
Inflammation is the first response of the immune system to infection 
or tissue injury, leading to protection of the human body against these 
insults. But prolonged or chronic inflammation is detrimental and has an 
important role in the development of diseases such as arthritis, Alzheim-
er’s disease, type 1 and type 2 diabetes and cardiovascular disease1–3. 

An inflammatory response begins when cells of the immune system 
and/or cells involved in metabolic pathways sense pathogens, irritants 
and cellular damage, triggering the release of inflammatory substances, 
including cytokines, free radicals, hormones and other small molecules. 
These inflammatory substances further stimulate the cells that secreted 
them and target specialized cells in immune and metabolic pathways, 
thereby altering cellular physiology to contribute to wound healing and 
pathogen resistance1. However, there is epidemiological, clinical and 
experimental evidence that cellular stress (that is, impaired biological 
processes within the cell) and excessive inflammation are causally linked 
to various metabolic conditions, such as obesity, type 1 and type 2 
diabetes and atherosclerosis2,3. 

Through recent intensive efforts, knowledge of the cellular and 
molecular mechanisms that control the inflammatory response has 
rapidly grown. However, crucial questions about how an inflammatory 
response originates have yet to be answered. For example, how does a cell 
interpret the presence of extracellular insults or metabolic overload and 
start transmitting signals that trigger an inflammatory response? Does 
the signalling in stress responses and inflammatory responses stem from 
a common mechanism or from different mechanisms that subsequently 
become integrated? 

Recently, a set of intracellular pathways that signal the presence of 
cellular stress was identified. These pathways are collectively known 
as the unfolded-protein response (UPR), and studies of the UPR 
have broadened the understanding of the mechanisms by which 
inflammation can be initiated. Here we describe the research that has 
defined the molecular and cellular underpinnings of UPR-associated 
inflam mation and then discuss how the UPR is coupled to inflammation 
in health and disease.

ER stress and the UPR in mammals
The endoplasmic reticulum (ER) is a membranous network of branch-
ing tubules and flattened sacs that is present in all eukaryotic cells. It 
extends throughout the cytoplasm of the cell and is contiguous with the 
nuclear envelope. The ER is mainly recognized as a protein-folding fac-
tory, responsible for the biosynthesis, folding, assembly and modification 
of numerous soluble proteins and membrane proteins4. About one-third 
of newly synthesized proteins translocate to the lumen of the ER, where 
they are folded into the correct three-dimensional structures before being 
targeted to various cellular organelles or transported to the surface of the 
cell. The ER also functions as a dynamic calcium store, which responds 
to growth factors, hormones, and stimuli that perturb cellular energy 
levels, nutrient availability or redox status. The ER seems to be a key 
site where intracellular signals mediated by these factors are sensed, 
integrated and transmitted, allowing the coordination of downstream 
responses. Physiological states that increase the demand for protein 
folding, or stimuli that disrupt the reactions by which proteins fold, 
create an imbalance between the protein-folding load and the capacity 
of the ER, causing unfolded or misfolded proteins to accumulate in the 
ER lumen — a condition referred to as ER stress. To ensure the fidelity 
of protein folding and to prevent such an accumulation of unfolded or 
misfolded proteins, eukaryotic cells have evolved the UPR, which alters 
a cell’s transcriptional and translational programs to cope with stressful 
conditions and to resolve the protein-folding defect5,6. 

In mammalian cells, the main UPR signalling cascades are initiated by 
three ER-localized protein sensors: IRE1α (inositol-requiring 1α), PERK 
(double-stranded RNA-dependent protein kinase (PKR)-like ER kinase) 
and ATF6 (activating transcription factor 6)5,6. Each of these transmem-
brane proteins has an ER-luminal domain that senses unfolded proteins, 
a transmembrane domain by which it is targeted to the ER membrane, 
and a cytosolic domain that transmits signals to the transcriptional or 
translational apparatus. IRE1α has protein-kinase activity and site-
specific endo ribonuclease (RNase) activity (the functions of which are 
described later)7,8. PERK also has protein-kinase activity and functions to 
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phosphorylate the α-subunit of eukaryotic translation-initiation factor 2α 
(eIF2α)9,10. ATF6 is a bZIP (basic region and leucine zipper)-domain-
containing transcription factor belonging to the CREB (cyclic-AMP-
responsive-element-binding protein) and ATF family of transcription 
factors11. In resting cells, all three ER-stress sensors are maintained in an 
inactive state through association with the abundant ER chaperone BiP 
(immunoglobulin-heavy-chain-binding protein; also known as HSPA5 
and GRP78). It has been suggested that in conditions of ER stress, BiP is 
sequestered through binding to unfolded or misfolded polypeptide chains 
and/or unassembled multisubunit proteins, thereby leading to the release 
and, consequently, the activation of the ER-stress sensors12. Although 
this model of BiP sequestration by unfolded proteins is consistent with 
most experimental evidence, it is probably an oversimplification of the 
complex interactions between diverse signals that are necessary and/or 
sufficient to activate the UPR13 (Fig. 1).

