , . . . ,  n, supplemented by 

�9 = 1 __ ~ i  ( ~ n + l  1 ( ~ 0  + ~ 1 )  ~ 1  ~ 0 = g _ Z  ~ g ( ( k ~ - l )  2 - - l ) ) =  = . (9.7) 

i=1 i=2 

These relations, as well as the analogous mapping from O = c7(1) to /~(2)  ~2n n , are displayed 
in Fig. 1. 

Finally, we can also extend the map (9.5) to the affinization C~ 1) of  ~; this yields 

a weight/~ of C~ x) with/~i = ~i for i = 1, 2,. . .  , n  and zeroth component 

/~0 = g - /~i = �89 ((k~ _ 1) - 2 Z Ai = �89 ()kn+l 1). (9.8) 

i=1 i=l 

Combining these formulae, we learn that the C~l)-weights ~ and/~ are related by 

/~g = ~ - i  (9.9) 

for i = 1 ,2 , . . . ,  n. This means that ~ and/~ are mapped to each other by the non-trivial 
(simple current) diagram automorphism of C~ 1). 

We can now use the relation between S-matrix elements involving fields trans- 
forming into each other under a simple current automorphism that was found in [2] 

to relate the S-matrix ~ proposed in [4] to the S-matrix S of the orbit Lie algebra 
~. We obtain 
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~t 

~(i) > 
g --  ~ 'n+l  12 

Ai 

At A2 

&3 ~---~~5 - -~-~-~~,~  :- ~,~+ t 

L 
,~n )~n+t 

,9 ,~2 ,~3 ,V~-t ,V' ~7--~'3---~ i 

~=/)(2/ 

b 

A I A 2 A 3 An- t  An 

~-#~:~*~ ~ 3 - - - ~ - - ~ 1  ~ - ~  An ~n+l 

�9 v 
v 

~=~C. 

~ : c ~ . . .  ~-- . - - . - - --~ :.:_~(.+,_~ 1 A2 A3 A4 A5 An-1 )~n 

, n  y i  i ,  

g =C. 

Fig. la--e, a Relation between symmetric weights ("fixed points") of '~(]) and weights of the orbit Lie D ~ Z + ]  

algebra /3~). b Relation between symmetric weights of c7(1) and weights of the orbit Lie algebra /3~>. 
v 2 n  

e Map between weights of/3~) and weights of C~ ) at odd levels 
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S zI,A, = ( -  1) Q(zI)+Q(A')+Q(AJ) " S~,~, , (9.10) 

n 
w h e r e  . / [ j  = ~ ( n )  is the weight of  the simple current of  C(~ 1) and Q(][) := ~-]~j=l J flJ 

is the so-called monodromy charge of  ~ with respect to the simple current, which 

coincides modulo 2 with the conjugacy class of  the C~-weight ~. Thus the two mod- 
ular S-matrices coincide up to sign factors, as claimed. These sign factors factorize 
into a global sign and signs associated to each row and column of  the S-matrix. 

To compare this result with the description of  the fixed point theory ~ in [4], we 

note that there the S-matrix ~ was only defined up to a one-dimensional representation 

of  the modular group; this allows for a global sign between ~ and the S-matrix of  
~. Further, the second type of  sign factors which depends on the representations can 
be compensated in the process of fixed point resolution by interchanging the role of  
the two fields into which the fixed point is resolved, so that they cannot be noticed 
in the fixed point resolution procedure at the level of  representations of the modular 

group either. 

R(1) at even level k v = 2g. It will be convenient to 9.2. Even level. Consider now ~n+l 
,~(1)  

describe the symmetric weights of Dn+ L in terms of  an orthogonal basis of the weight 
space of Bn+l. Thus for the weight A with Dynkin components A i we introduce the 
numbers 

l_ ) n+l l i=l~O0:= A J + n + 2 - i + 2 . .  (9.11) 

j=i 

for i = 1, 2, ..., n + l, which are the components of  )~ + p in the orthogonal basis. We 
have 11 > 12 > . . .  > In+l _> 1. Furthermore, that the weight A is symmetric means 
that A ~ = A l, and hence the level can be written as 

2g = A~ +)~1 + 2~-~ M +)~ n+l = 2  AJ+)~ n+l . (9.12) 

j=2 j=l 

This relation shows that for symmetric weights ,~n+l must be even at even level, so 
that all the numbers l~ are integers, and it also implies that for a symmetric weight 

1 )tn+l the number ll = }-~j'~l M + ~,. + n + 1 = g + n + 1 is independent of/~. A symmetric 

weight can therefore be characterized by a subset MBn.I (~) of n numbers out of the 

set Me+~ := { 1 , 2 , . . . , b + n } .  

