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ABSTRACT
The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction.
Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same
underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an
ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for
maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited,
and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes
an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the
entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters,
including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel
dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive
and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented
using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating
both effectiveness given operational constraints and statistical significance given a large sample.

1. Introduction

Ensemble forecasts consist of several simulations of the future
evolution of the dynamical process under concern (see e.g. Toth
et al., 2003). In principle, ensemble forecasts allow us to convey
additional information on forecast uncertainty (Tennekes, 1988),
which is invaluable for informed decision making (Taylor and
Buizza, 2003; Richardson, 2003a,b; Roulston et al., 2003). In
both scientific studies as well as practical applications, distribu-
tion functions are often more convenient to manipulate than a
set of point values. The question then arises how to transform an
ensemble into such a distribution function, a task often referred
to as statistical post-processing of ensemble forecasts in Raftery
et al. (2005); Wilks (2006); Wilks and Hamill (2007) or ensem-
ble interpretation in Jewson (2003a), the latter term being used
in this paper. Any particular method for interpreting ensembles
will be referred to as an ensemble interpretation method (other
authors, e.g. Wilks, 2006; Wilks and Hamill, 2007, use the term
ensemble MOS method).

∗Corresponding author.
e-mail: broecker@pks.mpg.de
DOI: 10.1111/j.1600-0870.2008.00333.x

Ensemble interpretation methods generally differ due to the
different families of distribution functions employed in building
the ensemble interpretation and the way it is actually built. Both
aspects are discussed in this paper. As to the different families
of distribution functions, two particular approaches are consid-
ered here. The first one is referred to as kernel dressing and
consists of replacing individual ensemble members by kernel
functions. In the second approach, the ensemble is replaced by
a parametrized distribution function, where the parameters of
the distribution function have to be represented as functions
of the original ensemble. This approach will be referred to as
distribution fit or DF interpretation.1,2 Both approaches typi-
cally involve parameters which have to be determined.

Approaches to build the ensemble interpretation method differ
in what the ensemble is taken to represent. In the simplest case,

1In fact, kernel dressing and DF interpretation are not really distinct, as
a sum of kernel functions can be interpreted as a special family of distri-
bution functions, the centres of the kernel being part of the parameters.
But when speaking of DF interpretations, we usually have somewhat
more common families of distributions in mind, like Gaussian, Weibull
or exponential distributions.
2The term distribution fitting is used by, for example, Wilks (2006).
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664 J . BRÖCKER AND L. A. SMITH

the ensemble is considered a collection of equally likely scenar-
ios of reality, drawn from the same distribution as the verification
(a perfect ensemble). This approach suggests that ensemble in-
terpretation is accomplished by approximating this underlying
distribution, for example, by parametric estimation techniques
(see e.g. Mood et al., 1974, Chapter VII) or kernel estimates
(Silverman, 1986).

Although ensembles have been used to great effect even when
assumed to be perfect (Wilks, 2002), we argue that a different
paradigm is available which naturally includes the case where
ensemble members and verifications do not share the same dis-
tribution. Nor need we assume that any one of the models in hand
is true in any sense. Here, we are interested in a distribution of
the verification given the information contained in the ensemble.
A formalism for constructing such distributions could take into
account that ensembles and corresponding verifications are not
draws from the same or at least fairly similar distributions, but
entirely different ones.

This paradigm defines ensemble interpretation in a much
broader sense than just interpolating a distribution function un-
derlying the ensemble. In fact, there is no need to assume that
ensembles are draws from distributions at all. As a simple exam-
ple, it will be demonstrated that a mere linear transformation of
the ensemble already brings about a significant improvement in
a predictive performance of kernel dressing. Finding this linear
transformation will be neither a preliminary nor a subsequent
step to dressing, but integral part of it. Inasmuch as dressing in-
volves finding unspecified parameters of the dressing method, we
consider dressing a generalization of statistical learning (Hastie
et al., 2001).

The performance of forecast distributions is evaluated using
scoring rules (Selten, 1998; Gneiting and Raftery, 2007). Some
scores can be applied to the raw ensemble itself (e.g. continuous
ranked probability score (CRPS) score Gneiting and Raftery,
2007), while others can be applied to smoother probability
assignments only, as provided, for example, by ensemble in-
terpretation methods. Thus, ensemble interpretations render the
application of those scores to ensemble forecasts feasible. In this
paper, we focus attention on the Ignorance score (Good, 1952;
Roulston and Smith, 2002). Strengths and weaknesses of this
score are clarified as well.

Techniques for ensemble interpretation are the subject of Sec-
tion 2, where state-of-the-art ensemble interpretation methods
are revisited and a new affine kernel dressing (AKD) method is
presented. A comparison of these ensemble interpretation meth-
ods in terms of their mathematical properties is subject to Section
3. Scoring rules are discussed briefly in Section 4, along with the
details of how to optimize the performance of ensemble inter-
pretation methods, while questions of robust estimation and the
value of blending in the climatological distribution are discussed
in Section 5. In Section 6, we apply the ensemble interpretation
techniques to temperature forecasts at London Heathrow and
Heligoland (German Bight) as well as to the Lorenz63 system.

The AKD method is shown to be capable of dealing with the
imperfect ensembles more adequately than common ensemble
interpretation methods in these cases. Furthermore, the Lorenz63
example demonstrates the insufficiency of Gaussian DF
interpretations.

2. Interpreting Ensemble Forecasts

This section introduces a new dressing method referred to as
AKD in the context of three well-known methods, namely Gaus-
sian DF interpretation (GDF), standard kernel dressing methods
(SKD) and Bayesian model averaging (BMA) (see e.g. Hoeting
et al., 1999; Roulston and Smith, 2003; Raftery et al., 2005;
Wang and Bishop, 2004; Wilks, 2006). We use the following
notation throughout the paper. By

x = [x1, . . . , xd ], (1)

we denote an ensemble with d ensemble members. Typically,
different ensemble members have different dynamical and statis-
tical properties, depending on the ensemble generation scheme.
In this paper though, we treat all ensemble members equally,
or in other words, the ensemble interpretation methods consid-
ered in this paper do not depend on the ordering of the ensemble
members. If some of the xi need to be treated differently than
others, for example if they come from different models3, a super-
script x(J )

i should be used. This case is to be distinguished from
an ensemble in a higher dimensional space. Neither multimodel
ensembles nor ensembles in high-dimensional spaces are consid-
ered in this paper. In general, the ensemble is a function of time,
which we denote by x(t), while we write y(t) for the verifica-
tion, that is, the quantity to be forecast. The number of ensemble
members d might even change over time. The ensemble has a
mean and a variance, which are defined as

m(x) = 1

d

∑
i

xi , (2)

v(x) = 1

d

∑
i

[xi − m(x)]2, (3)

respectively. Finally, p(y; x, θ ) is a probability density function
derived from the ensemble x, where θ denotes further parameters.
In other words, p(y; x, θ ) denotes the interpreted ensemble as a
probability density function, given the original ensemble. In fact,
a probability density function need not be the goal, as will be
discussed at the end of Section 4.