The most immediate response to ER stress, following the release of BiP 
from PERK, is the homodimerization and trans-phosphorylation of PERK, 
allowing PERK to phosphorylate eIF2α. The phosphorylation of eIF2α 
inhibits the assembly of the 80S ribosome and, consequently, the synthesis 
of proteins. This pathway promotes cell survival by preventing the influx 
of additional nascent polypeptides into an already-saturated ER lumen. 
Indeed, inhibition of PERK-mediated eIF2α phosphorylation reduces 
cell survival in conditions of ER stress14. However, phosphorylation of 
eIF2α is required for the translation of certain messenger RNAs that con-
tain regulatory sequences, such as the short open reading frames in the 
5ʹ-untranslated region of the mRNA encoding the transcription factor 
ATF4 (refs 15, 16). ATF4 can induce the expression of UPR target genes, 
which are involved in amino-acid biosynthesis and transport, the oxidative 
stress response, and ER-stress-induced apoptosis17. 

In response to ER stress, IRE1α autophosphorylates, thereby activ a-
ting its RNase activity. It then initiates the removal of a 26-base intron 
from mRNA encoding X-box-binding protein 1 (XBP1), resulting in a 
translational frameshift and translation of an XBP1 isoform with potent 
activity as a transcription factor (referred to here as active XBP1)5,6.

In parallel, when ATF6 is released from BiP, it translocates to the 
Golgi apparatus, where it is cleaved by the proteases site-1 protease 
(S1P) and S2P. This process results in the release of a functional (bZIP-
containing) fragment of ATF6 into the cytosol. This fragment then 
migrates to the nucleus and activates transcription11,18. Notably, S1P 
and S2P also cleave ER-associated sterol-regulatory-element-binding 
proteins (SREBPs), which are required for cholesterol and fatty-acid 
biosynthesis18. Cleaved ATF6 and active XBP1 isoform function mainly 
in parallel pathways to induce the transcription of genes encoding ER 
chaperones and enzymes that promote protein folding, maturation, 
secretion and ER-associated protein degradation19,20. However, if the 
cell fails to resolve the protein-folding defect and restore homeostasis 
in the ER, the UPR will initiate apoptosis, to protect the organism by 
removing the stressed cells that produce misfolded or malfunctioning 
proteins5,6. ER-stress-induced apoptosis is mediated largely by CHOP, a 
transcription factor that is homologous to C/EBP (CCAAT/enhancer-
binding protein) and is downstream of the PERK–eIF2α–ATF4 path-
way and the ATF6 pathway in the UPR. Although deletion of the gene 
encoding CHOP is known to protect cells against ER-stress-induced 
apoptosis, the mechanism by which CHOP induces apoptosis remains 
obscure. CHOP has been shown, however, to induce the expression 
of numerous pro-apoptotic factors (including DR5, TRB3, BIM and 
GADD34), which promote protein synthesis and oxidative stress in 
stressed cells21–24.
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Figure 1 | The mammalian UPR pathways. In non-stressed cells (not shown), 
the ER chaperone BiP binds to the luminal domains of the ER-stress 
sensors IRE1α, PERK and ATF6, maintaining these proteins in an inactive 
state. During ER stress (shown), BiP preferentially binds to unfolded or 
misfolded proteins, thus driving the equilibrium of BiP binding away 
from IRE1α, PERK and ATF6. These three proteins are the initiators of 
the three main signalling cascades of the UPR. The release of BiP results 
in the activation of PERK, through PERK homodimerization and trans-
autophosphorylation. Activated PERK then phosphorylates the translation-
initiation factor eIF2α, reducing the overall frequency of messenger RNA 
translation initiation. However, selected mRNAs, such as ATF4 mRNA, are 
preferentially translated in the presence of phosphorylated eIF2α. ATF4 