Let us now compute the weight with respect to the subalgebra ~ = C~ of  the orbit 
Lie algebra ~. For a Cn-weight/~ = (pi) the components of  fi + ~ in the orthogonal 

basis read 
n 

mi = mi(/~) = ~ / ~ J  + n +  1 - i (9.13) 

j=i 

for i = 1 ,2 , . . . , n .  As /~ has level ~, we have n + g > ml > m2 > . . .  > m~ > 
1. Thus these weights are again characterized by a subset of  n elements of Me+n, 
which we denote by Mc,~(fz). The relations (9.4) and (9.5) between a symmetric 

/3(nl+)l-weight /~ and the associated weights ~ of/)~2) and ~ of  Cn then imply that 

mi(5,) = v'~+l-~ ~J z_~j=l + n + 1 - i for i = 1, 2, ..., n, and hence 
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1 )~n+l 
m i ( ~ )  +/n-i+2(/~) = /~J + ~.. + n + 1 = g + n + 1. (9.14) 

j=l 

This means that the sets Mc~ and Mu~+l obtained from a weight )~ are related by 

m c n ( ~ )  = {g + n + 1 - i ] i e MB~+I(/~) } . (9.15) 

With this information, we can express the S-matrix of ~ as follows. In the prefactor 

in (9.2), we now have k~ + ~  = 2 g + ( 2 n +  1) = 2 ( g + n +  �89 Comparing this with 

the corresponding number g + (n + 1) in the prefactor for the S-matrix of  C(~ 1) at level 
g, we see that 

�9 ~(2) [ g+n+l . .~ - -n /2_  "1) 
J / / ( B ~  ) =  ~ )  ~ / ( C  u ).  (9.16) 

With the known S-matrix of  C(n 1) at level ~, we then find 

[ g+n+l/2"~n/2 
&,~,(t)~)) = , 7 7 7 7 F -  & ,~ ' ( c '~  ~)) 

= (-1)~(~-1)/22~/2(g + n + �89 . de te~Mc~( f~) , /~vq ,  (9.17) 

qCMcn(#') 

where 
. /~pq := sin (J2P_~_'~ (9.18) \ g+n+ l /2 j 

for all p, q E Me+~. 
This result will now be compared with the conjecture for the S-matrix obtained 

from level-rank duality. By level-rank duality, symmetric weights of r~(l) at level ~n+l  
2g are mapped to a pair of  so-called "spinor non-symmetric simple current orbits" of  

weights of r)0) at level 2n + 3 [6]; the latter are simple current orbits which contain a ~ g  

D~l)-weight u with u e ~ u e-1 . Again we characterize the weights u by the components 
of u + p in the orthogonal basis, i.e. by 

l ( u e - 1  u e ) + g - i  f o r i = l , 2 , . . . , g - 2 ,  
(9.19) 

1 (_ / ]e-1  ne_l (U ) = I (pe-1 + S )  + 1, ng(~') = g + ug).  

To characterize pairs of simple current orbits, we choose the unique representative of  
each pair of  orbits which has u e - u e-1 c 2Z>0 and u ~ >_ ul; for this representative, 
all n.i are positive integers and nl > n2 > . . .  > n g  > 0. In fact, ne >_ 1 because of 
S ~ S -1.  Moreover, as u is spinor non-symmetric and at level 2n + 3, the integer 
nl obeys 

s 
n l  ---= ~ / / J + l ( b ' s  + / / g ) + e - -  1 

J<  (9.20) 

(u 1-u~189 = � 8 9  ~ _ , 

implying that nl <_ n + g. It follows that we can characterize each pair of spinor 
non-symmetric orbits by a subset MD~ (u) of g elements of  Me+,~. 

In terms of this subset, the level-rank duality between symmetric weights ), of  
B 0 )  ~+, at level 2g and these orbits of D~a)-weights reads [6] 

MDe(U) = {e + n + 1 - - j  [ j ~ MB~.I(),)} �9 (9.21) 
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Combining the results (9.15) and (9.21), we find that the weights with respect to C(~ 1) 

and to D~ 1) that are associated to a symmetric weight -r D(1) ul ~ + 1  are related by 