We first consider Gaussian DF interpretations (GDF) which
can be written as

p(y; x, θ ) := 1√
ν

K
(

y − μ√
ν

)
, (4)

3The unperturbed ensemble member (the ‘control’) could be treated dif-
ferently, which we will not do in this paper though.
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where K is a standard Gaussian density. Depending on the prob-
lem, other distributions can be more appropriate, for example
Weybull or � distributions. The parameters μ and

√
ν are the

mean and the standard deviation of the distribution, respectively.
Setting μ and

√
ν equal to the mean and the standard deviation

of the ensemble is a possible choice (Wilks, 2002), but by do-
ing so we would approximate the distribution of the ensemble,
rather than the distribution of the verification given the ensem-
ble, which is our goal. A conceptually different approach is to
determine

√
ν and μ by functions of the ensemble and some free

parameters θ , so that the DF interpretation shows good forecast
performance. A variant of Gaussian DF interpretation following
this philosophy was presented by Jewson (2003a,b), who sug-
gested a mean μ and standard deviation

√
ν depending on the

raw ensemble x as follows

μ = r1 + r2 · m(x), (5)

√
ν = s1 + s2 ·

√
v(x). (6)

Thus,
√

ν and μ are determined by linear functions of the stan-
dard deviations and the mean of the ensemble, respectively. A
very similar interpretation method was suggested by Gneiting
et al. (2005), who replaced eq. (6) by ν = s1 + s2 · v(x). The
parameters θ = [r1, r2, s1, s2] are free parameters, for which
r1 = 0, r2 = 1, s1 = 0, s2 = 1 are reasonable initial choices. The
linear relationships in eqs. (5) and (6) might be unable to cope
with ensembles which are grossly different from the verification.
The key insight of Jewson (2003a,b) and Gneiting et al. (2005) is
that the parameters r1, r2, s1, s2 have to be determined according
to forecast performance, rather than to represent the distribution
of the ensemble members. Determining the parameters r1, r2,
s1, s2 thus hinges on what counts as ‘good performance’. Both
the issue of finding the parameters as well as precise definitions
of performance will be discussed in Section 4. This approach
is distinctly different from, for example, Wilks (2002), where
the probability distribution is fitted to the ensemble, without any
reference to the verification.

An obvious shortcoming of Gaussian DF interpretation is that
the shape of the dressed ensemble is invariably Gaussian. A
more versatile method is provided by kernel dressing. Various
versions of kernel dressing have been considered in the literature
(Roulston and Smith, 2003; Raftery et al., 2005; Wang and
Bishop, 2004; Wilks, 2006). A general way to present the kernel
dressing approach reads as follows

p(y; x, θ ) := 1

dσ

∑
i

K
(

y − axi − ω

σ

)
. (7)

Hence, a kernel-dressed ensemble is a sum of bumps, with one
bump replacing each ensemble member. The shape of the bumps
is determined by the kernel K. Each bump is centred at axi + ω,
where xi is the ith ensemble member. Thus, a scales the ensemble,
while ω acts as an offset. The width of each bump is determined
by the bandwidth σ . As with GDF, a, σ and ω are quantities that

might depend on the ensemble and on a parameter vector θ in
a way we have to specify. Note that the bandwidth σ has to be
positive. For simplicity, throughout this paper, the kernel K will
be a standard Gaussian density

K (ξ ) := 1√
2π

exp

(
−1

2
ξ 2

)
. (8)

Hence, kernel dressing results in a sum of d Gaussians, in contrast
to GDF, which gives a single Gaussian. Possible advantages of
using different kernels with finite support like the Epanechnikov
kernel (Silverman, 1986) are discussed in Section 5.

A wide variety of different kernels have been employed in
similar or related circumstances (Roulston and Smith, 2003;
Silverman, 1986). All results below apply to kernels which are
normalized and positive, and furthermore have mean zero and
unit variance.4 We remark that the Gaussian kernel employed
here is furthermore symmetric, but this property is not used in
this paper.

From the properties of the kernel immediately follows that
the ensemble interpretation p(y; x, θ ) in eq. (7) is a positive
and normalized probability density function. It is illustrative to
compute the mean

μ :=
∫

y p(y; . . .) dy (9)

and the variance

ν :=
∫

(y − μ)2 p(y; . . .) dy (10)

of the ensemble interpretation (eq. 7). We will now prove the
following two identities on μ and ν, which we will need later:

μ = ω + a
1

d

∑
i

xi = ω + am(x), (11)

ν = σ 2 + a2 1

d

∑
i

[xi − m(x)]2 = σ 2 + a2v(x). (12)

The first eq. (11) states that the mean value of the ensemble inter-
pretation is equal to the mean value m(x) of the ensemble, scaled
by the parameter a and shifted by the parameter ω. The second
eq. (12) states that the variance of the ensemble interpretation is
likewise equal to the variance v(x) of the ensemble, scaled by the
parameter a2 and shifted by the parameter σ 2. Note, however,
that a, σ and ω might depend on the ensemble as well, as men-
tioned above. To prove eq. (11), note that by substituting from

4As long as the kernel has a mean m and a variance s at all, we can al-
ways obtain mean zero and unit variance by using the kernel 1√

s K ( ξ−m√
s )

instead of K. The Cauchy kernel provides an example of a kernel having
neither a mean nor a variance.
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eq. (7) into eq. (9), we get∫
y p(y; . . .) dy

= 1

dσ

∑
i

∫
yK

(
y − axi − ω

σ

)
dy

= 1

d

∑
i

∫
(z + axi + ω)K (z) dz

= a
1

d

∑
i

xi + ω

= ω + am(x),

where we first substituted z for y−axi −ω

σ
, then used that the kernel

is normalized and has zero mean and finally employed the def-
inition eq. (2) of the ensemble mean. To derive eq. (12), again
substituting from eq. (7), we get along similar lines∫

y2 p(y; . . .) dy

= 1

dσ

∑
i

∫
y2 K (

y − axi − ω

σ
) dy

= 1

d

∑
i

σ 2 + (axi + ω)2

= σ 2 + 1

d

∑
i

(axi + ω)2. (13)

Furthermore, we expand

1

d

∑
i

[axi − am(x)]2

= 1

d

∑
i

(axi + ω − am(x) − ω)2

= 1

d

∑
i

(axi + ω)2 − [ω + am(x)]2. (14)

Now employing eqs. (13), (11) and then (14), we get

ν =
∫

y2 p(y; . . .) dy − μ2

= σ 2 + 1

d

∑
i

(axi + ω)2 − [ω + am(x)]2

= σ 2 + a2 1

d

∑
i

[xi − m(x)]2,

which establishes eq. (12). For constant a, σ , ω, these equations
follow from eqs. (4) and (7) in Raftery et al. (2005). All these
identities are special instances of the well-known fact that the
overall variance of a model which is itself an average is given
by the average of the individual variances plus the dispersion of
the models.

The kernel dressing methods discussed in this paper (and in
fact most other kernel dressing methods we know of) differ only
in how the parameters σ , ω and a are determined as functions of
x and θ . For AKD, σ and ω are set to

ω = r1 + r2 · m(x), (15)

σ 2 = h2
S · [s1 + s2 · a2v(x)]. (16)

Here, hS is Silverman’s factor (see Silverman, 1986)

hS = 0.5 · [4/(3d)]1/5,

the meaning of which will be explained below. Substituting
eq. (15) for ω in eq. (11) and eq. (16) for σ in (12), we get
the relations:

μ = r1 + (a + r2) · m(x), (17)

ν = h2
Ss1 + a2

(
h2
Ss2 + 1

) · v(x). (18)

The dressing approach as presented in eqs. (15) and (16) leaves
the free parameter vector θ := [r1, r2, s1, s2, a] to be determined.
There is a different way to write eqs. (15) and (16) which reveals
more about the structure of AKD and the role of Silverman’s
factor. Combining eqs. (15) and (16), it is easy to see that the
dressed ensemble eq. (7) reads as

p(y; x, θ ) := 1

dσ

∑
i

K

(
y − zi

σ

)
, (19)

where

zi = axi + r2m(x) + r1, (20)

σ 2 = h2
S · [s1 + s2 · v(z)]. (21)

The relations (19)–(21) allow for the interpretation of AKD as
dressing the ensemble z, which is obtained from the original
ensemble x through the transformation in eq. (20). This trans-
formation will henceforth be referred to as an affine ensemble
transform. Hence, also the name AKD.5 Further possible gener-
alizations of dressing could be obtained by replacing the affine
ensemble transform (i.e. eq. 20) by more general ensemble trans-
forms, which are discussed in Appendix B. Note that the affine
ensemble transform acts on the ensemble as a whole and cannot
be represented as a function acting on each ensemble member
individually. We stress that the ensemble transformation (eq. 20)
as well as the dressing (eq. 19) are both integral parts of the entire
method, and they should not be considered as separate steps. In
other words, the parameters in eqs. (19) and (20) will generally
depend on each other.