activates the transcription of UPR target genes encoding factors involved in 
amino-acid biosynthesis, the antioxidative-stress response and apoptosis. 
The release of BiP also allows IRE1α to dimerize, activating its protein-
kinase activity (through autophosphorylation) and its endoribonuclease 
activity. IRE1α then removes a 26-base intron from XBP1 mRNA. The 
spliced XBP1 mRNA encodes a potent transcription factor that translocates 
to the nucleus, activating the expression of UPR target genes. The release of 
BiP from ATF6 allows ATF6 to translocate to the Golgi apparatus, where it 
is cleaved by the proteases S1P and S2P, yielding an active cytosolic ATF6 
fragment (ATF6 p50). This fragment migrates to the nucleus, activating the 
transcription of UPR target genes. S1P, site-1 protease; 
S2P, site-2 protease; XBP1, X-box-binding protein 1.
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Pathways that connect ER stress to inflammation
In addition to the UPR, other signalling pathways radiate from the ER 
to the mitochondria and nucleus, and possibly to other organelles. A 
growing body of evidence suggests that the signalling pathways in the 
UPR and inflammation are interconnected through various mecha-
nisms, including the production of reactive oxygen species (ROS), the 
release of calcium from the ER, the activation of the transcription factor 
nuclear factor-κB (NF-κB) and the mitogen-activated protein kinase 
(MAPK) known as JNK (JUN N-terminal kinase), and the induction 
of the acute-phase response.

Oxidative protein folding and accumulation of ROS

ROS are small molecules that are highly reactive as a result of the pres-
ence of unpaired electrons. ROS are important mediators of inflam-
mation25, and recent findings have linked ER stress to the generation 
and accumulation of intracellular ROS, a state commonly referred to as 
oxidative stress. The folding of proteins into the correct conformations 
in the ER is an energy-consuming process, and oxidizing conditions are 
required for the formation of intramolecular and intermolecular disul-
phide bonds26. Electron transport during disulphide-bond formation is 
driven by a protein relay that involves two ER-resident enzymes: protein 
disulphide isomerase (PDI) and ER oxidoreductin 1 (ERO1)27 (Fig. 2). 
PDI directly accepts electrons, resulting in the oxidation of cysteine resi-
dues and the formation of disulphide bonds. ERO1 then uses a flavin-
dependent reaction to transfer electrons from PDI to molecular oxygen, 
thereby oxidizing PDI. Although it provides a robust driving force for 
disulphide-bond formation, the use of molecular oxygen as the termi-
nal electron recipient leads to the production of ROS27. Furthermore, 
additional oxidative stress can result from the depletion of reduced 
glutathione, because reduced glutathione is consumed in reactions that 
reduce unstable and improperly formed disulphide bonds28. Therefore, 
an increase in the protein-folding load in the ER can lead to the accu-
mulation of ROS, which might initiate an inflammatory response. 

Importantly, cells have evolved mechanisms to limit the accumu lation 
of ROS in response to ER stress. The PERK pathway of the UPR can 
activate an antioxidant program by preferentially translating mRNA 
encoding the bZIP-containing transcription factor ATF4 and by phos-
phorylating NRF2 (nuclear factor-erythroid-derived 2 (NF-E2)-related 
factor 2), another bZIP-containing transcription factor17,29. After PERK-
mediated phosphorylation, NRF2 translocates to the nucleus and acti-
vates the transcription of a set of antioxidant and oxidant-detoxifying 
enzymes, including NAD(P)H–quinone oxidoreductase, haem oxygen-
ase 1 and glutathione S-transferase30,31. In addition, NRF2 and ATF4 each 
induce the transcription of genes whose products maintain the cellular 
level of glutathione, the main redox buffer in the cell17,29,32. The overall 
antioxidant effect of the PERK pathway is supported by the finding that 
a potent ER-stress-inducing chemical, tunicamycin, induces only weak 
accumulation of ROS in wild-type cells, whereas this treatment induces 
a toxic accumulation of ROS in cells that lack PERK17,32. 

ER-associated NF-κB activation and the PERK pathway

NF-κB is a key transcriptional regulator that has a central role in the 
onset of inflammation33. In the absence of inflammatory stimuli, NF-κB 
remains in an inactive state through binding to a member of the fam-
ily of inhibitors of NF-κB (IκB), which are constitutively expressed. 
Activation of NF-κB is initiated by signal-induced phosphorylation of 
IκB, which is subsequently degraded. The degradation of IκB exposes 
a nuclear-localization signal in NF-κB, allowing NF-κB to translocate 
to the nucleus, where it induces the transcription of numerous inflam-
matory genes. An increase in the ER protein-folding load (for example, 
during viral infection) has been shown to result in the activation of 
NF-κB34,35. However, the details of the mechanism by which NF-κB is 
activated in these conditions are poorly understood. Experiments using 
calcium chelators and antioxidants indicate that, together, these signals 
contribute to the activation of NF-κB in response to ER stress36. There-
fore, ER-associated NF-κB activation might result from the oxidative 
stress of excessive protein folding and/or from an ER-stress-mediated 

leakage of calcium into the cytosol37. In addition, in response to ER 
stress, the UPR can directly promote NF-κB activation through a 
PERK–eIF2α-mediated attenuation of translation. Because the half-
life of IκB is much shorter than that of NF-κB, attenuating translation 
increases the ratio of NF-κB to IκB, thereby freeing NF-κB to translocate 
to the nucleus in response to ER stress38 (Fig. 3). This effect has been 
observed in cells treated with reagents that induce ER stress and in 
cells irradiated with ultraviolet light, both of which activate the PERK 
pathway of the UPR38,39.