MD~ (u) 0 Mcn (A) = Me+N, (9.22) 

where @ denotes the disjoint union. 
In [6] it was conjectured that, up to a phase, the S-matrix for the fixed point 

resolution for R(1) is ~ n + l  

SA,A' = 2e/2-2(g + r -- �89 det ~/~pq, (9.23) 
pEMD~(A), 
qcMDe(A ~) 

with J/Npq as defined in (9.18). It is not difficult to verify that this matrix indeed 
coincides, up to sign factors, with the S-matrix (9.17) of  ~; to see this one has 
to employ Jacobi 's  theorem on determinants of  submatrices of  an invertible square 
matrix, together with the identities 

d e t J / g  = ,(--|~(~+n)(g+n--l)/2(2g+2n+l~(~+n)/2~j ~ 4 J ' . ~ 2  _ 2/~+2n+14 1l , (9,24) 

and the fact that . / ~  is symmetric (compare [6]). 
We have thus completed the proof of  the conjecture for the S-matrix that was 

derived using level-rank duality. The conjecture for the S-matrix given in [6] was 
based on a resolution of fixed points at the level of  representations of  the modular 
group. As we have remarked at the end of the previous subsection, any such conjecture 
is not sensitive to both a global sign of  the S-matrix and to multiplying corresponding 

rows and columns of the S-matrix with the same sign. When comparing 5~ and S, 
we therefore did not pay attention to such sign factors. 

Appendix: 121/- as a Subgroup of W 

In Subsect. 5.2 we have already seen that rhij is a divisor of  rhij. In this appendix 
we show that 7~Lij is a divisor of  7~Lij , o r  in other words, that 

(zbi~j) ~ j  = id , (A.1) 

in the cases where rh~j E {2, 3,4,  6}, i.e. when A~,J~J,~ E {0, 1,2, 3}. Together, it 
then follows that r = rhij also in the cases; this completes the proof  that the Weyl 

group l~  of  ~ is isomorphic to the subgroup l ~  of W. 
Recall that the generators z~i are defined by (5.2) and (5.6) for si = 1 and si = 

2, respectively. We will deal with the various cases separately; the corresponding 
restriction of the Dynkin diagram of g to the orbits of  i and j is depicted in Fig. 2. 

Consider first the case rhij = 2. Then we have 

N - 1  
NUv~ . . . .  ~' . .  

0 = fti 'Jft  y'i = sisj  ~ ~ A~%3A ~ ~'~. 

l,F=O 

(A.2) 
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A15 A1 O 

g 

0 0 0 

A 2 0 0 . . . . . . .  ~" 0 0 

B2 

I A 4 ...... 

W 
W~WW 

A3 

G2 ~ . . . . . .  *- 

D4 ~ -  ~.sf 1I"*" 

Fig. 2. The foldings of Dynkin diagrams with I~,JAJ# < 3. 

As i 5/ d / j  for all l, all terms in the sum are non-negative; this implies that 

AC~'JAC/J# = 0 for all l, l'. Assume now that there is a value of l such that A ~zi,j 
is different from zero (i.e. negative). Then the fact that 5: is an automorphism of 

A implies that also A i,c~-~j < 0; since A is a Cartan matrix, it follows that also 

A ~-zj# < 0. This in turn implies that the term Ac~%JA c~-~j# gives a positive con- 

tribution to ~[i,j~j#, which is in contradiction with (A.2). Thus we learn that A c~ti,j 
has to vanish for all 1. Using again the fact that d~ is an automorphism of the Cartan 

matrix, we then find that also A c~ vanishes for all values of  1 and l', which 

implies that wco~iwjj = wcsjwco~i. This relation implies that also zbi~j = ~jzbi, 
which shows that rhij = 2 = rhij in this case. (We also see that for Ni = Nj the 
restriction of the Dynkin diagram of A to the orbits of  i and j consists of Ni copies 
o f  the situation A1 | A1 of  Fig. 2, and analogously for Ni 5r Nj.) 

In the remaining c a s e s  ~i,j~j, i  E {1, 2, 3}, we need either ~i,j __= - 1  or ~]J,~ = 

- 1 .  Since the labels i and j appear symmetrically in the definition of  rhij, we can 

assume without loss of generality that A~'J = - 1 .  The relation ~i,j  = si ~tN__~ -1 A cJ~,j 

for A then implies that 8i = 1. Moreover, for any representative c~mj of  the orbit of 

j ,  the Caftan matrix element A c~zi,~'~j is different from zero only for a single value 
of  l, for which it is equal to - 1 .  
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Let us first deal with the case s3 = 2. Then the product 

= A ~ *,3A w~ 3,~ (A.3) ~ i , j ~ j , i  2 Z  "~" " ' ' " 

l,U 

is even, so that the only case we have to analyze is when it is equal to two, and 

hence ~ i j  --- 4. As in Subsect. 5.2 we can assume that N = 2; then s j  = 2 implies 

that N j  = 2. Assume now first that Ni = 1, i.e. d3i = i; this implies that ~ j , i  = 

2 ( A  j #  + A ~ j , i )  = 2 ( A  j #  + A j,c~i) = 4 A  j # .  Thus if AJ,i is non-zero, it is in fact _< - 4 ,  

which implies that ~4i,J~i j , i  >_ 4. This does not belong to the cases we are investigating 

here, and hence we can assume that Ni = 2. 