From the theory of kernel density estimates (Silverman, 1986),
we take the ansatz eq. (21) for the bandwith σ . In the highly
idealized situation that the transformed ensemble z is Gaussian
and perfect, σ 2 = h2

S · v(z) is a close to optimal choice for the
bandwidth. Although we do not assume z to be either Gaussian
or perfect, using Silverman’s factor conveniently scales s1 and
s2 to ranges around 1.

In Section 6, AKD will be compared to Gaussian dressing as
well as a more standard version of kernel dressing, henceforth
referred to as SKD, which obtains by setting a = 1, r2 = 0 and

5Which should, in fact, be ‘affine ensemble transform kernel dressing’.
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FROM ENSEMBLE FORECASTS TO PREDICTIVE DISTRIBUTION FUNCTIONS 667

s1 = 0. That is, standard kernel dressing allows for a fixed offset
r1 to all ensemble members as well as a bandwidth correction
factor of s2.

Another special case emerges by setting r2 = 0, s2 = 0. This
ensemble interpretation method was studied by Wilks (2006),
who introduced it as a special case of Bayesian model averaging
(BMA, Raftery et al., 2005). As was pointed out in Wilks (2006),
the general BMA technique might be justified if the ensemble
members are expected to have significantly different error statis-
tics, as for example in ensembles of different numerical weather
models. For the initial condition ensembles considered below,
however, the ensemble members are expected to have quite sim-
ilar statistics, whence a general BMA approach would be overly
complex.

3. Properties OF AKD, SKD and GDF

In this section, a brief look is taken upon the advantages and
shortcomings to be expected of the four dressing methods pre-
sented. It is plausible that any kernel dressing is better than Gaus-
sian dressing if (but not only if) the ensemble x(t) and the ver-
ification y(t) are independent draws from the same underlying
distribution (perfect ensemble) and the ensemble is sufficiently
large. The reason is that with increasing ensemble size (and suit-
able choice of the bandwidth σ ), the kernel-dressed ensemble
will approach the underlying density. Although we did not ven-
ture to find a proof, analogy to density estimation problems (Sil-
verman, 1986) suggest that a necessary criterion would seem to
be σ (d) → 0 if the ensemble size d goes to infinity, but slow
enough so that still d · σ (d) → ∞, that is σ (d) shrinks slower
than d. This is expected, for example, in best member dressing
(Roulston and Smith, 2003). Hence, we would expect that, if the
ensemble is perfect, yet not Gaussian but, for example, bimodal
(Smith, 1997, 2002), kernel dressing will eventually outperform
Gaussian dressing. Even if the perfect ensemble is actually a
draw from a Gaussian, it is not clear that Gaussian dressing is
better than kernel dressing, since the parameters ω and σ in eqs.
(5) and (6) still need to be estimated from the ensemble. It can be
shown (J. Penzer, personal communication, 2006) that maximum
likelihood estimates of these parameters are suboptimal, and a
t-distribution should be used rather than a Gaussian (Johnson
and Wichern, 1992). This effect is essentially due to the small
ensemble size.

Gaussian dressing, on the other hand, is expected to beat stan-
dard kernel dressing when the ensemble x(t) is reasonably Gaus-
sian but overdispersive, or in other words, the ensemble mem-
bers are further away from each other than from the verification.
Since σ 2 is positive, eq. (12) reflects the basic result (see e.g.
Wilks, 2006) that the variance of the standard kernel-dressed en-
semble (i.e. if a = 1) is always larger than the variance of the
raw ensemble, no matter how σ is determined. AKD, in con-
trast, allows for the variance of the dressed ensemble to be a
linear function of the variance of the raw ensemble, a feature

it shares with Gaussian dressing and BMA. In operational nu-
merical weather prediction, the ensemble spread is typically too
small on average, leading to convex Talagrand diagrams (Wilks,
1995; Hamill, 2001). Nevertheless, eq. (12) is a relation for each
individual ensemble. Independent of whether the ensemble vari-
ance is too large or too small on average, affine kernel dressing
allows for a more flexible relationship between the variance of
the ensemble and the variance of the dressed ensemble than
standard dressing in either case. A distinct advantage of AKD
over BMA emerges from the relations (17, 18). For AKD, these
two relations are independent. This would, in principle, permit
to debiase the ensemble mean and simultaneously optimize the
spread–skill relationship. The relations (eqs. 5 and 6) show that
the same is true for GDF. For BMA though, r2 = 0 and s2 = 0, in
which case the linear part in both the relations (eqs. 17 and 18) is
determined by a. In other words, having debiased the ensemble,
there remains little which can be done for a better spread–skill
relationship. As demonstrated in Section 6, AKD offers signifi-
cant benefits when applied to numerical weather predictions for
which the square error of the ensemble mean is not well repre-
sented by the ensemble variance. To the extent that it is Bayesian,
BMA provides a principled framework for constructing proba-
bility forecasts. This comes with the cost of assuming that one
of the models is true (Hoeting et al., 1999) or alternatively that
the available model class admits a perfect model.

While all variants of kernel dressing borrow from and bear
some resemblance to Kernel Estimation (KE), a technique em-
ployed to estimate probability density functions (Silverman,
1986), we stress that kernel dressing (and in fact ensemble inter-
pretation in general) rests on different assumptions than kernel
estimation. The latter attempts to fit a probability density function
to a single and unchanging archive of points. These points are si-
multaneously forecasts and verifications. Future points, although
not expected to be equal to any point in the archive, are never-
theless assumed to be drawn from the same source. Thereby, in
KE, the ensemble and the verification are draws from the desired
distribution. For kernel dressing of ensemble forecast, there is
but one verification for every ensemble, and typically, the ver-
ification is not drawn from the ensemble, that is, the ensemble
is demonstrably not perfect. The improved dressing method as
presented in eqs. (19), (20) and (21) looks superficially similar
to a kernel estimator applied to the transformed ensemble z. It
should be kept in mind though that eventually all parameters
of kernel dressing are determined simultaneously and depend
on each other, thus the ensemble transform (eq. 20), the choice
of the bandwidth (eq. 21) and the dressing (eq. 19) cannot be
separated.