IRE1α-mediated NF-κB and JNK activation 

In mammals, IRE1α might be important for integrating ER-stress signal-
ling with inflammatory-response signalling. This is thought to occur in 
the following manner. In response to ER stress, the autophosphorylation 
of IRE1α induces a conformational change in its cytosolic domain, which 
can then bind to the adaptor protein tumour-necrosis factor-α (TNF-α)-
receptor-associated factor 2 (TRAF2)40. The IRE1α–TRAF2 complex 
can recruit IκB kinase (IKK), which phosphorylates IκB, leading to the 
degradation of IκB and the nuclear translocation of NF-κB41 (Fig. 3). 
Consistent with these observations, ER-stress-induced NF-κB activa-
tion and production of the inflammatory cytokine TNF-α are impaired 
in mouse embryonic fibroblasts that lack IRE1α41. The IRE1α–TRAF2 
complex can also recruit the protein kinase JNK, leading to the activation 
of JNK. Activated JNK induces the expression of inflammatory genes 
by phosphorylating the transcription factor activator protein 1 (AP1)42. 
Given that JNK activation in response to ER stress is impaired in mouse 
embryonic fibroblasts that lack IRE1α, IRE1α might provide a link 
between ER stress and inflammation40. Taking these findings together, 
the formation of the IRE1α–TRAF2 complex seems to be crucial for 
activating both JNK and NF-κB in response to ER stress. Further studies 
will be needed to identify how ER-stress-induced signalling involving 
these two factors, JNK and NF-κB, might be integrated and/or synergize 
to regulate inflammation, metabolism, cell survival and apoptosis.

Figure 2 | Oxidative protein folding. The formation of disulphide bonds 
in proteins in the ER is driven by the enzymes PDI and ERO1. ERO1 
operates in association with the flavin FAD, which is synthesized in the 
cytosol but can readily enter the ER lumen. PDI accepts electrons (e–) from 
protein-folding substrates, thereby oxidizing the thiol (SH) groups in the 
protein’s cysteine residues and resulting in the formation of disulphide 
bonds. ERO1 uses an FAD-dependent reaction to transfer electrons from 
PDI to molecular oxygen (O2), resulting in the production of ROS in the 
form of hydrogen peroxide (H2O2). Reduced glutathione (GSH) can assist 
in disulphide-bond reduction, which occurs when there is a overload of 
proteins to fold or an accumulation of misfolded proteins, and results in the 
production of oxidized glutathione (GSSG). In addition, reduced PDI can 
mediate a reduction of mispaired thiol groups in oxidized protein-folding 
substrates, functioning as an isomerase. Because the activity of ERO1 is 
modulated by the amount of FAD in the ER, disulphide-bond formation is 
linked to the nutritional and/or metabolic status of the cell.
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The acute-phase response

Regulated intramembrane proteolysis (RIP) is a process by which ER-
resident bZIP-containing transcription factors (including SREBPs and 
ATF6) traffick from the ER to the Golgi apparatus, where they are 
cleaved, releasing functional isoforms18,43. Recently, CREBH, another 
RIP-regulated bZIP-containing transcription factor, was identified to 
mediate the acute-phase response in the liver44. CREBH is expressed 
mainly by hepatocytes, and its expression is highly induced by inflam-
matory cytokines, such as TNF-α, interleukin 1β (IL-1β) and IL-6. 
When ER stress occurs, CREBH is activated and mediates the acute-
phase response in the liver44 (Fig. 4). CREBH is activated through 
translocation from the ER to the Golgi apparatus, where it is cleaved 
by S1P and S2P. An N-terminal fragment of CREBH is released into 
the cytosol, and this fragment translocates to the nucleus, where it can 
induce transcription. In the mouse liver, inflammatory cytokines and 
bacterial lipopolysaccharide (LPS) each induces ER stress and leads 
to such cleavage of CREBH44. However, CREBH does not induce 
the expression of genes involved in the UPR. Instead, it binds to a 
DNA-sequence motif in the promoter regions of a subset of acute-
phase-response genes, including those encoding serum amyloid P 
component and C-reactive protein44. Further studies are required to 
elucidate how the trafficking of CREBH from the ER is regulated. 
In addition, targeted deletion of the gene encoding CREBH should 
identify the significance of this ER-stress signalling pathway in the 
inflammatory response.