Now s j  = 2 means that A j ,w j  = A ~ j , j  = - 1 ,  while si = 1 tells us that A i,ei = 

A ~ , i  = 0. Further, because of ~ , J  - -  A i ' j  + A ~i ' j  = - 1 ,  we can assume without loss 

of generality that A wi, j  = 0 and  A ~,j = - 1 .  The automorphism property of ~b then 

implies that A i'wj = 0 and A ~i'c~ = - 1 .  As A is a Cartan matrix, we then also have 

A j'c~i = 0 = A u~ To determine the matrix elements A j ' i  = A wj'c~ (which because of 

A ~,j ~ 0 are non-zero), we observe that AY'i = 2(A ~# + A ~j,~) = 2A j# must be _> - 3  

in order to yield ~ i , j ~ j , i  ~ 3; thus A j #  = A c~ = - 1 ,  and we are in situation A4 

of Fig. 2. 

Having found these Cartan matrix elements, we know that 

WiWjW i = WjWiW j , WcoiWcojW~i = Wd~jWc~iWwj 

WjWd~jWj = WcojWjWdjj 

and 

WiWcoj = WwjWi ~ WjWcoi = W(oiWj 

Applying these relations repeatedly, we obtain 

( w i w c ~ i w j w c ~ j w j  ) 2 

(A.4) 

wiwc~i  = Wcoiw~ . (A.5) 

WdJiWiWdjjWjWdjj WiWwiWjWwjWj 

W(oi Wcoj Wi Wj W i Wcoj Wdji Wj W~j Wj 

WcoiWdjjWjWiWj Wd~j~J3d~iWdjjWjW(o 3 

Wd~iWcojWjWiWj WcoiWcojWd)iWjW~ 3 

W~iWcoj%O(oiWjWi WjWdojWcoiWjWdjj 

Wcoj WcoiWd~j Wj W i Wj %1)d3 j Wj Wd~iWdj j 

Wdjj WcoiWwj Wj W i Wwj Wj Wdjj WdjiWcoj 

Wd~jWcoiWdjjWjWcoj WiWjWcoiWc~jW(oi 

WUojW(oiWjWcojWj WiWjWd~iWwjWcoi 

Wd~jWjW~iWcojWi WjWiW~iW(ojWcoi 

W~jWjWiWueiWcoj Wj WwiWd~jWiW(oi 

WwjWjWiW~iW(oj WdoiWjWd3jWiW(oi 

UJdj j Wj W iw(oj Wdji Wcoj ~12j Wcoj WiWd2i 

WCoj Wj Wdoj Wi W~i WCoj Wj Wcoj Wi W(oi 

(WjWwjWjWiW(oi) 2 . 

(A.6) 
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Thus the generators ~bi := w i w ~ i  and ~ j  := WjWwjWj  of VV satisfy (~ i~ j )2  = 

(~ j~ i )2 ,  or what is the same, 

(~ir~j)4 = i d ,  (A.7) 

which is the relation we need, since f t i , J ~  j,i  = 2. 

Let us now turn to the case sj = 1. As the number t of  those values of  1 for which 

A ~Zj'~mi is non-zero is the same for any representative 5J'~i of  the orbit of i, we then 
find that 

N--1 

~j,i  = ~ AcJ j#  _< _$ ,  (A.8) 

l=O 

which shows that t can only have the values l, 2 or 3. Note that we still have 
t]  i,j = - 1 ,  so that N i  = N j / t  for each of  these values of  t. We can now classify the 
possible situations through the restriction of the Dynkin diagram of 9 to the orbits of 
i and j .  For t = l, we have N i  = N j ,  and the restriction of the Dynkin diagram to 
the two relevant orbits consists of Ni disconnected copies of  the Dynkin diagram of 
either A2, B2 - C2, or G2, according to whether ~ i , JAJ#  is l, 2 or 3. These algebras 
have also been used to denote the corresponding folding in Fig. 2. For t = 2, there is 
only one possibility which satisfies all required constraints, namely that one has Ni 
disconnected copies of  the Dynkin diagram of A3, such that the middle node lies on 
the orbit of i while the two extremal nodes lie on the orbit of  j .  Finally, for t = 3 
there are Ni disconnected copies of the Dynkin diagram of D4, with the middle node 
lying on the orbit of i and the three extremal nodes on the orbit of  j ;  this corresponds 
to the last case in Fig. 2. 