4. Scoring and Training

The ensemble interpretation methods presented in the Section 2
depend on the as yet unspecified parameters θ . We con-
sider the problem of determining the parameters of ensemble

Tellus 60A (2008), 4
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interpretations to be similar to the learning problem of statistics
(Vapnik, 1998; Hastie et al., 2001). In the latter problem, the ob-
jective is to fit a functional relationship between certain inputs
and verifications, based on a training set of input-verification
pairs. The functional relationship is picked from a range of func-
tions or model class according to performance. An algorithmic
procedure that tunes the parameters according to performance
over a training set will be referred to as a training algorithm.
At the core of most training algorithms lies an iterative proce-
dure which optimizes the expected performance as a function of
the parameters. A more classical term for training algorithm is
‘estimation technique’. The difference is only a linguistic one,
but estimation might imply the existence of a true parameter
(like a physical quantity) that is to be estimated. The parame-
ters of ensemble interpretation methods though need not to have
any physical interpretation, whence the term training algorithm
seems more appropriate here.

When interpreting ensembles, the objective is to find a proba-
bilistic relationship between the inputs and verifications, where
the model class consists of sums of kernel functions, and the
training set consists of ensemble-verification pairs (hence, the
training set is often referred to as forecast archive). The un-
specified parameters should be determined solely by forecast
performance, not by any a priori assumptions, like, for exam-
ple, that the ensemble and the verification are draws form one
and the same underlying distribution. This obviously involves
finding appropriate performance measures or scoring rules for
probabilistic forecasts, which we will turn to now.

A scoring rule is a function S(p(y), Y), where p(y) is a prob-
ability density and Y is the verification. In this paper, scoring
rules are defined like cost functions: small scores indicate better
forecast skill. For example, the Ignorance Score is defined by
the scoring rule

S(p(y), Y ) = − log[p(Y )].

The Ignorance score is related to the log likelihood (Mood et al.,
1974; Bröcker and Smith, 2007) and plays an important role in
gambling theory. Another interesting scoring rule (although not
used in this paper) is the Proper Linear Score. It is defined as

S(p(y), Y ) =
∫

p2(z) dz − 2p(Y ). (22)

It should be noted that the Ignorance depends only on the single
number p(Y), while the Proper Linear Score depends on the entire
functional form of p(y). This particular property of the Ignorance
is called locality. Local scores are typically cheaper to evaluate
than non-local scores. Computing functionals of the probability
density (such as the integral in eq. 22) are often very costly. As
noted by Gneiting et al. (2005), similar reasons have hampered
the use of the CRPS score.

It turns out that not all conceivable candidates for scoring
rules yield useful scores. An indispensable property of scores is
propriety. Roughly speaking, a score is proper if p(y) achieves

an optimal (i.e. minimal) expected score whenever the verifica-
tion is drawn from p(y). A scoring rule is strictly proper if that
happens only if the verification is drawn from p(y). Propriety is
a property only of the scoring rule itself. The Ignorance and the
Proper Linear Score are proper (for a proof of this fact as well as
a discussion of the notion of propriety see Bröcker and Smith,
2007). A general result due to Bernardo (1979) states that all
smooth, proper and local scores are affine functions of the Ig-
norance. Proper scores, in general, have been characterized by
Gneiting and Raftery (2007).

In evaluating forecast systems, one is not only concerned with
a single probability density function p(y) but also with a sequence
pn(x) of probability density functions and corresponding verifi-
cations Yn which can be employed to estimate the performance of
the forecast system, in other words, the expected score (with re-
spect to a proper scoring rule S). To this end, define the empirical
score:

SN := 1

N

N∑
n=1

S[pn(x), Yn]. (23)

The empirical score values the average performance of the fore-
cast system over all samples in the archive. In the case of dressed
ensembles, the probability density functions are time depend
through the ensemble x(n), that is pn(y) = p[y; x(n), θ ] where
θ denotes the ensemble interpretation parameters. In the case
of AKD, for example, θ = [a, r1, r2, s1, s2]. Replacing the ex-
pression for pn(y) in eq. (23) and using the Ignorance score, we
obtain

SN (θ ) = 1

N

N∑
n=1

− log [p(Yn, x(n), θ )] . (24)

In eq. (24), the empirical score of the ensemble (which essen-
tially reflects the performance of the forecast system) can be
regarded as a function of the free ensemble interpretation pa-
rameters θ . Minimizing the score (and thereby optimizing the
performance of the dressed ensemble) with respect to the pa-
rameters θ provides a means to choose these parameters, i.e. a
means of training, reminiscent of statistical learning. In statis-
tical learning, a functional relationship is picked from a range
of functions according to its performance, which is often (but
not always) the quadratic error. In ensemble interpretation, a re-
lationship between ensembles and probability density functions
is picked from a range of functions according to performance,
which in this paper is measured by the Ignorance score. The
approach to minimize performance measures (such as the Igno-
rance score) to determine the parameters of forecast interpreta-
tion methods for continuous events was, to our knowledge, first
considered by Jewson (2003a,b) and (apparently independently)
Gneiting et al. (2005). In so far as minimizing the Ignorance can
be considered as maximum likelihood, it is, of course, a very old
concept.

A thorough theoretical investigation of the minimum-score
training strategy and the properties of the obtained parameters
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would be invaluable, but is not subject to this paper. We used
an optimization algorithm that solves a sequence of constrained
quadratic optimization problems (Gill et al., 1982). Other options
are the EM algorithm employed by Raftery et al. (2005). Both
algorithms are only guaranteed to find local rather than global
minima. We are ignorant as to whether the EM algorithm could
be applied to other scores, while preliminary studies indicate
that sequential quadratic optimization works equally well with
the proper linear score. The Ignorance of kernel dressing can
display multiple minima with rather poor performance. Robust
solutions with good performance, however, are obtained in prac-
tice by a regularization strategy, discussed in Section 5, along
with a careful initialization of the minimization algorithm. The
results reported in this paper were obtained using the following
methodology for finding the initial conditions. The mean of the
dressed ensemble (as described by eq. 5 in case of Gaussian DF
interpretation, respectively, eq. 11 in case of kernel dressing) is
fitted to the verification in a mean-square error sense. The vari-
ance of the dressed ensemble (as described by eq. 6 in case of
Gaussian DF interpretation, respectively, eq. 12 in case of kernel
dressing) then should roughly correspond to the squared resid-
uals of the fitted mean. Thus, fitting the variance of the dressed
ensemble to the squared residuals gives a further condition to
find initialization parameters. As it turns out, this allows for
finding complete initial conditions for Gaussian DF interpreta-
tion and standard kernel dressing. For AKD, this strategy leaves
s2 unspecified, which is set to 1. The structure of the problem as
presented in eqs. (20), (21) and (19) and the use of Silverman’s
factor guarantee that setting s2 = 1 is a reasonable choice unless
the transformed ensemble (eq. 20) is extremely poor.

5. Robustness Issues

Obtaining robust estimates for the parameters of ensemble in-
terpretation methods can be difficult, especially if forecast busts
are numerous or when the ensemble is small. This problem is of-
ten traced back to the empirical score showing a large variance.
Recently, several authors (Gneiting and Raftery, 2007; Selten,
1998) criticized the Ignorance for being particularly prone to
large variation. The Ignorance is a quite unforgiving score in
that it extremely severely penalizes low-probability assignment
to verifications that actually obtain. Indeed, assigning vanishing
probability to a verification yields an Ignorance of infinity. Even
if the assigned probabilities are never exactly zero, a few ‘bad
forecasts’ can render the variance of the empirical Ignorance un-
desirably large, resulting in parameters obviously useless (this
may be a positive attribute in decision support). It should be noted
that the Ignorance has a clear interpretation in terms of gambling
returns (Good, 1952; Kelly, 1956; Roulston and Smith, 2002).
Under a certain betting scenario (‘Kelly Betting’, Kelly, 1956),
the Ignorance describes the rate at which the forecaster’s fortune
increases with time. The properties of the Ignorance hence can
be defended as representing properties of a game. Furthermore,

large variations in the empirical score are always to be expected
if the forecasts are poor and should adequately be dealt with,
especially as the score might not even be a matter of choice. So
how can large variations in the empirical score be avoided?