Factors at the crossroads of inflammation and ER stress
Accumulating evidence suggests that there is extensive cross-talk 
between the inflammatory response and the ER-stress response. Inflam-
mation can be triggered by a chronic excess of metabolic factors (such 
as lipids, glucose and cytokines) and/or neurotransmitters. In many 
physiological or pathological settings, these stimuli can also elicit ER 
stress, which further disrupts metabolic functions, thereby causing 
more inflammation. Such vicious cycles could exacerbate inflamma-
tory stress signalling (that is, the signalling pathways that integrate stress 
and inflammation), as well as metabolic deterioration, in specialized 
cells such as macrophages, β-cells (in the pancreas) and adipocytes. 
Moreover, intracellular calcium and free radicals (such as ROS and 
nitric oxide) are crucial for integrating inflammatory responses, meta-
bolic responses and ER-stress responses, and dynamic signalling by 
these factors relies on there being functional interactions between the 
ER and mitochondria.

Calcium and free radicals

The oxidation state and concentration of calcium in the ER lumen cru-
cially affect polypeptide folding, as well as chaperone function. The 
calcium concentration in the ER is many thousand-fold greater than 
that in the cytosol45. The calcium concentration in the ER is regulated 
by ATP-dependent uptake of calcium into the ER and receptor-medi-
ated release of calcium from the ER. An accumulation of misfolded 
proteins in the ER can cause calcium to leak from the ER, possibly 
through inositol-tris phosphate receptors37. The calcium released from 
the ER is concentrated in the matrix of the mitochondria and causes 
depolarization of the inner mitochondrial membrane, disrupting elec-
tron transport and increasing ROS production46 (Fig. 5). Mitochondrial 
ROS can further increase calcium release from the ER by sensitizing ER 
calcium-release channels and causing protein misfolding. In addition, 
during oxidative protein folding in the ER, reducing equivalents are 
transferred from thiol groups in protein-folding substrates to molecular 
oxygen, thus producing membrane-permeable hydrogen peroxide (an 
ROS). Through this forward cycle, calcium release, ROS production 
and protein misfolding function together to activate calcium-depend-
ent protein kinases, as well as JNK and NF-κB, leading to inflammatory 
responses and even cell death47. 

In addition to ROS, reactive nitrogen species also contribute to inflam-
mation and ER stress. Nitric oxide is a highly reactive, uncharged, mem-
brane-permeable molecule that functions as a signal in many regulatory 
processes, such as blood-vessel dilation, immune responses and neuro-
transmission. Nitric oxide can react with superoxide to form peroxy-
nitrite, and with thiols and metal centres in proteins to form nitrosyl 
adducts48. It has also been shown to modify the active site of PDI, thereby 
interfering with disulphide-bond formation and resulting in the accumu-
lation of misfolded proteins in the ER49. In addition, excessive production 
of nitric oxide can alter the oxidative state and calcium concentration in 
the ER and disrupt the electron-transport chain, causing ER stress and 
ROS production50,51. 

Metabolic factors

Several reports indicate that inflammatory cytokines can cause ER 
stress and therefore activate the UPR. For example, TNF-α causes 
ER stress, activating PERK, IRE1α and ATF6 in fibrosarcoma cells52. In 
addition, TNF-α, IL-1β and/or IL-6 can induce ER stress in hepatocytes, 
leading to the activation of CREBH, which then mediates an acute-
phase response44. And the presence of the T-cell-derived cytokine 
interferon-γ (IFN-γ) has been associated with PERK activation and 
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and NF-κB activation. In response to ER stress, 
PERK mediates a general repression of mRNA 
translation by phosphorylating eIF2α. Because IκB 
has a shorter half-life than NF-κB, PERK-mediated 
translational  attenuation shifts the ratio of IκB to 
NF-κB, thereby freeing NF-κB to translocate to 
the nucleus. In addition, in response to ER stress, 
the cytoplasmic domain of phosphorylated IRE1α 
can recruit tumour-necrosis factor-α (TNF-α)-
receptor-associated factor 2 (TRAF2). The 
IRE1α–TRAF2 complex interacts with JNK and/or 
IκB kinase (IKK), activating these protein kinases. 
Activated JNK phosphorylates the transcription 
factor activator protein 1 (AP1). Activated IKK 
phosphorylates IκB, initiating the degradation 
of IκB and thereby leading to NF-κB activation. 
Activated NF-κB and AP1 then migrate to the 
nucleus, where they induce the transcription of 
genes involved in the inflammatory response. 
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ER-stress-induced apoptosis in oligodendrocytes (cells that produce 
large amounts of myelin in the nervous system)53. Although the mecha-
nism by which cytokines induce ER stress is not completely under-
stood, experimental evidence supports the idea that cytokines trigger 
the release of calcium from the ER and the accumulation of ROS, which 
interfere with protein folding and mitochondrial metabolism52,53. 