We will deal with the different values of  t consecutively. All cases with t = 1 can 
be treated simultaneously. In these cases the orbits of  i and j have the same length. 
We can therefore label the simple reflections in W associated to the elements of these 
orbits as follows. We define rl := w~zi for I = 1, ..., Ni, and then set r~ := w j j ,  with 

1 / chosen such that r~ commutes with all rl for l :f 1/. With this notation We have 

' rlmrl for l • m ( f i r ' )  ~ = id (A.9) ~ l r m  = ~ l �9 

Moreover, it follows from si = sj = 1 that for all l, m the reflections of  the same 
"type" commute, r l rm  = r,~rt  and rlrmt ~ = r m r l  . t  / Using these relations, we find that 

N~-I 
(~)i~)j)~hiy ~v-rNi--1 v [ N j - l r t  ]Thiy 

= (lit=0 rl �9 11m=O m ,  = H (rlr~)m~J = id (A.10) 
l=O 

as required. 
Next consider the case t = 2. Then we have N i  commuting copies of A3. By 

similar arguments as in the ~ = 1 case, we can restrict our attention to just one of these 
copies, and we can assume that the labelling is such that the relevant representatives 
of the orbits of  i and j are i and j themselves together with d;j. Then we have the 
relations 
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WjWd3j = W s j j W j  , W i W j W i  = W j W i W  j , W i W ~ j W  i = WdajWiWwj ~ (A. l l )  

which imply in particular 

( W i W j W ~ j )  2 = WiWjWdj jWiW~ojW j = W i W j W i W ~ j W i W  j = W j W i W j W s j j W i W  j 

= W j W i W d ~ j W j W i W  j = W j W i W s j j W i W j W i  = W j W w j W i W s j j W j W  i 

= ( w j w ~ j w i )  2 . 

(A.12) 
Thus ~ i  := w i  and wj := wjwd2 j  satisfy ( ~ i ~ j ) 2  = ( ~ j ~ i ) 2 ,  i.e. (~bi~bj) 4 = id  as 

required by j ] i , j ~ j #  = t = 2. 

Finally, for t = 3 the calculation is similar, though somewhat lengthier. There are 
Ni  commuting copies of  D4, and we can restrict ourselves to one of  these copies, 

with the labels of  its nodes being i for the middle node and j ,  ~ j  and c02j for the 

others. The associated simple reflections of  W satisfy w i w c o , ~ j w i  = W&mjWiWdjmj  

for m = 0, 1,2, and Wdjl jWwm j : WdjmjWdJlj for l, m : 0, 1, 2; repeated use of  these 

relations yields 

( w i w j w s j j w d 3 2 j  ) 3 = w i w j w d j j w i w ( o 2 j w i  w j w 6 j j w i w ( o j w j w w 2 j  

= w i w j w w j w i w & 2 j w  i w j w i w w j w i w j w ~ 2 j  

= w i w j w w j w i w ~ 2 j w  j w i w j w w j w i w j w d o 2 j  

---- WiWdj jWiWjWiWdj2  j WiWjWdj jWiWjWd~z j  

: Wd~jWiW~jWjWiWdj2  j Wi Wd~ j Wi Wj Wi W~2 j  

= Wd~jWiWjWdjjWiW~2J Wdj2jWiWd~jWjWiWs~2J (A.13) 
= W d j j W i W j W i W ~ j W  i Wdj2jTA)iW~jWjWiWw2j 

= W d j j W j W i W j W w j W w 2  j WiWdj2jWd~jWjWiW6fi j  

= W j W w j W i W j W & 2 j W i  W ~ j W i W j W i W ~ z j W i  

WjWd~jWiWw2j W j W  i W j W ~ j W i W j W ~ 2 j  Wi 

= W jW d~ jW iW w2jW iW  j W i W ~ j W i W j W w 2 j W i  

= (WjWs~jWw2jWi )  3 . 

Thus ~b~ := W~ and ~bj := wjw~, jw~o~j  satisfy ( ~ b j )  3 = (~jff~)3, i.e. (~b~ j )  6 = id ,  

which is again the required Coxeter relation for ~t i ,J f I  j #  = ~ = 3. 
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