It was suggested by Gneiting and Raftery (2007) that the sum-
mands in eq. (24) could be censored, that is, a certain percentage
of the data could be rejected as outliers. Another option could
be to use a truncated logarithm, which would be reminiscent of
ε-insensitive loss functions in regression (Vapnik, 1998). This
seems inadvisable in cases where such ‘outliers’ have a firm
physical interpretation and are expected to become more rele-
vant in the future dynamics, for example in seasonal forecasting.
These and other means to combat the influence of outliers on
the score and subsequently the parameters are often referred to
as regularization. It has to be kept in mind though that the Ig-
norance (or whichever score is employed) is used both to train
the ensemble interpretation parameters and also to evaluate the
interpreted forecast. During training, any kind of regularization
is permissible and even recommended. For evaluation, however,
censoring or truncating of the score would require it to be rein-
terpreted. Important properties and interpretations of the score
might not hold for the regularized score. For example, common
interpretations of the Ignorance in terms of gambling return rates
cease to apply if the sum in eq. (24) is censored, which essentially
would be tantamount to cancelling the highest winnings and to
default on the worst bankruptcies. In practice, certain scoring
procedures (e.g. in sailing, ski jumping or ice skating) actually
allow to retrospectively discount the worst results (sometimes re-
quiring the best results to be cancelled too), but this is certainly
not the case in ‘games’ as for example casinos, energy markets
or air traffic control. Hence, in general, it seems to depend on
the particular problem whether a censored (or truncated) score
is an appropriate measure of forecast performance.

In situations where a regularization of the problem is necessary
during training, but where the problem statement does not allow
for any censoring or otherwise altering of the score, it seems
inevitable to apply a slightly different (i.e. regularized, respec-
tively, not regularized) scoring methodology during the training
(respectively, evaluation) period. In this paper, the logarithm was
effectively truncated by replacing all pn which were equal to zero
(up to numerical precision) by the smallest non-zero pn . For eval-
uation though, the Ignorance was neither censored nor truncated.
Such discrepancies (which are inherent to all regularization ap-
proaches) might seem disturbing at first sight. Currently, we lack
a full theoretical justification of this approach, but as an ad hoc
scheme we found it to give superior results, presumably because
of smaller variance in the dressing parameters.

To account for forecast failures during evaluation, the dressed
ensemble was blended with an estimate of the climatology of the
verification, thereby circumventing the problem of large vari-
ances in the empirical score. For a finite ensemble size, this is
justifiable even in the case of a perfect ensemble. More specifi-
cally, let pn(y) be the interpreted ensemble and q(y) be an estimate
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of the climatology of the verification. We use a mixture of both,
like

rn(y) := α pn(y) + (1 − α)q(y), 0 ≤ α ≤ 1, (25)

as the forecast distribution. The weight α is determined so as to
minimize the Ignorance (i.e. to optimize the performance) of the
combination, and hence must be involved in the optimization.
The resulting probability assigned to a verification Y is never
smaller than (1 − α) q(Y). The effect therefore is that a small,
yet non-vanishing probability is assigned to the verification, as
long as the latter does not fall outside the range of the data record
employed to estimate the climatology. Forecast performance is
often stated in relation to the performance of climatology as a
reference. This means that the (mean of the) difference in per-
formance between pn(y) and the climatology q(y) is reported.
Thus, the climatology acts as a reference forecast, itself yielding
a score of zero. In case of the Ignorance, this can be written as

SN [p] − SN [q] := 1

N

∑
− log

[
rn(Yn)

q(Yn)

]
. (26)

Replacing rn(y) from eq. (25), we get for every summand

rn(Yn)

q(Yn)
= α pn(Yn) + (1 − α)q(Yn)

q(Yn)

= α
pn(Yn)

q(Yn)
+ (1 − α),

≥ (1 − α),

from which we can conclude

− log [rn(Yn)] ≤ − log [q(Yn)] − log(1 − α).

Hence, the empirical Ignorance of a forecast combined with
climatology relative to climatology is never larger (i.e. worse)
than −log (1 − α). Blending in climatology thus acts as a hedge
against forecast busts. Another way to interpret a blend with cli-
matology is to play cancelling bets. The Ignorance of a forecast
relative to climatology describes the rate at which the forecast-
ers fortune increases in a betting scenario where the odds are
set according to climatology.6 Mixing in a proportion 1 − α of
climatology hence is equivalent to staking a proportion α of the
fortune according to the forecast and a proportion 1 − α accord-
ing to the odds given, which guarantees a certain return of at
least a proportion 1 − α of the stake. The forecaster thus avoids
being infinitely worse off than the house.

Only few forecast busts are sufficient to render a good cli-
matology worth being blended with the forecast proper. As
an example, Fig. 1 shows −log [rn(Yn)], combined with clima-
tology, versus −log [q(Yn)], that is the climatology itself. The
ensemble forecast was from ECMWF’s medium range 51 mem-
ber ensemble prediction system. The lead time was 10 d. The

6Or alternatively, relative Ignorance between two forecasts A and B
describes the rate at which the fortune of forecaster A exceeds that of
forecaster B.
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Fig. 1. The Ignorance − log [rn(Yn)] (ECMWF ensemble and
climatology) versus − log [q(Yn)] (only climatology) for temperature at
Heligoland, German Bight (WMO 10015), lead time ten days. The
dressing method here is AKD. Obviously, − log [rn(Yn)] is never larger
than − log [q(Yn)] − log (1 − α). The weight assigned to the
climatology is 1 − α = 0.051, whence − log (1 − α) ≈ 3.
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Fig. 2. The weight assigned to the climatology over lead time. The rest
is as in Fig. 1. The confidence bars display variations of the weight
estimate obtained through cross-validation (see Appendix A).

weight assigned to the climatology is 1 − α = 0.051. It is
obvious from the plot that −log [rn(Yn)] is never larger than
−log [q(Yn)] − log (1 − α) = −log [q(Yn)] + 2.97 at every
verification (not just in the mean). Fig. 2 shows the weight as-
signed to the climatology over lead time. The confidence bars
display variations of the weight estimate obtained through cross-
validation (see Appendix A).

It might prove difficult to determine α robustly, as the op-
timal combination of α and kernel bandwith (i.e. σ in eq. 21)
for the training set might be a local (and very poor) minimum
by suggesting a very wide bandwith to compensate for forecast
busts, instead of employing the climatology for that purpose.
This could be addressed by using a kernel function with a limited
domain (like the quadratic Epanechnikov kernel, see e.g. Silver-
man, 1986), which yields infinite Ignorance for all points outside
its domain. Alternatively, large kernel bandwidths σ could be pe-
nalized. Taking into account the finite ensemble size and prob-
ably a known rate of forecast busts, it should even be possible
to derive an upper bound on α (i.e. a lower bound on the weight
assigned to climatology). The suggested precautions were, how-
ever, not necessary for the data sets considered in this paper (see
Section 6).
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Another interesting interpretation of the weight 1−α assigned
to the climatology could be to quantify of belief in or uncertainty
of our forecast. The question arises if and how uncertainty of
probabilistic forecasts could be quantified more generally, for
example if the climatology is unknown or is known to be chang-
ing. If the predictive distribution is interpreted as a probability,
we are now speaking about assigning an uncertainty to what is
already a probability, thus introducing the idea of second-order
probabilities, that is quantifying statements like ‘the probability
that it rains tomorrow at London Heathrow is evenly distributed
between 10 and 20%’. The second-order probabilities lead to
odd forecasts (K. Judd, personal communication, 2006), that is,
forecasts with a total mass larger than one, the excess represent-
ing uncertainty in the forecast (Smith, 2007). Although it is not
yet clear how uncertainty in probabilistic forecasts in general or
odds, in particular, could be assigned or used, such a framework
requires ensemble interpretation methods that focus on informa-
tion content in the ensembles to hand, while the assumption that
the resulting predictive distributions can be interpreted or acted
on as if they are (decision relevant) probability distributions has
to be dropped.