In addition to cytokines, excessive amounts of metabolic factors, such 
as cholesterol, non-esterified fatty acids, glucose, homocysteine and 
neurotransmitters, can also induce both the ER-stress response and the 
inflammatory response in a variety of cell types54–58. There is evidence to 
support the idea that the presence of large amounts of these metabolic 
factors can stimulate the release of calcium from the ER, the production 
of free radicals, and ER stress. But the molecular links between metabolic-
factor excess, ER stress and inflammation are not well defined.

The UPR and inflammation in health and disease
The cross-talk between the UPR and inflammation is exemplified in 
cell types that have metabolic or immune functions. These cell types 
include hepatocytes, β-cells, adipocytes, macrophages and oligodendro-
cytes. Because these specialized cell types require the trafficking of large 
amounts of ‘cargo’ through the ER, they are extremely sensitive to alter-
ations in metabolism and/or ER homeostasis. Metabolic conditions such 
as lipid accumulation, increased glucose levels or excessive amounts of 
cytokines can trigger calcium release from the ER and ROS production 
in these cells, leading to ER stress and inflammation (Fig. 6). A wealth of 
evidence from in vitro studies suggests that pathological conditions that 
interfere with ER homeostasis and/or mitochondrial metabolism result 
in chronic activation of the UPR and in inflammation. Recent observa-
tions indicate that the molecular link between ER-stress responses and 
inflammatory responses might be mediated by activation of two signal-
ling molecules involved in inflammatory responses, JNK and NF-κB. The 
coupling of the UPR and inflammation in specialized cells and tissues 
might be fundamental to the pathogenesis of metabolic, neurodegen-
erative and infectious diseases. In this section, we describe some of the 
compelling evidence that prolonged activation of the UPR and inflam-
mation are integrated and ‘conspire’ in the pathogenesis of disease. 

Obesity and type 2 diabetes

The ER centrally controls cellular metabolism by regulating protein syn-
thesis and secretion, as well as triglyceride and cholesterol biosynthesis. 
Metabolic conditions such as insulin resistance and reduced glucose uti-
lization are associated with the development of metabolic syndrome, and 
these processes are regulated by numerous mechanisms, including the 
UPR, JNK activation, NF-κB activation and apoptosis2,59. Obesity and 
type 2 diabetes, whether caused by lifestyle factors or genetic deficiency, 
result in conditions that increase the demand on the ER. This is particu-
larly clear in the liver, adipose tissue and pancreas, where changes in tissue 
architecture, increases in protein synthesis, and perturbations in cellular 
energy fluxes occur2. Indeed, ER dysfunction has been linked to increased 
JNK activity, NF-κB activation and insulin resistance40,41,60,61. 

In normal conditions, activated insulin receptors phosphorylate tyro-
sine residues on proximal signalling molecules, such as insulin-receptor 
substrate 1 (IRS1), that transmit the effects of insulin by interacting 
with other cytosolic molecules. Insulin resistance can result from JNK-
mediated phosphorylation of serine residues in IRS1, which inhibits the 
phosphorylation of IRS1 on tyrosine residues62–64. In the liver and adi-
pose tissues of obese animals, PERK and IRE1α, and their downstream 
effectors, have been found to be activated60. Because activated IRE1α can 
recruit TRAF2 and trigger JNK activation when ER stress occurs40, it 
has been proposed that IRE1α links ER stress and JNK-mediated serine 
phosphorylation of IRS1, causing peripheral insulin resistance. Con-
sistent with this hypothesis, when mice that lacked one allele of Xbp1 
(Xbp1+/– mice) were fed a high-fat diet, the liver and adipose tissues 
showed increased activation of PERK, IRE1α and JNK, and dysregulated 
phosphorylation of IRS1, coupled with insulin resistance60. It is possible 
that reduced signalling through XBP1 compromises protein folding and 
thereby causes insulin resistance, although further studies are required 

to validate this hypothesis. In addition, because both IRE1α and PERK 
activation can lead to NF-κB activation (through IKK activation and 
translation attenuation, respectively; Fig. 3), further studies are required 
to elucidate the significance of IRE1α and PERK in coordinating the 
activation of JNK and NF-κB, as well as the impact of this coordinated 
activation on the insulin resistance and inflammation that are associated 
with obesity and type 2 diabetes.