6. Comparative Studies

This section analyses the performance of standard kernel dress-
ing (SKD), AKD, and Gaussian DF interpretation (GDF). Short-
comings of SKD and GDF, which originally motivated the de-
velopment of AKD, are illustrated. AKD was compared to BMA
too, albeit less comprehensively. All ensemble interpretation
methods were blended with climatology, with the exception of
Gaussian DF interpretation (GDF). AKD is shown to be superior
to all other methods for the problems considered. As far as we are
aware, previous implementations of BMA do not blend in clima-
tology, leading to significantly larger variations in performance
and often inferior skill.

Results are presented for three different data sets. The first
and second data sets consist of forecasts of the 2 m temperature
at London Heathrow Airport (WMO station Nr.03772) and He-
ligoland, German Bight (WMO station Nr.10015), respectively.
The forecasts consist of ECMWF’s 51 member ensemble (as for
Figs. 1 and 2). The verifications consist of station data, kindly
provided by ECMWF as well. Forecasts were available for the
years 2001–2005, featuring lead times from 1 to 10 d. Verifica-
tions were available as far back as 1981. The years 1981–2000
were used to build a climatology. For any given day, the clima-
tology is calculated only from data falling into the same annual
period, defined by a window of ±20 d. Thus, the climatology
depends as well on the season. All data verified at noon. The
results for the weather data are shown in Figs 3 and 4 and are
discussed below.

The third data set was generated using the Lorenz63 system
(Lorenz, 1963). The ensemble, comprising 50 members, was

generated from observations of the full state of the system, cor-
rupted with 15 dB noise.7 The sampling interval was 0.05. For
data assimilation, a variant of the indistinguishable states im-
portance sampler (Judd and Smith, 2001) was employed. Data
assimilation is necessary here, since we have but noisy mea-
surements of the true underlying state of the system. Although
ensembles could also be generated by perturbing the true ini-
tial condition, this option would, of course, not be available in
real applications. Hence, using a data assimilation scheme cor-
responds much more to realistic circumstances. Forecasts were
considered at 10 lead times [0.1, 0.2, . . . , 1]. The same model
was used to generate both forecasts and the verifications. More-
over, the verifications formed a single trajectory. In general, the
AKD significantly outperforms SKD and GDF, especially for
the Lorenz63 system. The AKD method also appears to be the
most robust method among the three, in the sense that the perfor-
mance of AKD showed the least variability. The results for the
Lorenz63 system are shown in Fig. 5, and are discussed below.

Fig. 3a shows the performance in terms of Ignorance of AKD
relative to climatology for the London Heathrow data set. The
x-axis shows the lead time. The confidence bars (in fat line style)
mark the 10–90% range obtained from a 10-fold cross-validation.
The thin line shows the Ignorance of the out-of-train (OOT) out-
put. The corresponding thin confidence bars show the ±2 σ range
(see Appendix A). Cross-validation is known to have a large vari-
ance (Hastie et al., 2001), while the variance of the OOT output
(see Appendix A) on the other hand tends to be too small. In
any case, AKD gives a significantly higher skill than the clima-
tology under both validation methods. In order to compare the
performance of AKD, SKD and GDF interpretation, we plot the
difference of the Ignorance (eq. A7) directly, rather than leave it
to the reader to compare performances across multiple graphs.
This allows for confidence bars of the relative performance,
as the uncertainty in the relative performance does not fol-
low from the uncertainties of the absolute performances (see
Appendix A). The axis scaling has been set so as to allow for
easy comparison across different graphs.

Fig. 3b shows the performance of GDF versus AKD. The OOT
confidence bars overlap the zero line slightly for lead time 24, 48
and 72 h, but sees AKD significantly ahead of GDF beyond lead
time 72 h. The cross-validation assessment indicates essentially
the same, the bars being wider though.

Fig. 3c shows the performance of SKD versus AKD for
London Heathrow. Up to lead time 120 h, the AKD method
outperforms SKD substantially, at least according to OOT cal-
culation. For higher lead times, AKD still appears to be better
for a large fraction of cross-validation runs.

7The dB scale measures the ratio between the variances of two signals.
A signal-to-noise ratio of d dB indicates that d = 10 · log10( vs

vn
), where

vs (respectively, vn) is the variance of the clean signal (respectively, the
noise)
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Fig. 3. The relative Ignorance of the investigated ensemble interpretation methods and climatology for London Heathrow over lead time. The fat
confidence bars are from tenfold cross-validation (10–90% range). The thin confidence bars correspond to the OOT performance (±2σ range).

Fig. 3d shows the performance of SKD versus GDF. From
lead time 96 h onwards, the two are essentially similar. The
potential advantage of SKD when dealing with strongly non-
Gaussian ensembles seems to play a little role for temperature
at lead times up to 100 h.

The comparison between BMA and AKD (Fig. 3f) remains
somewhat inconclusive, although AKD is certainly better than
BMA for medium and larger lead times. In terms of OOT per-
formance, AKD is significantly better than BMA. Note that our
implementation of BMA includes blending with the climatology.
This blending is not a common part of BMA, and some Bayesians
might object to it on principle, but it allows for a better com-
parison between BMA and AKD. Without climatology, BMA
shows considerably larger variation in performance (not shown).

The findings for Heligoland (Fig. 4) are very similar to the
results obtained for London Heathrow, a notable exception being
that AKD wins over GDF by an even wider margin. Furthermore,
the superior performance of AKD over BMA occurs for higher
lead times when compared to London Heathrow (cf. Fig. 3f with
Fig. 4f).

It is interesting to look at the non-Gaussianity of the ensemble
for these two data sets, especially in connection to the perfor-
mance of AKD versus GDF (Figs. 3b and 4b), as we expect AKD
to outperform GDF if the ensembles deviate from Gaussianity.
As a measure of non-Gaussianity, we employ the kurtosis of the
ensemble, that is the centred moment of fourth order,

k(x) = 1

d

∑
[xi − m(x)]4,

where m(x) is, as before, the ensemble mean. For Gaussian distri-
butions, the fourth-centred moment is expected to be three times
the variance, hence we expect for Gaussian ensembles

κ(x) := k(x)

3v(x)
− 1 ≈ 0.

The distribution of this statistic κ for Gaussian ensembles can
be simulated through bootstrapping and subsequently compared
with the distribution of κ for the actual ensembles. In Figs. 6
and 7, the 10–90% range of the actual values of κ is indicated
by a black bar, for London Heathrow and Heligoland, respec-
tively. The y-axis is calibrated in terms of quantiles of κ for
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Fig. 4. As in Fig. 3, but for Heligoland.

Gaussian ensembles. If the actual ensembles were Gaussian, all
bars should extend from 0.1 to 0.9.8 It emerges that at both lo-
cations, the ensembles tend to be particularly non-Gaussian at
lead times around 96 h. Interestingly, for larger lead times at
London Heathrow, the κ-statistic indicates again a more
Gaussian ensemble. For Heligoland, the ensembles are also par-
ticularly non-Gaussian at lead times around 96 h, but contrary to
London Heathrow, the ensembles stay fairly non-Gaussian out
to lead time 240 h. This provides a possible explanation for the
better performance of AKD in relation to GDF at Heligoland. It
is worth noting that the better performance of AKD versus GDF
furthermore indicates that the non-Gaussian ensembles carry
information beyond the second moment. The AKD interpreta-
tion outperforms GDF not only because the ensembles are non-
Gaussian, but also because this non-Gaussianity actually carries
information.

8The scale of the y-axis is not linear in p but in log( p
1−p ). For small

(respectively, large p), this renders the plot effectively logarithmic in p
(respectively, 1 − p).

As to the reasons why AKD outperforms the other discussed
methods, further investigation is necessary. There is some evi-
dence though that the mechanisms discussed in Section 3 are in
fact responsible. We investigated the parameters for both BMA
and AKD for London Heathrow at lead time 120 h. Note that
AKD is particularly strong here, and that the ensembles are par-
ticularly non-Gaussian. The parameters were substituted into
eqs. (17) and (18). For AKD, these relations read

μ = 0.0 + 0.99 m(x), (27)

ν = 1.93 + 0.53 v(x). (28)

For BMA, these relations read

μ = 0.003 + 1.0 m(x), (29)

ν = 0.17 + 1.0 v(x). (30)

The cross-validation approach (see Appendix A) yields an un-
certainty of less than 10−3 for all these coefficients. Since eqs.
(27) and (29) agree to a high degree, AKD and BMA always
have very similar means. The eqs. (28) and (30) though differ.
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Fig. 5. The relative Ignorance of the investigated ensemble interpretation methods for the Lorenz63 data set over lead time. Confidence bars are as
in Fig. 3.
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Fig. 6. The 10–90% range of the κ-statistic for London Heathrow. The
y-axis is calibrated in terms of quantiles of the κ-statistic for Gaussian
ensembles and plot on log( p

1−p ) scale.
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Fig. 7. The 10–90% range of the κ-statistic for Heligoland. The y-axis
is calibrated in terms of quantiles of the κ-statistic for Gaussian
ensembles and plot on log( p

1−p ) scale.

As was mentioned already in Section 3, for BMA the slope of
the variance relation (eq. 30) is always the square of the slope
of the mean relation (eq. 29), whence it is impossible for BMA
to have mean and variance relations like eqs. (27) and (28). It
appears though that the variance relation of AKD (eq. 28) gives
the better performance. It is interesting to note that the two vari-
ance relations intersect at v(x) = 3.74, as this is almost exactly
the temporal average of v(x), which is 3.76. This means that on
average over time, BMA and AKD feature the same variance
(3.93), which is in fact the ensemble variance, slightly inflated.
For individual ensembles though, their variances generally dif-
fer. In particular, the variations of the variance (i.e. the variance
of ν) is larger for BMA than for AKD. The lead times 48 and
216 h (for Heathrow and Heligoland) were investigated along
the same lines, with similar findings. Finally, we would like to
mention that for AKD, BMA and SKD, the weight assigned to
climatology behaves roughly as in Fig. 2.

The experiments carried out using the Lorenz63 data confirm
the general picture already obtained from the weather data ex-
periments, thereby confirming that any positive results are not
only due to limited counting statistics. AKD is the best perform-
ing and most robust method. The performance of AKD versus
climatology is shown in Fig. 5a. AKD and SKD perform roughly
equal (Fig. 5b). We suspect that this is due to the high quality
of the ensemble. If the ensembles were either overdispersive or
underdispersive, we would expect AKD to perform better than
SKD. Talagrand diagrams (not shown), however, indicate that
the ensembles are very reliable (i.e. neither overdispersive nor
underdispersive), which explains the similar performance of both
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Fig. 8. The 10–90% range of the κ-statistic for Lorenz63. The y-axis is
calibrated in terms of quantiles of the κ-statistic for Gaussian
ensembles and plot on log( p

1−p ) scale.

AKD and SKD. Inspection of the AKD models (not shown) indi-
cates that the parameter a (see eqs. 20 and 21) is close to one, in
particular for small lead times, rendering AKD and SKD essen-
tially equal. Kernel dressing (i.e. AKD and SKD) significantly
outperform GDF for higher lead times (Figs. 5c and d). A main
reason for this is certainly the increasingly non-Gaussian en-
sembles for higher lead times, as is obvious from a plot of the
κ-statistic (Fig. 8). Again, by comparing the variance of the per-
formance across different graphs, it can be concluded that AKD
features not only the best, but also the most robust performance.

7. Conclusion

There is valuable information in ensemble weather forecasts;
extracting this information requires interpreting the ensemble.
Comparing different methods for interpreting ensembles shows
that the AKD technique introduced in this paper yields promising
results for operational temperature forecasts using the ECMWF
ensemble; its strengths are also illustrated in the context of
perfect models and large forecast-verification archives with
the Lorenz 63 system. In terms of the ignorance score, AKD
outperforms the other methods in all cases considered; both
cross-validation and OOT evaluation confirm the results. The
importance of blending climatology into the probability distri-
bution function is shown.

Our approach aims at extracting information from an ensem-
ble without making assumptions regarding the perfection of the
model or the ensemble. There is no assumption that the ver-
ification represents ‘just another draw’ from the distribution
that generated the ensemble, nor any assumption that the model
class available admits a ‘true’ model. There is abundant evi-
dence that such assumptions are not justified in operational fore-
cast systems. We furthermore touch on the question of whether
or not probability distributions functions are indeed the best
representation of the valuable information contained in these
systems.

To the extent that operational forecasts are made to be used,
the ensemble interpretation is a critical component contribut-

ing to the value of an ensemble prediction system. By aiming
merely to extract information from the model simulations and
other available distributions (e.g. climatology), AKD has been
shown to improve this critical component, and may contribute to
enhancing the value of ensemble-based prediction, particularly
in applications like weather forecasting at all lead times.
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9. Appendix A: On Out-Of-Train Evaluation
and Cross-Validation

Performance evaluation of forecast systems aims to provide a
sound estimate of the future or out-of-sample performance, or
more specifically on data the forecast system will encounter
while in operation. Estimating the performance on data which
were already used to build or select the forecast system or any
parts of it, including the ensemble interpretation methods, is
likely to give overoptimistic results. Ideally, the ensemble in-
terpretation methods are trained on one part of the available
data, while the other part is left aside as test data. To get reli-
able estimates of the out-of-sample performance, the test data
set has to be sufficiently large. But typically, as the total amount
of data available is already limited, we cannot afford to sac-
rifice large proportions of the data for out-of-sample perfor-
mance assessment, as a small training set is expected to provide
inferior parameter values. We apparently face the problem of
having either unrealistic parameters or unreliable estimates of
performance.