Atherosclerosis

Atherosclerosis, the leading cause of cardiovascular disease, is an 
inflammatory disease in which immune mechanisms interact with 
metabolic risk factors, causing lesions to develop in the arterial vas-
culature. Cholesterol deposition by macrophages, inflammation and 
cell death are crucial contributors to the formation and progression of 
these lesions, resulting in the acute occlusion of blood vessels65. Recent 
evidence suggests that the UPR and inflammation underlie the develop-
ment of atherosclerotic lesions. 

The accumulation of free cholesterol in the ER membranes of mac-
rophages causes calcium release, UPR activation and CHOP-induced 
apoptosis54. This loading of macrophages with free cholesterol activates 
NF-κB and the MAPKs p38, extracellular-signal-regulated kinase 1 
(ERK1) and ERK2, and JNK, thereby inducing the expression of genes 
encoding inflammatory cytokines (including TNF-α and IL-6)66. In 
these conditions, JNK and NF-κB activation might be mediated, in 
part, through PERK and IRE1α66. Interestingly, CHOP, which is mainly 
produced by way of the PERK pathway of the UPR, is required for IL-6 
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Figure 4 | The ER-stress-induced acute-phase response. When 
inflammatory cytokines, such as TNF-α, IL-1β and IL-6, are present in 
the extracellular environment, the gene encoding CREBH is transcribed 
(not shown). CREBH, similar to ATF6, is a bZIP-containing transcription 
factor that is localized to the ER membrane. CREBH, however, is mainly 
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by regulated intramembrane proteolysis. Activated CREBH and ATF6 can 
then form homodimers or heterodimers and migrate to the nucleus, where 
they activate the transcription of the genes encoding serum amyloid P 
component and C-reactive protein, which mediate the acute-phase response.
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production and for full activation of ERK1 and ERK2 in response to 
loading with free cholesterol. The connections between the UPR, ER-
stress-induced apoptosis and inflammation might help to explain the 
link between free-cholesterol accumulation and inflammation in the 
vulnerability of lesions to rupture in advanced atherosclerosis. In addi-
tion to the free-cholesterol loading of macrophages, oxidized lipids (such 
as oxidized low-density lipoprotein and its bioreactive component, oxi-
dized 1-palmitoyl-2-arachidonyl-sn-3-glycero-phosphorylcholine) 
can result in ER stress and UPR activation in human aortic endothelial 
cells67. The UPR is also activated in human atherosclerotic lesions, where 
oxidized phospholipids have accumulated. Furthermore, in vitro studies 
have shown that the ER-stress-induced transcription factors ATF4 and 
XBP1 are required for the production of the inflammatory cytokine 
IL-6 and the chemokines IL-8 (also known as CXC-chemokine ligand 8 
(CXCL8)), CC-chemokine ligand 2 (CCL2) and CXCL3 by human aortic 
endothelial cells in the basal state and on accumulation of oxidized lip-
ids67. Together, these studies suggest that UPR signalling is an important 
mediator of vascular inflammation and possibly of the endothelial-cell 
dysfunction that is observed in atherosclerosis. 

Neurodegenerative diseases

Most acute and chronic neurodegenerative diseases involve inflam-
mation, although the source of the inflammatory response is poorly 
characterized68. These diseases, including Alzheimer’s disease, Parkin-
son’s disease, multiple sclerosis and diseases that result from the expan-
sion of a polyglutamine repeat, are associated with protein aggregation 
and are characterized by abnormal neuronal physiology and neural-cell 
death69. Recent studies suggest that the protein aggregates associated 

with these diseases might inhibit the proteasome, thereby preventing ER-
associated protein degradation (ERAD) and leading to the accumulation 
of unfolded proteins in the ER70,71. However, there is limited evidence 
from studies of animal models or humans to support the idea that the 
pathology associated with these diseases results from defects in ERAD 
that cause ER stress. Intriguingly, mutations in genes that have functions 
linked to ERAD and/or mitochondrial function can cause Parkinson’s 
disease in  humans72. In addition, deletion of the gene enco ding the 
pro-apoptotic UPR-induced transcription factor CHOP was reported 
to protect against apoptosis in a neurotoxin-induced mouse model of 
Parkinson’s disease73. However, in a mouse model, brain-specific deletion 
of the gene encoding XBP1, a transcriptional activator of genes whose 
products are involved in ERAD, did not affect the development of prion 
disease (a family of neurodegenerative diseases caused by prion-protein 
misfolding)74. Although the mechanisms underlying neurodegenera-
tive diseases are still under investigation, it is clear that alterations in 
protein folding, calcium signals, redox homeostasis and inflammation 
are prominent features69,75,76. 