A way around this apparent circulus vitiosus is cross-
validation (see e.g. Hastie et al., 2001). The price to be paid
though is having to train the ensemble interpretation method a
number of times rather than only once. More specifically, cross-
validation works as follows. The training set T = {(x (n), Yn),
n = 1 . . . N} is partitioned into J partitions T j of equal length
N/J. Let θ (j) be the parameter vector obtained by training the
ensemble interpretation method on T \ T j , that is the training set
without partition j. The score Sj for this particular θ (j) is eval-
uated only on T j (i.e. the data that had been left out for finding
θ (j)) and is given by

Sj := J
N

∑
n∈Tj

− log
{

p
[
Yn ; x(n), θ ( j)

]}
. (A1)
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The mean of all Sj is called the cross-validation estimate of the
score

SCV := 1

J

∑
j

S j . (A2)

The standard error of SCV can be estimated thus

�SCV :=
√

1

J (J − 1)

∑
j

S2
j − S2

CV. (A3)

In similar fashion, quantiles of the Sj can be computed to give
confidence intervals for the score. In the figures of Section 6,
we plotted the median score along with the 10–90% range as
confidence bars. In Hastie et al. (2001), using the standard error
is recommended, but this gives obscure results if the distribution
of the Sj is rather non-Gaussian.

An another way to estimate the likely variations of the score,
referred to as the OOT estimate, works as follows. Using the pa-
rameters θ (j) obtained through cross-validation, we can compute
the OOT output by

πn := p
(
Yn ; x(n), θ ( jn )

)
, (A4)

where jn denotes the index of the partition containing [Yn ,
x(n)]. Recall that the sample [Yn, x(n)] was not used during the
training of the particular parameter θ ( jn ). Using the OOT output,
the expected score:

SOOT := 1

N

∑
n

− log(πn), (A5)

and its standard error

�SOOT :=
√

1

N (N − 1)

∑
n

log(πn)2 − S2
OOT (A6)

can be computed. An easy calculation [comparing eqs. (A4, A5)
with (A1, A2)] reveals that SOOT is actually equal to SCV. The
standard errors, however, generally differ. For the OOT method,
the usual ±2 · �SOOT confidence intervals were employed. It
does not make sense to use quantiles of −log(πn) as confidence
intervals for SOOT. It is hard to say which of the two methods
is to be preferred, whence both were used for performance as-
sessment. The CV method explicitly takes into account model
variations, but as the individual CV partitions are shorter than
the training set, the model variations are likely to be overesti-
mated. The OOT technique uses the entire data set to estimate
the variations, but both model variations as well as performance
variations are compounded. Furthermore, the individual outputs
πn are assumed to be independent, an idealization that leads to
underestimation of the variations.

It is often necessary to consider the improvement of the Igno-
rance obtained by pn(y) over q(y). This improvement is naturally
measured by the increase in Ignorance (also often referred to as
the relative Ignorance of pn(y) with respect to q(y)):

Sp − Sq = 1

N

N∑
n=1

− log [pn(Yn)] + log [q(Yn)] . (A7)

This quantity, as the estimate of the Ignorance proper, carries
an uncertainty. It is important to realize that there is no simple
relationship between the uncertainty in Sp − Sq and the individual
uncertainties in Sp and Sq , since both are highly dependent. In
other words, the standard error of Sp − Sq is not in any simple way
related to the individual standard errors of Sp and Sq . To estimate
the standard error of relative ignorance’s through either cross-
validation or OOT technique, the eq. (A3) (respectively, A6) has
to be applied to the differences in the performance Sj between
the forecasts on each partition [respectively, the differences of
− log (πn)].

All performance plots (Figs. 3–5) show relative Ignorance
(either with respect to another forecast or with respect to cli-
matology). The cross-validation estimates are plotted in fat-line
style, while the OOT estimates are in thin-line style. As noted
above, cross-validation and OOT differ only in their estimates
of the standard error.

10. Appendix B: On Ensemble Transforms

In this paper, we considered the interpretation of ensembles as
the problem of finding a map from a series of ensembles on to a
series of distribution functions for a corresponding series of ver-
ifications. The method of AKD provides a special class of such
mappings by combining a simple kernel estimator (eq. 19) with
what we termed an affine ensemble transform (eq. 20). This idea
could be generalized by using different ensemble transforms,
probably involving non-linear elements. A particular linear en-
semble transform was used in this paper, and there is the possibil-
ity that the concept is of wider applicability in post-processing
ensemble forecasts. To this end, ensemble transforms need to
be properly understood and classified first. At this point, we are
not even sure if the ensemble transform used in this paper is the
most general linear ensemble transform. In this appendix, some
necessary conditions will be formulated that we deem general
ensemble transforms should obey and are hopefully sufficient
for a conclusive analysis of the aforementioned question.

The key property of an ensemble, which distinguishes it from
a vector, is that it is still considered the same ensemble if some
members are interchanged either across parts of or the entire
ensemble. For example, although the 50 perturbed members of
the ECMWF ensemble are distinguishable by the initial pertur-
bations used to compute them, they can be considered indistin-
guishable for the purpose of many applications. For the numeri-
cal studies in Section 6, even the unperturbed (‘control’) forecast
was considered indistinguishable from the perturbed ensemble
members. Such an ensemble of mutually interchangeable mem-
bers will be called a pure ensemble. Ensembles consisting of a
collection of pure ensembles (say, if we combine pure ensem-
bles produced by different models) might be called compound
ensembles. All ensemble interpretation methods studied in this
paper tread the ensembles as pure, as they are invariant to any
permutation of the ensemble members.
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An ensemble transform f is defined simply as a mapping be-
tween ensembles (not necessarily having the same number of
members). The key property of a (pure) ensemble, namely that
the ordering of the ensemble members is irrelevant, imposes cer-
tain restrictions on f, which we are going to formulate. Let (as
before) x = [x1 . . . xd ] be the original ensemble (consisting of d
members) and

z = f (x)

be the transformed ensemble (of d′ members). If we now permute
the elements in x, then z must remain the same ensemble, which
means, as we have seen, that at most some permutation of the
elements of z should take place. In other words, if π denotes a
permutation of d elements and πx denotes the permuted original
ensemble, there must be a permutation κ of the members of the
transformed ensemble z so that

κz = f (πx) (B1)

holds.
The permutation κ so obtained obviously depends on π , or in

other words, the relation (B1) defines a mapping κ(π ) between
permutations. If ι is the identity, that is the permutation of d
elements that actually keeps all elements the same, then likewise
κ(ι) is the identity permutation (of d′ elements). This relation can
(with a slight abuse of notation) be written as

κ(ι) = ι. (B2)

Furthermore, if π1, π 2 are two permutations, a third permu-
tation π1 ◦ π2 arises through composition of π1, π2. It follows
immediately from eq. (B1) that

κ(π1 ◦ π2) = κ(π1) ◦ κ(π2). (B3)

Properties (B2) and (B3) state that any ensemble transform gives
rise to a representation κ of the group of permutations of d
symbols in the group of permutations of d′ symbols.

The transformed ensemble z in eq. (B1) is not necessarily a
pure ensemble though, as it might be possible to split the mem-
bers of z into two subensembles, z = [z1, z2], so that for any
permutation π , the corresponding permutation κ(π ) permutes,
in fact, only the members of z1 and z2 among each other, but
does not interchange members of z1 with members of z2. If this
is the case, we have created a compound ensemble consisting of
(at least) two pure ensembles. In order to exclude this behaviour,
we have to require that for any two indices i, j in the set [1 . . . d′],
there is at least one permutation π so that κ(π ) permutes i into
j. Groups of permutations with this property are called transi-
tive. Hence, the conclusion of this appendix can be summarized,
thus:

Via eq. (B1), an ensemble transform induces a transitive repre-
sentation of the group of permutations of d symbols in the group
of permutations of d′ symbols.

Transitive representations of the permutation groups have
been widely studied and classified. Hence, by means of group

theory (Weyl, 1946), it should be possible to address questions
like whether the affine ensemble transform as presented in eq.
(20) is the most general class of ensemble transforms which can
be obtained by linear operations.
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