Multiple sclerosis is a neurodegenerative disease that is marked by 
demyelination, oligodendrocyte loss and T-cell activation associated 
with IFN-γ production53,77. In animal models of multiple sclerosis, 
treatment with IFN-γ was found to induce ER stress in actively myelin-
ating oligodendrocytes, leading to apoptosis of the oligodendrocytes 
and abnormalities in neuron myelination78. By contrast, treatment with 
IFN-γ has been shown to activate the PERK pathway of the UPR, pro-
tecting mature oligodendrocytes against immune-mediated damage79. 
It has been proposed that these divergent responses to IFN-γ depend 
on the rate of protein synthesis by the oligodendrocytes79. In an oligo-
dendrocyte that is actively producing myelin, the increase in protein 
production stimulated by IFN-γ could convert an adaptive (able to be 
adjusted), moderate level of ER stress to a destructive, apoptosis-induc-
ing, ER-stress response. By contrast, mature oligodendrocytes produce 
less protein, so an increase in protein production might not result in 
such a destructive ER-stress response79,80. Thus, regulating the balance 
between the rates of protein production and the inflammatory stress 
responses (which integrate inflammation and ER-stress signalling) 
in oligodendrocytes might be a crucial factor in the development of 
demyelin ating diseases.

Therapeutic potential and future directions
Considerable progress has now been made towards understanding 
the signalling pathways that integrate the UPR and inflammation and 
the physiological significance of this connection. Recently, researchers 
have focused on designing effective therapeutics for inflammatory 
diseases by modulating the UPR and inflammatory response. However, 
manipulating the interface between these fundamental biological 
responses for therapeutic purposes, without causing severe side effects, 
is a formidable challenge. Because many mediators of cellular stress 
and inflammation are regulated simultaneously, it is unlikely that a 
single response that integrates inflammation and ER-stress signalling 
is responsible for the pathogenesis of a particular disease. Given this 
complexity, an effective approach would be to seek to re-establish func-
tional homeostasis by modifying integrated biological outcomes rather 
than targeting single pathways. 

Recent studies suggest that preserving or restoring ER function might 
be therapeutic. Small molecules that are classified as chemical chaperones 
can facilitate protein folding and protect against ER stress, thus relieving 
disease symptoms in animal models. For example, in insulin-resistant 
obese mice, the chemical chaperones 4-phenylbutyric acid and taurine-
conjugated ursodeoxycholic acid were found both to reduce the phospho-
rylation of PERK and IRE1α significantly and to improve glucose tolerance 
and insulin sensitivity61. In addition, another chemical chaperone, 
the resveratrol tetramer vaticanol B, has been shown to inhibit both the 
UPR and the inflammatory response by reducing the protein-folding 
load and maintaining ER-membrane integrity, preventing ER-stress-
induced apoptosis81. In addition to chemical chaperones, salubrinal, a 
phosphatase inhibitor, might have therapeutic benefit. Salubrinal can 
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Figure 5 | The role of calcium and ROS in the UPR and inflammation. 

Protein folding is an oxidative process that generates ROS. ROS can target 
chaperones (not shown) and ER-based calcium (Ca2+) channels, leading to 
the release of calcium from the ER into the cytosol and ER-stress signalling. 
Calcium released from the ER is concentrated in the inner matrix of the 
mitochondria, where it disrupts the electron-transport chain, thereby 
leading to the production of more ROS. These mitochondrially produced 
ROS can further exacerbate calcium release from the ER, resulting in the 
accumulation of ROS to a toxic level. Furthermore, perturbation of ER 
calcium homeostasis can disrupt the protein-folding process in the ER, 
which, in turn, causes ER stress, induces the UPR and generates more ROS.
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protect cells against ER-stress-induced apoptosis by selectively inhibiting 
the dephosphorylation of eIF2α such that further protein synthesis and 
accumulation in the ER is inhibited82. 

Future studies will need to address the many open questions about the 
physiological significance of the various ER-stress signalling pathways 
in mediating inflammatory responses. The knowledge gained by such 
studies will improve the overall understanding of how inflammatory 
diseases develop and indicate how they might be treated with pharma-
cological interventions that modulate ER stress and inflammation. ■
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